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Dynamical systems

What is a dynamical system? 

“The present state of a dynamical system depends on its history.”

Dynamics

Measurements

Initial state

Known inputState

Measurements

Static 
parameters

xt+1 | xt ⇠ f✓(xt+1 | xt, ut),

yt | xt ⇠ h✓(yt | xt, ut),

x1 ⇠ µ✓(x1).
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Outline

1. Representation - probabilistic state space models (SSM’s)

2. State inference

a) General solution
b) LGSS models and the Kalman filter
c) Sensor fusion example
d) Particle filter for general SSM’s via positioning examples

3. Parameter inference

a) Problem formulation
b) Bayesian solution - particle MCMC
c) System identification example - semiparametric Wiener model 

xt+1 | xt ⇠ f✓(xt+1 | xt, ut),

yt | xt ⇠ h✓(yt | xt, ut),

x1 ⇠ µ✓(x1).
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Probabilistic models of dynamical systems

We often model a dynamical system using probability density functions (pdf’s)

Dynamics

Measurements

Initial state

Known inputState

Measurements

Static 
parameters

xt+1 | xt ⇠ f✓(xt+1 | xt, ut),

yt | xt ⇠ h✓(yt | xt, ut),

x1 ⇠ µ✓(x1).

The state process is hidden (latent) and it is observed indirectly via the measurement process.

This type of model is referred to as a state space model (SSM) or a hidden Markov 
model (HMM).

Model = pdf
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Probabilistic models of dynamical systems

Alternative model formulation 1 
(common in engineering):

xt+1 = e
f✓(xt, ut) + v✓,t,

yt = e
h✓(xt, ut) + e✓,t,

x1 ⇠ µ✓(x1).

Uncertainty in the model

Uncertainty in
the measurements

Alternative model formulation 2
(graphical model):

The state is a variable that contains all information about the past and the present of a system, 
which is needed in order to predict the future.

It is the Markov property 

that allows for this.

p(xt+1 | x1, . . . , xt) = p(xt+1 | xt)
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The use of probabilistic models

The SSM can be used to answer many questions, where two of the most common are:

1. State inference: Infer the states from the available measurements.
2. Parameter inference: Infer the static model parameters from the 
available measurements.

Answering the second question typically involves solving various state inference problems.

System identification deals with the problem of finding a dynamical model based on 
measurements of the input signal and the output signal,

u1:N = {u1, . . . , uN}, y1:N = {y1, . . . , yN}.

Sensor fusion is the process of using information from several different sensors to 
learn (estimate) what is happening (this typically includes states of various dynamical 
systems and various static parameters).
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State inference

The aim is to compute a probabilistic representation of our knowledge of the state, based on 
information that is present in the measurements.

The filtering probability density function (pdf) provides a good representation of the 
uncertainty about the state at time t, given the measurements up to time t,

p(xt | y1:t)

The obvious question is now, how do we compute this object?

p(xt | y1:t) = p(xt | yt, y1:t�1) =
p(yt | xt, y1:t�1)p(xt | y1:t�1)

p(yt | y1:t�1)

=
h(yt | xt)p(xt | y1:t�1)

p(yt | y1:t�1)

Bayes’ theorem

Markov property
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State inference

Need an expression also for the prediction pdf

p(xt | y1:t�1)

Let us start by noting that by marginalization we have

p(xt | y1:t�1) =

Z
p(xt, xt�1 | y1:t�1)dxt�1

p(xt | y1:t�1) =

Z
f(xt | xt�1)p(xt�1 | y1:t�1)dxt�1

Hence, the prediction pdf is given by

p(xt, xt�1 | y1:t�1) = p(xt | xt�1, y1:t�1)p(xt�1 | y1:t�1)

= f(xt | xt�1)p(xt�1 | y1:t�1)

Markov property
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State inference - summarizing the development

the uncertain information that we have about the state is captured by the filtering pdf, which we 
compute sequentially using a measurement update

and a time update

p(xt | y1:t) =

z }| {
h(yt | xt)

z }| {
p(xt | y1:t�1)

p(yt | y1:t�1)
,

measurement 
model prediction pdf

p(xt | y1:t�1) =

Z
f(xt | xt�1)| {z } p(xt�1 | y1:t�1)| {z } dxt�1,

filtering pdfdynamic model

xt+1 | xt ⇠ f(xt | xt�1),

yt | xt ⇠ h(yt | xt),

We have now showed that for the nonlinear SSM
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State inference - simple special case (LGSS)

Consider the following special case (Linear Gaussian State Space (LGSS) model)

or, equivalently,

xt+1 = Axt +But + vt, vt ⇠ N (0, Q),

yt = Cxt +Dut + et, et ⇠ N (0, R).

