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Abstract—In multi-target tracking, the discrepancy between
the nominal and the true values of the model parameters might
result in poor performance. In this paper, an adaptive Probability
Hypothesis Density (PHD) filter is proposed which accounts for
sensor parameter uncertainty. Variational Bayes technique is used
for approximate inference which provides analytic expressions
for the PHD recursions analogous to the Gaussian mixture
implementation of the PHD filter. The proposed method is
evaluated in a multi-target tracking scenario. The improvement
in the performance is shown in simulations.
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I. INTRODUCTION

Multi-target tracking (MTT) problem involves resolving the
uncertainty in a surveillance region by estimating the number
of targets and their trajectories based on the measurements
collected by a number of sensors which suffer from possible
missed detections and false alarms. Among the vast number
of studies proposed for MTT, Mahler’s PHD filter [1], [2]
has drawn significant interest as it reformulates the problem
using Random Finite Sets (RFS). PHD filter approximates
the multi-target posterior distribution by propagating its first
order moment. It has been implemented by different inference
techniques like sequential Monte Carlo (SMC) [3], point-mass
[4], or the Gaussian mixture approximation [5]. The Gaussian
mixture implementation of the PHD filter (GMPHD) has been
the most common choice among the others, where Kalman
filters (KF) are used for updating the individual components
of the mixture under linear Gaussian model assumptions.
Having KFs as its building blocks, the performance of the
GMPHD heavily relies on the performance of the KFs. One
deficiency of the KF is its lack of robustness to parameter
uncertainties. In this study, we aim to address this problem
by replacing the KF with a more sophisticated approximate
inference technique which accounts for the uncertainty in
the sensor noise covariance. The sensitivity of the KFs to
model uncertainties has been known for long, and early studies
addressing the issue dates back as early as 70’s [6]. One
common approach in the noise adaptive filtering involves
monitoring the innovation sequence, which is the difference
between the predicted and the actual measurements [7]. In a
Bayesian framework, one can define prior on unknown noise
parameters and then try to compute the posterior. In this
study, the variational approximation is used to compute the
approximate posterior for which analytical solution does not
exist. Variational inference based techniques have been used
for state estimation and filtering in a number of recent studies.
In [8] the noise covariance is modeled as a diagonal matrix
whose entries are assumed to be distributed as inverse Gamma.
This result is extended and used in an interactive multiple
model (IMM) framework for jump Markov linear systems in
[9]. In [10], the Inverse Wishart distribution is used to model
the measurement noise covariance matrix for robust estimation
within the variational Bayes framework. It is also shown in
[10] that the mean square error of the state estimate can be

reduced by using the proposed variational Bayes measurement
update. In another recent paper [11], the generalization of [10]
for nonlinear systems is given.

In this contribution, a novel implementation of the PHD
filter which accounts for the unknown sensor noise covariance
using appropriate priors and approximate inference technique
is presented. The variational Bayes approximation is used
in the updates for the first time within the PHD filtering
framework. In order to employ variational Bayes approxi-
mation, the recursions needed for the measurement update
are derived explicitly. Moreover, the predictive likelihood of
the measurements are derived which enables the use of the
model introduced in [10] in target tracking applications. The
resulting algorithm is easy to implement and computationally
efficient. The algorithm is able to estimate jointly the state
and the measurement noise covariance over the surveillance
region which makes it most suitable for the applications where
the sensor noise covariance is non-uniform over the region
of interest such as acoustic sensors or thresholded detections
dependent on the signal strength. In the current settings, each
target learns the sensor characteristics independent of each
other. The results are promising for a future work where the
approximate posterior for the unknown sensor covariance can
be learned from multiple targets jointly. There are some sim-
ilarities as well as differences to the extended target tracking
framework in [12], [13], [14], [15], [16]. As pointed out in the
extended target tracking literature, such as [17], [12], tracking
of point targets with an unknown measurement error is a
limiting case of their proposed extended target tracker. Many
studies have focused on the extended target tracking problem,
but the unknown sensor characteristics for point targets is in
general overlooked.

The rest of this paper is organized as follows: In Section II,
the standard assumptions and expressions for the PHD filter
are given. In Section III the assumptions and expressions
for a PHD filter where sensor noise covariance is unknown
are provided. In Section IV the analytical expressions for a
PHD filter with unknown measurement noise covariance is
derived using variational approximation. The proposed PHD
filter is evaluated in Section V in a numerical simulation. The
conclusions are drawn in Section VI.

