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The goal of this talk 2(56)

The goal of this talk is to derive the particle filter (PF) so that you
can start implementing (and deriving) your own PF algorithms to

solve problems.

Thomas Schön, An introduction to the theory and practice of particle filters

Sennheiser, San Francisco, June 3, 2013.

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET



Dynamical systems are everywhere 3(56)

Sensor fusion in dynamical systems - applications and research challenges
Thomas Schön, schon@isy.liu.se

DREAMS Seminar
Berkeley, CA
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Model – data – inference algorithm 4(56)

In solving problems we have to make assumptions and a model will
to a large extent capture many of these assumptions.

A model is a compact and interpretable representation of the data
that is observed.

Using models to solve problems requires three key ingredients;

1. Data: Measurements from the system we are interested in.

2. Model: We use probabilistic models, allowing us to employ
probability theory to represent and systematically work with the
uncertainty that is inherent in most data.

3. Inference algorithm: The topic of this tutorial is the particle
filter.
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Particle filter – introductory example (I/IV) 5(56)

Consider a toy 1D localization problem.
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Dynamic model:

xt+1 = xt + ut + vt,

where xt denotes position, ut denotes velocity
(known), vt ∼ N (0, 5) denotes an unknown
disturbance.

Measurements:

yt = h(xt) + et.

where h(·) denotes the world model (here the
terrain height) and et ∼ N (0, 1) denotes an
unknown disturbance.
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Particle filter – introductory example (II/IV) 6(56)

Task: Find the state xt based on a set of measurements
y1:t , {y1, . . . , yt}. Do this by computing the filter PDF p(xt | y1:t).

The particle filter maintains an approximation according to

p(xt | y1:t) =
N

∑
i=1

wi
tδxi

t
(xt),

where each sample xi
t is referred to as a particle.

For intuition: Think of each particle as one simulation of the system
state (in this example the horizontal position) and only keep the good
ones.
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Particle filter – introductory example (III/IV) 7(56)
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Particle filter – introductory example (IV/IV) 8(56)

The simple 1D localization example is an illustration of a problem
involving a multimodal filter PDF.

The example also highlights the key capabilities of the PF:

1. To automatically handle an unknown and dynamically changing
number of hypotheses.

2. Work with nonlinear/non-Gaussian models.

We have implemented a similar
localization solution for this aircraft
(Gripen).

Industrial partner: Saab
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Example – Indoor localization (I/II) 9(56)

Aim: Compute the position of a person moving around indoors using
sensors (inertial, magnetometer and radio) located in an ID badge
and a map.

Industrial partner: Xdin

1.5 Xdin 3

(a) A Beebadge, carrying a number
of sensors and a IEEE 802.15.4 radio
chip.

(b) A coordinator, equipped both
with a radio chip and an Ethernet
port, serving as a base station for the
Beebadges.

Figure 1.1. The two main components of the radio network.

Figure 1.2. Beebadge worn by a man.
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Example – Indoor localization (II/II) 10(56)

Sensor fusion using world models
Thomas Schön, users.isy.liu.se/rt/schon

Swarm Lab Seminar
Berkeley, CA

Example 3 - Indoor localization (II/III)

48 Approach

(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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(b) Cross section of the relative prob-
ability function for a line with di�er-
ent n

Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wallj(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

fi =
ÿ

jœW
wallj(pi), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target Ti is a�ected by two walls and another target
Tm, resulting in the force fi.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

PDF of an office environment, the bright areas 
are rooms and corridors (i.e., walkable space).
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Outline 11(56)

1. Problem formulation
• Probabilistic modeling of dynamical systems
• Strategies for state inference

2. Monte Carlo methods
• The idea
• Importance sampling (IS)
• Trying to use IS in solving the filtering problem
• The particle filter
• Particle filtering examples

3. Conclusions and outlook
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1. Representing an SSM using PDFs 12(56)

Definition (State space model (SSM))