Gaussian variables and linear transformation implies that the mean and the covariance captures 
everything there is to know.

xt+1 | xt ⇠ f(xt+1 | xt) = N (xt+1 | Axt +But, Q),

yt | xt ⇠ h(yt | xt) = N (yt | Cxt +Dut, R).
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State inference - simple special case (LGSS)

p(xt | y1:t) = N
�
xt | bxt|t, Pt|t

�

bxt|t = bxt|t�1 +Kt(yt � Cbxt|t�1 �Dut),

Kt = Pt|t�1C
T (CPt|t�1C

T +R)�1
,

Pt|t = Pt|t�1�KtCPt|t�1

innovation

decrease 
uncertainty

bxt+1|t = Abxt|t +But,

Pt+1|t = APt|tA
T+Q

p(xt+1 | y1:t) = N
�
xt+1 | bxt+1|t, Pt+1|t

�

increase 
uncertainty

Measurement update

p(xt | y1:t) =
h(yt | xt)p(xt | y1:t�1)

p(yt | y1:t�1)

Time update

p(xt+1 | y1:t)

=

Z
f(xt+1 | xt)p(xt | y1:t)dxt
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State inference - a sensor fusion example (I/III)

Aim: Estimate the position and orientation of a human (i.e. human motion) using measurements 
from inertial sensors and ultra-wideband (UWB).

Industrial partner: Xsens Technologies

Sensors Sensor fusion

Position and 
orientation

Accelerometer

Gyroscope

Magnetometer

World model

Learning (estimation)

Dynamic model

Sensor model

Transmitter

Receiver 1

Receiver 6

...

(17 IMU’s)

(UWB)
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State inference - a sensor fusion example (II/III)

Sensor unit integrating an IMU and a UWB 
transmitter into a single housing.!

• Inertial measurements @ 200 Hz
• UWB measurements @ 50 Hz
• Mobile transmitter and 6 stationary, 
synchronized receivers at known positions.
• Time-of-arrival (TOA) measurements

The sensors
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Outline

1. Representation - probabilistic state space models (SSM’s)

2. State inference

a) General solution
b) LGSS models and the Kalman filter
c) Sensor fusion example
d) Particle filter for general SSM’s via positioning examples

3. Parameter inference

a) Problem formulation
b) Bayesian solution - particle MCMC
c) System identification example - semiparametric Wiener model 
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State inference - particle filters

Sensors Sensor fusion

Position

Inertial

Terrain elevation

Radar

Learning (estimation)

Dynamic model

Sensor model

Barometer World model

Aim: Find the position, velocity and orientation of a fighter aircraft.

Industrial partner: Saab

p(xt | y1:t) =
h(yt | xt)p(xt | y1:t�1)

p(yt | y1:t�1)

p(xt+1 | y1:t) =
Z

f(xt+1 | xt)p(xt | y1:t)dxt
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State inference - particle filters

Show movie

“Think of each particle as one simulation of the system state (in the movie we are visualizing the 
horizontal position). Only keep the good ones.”
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State inference - particle filters

The idea in the particle filter (member of the larger family of Sequential Monte Carlo (SMC) 
methods) is to use the following nonparametric representation of the filtering pdf

”� +

Z
!

X
”

The weights and the particles are then updated as new measurements becomes available.

This implies that the multidimensional integrals are replaced by finite sums, which is manageable,

p(x
t

| y1:t) ⇡
NX

i=1

w

i

t

�

x

i
t
(x

t

),
NX

i=1

w

i

t

= 1, w

i

t

� 0, 8i
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State inference - particle filters

Aim: Compute the position of a person moving around indoors using sensors located in an ID 
badge.

Industrial partner: Xdin

Sensors Sensor fusion

Position

Inertial

World model

Radio

Learning (estimation)

Dynamic model

Sensor model

Magnetometer World model

Show movie
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Parameter inference - system identification

System identification deals with the problem of estimating a dynamical model based on 
measurements of the input signal and the output signal,

This involves parameter inference (among other things). Two approaches:

u1:N = {u1, . . . , uN}, y1:N = {y1, . . . , yN}.

1. Maximum Likelihood (ML): Computes the point estimate of the parameters 
that makes the observed measurements as likely as possible,

2. Bayesian: All variables are now assumed to be stochastic, hence the parameters are 
no longer deterministic variables. Compute

b✓
ML

= argmax

✓
p✓(y1:N )

p(✓ | y1:N )
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Monte Carlo and Markov chain Monte Carlo (MCMC)

Monte Carlo methods provides computational solutions, where the obtained accuracy is only 
limited by our computational resources.

An MCMC method simulates a Markov chain where the stationary distribution is given by the target 
distribution of interest. 

These samples can then be used to compute various estimates.