II. THE PHD RECURSIONS

The PHD filter approximates the multi-target Bayes filter
by propagating its first-order moment. The filter is recursive
and the update is done in two steps, namely the prediction
and the correction steps. At each update, the PHD, which
is the first-order moment approximation of the multi-target
posterior, is propagated in time and corrected with the available
measurements. Suppose we have the PHD Dk|k(x|Z(k)) for
the target state x at time step k. The predicted PHD at time



step k + 1 becomes [2]

Dk+1|k(x|Z(k))

= bk+1|k(x) +

∫
Fk+1|k(x|ξ)Dk|k(ξ|Z(k)) dξ,

(1)

where
Fk+1|k(x|ξ) , pS,k+1|k(ξ)fk+1|k(x|ξ), (2)

and fk+1|k(x|ξ) is the Markovian single target transition
density, pS,k+1|k(ξ) is the probability that a target with state
ξ at time step k survives in time step k + 1, bk+1|k(x) is
the target birth intensity, and Z(k), which is a subset of a
measurement space Z , is the measurement set at time k. The
predicted expected number of targets is

Nk+1|k =

∫
Dk+1|k(x|Z(k)) dx. (3)

The PHD corrector step is given as

Dk+1|k+1(x|Z(k+1)) ∼= LZk+1
(x)Dk+1|k(x|Z(k)) (4)

where for a measurement set Z(k+1) the PHD pseudo likeli-
hood LZk+1

(x) is

LZk+1
(x) , 1− pD(x)

+ pD(x)
∑

z∈Z(k+1)

Lz(x)

λcc(z) +
∫
pD(ξ)Lz(ξ)Dk+1|k(ξ|Z(k)) dξ

(5)

where, Lz(x) = fk+1(z|x) is the single target likelihood
function and pD(x) is the probability of detection. The sensor
collects an average number of λc Poisson-distributed false
alarms and the spatial distribution of the clutter is governed
by the probability density c(z). Posterior to the measurement
update, the expected number of targets is

Nk+1|k+1 =

∫
Dk+1|k+1(x|Z(k+1)) dx. (6)

In the following section the PHD filter recursion for the
case where the state is augmented with the unknown sensor
covariance will be presented.

III. PHD FILTERING WITH UNKNOWN SENSOR NOISE
COVARIANCE

In many applications, the quality of the measurements
depends on the physical distance between the target and the
sensor position. For example, in [4], the acoustic sensors
provide good quality measurements for the direction of arrival
estimates when the targets are close to the microphones
whereas the quality of these measurements deteriorates as
the targets move further away from the microphones because
of the change in the received signal levels. Similar behavior
can also be observed in radar tracking. In such scenarios,
the measurement noise covariance is non-uniform over the
surveillance region. The spatially varying covariance matrix
can be estimated by inspecting the target trajectories and the
target originated measurements. In this paper, the aim is to
jointly estimate the sensor noise covariance and the target
states by augmenting the state in the PHD filter. The target
state augmentation approach is adopted in other PHD filtering
studies such as [18], [19] and [20] where target state is
augmented by the detection probability. Also in [13], [12] the
target state is augmented by the target extent for the extended

target tracking. The augmented state is defined as follows

x̆ = [x,
∗
x], (7)

where x ∈ χ(x) is the target kinematic state, χ(x) ⊂ Rnx is
the target’s kinematics state space,

∗
x ∈ χ(

∗
x) augmented part

of the state which will account for the unknown sensor noise
covariance and χ(

∗
x) ⊂ Snz++ is the space of the unknown noise

covariances, x̆ ∈ χ(x) × χ(
∗
x) and × denoted the Cartesian

product. Here, the conditions which are required to hold for
the augmented target state in the prediction step of the PHD
recursion will be emphasized;

1) The augmented target states evolve independently of
each other. The birth of the new targets and the
survival of the targets in the scene are independent.

2) The single target transition density fk+1|k(x,
∗
x|ξ,

∗
ξ)

is Markovian. It is further assumed that the state tran-
sition for the augmented state [x,

∗
x] can be factorized

as in

fk+1|k(x,
∗
x|ξ,

∗
ξ) = fk+1|k(x|ξ)fk+1|k(

∗
x|
∗
ξ). (8)

3) The probability that a target with augmented state

[ξ,
∗
ξ] at time step k survives at time step k + 1 is

pS,k+1|k(ξ,
∗
ξ) which is abbreviated by pS(ξ,

∗
ξ).

4) The target birth intensity at time step k + 1 is
bk+1|k(x,

∗
x).

Under the aforementioned conditions the PHD time update
becomes

Dk+1|k(x,
∗
x|Z(k)) = bk+1|k(x,

∗
x)

+

∫
Fk+1|k(x,

∗
x|ξ,

∗
ξ)Dk|k(ξ,

∗
ξ|Z(k)) dξ d

∗
ξ,

(9)

where

Fk+1|k(x,
∗
x|ξ,

∗
ξ) , pS(ξ,

∗
ξ)fk+1|k(x|ξ)fk+1|k(

∗
x|
∗
ξ). (10)

The correction step of the PHD filter can be written as

Dk+1|k+1(x,
∗
x|Z(k+1)) ∼= LZk+1

(x,
∗
x)Dk+1|k(x,

∗
x|Z(k))

(11)
where

LZk+1
(x,
∗
x) , 1− pD(x,

∗
x) +

∑
z∈Z(k+1)

pD(x,
∗
x)Lz(x,

∗
x)

λcc(z) +
∫
pD(ξ,

∗
ξ)Lz(ξ,

∗
ξ)Dk+1|k(ξ,

∗
ξ|Z(k)) dξ d

∗
ξ

(12)

and
Lz(x,

∗
x) = fk+1(z|x, ∗x). (13)

The following assumptions are made for the correction step;

1) Each target generates at most one measurement and
each measurement is generated by at most one target.