A state space model (SSM) consists of a Markov process {xt}t≥1
and a measurement process {yt}t≥1, related according to

xt+1 | xt ∼ fθ,t(xt+1 | xt, ut),
yt | xt ∼ gθ,t(yt | xt, ut),

x1 ∼ µθ(x1), (θ ∼ p(θ)).

where xt ∈ Rnx denotes the state, ut ∈ Rnu denotes a known
deterministic input signal, yt ∈ Rny denotes the observed
measurement and θ ∈ Θ ⊆ Rnθ denotes any unknown (static)
parameters.
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2. Representing SSM using difference equations 13(56)

In engineering literature, the SSM is often written in terms of a
difference equation and an accompanying measurement equation,

xt+1 = f̄θ,t(xt, ut) + vθ,t,
yt = ḡθ,t(xt, ut) + eθ,t.
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3. Representing SSM using a graphical model 14(56)

x1 x2 x3
. . .

xT

y1 y2 y3 yT

The SSM is an instance of a graphical model called Bayesian
network, or belief network.
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A simple (and useful) special case – LGSS model 15(56)

Definition (Linear Gaussian State Space (LGSS) model)

The time-invariant LGSS model is given by

xt+1 = Axt + But + vt,
yt = Cxt + Dut + et,

where xt ∈ Rnx denotes the state, ut ∈ Rnu denotes the known
input signal and yt ∈ Rny denotes the observed measurement. The
initial state and the noise are distributed according tox1

vt
et

 ∼ N
µ

0
0

 ,

P1 0 0
0 Q S
0 ST R

 .
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State inference 16(56)

State inference referes to the problem of finding information about
the state(s) xk:l based on the available measurements y1:t.

We will represent this information using PDFs.

Name PDF
Filtering p(xt | y1:t)
Prediction p(xt+1 | y1:t)
k-step prediction p(xt+k | y1:t)
Joint smoothing p(x1:T | y1:T)
Marginal smoothing p(xt | y1:T), t ≤ T
Fixed-lag smoothing p(xt−l+1:t | y1:t), l > 0
Fixed-interval smoothing p(xr:t | y1:T), r < t ≤ T

Notation y1:t , {y1, y2, . . . , yt}.
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The problem we are interested in 17(56)

State filtering problem: Find xt based on {u1:T, y1:T} when the
model is given by,

xt+1 | xt ∼ f (xt+1 | xt, ut),
yt | xt ∼ g(yt | xt, ut),

x1 ∼ µ(x1), (θ ∼ p(θ)).

Strategy: Compute the filter PDF p(xt | y1:t).
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Basic probability theory 18(56)

Let a and b be continuous random variables.

• Conditional probability: p(a, b) = p(a | b)p(b).
• Marginalization: p(a) =

∫
p(a, b)db.

• Bayes’ rule:

p(a | b) =
p(b | a)p(a)

p(b)

• Markov property: p(xt | x1, . . . , xt−1) = p(xt | xt−1).
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State inference in dynamical systems 19(56)

From application of Bayes’ theorem we have

p(xt | y1:t) = p(xt | yt, y1:t−1) =
p(yt | xt, y1:t−1)p(xt | y1:t−1)

p(yt | y1:t−1)
.

The measurements from an SSM are conditionally independent,
which results in

p(xt | y1:t) =
g(yt | xt)p(xt | y1:t−1)

p(yt | y1:t−1)
,

commonly referred to as the measurement update.

Thomas Schön, An introduction to the theory and practice of particle filters

Sennheiser, San Francisco, June 3, 2013.

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET



State inference in dynamical systems 20(56)

To find the prediction density we start by considering the joint PDF

p(xt, xt−1 | y1:t−1) = p(xt | xt−1, y1:t−1)p(xt−1 | y1:t−1)

= f (xt | xt−1)p(xt−1 | y1:t−1).