There are constructive strategies for doing this and some of the most popular are the 
Gibbs sampler and the Metropolis Hastings sampler.
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Particle MCMC (PMCMC)

The aim in particle Markov chain Monte Carlo (PMCMC) is to compute

when the model is given by

p(✓, x1:T | y1:T )

or some of its marginals distributions, e.g.,

p(✓ | y1:T )

p(x1:T | y1:T )

xt+1 | xt ⇠ f✓(xt+1 | xt, ut),

yt | xt ⇠ h✓(yt | xt, ut).

The fundamental idea is to make use of a sequential Monte Carlo (SMC) sampler to 
construct a proposal for an MCMC sampler.
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Semi-parametric Wiener model

Rather than describing a general solution, let us be very specific and consider an example,

This is a Wiener model (= a dynamic LGSS model followed by a static nonlinearity),

xt+1 = Axt +But + wt, wt ⇠ N (0, Q),

zt = Cxt,

yt = h(zt) + et, et ⇠ N (0, r).

The Wiener game

Fredrik Lindsten and Thomas Schön

May 5, 2012

L
h

⌃
ut zt yt

wt et

Figure 1: Wiener model.

xt+1 = Axt +But + wt, wt ⇠ N (0, Q), (1a)

zt = Cxt, (1b)

yt = h(zt) + et, et ⇠ N (0, r). (1c)

Here, xt 2 Rn
x denotes the state of the dynamical system, ut 2 Rn

u is the input
signal, zt 2 R is the output from the linear block and yt 2 R is the measurement.
Furthermore, wt and et denotes the process noise and the measurement noise,
respectively.

SISO or MISO?
Generate a data set consisting of 1500 inputs and outputs from a model

within the class of models (1).
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Semi-parametric Wiener model

u1:N = {u1, . . . , uN}, y1:N = {y1, . . . , yN}.

xt 2 Rn
,

xt+1 = Axt +But + wt, wt ⇠ N (0, Q),

zt =
�
1 0 . . . 0

�
xt,

yt = h(zt) + et, et ⇠ N (0, r)

Recall that the task is to find the dynamical model based on measurements of the input signal and 
the output signal,

The red parts of the model below are inferred from data. 

A semiparametric Bayesian approach to

Wiener system identification
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Abstract: We consider a semiparametric, i.e. a mixed parametric/nonparametric, model of a
Wiener system. We use a state-space model for the linear dynamical system and a nonparametric
Gaussian process (GP) model for the static nonlinearity. The GP model is a flexible model
that can describe di↵erent types of nonlinearities while avoiding making strong assumptions
such as monotonicity. We derive an inferential method based on recent advances in Monte
Carlo statistical methods, known as Particle Markov Chain Monte Carlo (PMCMC). The idea
underlying PMCMC is to use a particle filter (PF) to generate a sample state trajectory in a
Markov chain Monte Carlo sampler. We use a recently proposed PMCMC sampler, denoted
particle Gibbs with backward simulation, which has been shown to be e�cient even when we
use very few particles in the PF. The resulting method is used in a simulation study to identify
two di↵erent Wiener systems with non-invertible nonlinearities.

1. INTRODUCTION

Block-oriented nonlinear systems are a family of nonlinear
dynamical systems which have attracted significant atten-
tion in the system identification community, see e.g. [Giri
and Bai, 2010]. These systems consist of interconnected
linear dynamical systems and static nonlinearities. The
most well-known members of this family are the Hammer-
stein (static nonlinearity followed by a linear dynamical
system) and the Wiener (linear dynamical system followed
by a static nonlinearity) systems, introduced by Hammer-
stein [1930] and Wiener [1966], respectively.

We are concerned here with the problem of “blind iden-
tification” of a Wiener system; i.e., the case when the
identification is carried out in the absence of a known input
signal. In other words, we wish to identify a model of a
Wiener system based on the information present in the
measurements y1:T , {y

t

}T
t=1; see Figure 1. This problem

has attracted significant interest, see e.g. [Vanbeylan et al.,
2009, Abed-Meraim et al., 1997, Bai, 2002, Wills et al.,
2011]. However, it should be noted that the proposed
method can be generalised straightforwardly to the case
in which the system is excited by a known input signal as
well.

G h(·) �

ztwt yt

et

Fig. 1. A blind Wiener system, consisting of a linear
system G followed by a static nonlinearity h(·). The
system noise w

t

and the measurement noise e
t

are
both unmeasurable.

? This work was supported by: the project Calibrating Nonlinear
Dynamical Models (Contract number: 621-2010-5876) funded by the
Swedish Research Council and CADICS, a Linneaus Center also
funded by the Swedish Research Council.
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Fig. 2. Nonlinear mapping (non-monotone), the estimated
posterior mean and 99 % credibility interval.