2) The probability of detection is pD(x,
∗
x) =

pD,k+1(x).
3) The sensor collects an average number of λc Poisson-

distributed false alarms and the spatial distribution of
the clutter is governed by the probability density c(z).

4) The predicted multi-target RFS is Poisson.



IV. IMPLEMENTATION

The PHD filter can be implemented using different infer-
ence techniques such as SMC and Gaussian mixture approxi-
mation. In this section, an analytical mixture implementation
where Dk|k(x,

∗
x|Z(k)) is represented by a mixture will be

studied. The mixture is given by

Dk|k(x,
∗
x|Z(k))

=

nk|k∑
i=1

w
(i)
k|kN (x;m

(i)
k|k, P

(i)
k|k)IW(

∗
x; v

(i)
k|k,Ψ

(i)
k|k),

(14)

where,

• nk|k is the number of components in the mixture;

• w
(i)
k|k represents a positive weight;

• The measurement likelihood and the target motion
models are assumed to follow a linear and Gaussian
model i.e.,

fk+1|k(x|ξ) = N (x;Akξ,Qk), (15)

fk+1(z|x, ∗x) = N (z;Ck+1x,
∗
x); (16)

• The birth intensity is

bk+1|k(x,
∗
x) =

nγ∑
j=1

w(j)
γ N (x;m(j)

γ , P (j)
γ )

× IWnz (
∗
x; ν(j)

γ ,Ψ(j)
γ ); (17)

• {z ∈ Rnz} are the measurements;

• Ak ∈ Rnx×nx and Ck ∈ Rnz×nx are assumed to
be known state transition matrix and measurement
matrix, respectively;

• Qk is the prediction noise covariance which is as-
sumed to be known;

• Probabilities of survival and detection are assumed to
be constant; pS(x,

∗
x) = pS and pD(x,

∗
x) = pD.

• The clutter is Poisson and independent of target-
originated measurements and has the intensity

κk+1(z) = λcU(z), (18)

where U(·) is the uniform density over the surveillance
area and λc is the expected number of clutter returns
over the surveillance area.

The aim is to obtain an analytical approximation for the
PHD Dk+1|k+1(x,

∗
x|Z(k+1)) where the exact analytical solu-

tion does not exist. To that end, an approximate recursive filter
which will propagate the sufficient statistics of the approximate
distributions through the time update and measurement update
equations as in the GMPHD filter will be derived. The expres-
sions for the PHD predictor and PHD corrector will be given
in sections IV-A and IV-B, respectively.

A. PHD prediction

The expression (2) for Fk+1|k(x,
∗
x|ξ,

∗
ξ) can be written as

Fk+1|k(x,
∗
x|ξ,

∗
ξ) = pSfk+1|k(x|ξ)fk+1|k(

∗
x|
∗
ξ)

= fk+1|k(
∗
x|
∗
ξ)Fk+1|k(x|ξ), (19)

where Fk+1|k(x|ξ) is defined in (2). The resulting PHD
predictor is in the form,

Dk+1|k(x,
∗
x|Z(k)) = bk+1|k(x,

∗
x)

+

∫
fk+1|k(

∗
x|
∗
ξ)Fk+1|k(x|ξ)Dk|k(ξ,

∗
ξ|Z(k)) dξ d

∗
ξ

= bk+1|k(x,
∗
x) +

nk|k∑
i=1

w
(i)
k|k

×
{∫

Fk+1|k(x|ξ)N (ξ;m
(i)
k|k, P

(i)
k|k) dξ

}
×
{∫

fk+1|k(
∗
x|
∗
ξ)IW(

∗
ξ; v

(i)
k|k,Ψ

(i)
k|k) d

∗
ξ

}
,

(20)

therefore the prediction step of the PHD for the target state
and the sensor noise covariance can be done independently
yielding the mixture

Dk+1|k(x,
∗
x|Z(k)) ≈

nk+1|k∑
i=1

w
(i)
k+1|kN (x;m

(i)
k+1|k, P

(i)
k+1|k)IW(

∗
x; v

(i)
k+1|k,Ψ

(i)
k+1|k).

(21)

The expression for the PHD time update of a Gaussian com-
ponent representing the target state follows standard Kalman
filter time update equations,

m
(i)
k+1|k = Akm

(i)
k|k (22)

P
(i)
k+1|k = AkP

(i)
k|kA

T
k +Qk. (23)

If the sufficient statistics are assumed to be slowly varying,
exponential forgetting strategy [21] can be used to account for
possible changes in the parameters in time. In our recent contri-
bution, it is shown that using the exponential forgetting factor
will produce maximum entropy distribution in the time update
for the processes which are slowly varying with unknown
dynamics but bounded by a Kullback-Leibler (KL) distance
constraint [22]. Forgetting factor is applied to the sufficient
statistics of the inverse Wishart and Gaussian distribution as
follows.

