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Dynamical systems are everywhere!

Some of the dynamical systems we have been working with,
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We first have to learn the models. Then we can use them.
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Learning nonlinear dynamical systems from data

A state space model (SSM) consists of a Markov process {x; }>1
and a measurement process {y; }+>1, related according to

X1 | X0~ fe(xeen | i), Xepr | X~ for (X | xe),
e | xe ~ gy | xr), ye | xe ~ go(yr | x1),
x1 ~ p(xy). x1 ~ po(x1).
We observe

yl:T é {yll- . -/yT};

(leaving the latent variables x{.7 unobserved).

Identification problem: Find f, g, 1 (or ) based on y;.r.
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Strategies for inference in latent variable models  4(3s)

Alternate between updating 6 and updating x1.7.

Frequentists:
e Find Oy = arg max ps(y1.7).
0

e Use e.g. the expectation maximization (EM) algorithm.

Bayesians:
e Findp(0 | y1.7).
e Use e.g. Gibbs sampling.
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Outline

1. Maximum Likelihood (ML) identification
e Problem formulation
e Solution using EM and a particle smoother

2. Bayesian identification

e Problem formulation

e Gibbs sampling
3. Sequential Monte Carlo (SMC), the particle filter
4. Particle Gibbs with ancestor sampling (PG-AS)

e Example: Identifying Wiener systems
e Bayesian nonparametric dynamical models

The sequential Monte Carlo samplers are fundamental to both the
ML and the Bayesian approaches.
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Problem formulation — ML

A state space model (SSM) consists of a Markov process {x; }>1
and a measurement process {y; }+>1, related according to
Xyt | xe ~ fop(xiin | i),
Yt | Xt ~ ge,t(]/t | x¢),
x1 ~ Ho(x1).

Identification problem: Find 6 based on y;.t.

ML amounts to solving,

~ML
0" = argmax logpy(y1.T)
0
where the log-likelihood function is given by

T
log po(yr:r) = Y _log pe (vt | y1:-1)
t=1
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Expectation Maximization (EM) — Strategy in SSMs 7(36)

The EM algorithm computes ML estimates of unknown parameters in
probabilistic models involving latent variables.

The latent variables in an SSM are given by the states,
{xl, PN ,XT}.

Strategy: Use the structure inherent in the SSM to separate the
original problem into two closely linked subproblems, each of which
is hopefully in some sense more tractable than the original problem.
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EM - the algorithm

Algorithm 1 EM for identifying nonlinear dynamical systems

1. Initialise: Set i = 1 and choose an initial 61.
2. While not converged do:

(a) Expectation (E) step: Compute
Q(6,0") = By [logpe(x1.1,y1.7) | Y1)
= / log po(x1.:1,y1.7) por (¥1:1 | yrr) dvrr
using PS (forward filter/backward simulation, FFBS).

(b) Maximization (M) step: Compute 6'*! = argmax Q(0,0')
(©) i+ it1 oee

Thomas B. Schén, Adrian Wills and Brett Ninness. System Identification of Nonlinear State-Space Models. Automatica,
47(1):39-49, January 2011.
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Problem formulation — Bayesian

Consider a Bayesian SSM (6 is now a random variable with a prior
density p(0))
Xeot | X~ for (x| %),
yi | xp ~ ge,t(yt | xt),
X1~ po(x1),
0~ p(0).

Identification problem: Compute the posterior p(6, x1.7 | y1.T), or
one of its marginals.

The key challenge is that there is no closed form expression
available for the posterior.
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Gibbs sampler for SSMs

Markov chain Monte Carlo (MCMC) methods allow us to generate
samples from a target distribution by simulating a Markov chain.

Gibbs sampling (blocked) for SSMs amounts to iterating
e Draw 0[m] ~ p(0 | xy.7[m — 1], y1.7),

e Draw xy.r[m]| ~ p(x1.7 | 0]m], y1.1).

