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What is a dynamical system?

State Known input

l |

Tti1 | Ty f@ ([Ift_|_1 | T, ut), Dynamics

Measurements ——> Yt | Tt h@ (yt | T, ut), Measurements
1 ~ Uy (171) Initial state
Static
parameters

“The present state of a dynamical system depends on its history.”
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. Representation - probabilistic state space models (SSM’s)

2. State inference

a) General solution
b) LGSS models and the Kalman filter
c) Sensor fusion example

d) Particle filter for general SSM’s via positioning examples

3. Parameter inference

a) Problem formulation
b) Bayesian solution - particle MCMC
c) System identification example - semiparametric Wiener model

Lt41 | Lt ~ f9($t+1 | iCt,Ut)a
Yt | Ly ~ he(yt | ﬂftaut),

x1 ~ po(x1).
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Probabilistic models of dynamical systems

We often model a dynamical system using probability density functions (pdf’s)

State Known input
Lt4+1 | Tt ~~ fg (aﬁt_|_1 | ajt,ut), Dynamics
Measurements ——> Uy | Tt ~~ hg (yt | Lt, ut), Measurements
XT1 ~ g (5131) Initial state
Static
parameters

Model = pdf

The state process is hidden (latent) and it is observed indirectly via the measurement process.

This type of model is referred to as a state space model (SSM) or a hidden Markov
model (HMM).




Probabilistic models of dynamical systems

Alternative model formulation | Alternative model formulation 2
(common in engineering): , (graphical model):

Uncertainty in the model

|

~ X1 X2 X3 XN
41 = fo(Te,up) + vo g,

)
D

Yt = %Q(xta ut) + €o ¢,

n Y2 Y3 YN
xy ~ po(x1).

Uncertainty in
the measurements

|
i

The state is a variable that contains all information about the past and the present of a system,
which is needed in order to predict the future.

It is the Markov property
p(Tt+1 | @1y, @) = p(Tegr | T4)

that allows for this.
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The SSM can be used to answer many questions, where two of the most common are:

|. State inference: Infer the states from the available measurements.
2. Parameter inference: Infer the static model parameters from the
available measurements.

Answering the second question typically involves solving various state inference problems.

4 )
System identification deals with the problem of finding a dynamical model based on

measurements of the input signal and the output signal,

ulzN:{ul,...,uN}, ylzN:{yla---ayN}-

P
Sensor fusion is the process of using information from several different sensors to

learn (estimate) what is happening (this typically includes states of various dynamical
systems and various static parameters).

\_
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State inference

The aim is to compute a probabilistic representation of our knowledge of the state, based on
information that is present in the measurements.

The filtering probability density function (pdf) provides a good representation of the
uncertainty about the state at time t, given the measurements up to time t,

p(xt | yl:t)

The obvious question is now, how do we compute this object?

Bayes’ theorem

l P\Yt | Tty Y1:¢—1)P\ Tt | Y1:t—1
p(xt | y1:¢) = p(@t | Yts Y1:6—-1) = (| )p(z: | )

p(Ye | y1:e—1)
. h(yt | xt)p(iﬂt | y1:t—1)
T p(yt | ylzt—l)
Markov property
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State inference

Need an expression also for the prediction pdf

p(mt | yl:t—l)

Let us start by noting that by marginalization we have

-
p(mt | yl:t—l) = /p(th,SUt—l | yl:t—l}dxt—l

g?(l’taﬁt—l | yl:t—lz = p(xt | xt—laylzt—l)p(xt—l | 3/1:75—1)

Hence, the prediction pdf is given by

p(l’t | yl:t—l) = /f(fEt | ﬂft—1)p(33t—1 | y1:t—1)d$t—1

— f(CUt | CI3t—1)p(-73t—1 | ylzt—l)

Markov property




State inference - summarizing the development

We have now showed that for the nonlinear SSM

Tey1 | e ~ [T | Te—1),

Yt | Ty ~ h(yt | ZL’t),

the uncertain information that we have about the state is captured by the filtering pdf, which we
compute sequentially using a measurement update

mea;fjg;ent prediction pdf
?L T \]r? xr - )
o | o) = (ye | 21) p(ae | Y1 1),
p(yt | yl:t—l)

and a time update

7\

p(xt | y1:t—1) — /f(ﬂft | xt—l)p(l‘t—l | yl:t—l)/dxt—la

dynamic model filtering pdf
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State inference - simple special case (LGSS)