Ψ
(i)
k+1|k = λΨΨ

(i)
k|k, (24)

ν
(i)
k+1|k = λνν

(i)
k|k (25)

where the forgetting factor λ· is a scalar real number which is
0 < λ· < 1. The exponential forgetting weighs the effects of
the past measurements on the sufficient statistics. The use of
this operation corresponds to the application of an exponential
window with effective length h = 1

1−λ . The statistics roughly
relies on the measurements within the last h time instances.

B. PHD correction

The PHD corrector step equation (4) can be split in two
parts

Dk+1|k+1(x,
∗
x|Z(k+1))

= D∅k+1|k+1(x,
∗
x|Z(k+1)) +DZ

k+1|k+1(x,
∗
x|Z(k+1)),

(26)

where

D∅k+1|k+1(x,
∗
x|Z(k+1)) = [1− pD]Dk+1|k(x,

∗
x|Z(k)) (27)

and



DZ
k+1|k+1(x,

∗
x|Z(k+1))

=
∑

z∈Z(k+1)

pDLz(x,
∗
x)Dk+1|k(x,

∗
x|Z(k))

λcc(z) +
∫
pDLz(ξ,

∗
ξ)Dk+1|k(ξ,

∗
ξ|Z(k)) dξ d

∗
ξ
.

(28)

D∅k+1|k+1(x,
∗
x|Z(k+1)) represents the components which ac-

count for no detection cases while DZ
k+1|k+1(x,

∗
x|Z(k+1)) rep-

resents the components updated by the received measurements
at time k + 1.

The numerator of the rational expression in (28) can be
written as

pDLz(x,
∗
x)Dk+1|k(x,

∗
x|Z(k))

=

nk+1|k∑
i=1

w
(i)
k+1|kpDN (z;Ck+1x,

∗
x)

×N (x;m
(i)
k+1|k, P

(i)
k+1|k)IW(

∗
x; v

(i)
k+1|k,Ψ

(i)
k+1|k).

(29)

The integral in the denominator of (28) can be written as
nk+1|k∑
i=1

w
(i)
k+1|kpD

∫
N (z;Ck+1ξ,

∗
ξ)

×N (ξ;m
(i)
k+1|k, P

(i)
k+1|k)IW(

∗
ξ; v

(i)
k+1|k,Ψ

(i)
k+1|k) dξ d

∗
ξ.

(30)

Unfortunately, the expressions in equations (29) and (30)
do not have closed forms. Instead, an approximation of (29)
which has the form

nk+1|k∑
i=1

w(i)N (x,m
(i)
k+1|k+1, P

(i)
k+1|k+1)×

IW(
∗
x; ν

(i)
k+1|k+1,Ψ

(i)
k+1|k+1)

is sought to have an approximate but analytical recursive PHD
update. Before continuing with the derivations, the following
lemma is introduced.

Lemma 1: Let x,
∗
x and z be three random variables with

the factorized joint density as

p(x,
∗
x, z) = p(z|x, ∗x)p(x)p(

∗
x), (31)

where x ∈ Rnx , z ∈ Rnz ,
∗
x ∈ Rnz×nz and

p(z|x, ∗x) = N (z;Cx,
∗
x), (32)

p(x) = N (x;mk+1|k, Pk+1|k), (33)

p(
∗
x) = IW(

∗
x; νk+1|k,Ψk+1|k). (34)

Then,

(a) The posterior p(x,
∗
x|z) can be approximated via min-

imizing the KL distance by the product of the two densities
q̂(x) and q̂(

∗
x) where

q̂(x) = N (x;mk+1|k+1, Pk+1|k+1), (35)

q̂(
∗
x) = IW(

∗
x; νk+1|k+1,Ψk+1|k+1) (36)

and the parameters mk+1|k+1, Pk+1|k+1, νk+1|k+1,Ψk+1|k+1
are the final values of the parameters, obtained by repeating

the iterations given below.

∆(j) = CP
(j)
k+1|k+1C

T

+ (z − Cm(j)
k+1|k+1)(z − Cm(j)

k+1|k+1)T,
(37)

Ω(j) =
(
ν

(j)
k+1|k+1 − nz − 1

)(
Ψ

(j)
k+1|k+1

)−1
, (38)

P
(j+1)
k+1|k+1 =

(
(Pk+1|k)−1 + CTΩ(j)C

)−1
, (39)

m
(j+1)
k+1|k+1 = P

(j+1)
k+1|k+1

(
(Pk+1|k)−1mk+1|k + CTΩ(j)z

)
,

(40)

ν
(j+1)
k+1|k+1 = νk+1|k + 1, (41)

Ψ
(j+1)
k+1|k+1 = Ψk+1|k + ∆(j) (42)

where a(j) denotes the value of the variable a at the jth

iteration.