Let us now marginalize w.r.t.

p(xt | y1:t−1) =
∫

p(xt, xt−1 | y1:t−1)dxt−1

=
∫

f (xt | xt−1)p(xt−1 | y1:t−1)dxt−1,

which is referred to as the time update.
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State inference in dynamical systems 21(56)

Summarizing this development, we have the measurement update

p(xt | y1:t) =

measurement︷ ︸︸ ︷
g(yt | xt)

prediction pdf︷ ︸︸ ︷
p(xt | y1:t−1)

p(yt | y1:t−1)
,

and the time update

p(xt | y1:t−1) =
∫

f (xt | xt−1)︸ ︷︷ ︸
dynamics

p(xt−1 | y1:t−1)︸ ︷︷ ︸
filtering pdf

dxt−1.
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Monte Carlo methods
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Why do we need Monte Carlo methods? 23(56)

In solving inference problems we are typically faced with various
integration problems, which tend to live in large dimensional spaces.

As an example we mention expectation, which is for example used
to obtain a point estimate. A commonly used point estimate is the
conditional mean

x̂t|t = E [xt | y1:t] =
∫

xtp(xt | y1:t)dxt.

Monte Carlo methods provides computational solutions, where the
obtained accuracy is limited by our computational resources.

Monte Carlo methods respects the model and the expressions we
are trying to approximate.
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The Monte Carlo idea (I/II) 24(56)

(Very) restrictive assumption: Assume that we have N samples
{zi}N

i=1 from the target density π(z),

π̂(z) =
N

∑
i=1

1
N

δzi(z)

Allows for the following approximation of the integral,

E [ϕ(z)] =
∫

ϕ(z)π(z)dz ≈
∫

ϕ(z)
N

∑
i=1

1
N

δzi(z)dz =
1
N

N

∑
i=1

ϕ(zi)

”
∫

+ δ→∑ ”
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The Monte Carlo idea (II/II) 25(56)

The integral

I(ϕ(z)) , E [ϕ(z)] =
∫

ϕ(z)π(z)dz.

is approximated by

ÎN(ϕ(z)) =
1
N

N

∑
i=1

ϕ(zi).

The strong law of large numbers tells us that

ÎN(ϕ(z)) a.s.−→ I(ϕ(z)), N → ∞,

and the central limit theorem state that
√

N
(

ÎN(ϕ(z))− I(ϕ(z))
)

σϕ

d−→ N (0, 1) , N → ∞.
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The Monte Carlo idea – toy illustration 26(56)

π(z) = 0.3N (z | 2, 2) + 0.7N (z | 9, 19)

5 000 samples 50 000 samples

Obvious problem: In general we are not able to directly sample
from the density we are interested in.
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Outline 27(56)

1. Problem formulation
• Probabilistic modeling of dynamical systems
• Strategies for state inference

2. Monte Carlo methods
• The idea
• Importance sampling (IS)
• Trying to use IS in solving the filtering problem
• The particle filter
• Particle filtering examples

3. Conclusions and outlook
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Importance sampling 28(56)

Consider the integral

I(ϕ(z)) , E [ϕ(z)] =
∫

ϕ(z)π(z)dz.

and introduce a proposal distribution q(z) and let z′ ∼ q(z).

E [ϕ(z)] =
∫

ϕ(z)π(z)dz =
∫

ϕ(z)
π(z)
q(z)

q(z)dz

=
∫

ϕ(z)W(z)q(z)dz = E
[
ϕ(z′)W(z′)

]
,

where we have introduced the weight function W(z) , π(z)/q(z).
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Importance sampling 29(56)

By construction, it is easy to generate samples from q(z). We can
construct a Monte Carlo estimator for the integral by sampling
independently zi ∼ q(z) for i = 1, . . . , N and setting,

ĨN
IS(ϕ) =

1
N

N

∑
i=1

W(zi)ϕ(zi).