Consider the following special case (Linear Gaussian State Space (LGSS) model)

Tiy1 = Az + Bug + vy, v ~ N(0,Q),
yt = Cxy + Duyg + ey, er ~ N (0, R).

or, equivalently,

Tirq | xp ~ f(rpar | xp) = N(xga1 | Axe + Bug, Q),
Yt | Tt r~ h(yt | Zlft) = N(yt | CZCt + D’U,t,R).

Gaussian variables and linear transformation implies that the mean and the covariance captures
everything there is to know.




State inference - simple special case (LGSS)

Measurement update

p(ze | y1t) =N (iﬂt | /x\tltapﬂt)

innovation
p(xe | y1:t) = h(ye | z)p(@e | Y1:e—1) Toje = Type—1 + Kie(ye — Oy — D),
LI p(ye | y1e—1) Ky = Py_,C"(CP_,CT + R)™,
Py = Pyjp—1— K C Py
decrease

uncertainty

Ti dat T
ime update p(:l:t+1 | ylzt) =N (CL’t+1 | 33t+1|t7Pt+1|t)

P(Tit1 | Y1) 57\t—|—1|t = Af/gt|t + Buy,
| P = AP, AT
- /f(ﬂftﬂ | 2e)p(@e | Y1 )dey . t|t in—l_re?se

uncertainty




Aim: Estimate the position and orientation of a human (i.e. human motion) using measurements
from inertial sensors and ultra-wideband (UVVB).

Industrial partner: Xsens Technologies

Sensors Sensor fusion

( Accelerometer H
(17 IMUs) ( Gyroscope }——-—-)
( Magnetometer )“‘“‘)

Learning (estimation) Position and

( Transmitter H ( World model ) orientation
( Receiver | H >
( Dynamic model )

(UWB) .

( Receiver 6 ) ( Sensor model )

COMMUNICATION SYSTEMS
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State inference - a sensor fusion example (ll/111)

The sensors

Sensor unit integrating an IMU and a UWB
transmitter into a single housing.

s/,

e Inertial measurements @ 200 Hz

e UWB measurements @ 50 Hz

* Mobile transmitter and 6 stationary,
synchronized receivers at known positions.
* Time-of-arrival (TOA) measurements
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. Representation - probabilistic state space models (SSM’s)

2. State inference

a) General solution

b) LGSS models and the Kalman filter

c) Sensor fusion example

d) Particle filter for general SSM’s via positioning examples

3. Parameter inference

a) Problem formulation
b) Bayesian solution - particle MCMC
c) System identification example - semiparametric Wiener model
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Aim: Find the position, velocity and orientation of a fighter aircraft.

Industrial partner: Saab

Sensors Sensor fusion

( Inertial H Learning (estimation) -
C Barometer }____} ( World model ) Position S
( Terrain elevation )......) ( Dynamic model )
( Radar H ( Sensor model )
plxe | Y1) =

h(yt | $t)p(33t | yl:t—1)

p(yt \ yl:t—1)

p($t+1 \ yl:t) = /f(xt—i—l \ l‘t)p(xt \ yl:t)dxt
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State inference - particle filters

“Think of each particle as one simulation of the system state (in the movie we are visualizing the
horizontal position). Only keep the good ones.”

Show movie
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The idea in the particle filter (member of the larger family of Sequential Monte Carlo (SMC)
methods) is to use the following nonparametric representation of the filtering pdf

N
p(fCt ‘ ylzt) ~ Zw; xt (xt)a sz — 17 w; > O,VZ
1=1 '

The weights and the particles are then updated as new measurements becomes available.

This implies that the multidimensional integrals are replaced by finite sums, which is manageable,

775_|_ %Z”
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Aim: Compute the position of a person moving around indoors using sensors located in an ID
badge.