(b) The predictive likelihood p(z) =
∫
p(x,

∗
x, z) dx d

∗
x

can be approximated via minimizing the KL distance by the
variational lower bound given by

q̂(z) = exp

{
−1

2
nz log(π)+

1

2
nx log(2π)

+ logN (mk+1|k+1;mk+1|k, Pk+1|k)− 1

2
tr(P−1

k+1|kPk+1|k+1)

+
1

2
log |Pk+1|k+1|+

1

2
nx +

1

2
(νk+1|k − nz − 1) log |Ψk+1|k|

− log Γnz [
1

2
(νk+1|k − nz − 1)]

− 1

2
(νk+1|k+1 − nz − 1) log |Ψk+1|k+1|

+ log Γnz [
1

2
(νk+1|k+1 − nz − 1)]

}
.

(43)

Proof: For the proof see appendix A.

Corollary 1: The approximate densities q̂(x), q̂(
∗
x) and

q̂(z) provide an approximation of the joint density p(x,
∗
x, z)

as follows,
p(x,

∗
x, z) ≈ q̂(x)q̂(

∗
x)q̂(z), (44)

therefore,

N (z;Cx,
∗
x) N (x;mk+1|k, Pk+1|k)IW(

∗
x; νk+1|k,Ψk+1|k) ≈

N (x;mk+1|k+1, Pk+1|k+1)IW(
∗
x; νk+1|k+1,Ψk+1|k+1)q̂(z).

(45)

Using Lemma 1 and Corollary 1 the PHD posterior can be
approximated by

Dk+1|k+1(x,
∗
x|Z(k+1)) ≈ D∅k+1|k+1(x,

∗
x|Z(k+1))

+
∑

z∈Z(k+1)

∑nk+1|k
i=1 pDwk+1|kq̂

(i)(x,
∗
x, z)

λcc(z) +
∑nk+1|k
i=1 wk+1|kpD q̂(i)(z)

,
(46)

where

q̂(i)(x,
∗
x, z) = N (x;m

(i)
k+1|k+1, P

(i)
k+1|k+1)

× IW(
∗
x; ν

(i)
k+1|k+1,Ψ

(i)
k+1|k+1)q̂(i)(z).

(47)

The superscript on q̂(i)(z) indicates that (43) is evaluated using



parameters with superscript (i) such as m(i)
k+1|k+1, P (i)

k+1|k+1,

Ψ
(i)
k+1|k et cetera. The pseudo-code for the proposed filter is

given in Table I. In order to implement the proposed algorithm,
a mixture reduction and state extraction step are needed which
will be discussed in the following subsection.

C. Mixture reduction and state extraction

The mixture implementation of the PHD filter results in
an exponential increase in the number of components, which
needs to be reduced whenever necessary. In the implementation
of the proposed PHD filter, the intensity is represented by a
mixture of Gaussian Inverse Wishart densities for which there
are existing mixture reduction algorithms such as [23]. In this
implementation, the multi-target tracking flowchart proposed
in [24, Section II] is used which consists of two reduction
algorithms; one for computational feasibility and one for state
extraction. Pruning is used to keep the number of components
less than a predefined bound to maintain the computations
feasibility. The reduction algorithm for the state extraction first
prunes some components, then the remaining components are
reduced by merging using the algorithm proposed in [5, Table
II]. The state extraction is done by first rounding the cardinality
to find the number of peaks to be extracted and then extracting
the peaks by finding the components with highest weight in
the intensity.

V. NUMERICAL SIMULATION

The performance of the algorithm is illustrated in a multi-
target tracking scenario where four targets appear in a two di-
mensional surveillance region. Nearly constant velocity model
is used in the generation of the measurements and in the
filter. The state vector consists of the position and the velocity,
x = [px, ṗx, py, ṗy]T. A sensor collects noisy measurements
of the target’s Cartesian positions corrupted by white Gaussian
noise where target originated measurements are generated
according to f(z|x) = N (z;Ck+1x, Rk+1). The parameters
of the target motion model and the measurement equation are

Ak =
[
I2 τI2
02 I2

]
, Qk = σ2

ν

[
τ4

4 I2
τ3

2 I2
τ3

2 I2 τ2I2

]
,

Ck+1 = [I2 02] , Rk+1 = σ2
eI2,

τ = 1s, σv = 0.3m/s2,

where, I2 and 02 are 2 × 2 identity and zero matrix, respec-
tively. Clutter is generated uniformly over the surveillance
region with a rate of 5 per scan. The surveillance area is
roughly 1500m × 1500m. The measurements are generated
according to a known probability of detection pD = 0.98.
The mixture reduction and state extraction is done according
to Section IV-C where 125 components are kept to represent
the PHD and the rest are pruned. The number of iterations
in the variational update is set to 5. In the filter the survival
probability of the targets is set to pS = 0.99.