where the importance weights W(zi = π(zi)/q(zi)) accounts for the
discrepancy between the proposal and the target densities.
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Importance sampling - normalization 30(56)

We often work with the normalized importance sampling estimator,

ÎN
IS(ϕ) =

N

∑
i=1

wiϕ(zi),

where {wi}N
i=1 denote the normalized importance weights, defined

according to

wi ,
w̃i

∑N
j=1 w̃j

.
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Importance sampling (IS) 31(56)

Algorithm 1 Importance sampler (IS)

1. Sample zi ∼ q(z).
2. Compute the weights w̃i = π̃(zi)/q(zi).
3. Normalize the weights wi = w̃i/ ∑N

j=1 w̃j.

Each step is carried out for i = 1, . . . N.
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Importance sampling – alternative interpretation 32(56)

IS does not provide samples from the target density, but the samples
{zi}N

i=1 together with the normalized weights {wi}N
i=1 provides an

empirical approximation of the target density,

π̂(z) =
N

∑
i=1

wiδzi(z).

When this approximation is inserted into I(ϕ(z)) =
∫

ϕ(z)π(z)dz
the resulting estimate is

ÎN
IS(ϕ) =

N

∑
i=1

wiϕ(zi).
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The importance of a good proposal density 33(56)

q1(x) = N (5, 20) (dashed curve) q2(x) = N (1, 20) (dashed curve)

50 000 samples used in booth simulations.

Lesson learned: It is important to be careful in selecting the
importance density.
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Using IS for our purposes 34(56)

Recall that the nonlinear filtering problem amounts to computing the
filter PDF p(xt | y1:t) when the model is given by

xt+1 | xt ∼ ft(xt+1 | xt),
yt | xt ∼ gt(yt | xt),

x1 ∼ µ(x1).

We have showed that the solution is

p(xt | y1:t) =
g(yt | xt)p(xt | y1:t−1)

p(yt | y1:t−1)
,

p(xt | y1:t−1) =
∫

f (xt | xt−1)p(xt−1 | y1:t−1)dxt−1.

Relevant idea: Try to solve this using importance sampling!!
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Sequential sampling from the proposal 35(56)

Let us use the following proposal (which is just one of many possible
choices)

q(x1:t) = µ(x1)
t

∏
s=2

f (xs | xs−1)

In practice this means:

• At time t = 1 we sample x1 ∼ µ(x1).

• At each time s = 2, . . . , t we sample xi
s ∼ f (xs | xi

s−1).

This completes step one of the importance sampler. We can now
show that the importance weights are given by

w̃i
t = g(yt | xi

t)w
i
t−1.
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A sequential importance sampler (SIS) 36(56)

Algorithm 2 SIS targeting p(x1:t | y1:t)

1. Sample xi
1 ∼ µ(x1) and initialize the weights, wi

0 = 1/N.
2. for t = 1, 2 . . . do

(a) Compute the unnormalized weights w̃i
t = g(yt | xi

t)w
i
t−1.

(b) Normalize the weights wi
t = w̃i

t/ ∑N
j=1 w̃j

t.

(c) Sample xi
t+1 ∼ f (xt+1 | xi

t) and store xi
1:t+1 =

{
xi

1:t, xi
t+1

}
.

Each step is carried out for i = 1, . . . N.
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SIS example (I/III) 37(56)

Consider the following LGSS model

xt+1 = 0.7xt + vt, vt ∼ N (0, 0.1),
yt = 0.5xt + et, et ∼ N (0, 0.1),

p(x1) = N (x1 | 0, 0.1) ,

We will now make use of the SIS algorithm to compute an
approximation of the filtering density

p̂(xt | y1:t) =
N

∑
i=1

wi
tδxi

t
(xt).

Study
• Point estimate x̂t|t =

∫
xtp̂(xt | y1:t)dxt = ∑N

i=1 wi
tx

i
t.

• The weights wi
t.