We consider a semiparametric (i.e., a mixed paramet-
ric/nonparametric) model of a Wiener system. We use a
state-space model for the linear dynamical system and a
nonparametric Gaussian process (GP) model for the static
nonlinearity. We take a Bayesian approach, modeling the
unknown parameters of the model as random variables.
The objective in this work is then to provide a method for
computing p(✓ | y1:T ), the posterior probability density
function (PDF) of the unknown parameters ✓ given the
measurements y1:T . The posterior PDF does not allow
for a closed form solution and we will make use of a
Markov Chain Monte Carlo (MCMC) method (see e.g.
[Robert and Casella, 2004] for a general introduction) to
compute an approximation of p(✓ | y1:T ). More specifi-
cally, we employ the recently proposed particle MCMC
(PMCMC) framework by Andrieu et al. [2010]. The basic
idea underlying PMCMC is to use a particle filter (PF) to
generate a sample state trajectory, which is then used as a
component of an MCMC sampler. Here, we use a PMCMC
sampler denoted particle Gibbs with backward simulation
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Fig. 3. Bode diagram of the linear sys-
tem, estimated posterior mean
and 99 % credibility interval.
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Fig. 4. Nonlinear mapping (satura-
tion), estimated posterior mean
and 99 % credibility interval.
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Fig. 5. Bode diagram of the linear sys-
tem, estimated posterior mean
and 99 % credibility interval.

Q = 0.05I4 and R = 0.01. The same system is considered
by Wills et al. [2011] who present a method for maximum
likelihood estimation of blind Wiener systems. The non-
linear mapping h(·) is taken as a saturation,

h(z) =

8
<

:

1 if z � 0.5,
2z if �0.5  z < 0.5,
�1 if z < �0.5.

(17)

We generate T = 1000 samples from the system and
apply the proposed method for 50000 MCMC iterations
(out of which 10000 iterations are considered as burnin),
using N = 5 particles in the PG-BSi sampler. The
hyperparameters are set as described in Appendix B.
Figure 3 shows the Bode diagram of the linear system and
Figure 4 shows the static nonlinearity, along with their
estimates. The gray areas illustrate the 99 % Bayesian
credibility regions, computed from the posterior PDFs.

The method appears to do a good job at identifying both
the linear dynamical system and the nonlinear mapping.
Some slight lack of fit arises due to the non-smoothness
of h and the fact that the GP is a smoothness prior.
Still, the shape of the nonlinearity is clearly visible from
the estimated posterior PDF. The uncertainty about the
nonlinearity gets larger close to the border of the axis
(kzk & 1.5). The reason for this is that there are few
samples in these regions available in the observed mea-
surements.

5.2 4th-order system with non-monotone nonlinearity

To show the flexibility of the GP model, we consider the
same linear system (16), but replace the static nonlinear-
ity. Instead of the saturation, we use a non-monotonic non-
linear function shown in Figure 2. We generate T = 1000
observations from the system and apply the proposed
identification method with the same settings as in Sec-
tion 5.1. Note that, due to the nonparametric nature of
the GP model, we do not need to make any modifications
to the code when we apply it to this modified system.
Figure 5 shows the Bode diagram of the linear system
and Figure 2 shows the static nonlinearity, together with
the estimates using 50000 MCMC iterations (out of which
10000 iterations are considered as burnin).

Also for this example, the method captures the shape of
the nonlinearity as well as the linear dynamical system.
The uncertainty about the Bode diagram is somewhat

larger than in Section 5.1, which is reflected in the es-
timated posterior PDF. This is not surprising, since the
nonlinearity illustrated in Figure 2 is quite di�cult to
deal with. The reason is that the non-monotonicity of the
function means that there is an ambiguity of the value of
z
t

for a given observation y
t

. Basically, for any observation
y
t

in the range [�1, 1] there are three possible values for
z
t

which descibe this observation equally well statically.

6. CONCLUSIONS AND FUTURE WORK

We have considered a semiparametric Bayesian model of a
Wiener system, using a state-space representation (where
the dimension of the state-space is assumed to be known)
of the linear dynamical system and a GP model for the
static nonlinearity. The posterior parameter distribution is
not available in closed form. This was resolved by making
use of a particle Markov Chain Monte Carlo method,
relying on a particle filter and a backward simualtor to
produce sample state trajectories. The new algorithm was
profiled on two examples with good results, despite the fact
that only 5 particles were used in the underlying particle
filter.

A concern with the current method is that it does not
scale well with the number of measurements T , since the
computational complexity of evaluating the posterior GP
is cubic in T . However, this is a well-studied problem in
the GP literature and existing approaches can be used to
mitigate this issue.