A scenario where a sensor performs worse than its nominal
performance is simulated. The nominal value of the sensor’s
standard deviation is σe =10m, but a failure causes the
sensor to provide measurements with standard deviation of
σe,TRUE =20m. The results of GMPHD and the proposed
adaptive PHD algorithm with the abbreviation VBPHD are
compared. In the VBPHD, the initial parameters of the inverse
Wishart components in the birth density are chosen as νγ = 20
and Ψγ = Rk × (νγ − 6) which yields the expected value of
the measurement covariance to coincide with the nominal noise
covariance of the GMPHD. The exponential forgetting factor
used in the prediction update is set to λ = 0.99. The target

Table I. PSEUDO CODE FOR THE ADAPTIVE PHD FILTER

Require: {w(i)
k|k,m

(i)
k|k, P

(i)
k|k, ν

(i)
k|k,Ψ

(i)
k|k}

nk|k
i=1 ,

PHD predictor: prediction for the target birth
i = 0,
for j = 1 : nγ,k+1 do
i = i+ 1,
w

(i)
k+1|k = w

(j)
γ,k+1, m(i)

k+1|k = m
(j)
γ,k+1, P (i)

k+1|k = P
(j)
γ,k+1,

ν
(i)
k+1|k = ν

(j)
γ,k+1, Ψ

(i)
k+1|k = Ψ

(j)
γ,k+1,

end for
PHD predictor: prediction for the existing targets
for j = 1 : nk|k do
i = i+ 1,
w

(i)
k+1|k = pSw

(j)
k|k, m(i)

k+1|k = Akm
(j)
k|k,

P
(i)
k+1|k = Qk +AkP

(j)
k|kA

T
k ,

ν
(i)
k+1|k = λνν

(j)
k|k, Ψ

(i)
k+1|k = λΨΨ

(j)
k|k,

end for
nk+1|k = i,
PHD corrector: measurement update
for j = 1 : nk+1|k do
i = i+ 1,
w

(i)
k+1|k+1 = (1− pD)w

(j)
k+1|k, m(i)

k+1|k+1 = m
(j)
k+1|k,

P
(i)
k+1|k+1 = P

(j)
k+1|k, ν(i)

k+1|k+1 = ν
(j)
k+1|k,

Ψ
(i)
k+1|k+1 = Ψ

(j)
k+1|k,

end for
l = 0,
for z ∈ Z(k+1) do
l = l + 1,
for j = 1 : nk+1|k do
ν = ν

(j)
k+1|k, Ψ = Ψ

(j)
k+1|k, m = m

(j)
k+1|k, P = P

(j)
k+1|k,

Λ = P−1,
repeat

Ω = (ν − nz − 1)Ψ−1,
∆ = Ck+1PC

T
k+1 + (z − Ck+1m)(z − Ck+1m)T,

P = (Λ + CT
k+1ΩCk+1)−1,

m = P (Λmk+1|k + CT
k+1Ωz),

Ψ = Ψk+1|k + ∆,
ν = νk+1|k + 1,

until converged
m

(lnk+1|k+j)

k+1|k+1 = m, P
(lnk+1|k+j)

k+1|k+1 = P ,

ν
(lnk+1|k+j)

k+1|k+1 = ν, Ψ
(lnk+1|k+j)

k+1|k+1 = Ψ,
Calculate q(j)(z) using (43) and parameters of the jth
component,
w

(lnk+1|k+j)

k+1|k+1 = pDw
(j)
k+1|kq

(j)(z),
end for

w
(lnk+1|k+j)

k+1|k+1 =
w

(lnk+1|k+j)

k+1|k+1

κk+1(z)+
∑nk+1|k
i=1 w

(lnk+1|k+i)

k+1|k+1

for j =

1, ..., nk+1|k,
end for
nk+1|k+1 = (l + 1)nk+1|k,
return {w(i)

k+1|k+1,m
(i)
k+1|k+1, P

(i)
k+1|k+1, ν

(i)
k|k,Ψ

(i)
k|k}

nk+1|k+1

i=1 .
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Figure 1. The adaptive PHD filter and the GMPHD filter in an MTT scenario:
The filter’s estimates and measurements in X and Y coordinate are plotted
versus time.

birth is assumed to be partially uniform and is implemented
according to [25].

In Figure 1, the measurements, the estimated trajectories
of the targets by GMPHD and VBPHD and the true target
trajectories are plotted. The evaluation is made with respect
to the optimal subpattern assignment (OSPA) metric [26] and
is shown in Figure 2. The parameters of the OSPA metric
are chosen as p = 1 and c = 60. The average OSPA for
the VBPHD is 63 while the average OSPA for the GMPHD
is 96. With its ability to adapt to the unknown noise covari-
ance, VBPHD outperforms GMPHD. As it can be seen from
Figure 2, in the second half of the simulation the difference
between OSPA values is more significant than the first half
which illustrates the result of the online learning of the noise
parameters. In Figure 3, the estimated standard deviations of
the individual components having the top three highest weights
and top three highest degrees of freedom in the posterior PHD
are plotted. As it can be seen in Figure 3, the components
learn the measurement covariance in time, and the estimate of
the measurement noise standard deviation converges to the true
value. The choice of the components with highest weight is due
to the fact that such components are more likely to present the
true target and are more likely to have been updated by a target
oriented measurement. On the other hand the components with
the largest degrees of freedom are the components which have
survived the longest and have collected more information about
the statistics of the noise.