Thomas Schön, An introduction to the theory and practice of particle filters

Sennheiser, San Francisco, June 3, 2013.
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SIS example (II/III) 38(56)

Use T = 100 samples, 1 000 realisations of data and N = 500,
N = 5 000 and N = 50 000, respectively.
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Compare with the true filter density (from
KF). RMSE(x̂SIS

t|t − x̂KF
t|t )
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Illustration of the problem with the
weights.
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SIS example (III/III) 39(56)
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Histograms of the weights for
t = 2, 5, 10, 20 and t = 50, respectively.

Very important question: How do we resolve this weight
degeneracy problem?

Thomas Schön, An introduction to the theory and practice of particle filters

Sennheiser, San Francisco, June 3, 2013.
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Solving the weight degeneracy problem 40(56)

Idea: Remove the weights from the representation!

This of course leads us to the next question, How?

Thomas Schön, An introduction to the theory and practice of particle filters

Sennheiser, San Francisco, June 3, 2013.
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Resampling (I/II) 41(56)

The SIS representation of the target density is

π̂1(z) =
N

∑
i=1

wiδz̃i(z).

An unweighted representation of the target density can be created by
resampling with replacement. This is done by generating a new
sample zi for each i = 1, . . . , N, where

P
(

zi = z̃j
)
= wj, j = 1, . . . , N.

The resulting unweighted representation is

π̂2(z) =
N

∑
i=1

1
N

δzi(z).

Thomas Schön, An introduction to the theory and practice of particle filters

Sennheiser, San Francisco, June 3, 2013.
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Resampling (II/II) 42(56)
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Illustrating how resampling
with replacement works
(using 7 particles).

1. Compute the cumulative
sum of the weights.
2. Generate u ∼ U [0, 1].

Three new samples are generated in the figure above, corresponding
to sample 2, 4 and 4.

Thomas Schön, An introduction to the theory and practice of particle filters
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Sampling importance resampling (SIR) 43(56)

Algorithm 3 Sampling Importance Resampler (SIR)

1. Sample zi ∼ q(z).
2. Compute the weights w̃i = π̃(zi)/q(zi).
3. Normalize the weights wi = w̃i/ ∑N

j=1 w̃j.

4. Resample {wi
t, zi} to obtain equally weighted samples {1/N, z̃j}.

Each step is carried out for i = 1, . . . N.

Note that step 1 – 3 corresponds to the importance sampler.

Thomas Schön, An introduction to the theory and practice of particle filters

Sennheiser, San Francisco, June 3, 2013.
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Revisit the nonlinear filtering problem 44(56)

Algorithm 4 Particle filter (SIS and resampling)

1. Sample xi
1 ∼ µ(x1) and initialize the weights, w̃i

0 = 1/N.
2. for t = 1, 2 . . . do

(a) Compute the unnormalized weights w̃i
t = g(yt | xi

t).

(b) Normalize the weights wi
t = w̃i

t/ ∑N
j=1 w̃j

t.

(c) Resample {wi
t, xi

t} to obtain equally weighted samples

{1/N, x̃j
t}.

(d) Sample xi
t+1 ∼ f (xt+1 | xi

t) and store xi
1:t+1 =

{
xi

1:t, xi
t+1

}
.

Each step is carried out for i = 1, . . . N.

Thomas Schön, An introduction to the theory and practice of particle filters

Sennheiser, San Francisco, June 3, 2013.
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PF example (I/V) 45(56)

Consider the same LGSS model used in illustrating the SIS
algorithm,

xt+1 = 0.7xt + vt, vt ∼ N (0, 0.1),
yt = 0.5xt + et, et ∼ N (0, 0.1),

p(x1) = N (x1 | 0, 0.1) .

We will now make use of SIS and resampling (particle filter) to
compute an approximation of the filtering density

p̂(xt | y1:t) =
N

∑
i=1

wi
tδxt(x̃

i
t).