In the numerical example provided in Section 5.1 we
applied the method to estimate a Wiener model, where the
true nonlinearity was given by a saturation. This system is
in fact not contained in the proposed model class, since the
GP that we use is a smoothness prior. Due to this, some
problems arise close to the points of non-di↵erentiability
of the saturation. Still, the method captures the shape
of this nonlinearity fairly well. An interesting topic for
future work is to seek some theoretical justification for the
application of the method, even when the true system lies
outside the treated model class. We may also consider to
use the proposed method in a prestudy of the identification
problem. Once we find the rough shape of the nonlinearity,
we can find some suitable parameterisation of it and switch
to a fully parametric model.

In this work, we have not considered estimation of the
GP hyperparameters from data. However, this can be
done by adding a step to the Gibbs sampler, in which
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Semi-parametric Wiener model - representing uncertainty
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Sweden (e-mail: {lindsten,schon}@isy.liu.se)

⇤⇤
Departments of EECS and Statistics, University of California,

Berkeley, USA (e-mail: jordan@eecs.berkeley.edu)

Abstract: We consider a semiparametric, i.e. a mixed parametric/nonparametric, model of a
Wiener system. We use a state-space model for the linear dynamical system and a nonparametric
Gaussian process (GP) model for the static nonlinearity. The GP model is a flexible model
that can describe di↵erent types of nonlinearities while avoiding making strong assumptions
such as monotonicity. We derive an inferential method based on recent advances in Monte
Carlo statistical methods, known as Particle Markov Chain Monte Carlo (PMCMC). The idea
underlying PMCMC is to use a particle filter (PF) to generate a sample state trajectory in a
Markov chain Monte Carlo sampler. We use a recently proposed PMCMC sampler, denoted
particle Gibbs with backward simulation, which has been shown to be e�cient even when we
use very few particles in the PF. The resulting method is used in a simulation study to identify
two di↵erent Wiener systems with non-invertible nonlinearities.

1. INTRODUCTION

Block-oriented nonlinear systems are a family of nonlinear
dynamical systems which have attracted significant atten-
tion in the system identification community, see e.g. [Giri
and Bai, 2010]. These systems consist of interconnected
linear dynamical systems and static nonlinearities. The
most well-known members of this family are the Hammer-
stein (static nonlinearity followed by a linear dynamical
system) and the Wiener (linear dynamical system followed
by a static nonlinearity) systems, introduced by Hammer-
stein [1930] and Wiener [1966], respectively.

We are concerned here with the problem of “blind iden-
tification” of a Wiener system; i.e., the case when the
identification is carried out in the absence of a known input
signal. In other words, we wish to identify a model of a
Wiener system based on the information present in the
measurements y1:T , {y

t

}T
t=1; see Figure 1. This problem

has attracted significant interest, see e.g. [Vanbeylan et al.,
2009, Abed-Meraim et al., 1997, Bai, 2002, Wills et al.,
2011]. However, it should be noted that the proposed
method can be generalised straightforwardly to the case
in which the system is excited by a known input signal as
well.

G h(·) �

ztwt yt

et

Fig. 1. A blind Wiener system, consisting of a linear
system G followed by a static nonlinearity h(·). The
system noise w

t

and the measurement noise e
t

are
both unmeasurable.

? This work was supported by: the project Calibrating Nonlinear
Dynamical Models (Contract number: 621-2010-5876) funded by the
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funded by the Swedish Research Council.
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Fig. 2. Nonlinear mapping (non-monotone), the estimated
posterior mean and 99 % credibility interval.

We consider a semiparametric (i.e., a mixed paramet-
ric/nonparametric) model of a Wiener system. We use a
state-space model for the linear dynamical system and a
nonparametric Gaussian process (GP) model for the static
nonlinearity. We take a Bayesian approach, modeling the
unknown parameters of the model as random variables.
The objective in this work is then to provide a method for
computing p(✓ | y1:T ), the posterior probability density
function (PDF) of the unknown parameters ✓ given the
measurements y1:T . The posterior PDF does not allow
for a closed form solution and we will make use of a
Markov Chain Monte Carlo (MCMC) method (see e.g.
[Robert and Casella, 2004] for a general introduction) to
compute an approximation of p(✓ | y1:T ). More specifi-
cally, we employ the recently proposed particle MCMC
(PMCMC) framework by Andrieu et al. [2010]. The basic
idea underlying PMCMC is to use a particle filter (PF) to
generate a sample state trajectory, which is then used as a
component of an MCMC sampler. Here, we use a PMCMC
sampler denoted particle Gibbs with backward simulation
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Fig. 3. Bode diagram of the linear sys-
tem, estimated posterior mean
and 99 % credibility interval.
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Fig. 4. Nonlinear mapping (satura-
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Fig. 5. Bode diagram of the linear sys-
tem, estimated posterior mean
and 99 % credibility interval.

Q = 0.05I4 and R = 0.01. The same system is considered
by Wills et al. [2011] who present a method for maximum
likelihood estimation of blind Wiener systems. The non-
linear mapping h(·) is taken as a saturation,

h(z) =

8
<

:

1 if z � 0.5,
2z if �0.5  z < 0.5,
�1 if z < �0.5.