The above procedure results in a Markov chain,

{0[m], x1.7[m]}, 51

with p(6, x1.7 | yr) as its stationary distribution!
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Gibbs sampler for a general SSM

What would a Gibbs sampler for a general nonlinear/non-Gaussian
SSM look like?

e Draw O[m] ~ p(0 | x1.7[m — 1], y1.7); OK!
o Draw xy.7[m| ~ p(x1.7 | 0[m], y1.1). Hard!

[Problem: p(x1.7 | 0[m], y1.7) not available!

Idea: Approximate p(xi.r | 6[m],y1.r) using a sequential
Monte Carlo method!
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Outline

1. Maximum Likelihood (ML) identification

e Problem formulation
e Solution using EM and a particle smoother

2. Bayesian identification
e Problem formulation
o Gibbs sampling

3. Sequential Monte Carlo (SMC), the particle filter
4. Particle Gibbs with ancestor sampling (PG-AS)

The sequential Monte Carlo samplers are fundamental to both the
ML and the Bayesian approaches.
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The particle filter

The particle filter provides an approximation of the filter PDF
p(x: | y1.¢), when the state evolves according to an SSM,
X1 | xe ~ fr(xi | xe),
ye | xe~ &e(ye | xi),
x1 ~ p(xq).

The particle filter maintains an empirical distribution made up N
samples (particles) {x:}¥ ; and corresponding weights {w:}Y |

N .
PN (x| i) = Zwﬁéxi(xt).
=1

1

“Think of each particle as one simulation of the system state. Only
keep the good ones.”
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The particle filter

| Resampling | Propagation | Weighting |—

1. Resampling: {x}, ,wi W, — {¥ [, 1/N},
2. Propagation: x ~ R(x; | ¥, ;) andx}, = {¥|, | x}.
3. Weighting: wi = W;(x},).

The result is a new weighted set of particles {x' ,, wi}Y |

A systematic way of obtaining approximations that converge

Xiao-Li Hu, Thomas B. Schn and Lennart Ljung. A basic convergence result for particle filtering. /EEE Transactions on
Signal Processing, 56(4):1337-1348, April 2008.
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Example — Indoor localization

Aim: Compute the position of a person moving around indoors using
sensors (inertial, magnetometer and radio) located in an ID badge
and a map.

Show movie
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The particle filter — alternative formulation

| Resampling | Propagation | Weighting |—

1. Resampling + Propagation:

o w™
(ah x1) ~ Mi(ar, xe) = == Ri(xe | 14 o).
1 %1
2. Weighting: w} = W;(x},).

The result is a new weighted set of particles {x/.,, wi}Y ,.
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The particle filter — illustrating particle degeneracy 17(3s)
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Sampling based on the PF

ppro.

With P(x}. = x| 1) o w’. we get, x] 7 ARl p(x17 | 0,y1.7)-
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Problems

Problems with this approach,
e Based on a PF = approximate sample.

Does not leave p(6, x1.7 | y1.7) invariant!

Relies on large N to be successful.

A lot of wasted computations.

To get around these problems,

Use a conditional particle filter (CPF). One pre-specified
path is retained throughout the sampler.

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal of the
Royal Statistical Society: Series B, 72:269-342, 2010.
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Particle Markov Chain Monte Carlo (PMCMC)

The idea underlying PMCMC is to make use of a certain SMC
sampler to construct a Markov kernel leaving the joint smoothing
distribution p(x1.7 | 6, y1.7) invariant.

This Markov kernel is then used in a standard MCMC algorithm (e.g.
Gibbs, results in the Particle Gibbs (PG)).

Three SMC samplers leaving p(x1.7 | 6, y1.7) invariant:

1. Conditional particle filter (CPF)
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.

2. CPF with backward simulation (CPF-BS)

Fredrik Lindsten and Thomas B. Schn. On the use of backward simulation in the particle Gibbs sampler. Proc.
of the 37th Internat. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, March 2012.