Industrial partner: Xdin

e e

Sensors Sensor fusion

( Inertial H Learning (estimation)
Positi
( Magnetometer }______), ( World model ) osition

( World model )—-—-—-) ( Dynamic model)
( Radio j‘ ‘ ( Sensor model )

>

Show movie
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System identification deals with the problem of estimating a dynamical model based on
measurements of the input signal and the output signal,

ulzN:{ul,...,uN}, ylzN:{y17-~-7yN}-
This involves parameter inference (among other things). Two approaches:

|. Maximum Likelihood (ML): Computes the point estimate of the parameters
that makes the observed measurements as likely as possible,

~ML

0 =argmax pg(y1:n)
0

2. Bayesian: All variables are now assumed to be stochastic, hence the parameters are
no longer deterministic variables. Compute

p(@ | yl:N)
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Monte Carlo and Markov chain Monte Carlo (MCMC)

Monte Carlo methods provides computational solutions, where the obtained accuracy is only
limited by our computational resources.

An MCMC method simulates a Markov chain where the stationary distribution is given by the target
distribution of interest.

These samples can then be used to compute various estimates.

There are constructive strategies for doing this and some of the most popular are the
Gibbs sampler and the Metropolis Hastings sampler.
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Particle MCMC (PMCMCQC)

The aim in particle Markov chain Monte Carlo (PMCMCQC) is to compute

P(Q,fL’l:T | y1:T)

or some of its marginals distributions, e.g.,

p(0 | y1.7)

p(xlzT | ylzT)
when the model is given by

Tip1 | op ~ folTogr | 2e,ue),

Yt | Ty ~ he(yt | xtaut)-

The fundamental idea is to make use of a sequential Monte Carlo (SMC) sampler to
construct a proposal for an MCMC sampler.




Semi-parametric Wiener model

Rather than describing a general solution, let us be very specific and consider an example,

Wt Ct
Ut Zt N Yt
S\ L S A >/ E\ 5

This is a Wiener model (= a dynamic LGSS model followed by a static nonlinearity),

Tir1 — Az + Buy + wy, we ~ N(Oa Q)7
Zt = Cfl?t,
yr = h(zt) + ey, er ~ N(0,7).




Semi-parametric Wiener model

Recall that the task is to find the dynamical model based on measurements of the input signal and
the output signal,

Ui:N = {U1, e ,UN}, Yi:N = {yl, . 7yN}-

The red parts of the model below are inferred from data.

ZCtERn,
Lt41 — Axy + Bugy 4wy, we ~ N(O> Q),
z=(1 0 ... 0)az,

ye = h(z¢) + e, et ~ N(0,7)




Semi-parametric Wiener model - representing uncertainty

—~ _%i‘u‘? . Tl;ue
m = = - Posterior mean || H = = = Posteri
) 201 99 % credibility 1 - 98 S(yf ré?éd%?ﬁ?y
) 0.8
<
10

= 0.6
g
= 0.2

-10 § 0

100 <
— -0.2
£ s ~0.4
S 0 -0.6
2 0.8
o

~50( 1

0 0.5 1 1.5 2 2.5 3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Frequency (rad/s) z
Linear system Static nonlinearity

We used a nonparametric model for the static nonlinearity, more specifically a Gaussian process.
Show convergence using a movie

How do we represent uncertainty for a nonlinear model?!




* Take home message: Given the computational tools that we have today it can
be rewarding to resist the linear Gaussian convenience!

* There are by now a lot of tools that allows us to do this (e.g., SMC, PMCMCQC).

* There is a lot of interesting research that remains to be done!

* The industrial utility of the sensor fusion technology is growing as we speak!

Throughout the talk | have touched upon a lot of methods that clearly deserves much more time
than | gave them in this tutorial presentation.

Tomorrow and on Thursday | am giving an intensive course on this in Brussels, for details, see

http://www.rt.isy.liu.se/~schon/CourseBrussels202/index.html
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Thank you for your attention!!

[
T | 2 ~ fo(Tigr | o4, ug),
Yt \ Ty ~ he(yt \ xtaut)y
71 po () o gy — e LR ()
! ! P(Ye | y1:e—1) 7

Tigr | Y1) = /f(xﬂ—l | 2e)p(2s | y1:)dae

J/ w €t
Ut Zt Yt
h by

- )
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