VI. CONCLUSION

In this work, an analytical implementation of the PHD
filter for the applications where the sensor noise covariance
can be assumed as unknown and can vary spatially over the
surveillance region is proposed. Variational Bayes approxima-
tion technique is used to approximate the posteriors which do
not have closed form expressions. In the simulation results, the
proposed method outperforms the GMPHD by using its ability
to adapt to unknown sensor noise covariance. In the current
settings, each component of the intensity learns the sensor
characteristics independently. The results are promising for a
future work where the approximate posterior for the unknown
sensor covariance can be learned from multiple targets jointly.
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Figure 2. The OSPA metric is plotted versus time for the adaptive PHD and
the GMPHD filter. Average OSPA for VBPHD is 63 while the average OSPA
for the GMPHD is 96.
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Figure 3. Estimated measurement noise standard deviations of the com-
ponents having the top three highest weights (σ3w) in VBPHD is plotted in
black together with the true value for the standard deviation of sensor noise in
the X-dimension. The red curve is the estimated measurement noise standard
deviations of the components having the top three highest degrees of freedom
(σ3v) in VBPHD.
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APPENDIX A

The well-known technique of variational inference [27, Chapter
10][28] will be used to find the factorized approximate density

q̂(x)q̂(
∗
x) which minimizes the KL distance between the true posterior

and its approximation. A similar approach is followed in [16],

q̂(x)q̂(
∗
x) = argmin

q(x)q(
∗
x)

KL(q(x)q(
∗
x)||p(x, ∗x|z)). (48)

The minimization is done with respect to parameters of q(x) and
q(
∗
x). The solution to the optimization problem is obtained iteratively

by optimizing with respect to only one of the multiplicative factors
and fixing the other to its last estimated value. It can be shown that
the factorized solutions for q̂(x) and q̂(

∗
x) minimizing the KL distance

satisfy the following equations [27, Chapter 10].

log q̂(x) = E
q̂(
∗
x)

[log p(x,
∗
x, z)] + cx, (49a)

log q̂(
∗
x) = E

q̂(x)
[log p(x,

∗
x, z)] + c∗

x
, (49b)

where cx and c∗
x

are constants. The solutions for q̂(x) and q̂(
∗
x) can

be reached by alternating between the two equations. Because of
the convexity of the problem, the convergence is guaranteed for the
iterations [29], [30].

In the derivations, for the sake of convenience all normalization
constants are absorbed in the term const and whenever needed the
normalization constant is instated by inspection. The (j+1)th iterates
of q̂(x) and q̂(

∗
x), denoted as q̂(j+1)(x) and q̂(j+1)(

∗
x) respectively.

From the definitions given in (31), (34) and (49a) q̂(j+1)(x) can
be determined as follows,

log q̂(j+1)(x)

= E
q̂(j)(

∗
x)

[log p(z|x, ∗x)]

+ logN (x;mk+1|k, Pk+1|k) + const

= −0.5 tr
(

E
q̂(j)(

∗
x)

[(
∗
x)−1](z − Cx)(z − Cx)T

)
+ logN (x;mk+1|k, Pk+1|k) + const

= logN
(
z;Cx, E

q̂(j)(
∗
x)

[(
∗
x)−1]−1)

+ logN (x;mk+1|k, Pk+1|k) + const.

Hence, q̂(j+1)(x) is given as

q̂(j+1)(x) = N (x;m
(j+1)

k+1|k+1, P
(j+1)

k+1|k+1), (50)

where the definition of the Inverse Wishart density given by [31] is
used and

m
(j+1)

k+1|k+1 = P
(j+1)

k+1|k+1 (51a)

×
(
(Pk+1|k)−1mk+1|k + CT E

q̂(j)(
∗
x)

[(
∗
x)−1]z

)
,

P
(j+1)

k+1|k+1 =
(
(Pk+1|k)−1 + CT E

q̂(j)(
∗
x)

[(
∗
x)−1]C

)−1
. (51b)

Similarly, q̂(j+1)(
∗
x) can be determined using (49b)

log q̂(j+1)(
∗
x) = E

q̂(j)(x)

[log p(z|x, ∗x)]

+ log IW(
∗
x; νk+1|k,Ψk+1|k) + const

= −0.5 log |∗x|
− 0.5 tr

(
(
∗
x)−1 E

q̂(j)(x)

[(z − Cx)(z − Cx)T]
)

+ log IW(
∗
x; νk+1|k,Ψk+1|k) + const,

which gives

q̂(j+1)(
∗
x) = IW(

∗
x; ν

(j+1)

k+1|k+1,Ψ
(j+1)

k+1|k+1), (52)



where

ν
(j+1)

k+1|k+1 =νk+1|k + 1, (53a)

Ψ
(j+1)

k+1|k+1 =Ψk+1|k + E
q̂(j)(x)

[(z − Cx)(z − Cx)T]. (53b)

Now the expected values E
q̂(j)(

∗
x)