3. CPF with ancestor sampling (CPF-AS)

Fredrik Lindsten, Michael |. Jordan and Thomas B. Schén, Ancestor sampling for particle Gibbs, Advances in
Neural Information Processing Systems (NIPS) 25, Lake Tahoe, NV, US, December, 2012.
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Conditional PF with ancestor sampling

Algorithm CPF w. ancestor sampling (CPF-AS), conditioned on x7.;

1. Initialize (t = 1):
(a) Draw xi ~ RY(xy) fori # N and set )’ = x7.
(b) Setw| = W{(xi)fori=1,...,N.
2. fort=2,...,T:
(a) Draw (ai,xi) ~ M?(a;,x;) for i # N and set xN = x7.
(b) Draw al with P(at =i)ocwl p(xf|0,xi ).
(c) Setxi, = {x!, ,xi} andw = Wf(xlzt) fori=1,...,N.

(The red text highlights the difference to the standard PF)
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CPF vs. CPF-AS
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Conditional PF with ancestor sampling 23(36)

For any N > 2, the procedure;

(i) Run CPF-AS(x%.);

(ii) Sample P(x}. = x{.7) o w,;
defines a Markov kernel on X which leaves p(x1.7 | 0,y1.7)
invariant.

Three additional reasons for using CPF-AS:
1. Significantly improves the mixing compared to CPF.
2. The computational complexity is linear in N.
3. Opens up for non-Markovian models.
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Particle Gibbs with ancestor sampling

Bayesian identification: Gibbs + CPF-AS = PG-AS

Algorithm PG-AS: Particle Gibbs with ancestor sampling

1. Initialize: Set {0[0], x1.7[0] } arbitrarily.
2. Form > 1, iterate:
(a) Draw 0[m] ~ p(0 | x1.7[m — 1], y1.7).
(b) Run CPF-AS(xy.7[m — 1]), targeting p(x1.1 | 6[m], y1.1).

(c) Sample with P(x;.7[m] = x;.7') o wiT.

For any number of particles N > 2, the Markov chain
{6[m], x1.7[m] }n>1 has stationary distribution p(6, x1.1 | y1.1).
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Toy example — stochastic volatility (I/11)

Consider the stochastic volatility model,
xi1 = 0.9x; + wy, wy ~ N(0,0),
1
Yy = erexp (Ext) , ey ~ N(O,l)

Let us study the ACF for the estimation error, 0—E CARZEY

PG, T = 100 PG-AS, T = 100
1 —NnN=5 | 1 —N=5
—nN=20 ] —N=20
08 —N=100 08 ——N=100
—— N=1000 ——N=1000
.06 g g
2
0.4
0.2
of - - N ST e e -
0 50 100 150 200
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Toy example — stochastic volatility (lI/1l)

PG-AS, T = 1000

——N=5
—N=20
——N=100

——N=1000

PG, T = 1000
1 —N=5 [} 1
—N=20
0.8 —N=100 h 0.8
—— N=1000
.06 1
Z
0.4f
0.2
Ob oo TS —
0 50 100 150 200
Lag

Some observations:

Lag

o We want the ACF to decay to zero as rapidly as possible (indicates good

mixing in the PG sampler).

o Note the superior mixing of PG-AS compared to PG-CPF (already for just

N = 5 particles!).
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Example — semiparametric Wiener model (I/lll) 27(36)

(n <

Zt

u— L s6) F—=()—w

Parametric LGSS and a nonparametric static nonlinearity:

X1 = (A B) (it) + o, v ~N(0,0),
N—— t
r
Zr = Cxt.
v = g(z) +ey, et ~ N(0,R).

Thomas Schoén, Nonlinear system identification enabled via sequential Monte Carlo
Uppsala University Machine Learning seminar series, September 18, 2013.



Example — semiparametric Wiener model (llI/1ll) 28(36)

Everything is learned from the data, by introducing the possibility to
switch specific model components on and off.