(17)

We generate T = 1000 samples from the system and
apply the proposed method for 50000 MCMC iterations
(out of which 10000 iterations are considered as burnin),
using N = 5 particles in the PG-BSi sampler. The
hyperparameters are set as described in Appendix B.
Figure 3 shows the Bode diagram of the linear system and
Figure 4 shows the static nonlinearity, along with their
estimates. The gray areas illustrate the 99 % Bayesian
credibility regions, computed from the posterior PDFs.

The method appears to do a good job at identifying both
the linear dynamical system and the nonlinear mapping.
Some slight lack of fit arises due to the non-smoothness
of h and the fact that the GP is a smoothness prior.
Still, the shape of the nonlinearity is clearly visible from
the estimated posterior PDF. The uncertainty about the
nonlinearity gets larger close to the border of the axis
(kzk & 1.5). The reason for this is that there are few
samples in these regions available in the observed mea-
surements.

5.2 4th-order system with non-monotone nonlinearity

To show the flexibility of the GP model, we consider the
same linear system (16), but replace the static nonlinear-
ity. Instead of the saturation, we use a non-monotonic non-
linear function shown in Figure 2. We generate T = 1000
observations from the system and apply the proposed
identification method with the same settings as in Sec-
tion 5.1. Note that, due to the nonparametric nature of
the GP model, we do not need to make any modifications
to the code when we apply it to this modified system.
Figure 5 shows the Bode diagram of the linear system
and Figure 2 shows the static nonlinearity, together with
the estimates using 50000 MCMC iterations (out of which
10000 iterations are considered as burnin).

Also for this example, the method captures the shape of
the nonlinearity as well as the linear dynamical system.
The uncertainty about the Bode diagram is somewhat

larger than in Section 5.1, which is reflected in the es-
timated posterior PDF. This is not surprising, since the
nonlinearity illustrated in Figure 2 is quite di�cult to
deal with. The reason is that the non-monotonicity of the
function means that there is an ambiguity of the value of
z
t

for a given observation y
t

. Basically, for any observation
y
t

in the range [�1, 1] there are three possible values for
z
t

which descibe this observation equally well statically.

6. CONCLUSIONS AND FUTURE WORK

We have considered a semiparametric Bayesian model of a
Wiener system, using a state-space representation (where
the dimension of the state-space is assumed to be known)
of the linear dynamical system and a GP model for the
static nonlinearity. The posterior parameter distribution is
not available in closed form. This was resolved by making
use of a particle Markov Chain Monte Carlo method,
relying on a particle filter and a backward simualtor to
produce sample state trajectories. The new algorithm was
profiled on two examples with good results, despite the fact
that only 5 particles were used in the underlying particle
filter.

A concern with the current method is that it does not
scale well with the number of measurements T , since the
computational complexity of evaluating the posterior GP
is cubic in T . However, this is a well-studied problem in
the GP literature and existing approaches can be used to
mitigate this issue.

In the numerical example provided in Section 5.1 we
applied the method to estimate a Wiener model, where the
true nonlinearity was given by a saturation. This system is
in fact not contained in the proposed model class, since the
GP that we use is a smoothness prior. Due to this, some
problems arise close to the points of non-di↵erentiability
of the saturation. Still, the method captures the shape
of this nonlinearity fairly well. An interesting topic for
future work is to seek some theoretical justification for the
application of the method, even when the true system lies
outside the treated model class. We may also consider to
use the proposed method in a prestudy of the identification
problem. Once we find the rough shape of the nonlinearity,
we can find some suitable parameterisation of it and switch
to a fully parametric model.

In this work, we have not considered estimation of the
GP hyperparameters from data. However, this can be
done by adding a step to the Gibbs sampler, in which

Linear system Static nonlinearity

We used a nonparametric model for the static nonlinearity, more specifically a Gaussian process.

Show convergence using a movie

How do we represent uncertainty for a nonlinear model?!
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Conclusions

Throughout the talk I have touched upon a lot of methods that clearly deserves much more time 
than I gave them in this tutorial presentation. 

Tomorrow and on Thursday I am giving an intensive course on this in Brussels, for details, see

http://www.rt.isy.liu.se/~schon/CourseBrussels2012/index.html

• Take home message: Given the computational tools that we have today it can 
be rewarding to resist the linear Gaussian convenience!

• There are by now a lot of tools that allows us to do this (e.g., SMC, PMCMC).

• There is a lot of interesting research that remains to be done!