[(
∗
x)−1] and

Eq̂(j)(x)[(z − Cx)(z − Cx)T] can be calculated and plugged
into equations (51) and (53b), respectively. Since (

∗
x)−1 is

distributed according to a Wishart distribution,

E
q̂(j)(

∗
x)

[(
∗
x)−1] =

(
ν
(j)

k+1|k+1 − nz − 1
)(

Ψ
(j)

k+1|k+1

)−1
, (54)

and since x is distributed according to a Gaussian distribution,

E
q̂(j)(x)

[(z − Cx)(z − Cx)T] = CP
(j)

k+1|k+1C
T

+ (z − Cm(j)

k+1|k+1)(z − Cm(j)

k+1|k+1)T. (55)

For the proof of part (b) of the lemma, the logarithm of the
predictive likelihood is decomposed as follows [27]

log p(z) = L(q(x)q(
∗
x)) + KL(q(x)q(

∗
x)||p(x, ∗x|z)), (56)

where

L(q(x)q(
∗
x)) =

∫
q(x)q(

∗
x) log

p(x,
∗
x, z)

q(x)q(
∗
x)

dx d
∗
x (57)

and

KL(q(x)q(
∗
x)||p(x, ∗x|z)) =

∫
q(x)q(

∗
x) log

q(x)q(
∗
x)

p(x,
∗
x|z)

dx d
∗
x.

(58)

Since the second term on the right hand side is minimized by the
variational inference, an approximation of the predictive likelihood
p(z) can be obtained from

p(z) ≈ exp(L(q(x)q(
∗
x))) (59)

using the final estimates provided by the iterations given in Lemma
1. The first steps of the derivations are given in (61) which after
standard but tedious derivations simplifies to

q̂(z) = exp

{
−1

2
nz log(π)+

1

2
nx log(2π)

+ logN (mk+1|k+1;mk+1|k, Pk+1|k)− 1

2
tr(P−1

k+1|kPk+1|k+1)

+
1

2
log |Pk+1|k+1|+

1

2
nx +

1

2
(νk+1|k − nz − 1) log |Ψk+1|k|

− log Γnz [
1

2
(νk+1|k − nz − 1)]

− 1

2
(νk+1|k+1 − nz − 1) log |Ψk+1|k+1|

+ log Γnz [
1

2
(νk+1|k+1 − nz − 1)]

}
.

(60)

L(q̂(x)q̂(
∗
x)) =

E
q̂(x)q̂(

∗
x)

[ −1

2
nz log(2π)−1

2
log |∗x|

+ tr(−1

2
(
∗
x)−1(z − Cx)(z − Cx)T)

−1

2
nx log(2π)−1

2
log |Pk+1|k|

+ tr(−1

2
P−1
k+1|k(x−mk+1|k)(x−mk+1|k)T)

+
1

2
nx log(2π)+

1

2
log |Pk+1|k+1|

+ tr(
1

2
P−1
k+1|k+1(x−mk+1|k+1)(x−mk+1|k+1)T)

− 1

2
(νk+1|k − nz − 1)nz log 2

+
1

2
(νk+1|k − nz − 1) log |Ψk+1|k|

− log Γnz [
1

2
(νk+1|k − nz − 1)]− 1

2
νk+1|k log |∗x|

+ tr(−1

2
(
∗
x)−1Ψk+1|k)

+
1

2
(νk+1|k+1 − nz − 1)nz log 2

− 1

2
(νk+1|k+1 − nz − 1) log |Ψk+1|k+1|

+ log Γnz [
1

2
(νk+1|k+1 − nz − 1)] +

1

2
νk+1|k+1 log |∗x|

− tr(−1

2
(
∗
x)−1Ψk+1|k+1) ]

= −1

2
nz log(2π)−1

2
E[log |∗x|]

+ tr(−1

2
E[(
∗
x)−1]E[(z − Cx)(z − Cx)T])

−1

2
nx log(2π)−1

2
log |Pk+1|k|

+ tr(−1

2
P−1
k+1|k E[(x−mk+1|k)(x−mk+1|k)T])

+
1

2
nx log(2π)+

1

2
log |Pk+1|k+1|

+ tr(
1

2
P−1
k+1|k+1 E[(x−mk+1|k+1)(x−mk+1|k+1)T])

− 1

2
(νk+1|k − nz − 1)nz log 2

+
1

2
(νk+1|k − nz − 1) log |Ψk+1|k|

− log Γnz [
1

2
(νk+1|k − nz − 1)]− 1

2
νk+1|k E log |∗x|

+ tr(−1

2
E[(
∗
x)−1]Ψk+1|k)

+
1

2
(νk+1|k+1 − nz − 1)nz log 2

− 1

2
(νk+1|k+1 − nz − 1) log |Ψk+1|k+1|

+ log Γnz [
1

2
(νk+1|k+1 − nz − 1)] +

1

2
νk+1|k+1 E log |∗x|

− tr(−1

2
E[(
∗
x)−1]Ψk+1|k+1)

(61)