“Parameters™: 0 = {A,B,Q,J,g(-),r}. 0

Bayesian model specified by priors @
e Sparseness prior (ARD) on I' = [A B], G @

e Inverse-Wishart prior on Q and r

e Gaussian process prior on g(+), @
8(-) ~ GP(z,k(z2)).
Inference using PG-AS with N = 15 particles. @
T = 1000 measurements. We ran 15000 MCMC
iterations and discarded 5000 as burn-in. @ e
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Example — semiparametric Wiener model (l1I/1lI)

29(36)

Show movie
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identification.

Fredrik Lindsten, Thomas B. Schon and Michael I. Jordan. Bay
Automatica, 49(7): 2053-2063, July 2013.

ic Wiener sy
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Bayesian nonparametric models

Bayesian nonparametric (BNP) models allow us to build flexible
models where the structure grows and adapts to data.

BNP models: Gaussian, Dirichlet and Beta processes.

Opens up for systematic reasoning of uncertainty not only over
parameters, but also orders, segmentations (clustering), etc.

DP model example from Johan Wagberg.
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Bayesian nonparametric models

Bayesian nonparametric (BNP) models allow us to build flexible
models where the structure grows and adapts to data.

BNP models: Gaussian, Dirichlet and Beta processes.

Opens up for systematic reasoning of uncertainty not only over
parameters, but also orders, segmentations (clustering), etc.

DP model example from Johan Wagberg.
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Bayesian nonparametric dynamical models

New result: We have been able to construct and learn a Gaussian
process (GP) state space model

fx) ~ GP(mg,(xt), ke, (xt,x1)),
X | fr ~ N (xes1 | £1,Q),
e | xe ~ p(ys | xi,6y).
Key idea: Marginalize out the function f.
Problem: Renders the model non-Markovian. Solution: PG-AS

Roger Frigola, Fredrik Lindsten, Thomas B. Schén and Carl E. Rasmussen, Bayesian inference and learning in Gaussian
process state-space models with particle MCMC. In Advances in Neural Information Processing Systems (NIPS) 26, Lake

Tahoe, NV, USA, December 2013. (accepted for publication)

Ongoing work: Construct and learn
e models based on the Dirichlet process to automatically capture

segmented data,
e change-point models based on the GP-SSM.
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Stochastic approximation EM 33(36)

Assume for the time being that we can sample from py (x1.7 | y1.7).

Stochastic approximation EM (SAEM): Replace the E-step with,

_ N M . R
Qm(0) = Qu-1(0) +rm <Al/1 X:logpe(i’lmym) - Qm—l(e)) ,

=1

where a"cQ:T e po(x1.r | yr)forj=1,..., M.

SAEM converges to a maximum of py(y1.7) for any M > 1
under standard stochastic approximation conditions.

B. Delyon, M. Lavielle and E. Moulines, Convergence of a hastic approxit i ion of the EM algorithm, The
Annals of Statistics, 27:94-128, 1999.
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Stochastic approximation EM using CPF-AS

e Bad news: We cannot sample from py(x1.7 | y1.7)-

e Good news: It is enough to sample from a uniformly ergodic
Markov kernel, leaving py(x1.7 | y1.7) invariant.

(We can use CPF-AS to sample the states! ]

Results in an interesting and useful combination of frequentist and
Bayesian ideas. We will see more combinations like this in the future.

Fredrik Lindsten. An efficient stochastic approximation EM algorithm using conditional particle filters. Proceedings of
the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, May 2013.
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Conclusions

EM-PS for ML learning in nonlinear SSMs.
Conditional particle filters (CPF) are useful for identification!
CPF-AS defines a kernel on X' leaving py (x1.7 | y1.7) invariant.
CPF-AS consists of two parts:
e Conditioning: Ensures correct stationary distribution for any N.
e Ancestor sampling: Mitigates path degeneracy and enables
movement around the conditioned path.
Both Bayesian (PG-AS) and maximum likelihood inference
(SAEM-AS) works with very few particles!

We are working on a book project,

Thomas B. Schoén and Fredrik Lindsten, Computational learning in
dynamical systems, 2013.

Send me an e-mail if you are interested in a draft.

Course: users.isy.liu.se/rt/schon/course_CIDS.html
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