Study
• Point estimate x̂t|t =

∫
xtp̂(xt | y1:t)dxt = ∑N

i=1 wi
tx̃

i
t.

• The weights wi
t.

Thomas Schön, An introduction to the theory and practice of particle filters

Sennheiser, San Francisco, June 3, 2013.
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PF example (II/V) 46(56)

Same setting as before, exactly the same data.

Compare with the true filter density (from KF), RMSE(x̂PF
t|t − x̂KF

t|t )
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PF example (III/V) 47(56)
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Note the different scaling!
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PF example (IV/V) 48(56)
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Note the different scaling!
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PF example (V/V) 49(56)
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An LGSS example (I/II) 50(56)

“Whenever you are working on a nonlinear inference method,
always make sure that it solves the linear special case first.”

Consider the following LGSS model (simple one dimensional
positioning example)pt+1

vt+1
at+1

 =

1 Ts T2
s /2

0 1 Ts
0 0 1

pt
vt
at

+

(
T3

s /6
T2

s /2Ts

)
vt, vt ∼ N (0, Q),

yt =

(
1 0 0
0 0 1

)pt
vt
at

+ et, et ∼ N (0, R).

The KF provides the true filtering density, which implies that we can
compare the PF to the truth in this case.

Thomas Schön, An introduction to the theory and practice of particle filters

Sennheiser, San Francisco, June 3, 2013.
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An LGSS example (II/II) 51(56)
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Using 20 000 particles.

The PF estimate converge as the number of particles tends to infinity.
Xiao-Li Hu, Thomas B. Schön and Lennart Ljung. A Basic Convergence Result for Particle Filtering. IEEE Transactions on
Signal Processing, 56(4):1337-1348, April 2008. [pdf]

D. Crisan and A. Doucet, A survey of convergence results on particle filtering methods for practitioners, IEEE
Transactions on Signal Processing, vol. 50, no. 3, pp. 736-746, 2002. [pdf]
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A nonlinear example (I/II) 52(56)

Consider the following SSM (standard example in PF literature)

xt+1 =
xt

2
+

25xt

1 + x2
t
+ 8 cos(1.2t) + vt, vt ∼ N (0, 0.5),

yt =
x2

t
20

+ et, et ∼ N (0, 0.5).

What it tricky with this model?

The best (only?) way of really understanding something is to
implement it yourself.

Thomas Schön, An introduction to the theory and practice of particle filters

Sennheiser, San Francisco, June 3, 2013.
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A nonlinear example (II/II) 53(56)
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PF estimate of the filtering pdf p̂(x56 | y1:56).

Another indication that the conditional mean point estimate is
dangerous.

Thomas Schön, An introduction to the theory and practice of particle filters
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Illustration of the particle degeneracy problem 54(56)
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Implication of the particle degeneracy problem 55(56)

This implies that if we are interested in the smoothing density

p(x1:T | y1:T)

or some of its marginals we are forced to use different algorithms,
which leads us to particle smoothers.

However, the algorithms derived in this tutorial are perfectly valid for
solving the filtering problem, i.e., estimating p(xt | y1:t)!

Thomas Schön, An introduction to the theory and practice of particle filters

Sennheiser, San Francisco, June 3, 2013.
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Conclusion and outlook 56(56)

Conclusion
• Goal: Derive the PF so that you can start implementing (and

deriving) your own PF algorithms to solve problems.

Outlook
• Particle smoothers (PS)
• Rao-Blackwellized PF (RBPF) and RBPS
• Using particle methods to infere static parameters

• Frequentist approach: e.g., via EM based approaches
• Bayesian approach: e.g., Particle MCMC

• and much more...

Should you find this interesting I have a PhD course – Computational
inference in dynamical systems – covering this material, see

users.isy.liu.se/rt/schon/course_CIDS.html

Thomas Schön, An introduction to the theory and practice of particle filters

Sennheiser, San Francisco, June 3, 2013.
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