• The industrial utility of the sensor fusion technology is growing as we speak!
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Abstract: We consider a semiparametric, i.e. a mixed parametric/nonparametric, model of a
Wiener system. We use a state-space model for the linear dynamical system and a nonparametric
Gaussian process (GP) model for the static nonlinearity. The GP model is a flexible model
that can describe di↵erent types of nonlinearities while avoiding making strong assumptions
such as monotonicity. We derive an inferential method based on recent advances in Monte
Carlo statistical methods, known as Particle Markov Chain Monte Carlo (PMCMC). The idea
underlying PMCMC is to use a particle filter (PF) to generate a sample state trajectory in a
Markov chain Monte Carlo sampler. We use a recently proposed PMCMC sampler, denoted
particle Gibbs with backward simulation, which has been shown to be e�cient even when we
use very few particles in the PF. The resulting method is used in a simulation study to identify
two di↵erent Wiener systems with non-invertible nonlinearities.

1. INTRODUCTION

Block-oriented nonlinear systems are a family of nonlinear
dynamical systems which have attracted significant atten-
tion in the system identification community, see e.g. [Giri
and Bai, 2010]. These systems consist of interconnected
linear dynamical systems and static nonlinearities. The
most well-known members of this family are the Hammer-
stein (static nonlinearity followed by a linear dynamical
system) and the Wiener (linear dynamical system followed
by a static nonlinearity) systems, introduced by Hammer-
stein [1930] and Wiener [1966], respectively.

We are concerned here with the problem of “blind iden-
tification” of a Wiener system; i.e., the case when the
identification is carried out in the absence of a known input
signal. In other words, we wish to identify a model of a
Wiener system based on the information present in the
measurements y1:T , {y

t

}T
t=1; see Figure 1. This problem

has attracted significant interest, see e.g. [Vanbeylan et al.,
2009, Abed-Meraim et al., 1997, Bai, 2002, Wills et al.,
2011]. However, it should be noted that the proposed
method can be generalised straightforwardly to the case
in which the system is excited by a known input signal as
well.

G h(·) �

ztwt yt

et

Fig. 1. A blind Wiener system, consisting of a linear
system G followed by a static nonlinearity h(·). The
system noise w

t

and the measurement noise e
t

are
both unmeasurable.

? This work was supported by: the project Calibrating Nonlinear
Dynamical Models (Contract number: 621-2010-5876) funded by the
Swedish Research Council and CADICS, a Linneaus Center also
funded by the Swedish Research Council.
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Fig. 2. Nonlinear mapping (non-monotone), the estimated
posterior mean and 99 % credibility interval.

We consider a semiparametric (i.e., a mixed paramet-
ric/nonparametric) model of a Wiener system. We use a
state-space model for the linear dynamical system and a
nonparametric Gaussian process (GP) model for the static
nonlinearity. We take a Bayesian approach, modeling the
unknown parameters of the model as random variables.
The objective in this work is then to provide a method for
computing p(✓ | y1:T ), the posterior probability density
function (PDF) of the unknown parameters ✓ given the
measurements y1:T . The posterior PDF does not allow
for a closed form solution and we will make use of a
Markov Chain Monte Carlo (MCMC) method (see e.g.
[Robert and Casella, 2004] for a general introduction) to
compute an approximation of p(✓ | y1:T ). More specifi-
cally, we employ the recently proposed particle MCMC
(PMCMC) framework by Andrieu et al. [2010]. The basic
idea underlying PMCMC is to use a particle filter (PF) to
generate a sample state trajectory, which is then used as a
component of an MCMC sampler. Here, we use a PMCMC
sampler denoted particle Gibbs with backward simulation

−10

0

10

20

M
ag

n
it
u
d
e
(d
B
)

 

 

0 0.5 1 1.5 2 2.5 3

−50

0

50

100

Frequency (rad/s)

P
h
as
e
(d
eg
)

True
Posterior mean
99 % credibility

Fig. 3. Bode diagram of the linear sys-
tem, estimated posterior mean
and 99 % credibility interval.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

z

h
(z
)

 

 

True
Posterior mean
99 % credibility

Fig. 4. Nonlinear mapping (satura-
tion), estimated posterior mean
and 99 % credibility interval.

−10

0

10

20

M
ag

n
it
u
d
e
(d
B
)

 

 

0 0.5 1 1.5 2 2.5 3

−50

0

50

100

Frequency (rad/s)

P
h
as
e
(d
eg
)

True
Posterior mean
99 % credibility

Fig. 5. Bode diagram of the linear sys-
tem, estimated posterior mean
and 99 % credibility interval.

Q = 0.05I4 and R = 0.01. The same system is considered
by Wills et al. [2011] who present a method for maximum
likelihood estimation of blind Wiener systems. The non-
linear mapping h(·) is taken as a saturation,

h(z) =

8
<

:

1 if z � 0.5,
2z if �0.5  z < 0.5,
�1 if z < �0.5.

(17)

We generate T = 1000 samples from the system and
apply the proposed method for 50000 MCMC iterations
(out of which 10000 iterations are considered as burnin),
using N = 5 particles in the PG-BSi sampler. The
hyperparameters are set as described in Appendix B.
Figure 3 shows the Bode diagram of the linear system and
Figure 4 shows the static nonlinearity, along with their
estimates. The gray areas illustrate the 99 % Bayesian
credibility regions, computed from the posterior PDFs.

The method appears to do a good job at identifying both
the linear dynamical system and the nonlinear mapping.
Some slight lack of fit arises due to the non-smoothness
of h and the fact that the GP is a smoothness prior.
Still, the shape of the nonlinearity is clearly visible from
the estimated posterior PDF. The uncertainty about the
nonlinearity gets larger close to the border of the axis
(kzk & 1.5). The reason for this is that there are few
samples in these regions available in the observed mea-
surements.

5.2 4th-order system with non-monotone nonlinearity

To show the flexibility of the GP model, we consider the
same linear system (16), but replace the static nonlinear-
ity. Instead of the saturation, we use a non-monotonic non-
linear function shown in Figure 2. We generate T = 1000
observations from the system and apply the proposed
identification method with the same settings as in Sec-
tion 5.1. Note that, due to the nonparametric nature of
the GP model, we do not need to make any modifications
to the code when we apply it to this modified system.
Figure 5 shows the Bode diagram of the linear system
and Figure 2 shows the static nonlinearity, together with
the estimates using 50000 MCMC iterations (out of which
10000 iterations are considered as burnin).

Also for this example, the method captures the shape of
the nonlinearity as well as the linear dynamical system.
The uncertainty about the Bode diagram is somewhat

larger than in Section 5.1, which is reflected in the es-
timated posterior PDF. This is not surprising, since the
nonlinearity illustrated in Figure 2 is quite di�cult to
deal with. The reason is that the non-monotonicity of the
function means that there is an ambiguity of the value of
z
t

for a given observation y
t

. Basically, for any observation
y
t

in the range [�1, 1] there are three possible values for
z
t

which descibe this observation equally well statically.

6. CONCLUSIONS AND FUTURE WORK

We have considered a semiparametric Bayesian model of a
Wiener system, using a state-space representation (where
the dimension of the state-space is assumed to be known)
of the linear dynamical system and a GP model for the
static nonlinearity. The posterior parameter distribution is
not available in closed form. This was resolved by making
use of a particle Markov Chain Monte Carlo method,
relying on a particle filter and a backward simualtor to
produce sample state trajectories. The new algorithm was
profiled on two examples with good results, despite the fact
that only 5 particles were used in the underlying particle
filter.

A concern with the current method is that it does not
scale well with the number of measurements T , since the
computational complexity of evaluating the posterior GP
is cubic in T . However, this is a well-studied problem in
the GP literature and existing approaches can be used to
mitigate this issue.

In the numerical example provided in Section 5.1 we
applied the method to estimate a Wiener model, where the
true nonlinearity was given by a saturation. This system is
in fact not contained in the proposed model class, since the
GP that we use is a smoothness prior. Due to this, some
problems arise close to the points of non-di↵erentiability
of the saturation. Still, the method captures the shape
of this nonlinearity fairly well. An interesting topic for
future work is to seek some theoretical justification for the
application of the method, even when the true system lies
outside the treated model class. We may also consider to
use the proposed method in a prestudy of the identification
problem. Once we find the rough shape of the nonlinearity,
we can find some suitable parameterisation of it and switch
to a fully parametric model.

In this work, we have not considered estimation of the
GP hyperparameters from data. However, this can be
done by adding a step to the Gibbs sampler, in which

xt+1 | xt ⇠ f✓(xt+1 | xt, ut),

yt | xt ⇠ h✓(yt | xt, ut),

x1 ⇠ µ✓(x1).
The Wiener game

Fredrik Lindsten and Thomas Schön

May 5, 2012

L h ⌃
ut zt yt

wt et

Figure 1: Wiener model.

xt+1 = Axt +But + wt, wt ⇠ N (0, Q), (1a)

zt = Cxt, (1b)

yt = h(zt) + et, et ⇠ N (0, r). (1c)

Here, xt 2 Rn
x denotes the state of the dynamical system, ut 2 Rn

u is the input
signal, zt 2 R is the output from the linear block and yt 2 R is the measurement.
Furthermore, wt and et denotes the process noise and the measurement noise,
respectively.

SISO or MISO?
Generate a data set consisting of 1500 inputs and outputs from a model

within the class of models (1).

p(xt | y1:t) =
h(yt | xt)p(xt | y1:t�1)

p(yt | y1:t�1)
,

p(xt+1 | y1:t) =
Z

f(xt+1 | xt)p(xt | y1:t)dxt
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p(✓, x1:T | y1:T )

Thank you for your attention!!


