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Abstract—In multiple hypothesis or probability hypothesis
based multiple target tracking the resulting mixtures with ever
growing components should be approximated by a reduced
mixture. Although there are cost based and more rigorous mix-
ture reduction algorithms, which are computationally expensive
to apply in practical situations especially in high dimensional
state spaces, the mixture reduction is generally done based on
ad hoc criteria and procedures. In this paper we propose a
sequentially pairwise mixture reduction criterion and algorithm
based on statistical decision theory. For this purpose, we choose
the merging criterion for the mixture components based on
a likelihood ratio test. The advantages and disadvantages of
some of the previous reduction schemes and the newly proposed
algorithm are discussed in detail. The results are evaluated on a
Gaussian mixture implementation of the PHD filter where two
different pruning and merging schemes are designed: one for
computational feasibility, the other for the state extraction.
Keywords: Mixture Reduction, Tracking, Gaussian Mix-
ture, PHD Filter, Pruning, Merging.

I. INTRODUCTION

Multi-target tracking (MTT) using tracking algorithms such
as Gaussian mixture probability hypothesis density filter (GM-
PHD), multi-hypothesis tracking (MHT) and Gaussian sum
filter results in an increasing number of components in the
mixture representations of the targets over time. To be able to
implement these algorithms for real time applications a merg-
ing and pruning step, where the Gaussian mixture is reduced
to a computationally tractable mixture whenever needed, is
necessary. The aim of the reduction algorithm is typically both
to reduce the computational complexity within a predefined
budget and let the components be well separated in the state
space in order to easily be able to extract state estimated from
them. The reduction is performed under the constraint that the
information loss in the reduction step should be minimized.

The problem of reducing a mixture to another mixture with
less components is addressed in several papers such as [1]–
[11]. In [9] and [1] an ad hoc similarity measure is used for
merging components of a mixture. In [2] and [11] covari-
ance union and generalized covariance union are described,
respectively. In [5] a Kullback-Leibler approach to Gaussian
mixture reduction is proposed and is evaluated against other
reduction methods in [3]. In [4] a Gaussian mixture reduction
algorithm using homotopy to avoid local minima is suggested.
A good summary of the Gaussian mixture reduction algorithms
is given in [3]. A greedy approach to mixture reduction
is to reduce the mixture to a mixture composed of less
components via one to one comparison of the components.
Such reduction approaches have three components; a metric
for forming clusters, a threshold which is used in the metric
and a merging algorithm. The metric and threshold are for first
discarding some of the components and forming clusters of the
remaining components to be merged in the merging algorithm.

The merging algorithm merges two or more components into
a single new component.

The reduction problem can be formulated as a nonlinear
optimization problem where cost functions such as Kullback-
Leibler divergence or integral squared error [6] are selected.
The reduction problem using clustering techniques are also
compared to optimization approaches in e.g., [3]. In these
approaches the number of components in the reduced Gaussian
mixture can be known in advance or not. These approaches
can be quite expensive and not suitable for real time imple-
mentation.

In this paper, we investigate the merging and pruning algo-
rithms in multiple target tracking and propose improvements
on two different levels: high level and low level.

The current mixture reduction convention in MTT is to use
exactly the same algorithm for reducing the computational
load to a feasible level as for extracting the state estimates.
In general, the mixture reduction for the state extraction
should be much more aggressive than that for computational
feasibility. For this reason, the number of components in
the mixtures have to be reduced much more than what the
computational resources actually allow for. This can result in
coarser approximations than what is actually necessary. In this
work, as our high level improvement, we propose to split the
merging and pruning operations into two separate procedures
according to:
• Reduction in the loop is a merge and pruning step which

must be performed at each point in time for computational
feasibility of the overall target tracking framework. The
objective for this algorithm is to reduce the number of
components and to minimize the information loss.

• Reduction for extraction aims at reducing the number
of components so that the remaining components can
be considered as state estimates in the target tracking
framework.

This separation makes it possible to tailor these two algo-
rithms to fulfill their individual objectives, which reduces the
unnecessary approximations in the overall algorithm.

On a low level, a further contribution in this work is
to cast the problem of mixture reduction in the framework
of statistical decision theory providing a rigorous basis for
evaluation of the reduction algorithms. Although there are
cost based and more rigorous mixture reduction algorithms,
which are computationally expensive to apply in practical
situations especially in high dimensional state spaces, the
mixture reduction is generally done based on ad hoc criteria
and procedures. Although many greedy reduction algorithms
can be proposed by combining the different merging algo-
rithms and different merging statistics and thresholds, these
choices should not be made independently. We suggest that
not only the parameters of the mixture components, but also



the parameters of the merged component should affect the
merging decision as in [5]. Statistical decision theory and
especially the Neyman-Pearson’s theorem [12] provides a tool
for evaluating and comparing these reduction algorithms and
guides us towards the choice of optimal reduction algorithm
based on the specifications of the application such as tolerable
type I and type II error.

The rest of this paper is organized as follows. We will
describe our first contribution regarding splitting the reduction
algorithm in Section II and our second contribution regard-
ing application of hypothesis testing to mixture reduction
in Section III. In Section IV we adapt our contributions to
reduction algorithms for Gaussian mixture PHD filter and
perform numerical simulations. Concluding remarks can be
found in Section V.

II. SPLITTING THE REDUCTION ALGORITHM

A block diagram of the conventional mixture reduction
method on a high level is shown in Figure 1. The proposed
implementation of the reduction algorithm is split into two
subroutines each of which is tailored for its own purpose, see
Figure 2. The first reduction algorithm, denoted reduction in
the loop, is designed to reduce the computational cost of the
algorithm to the computational budget between the updates.
In this reduction step the number of components should be
reduced to a number that is tractable by the available computa-
tional budget and minimal loss of information is in focus. The
second reduction algorithm, denoted reduction for extraction,
is designed to reduce the mixture to as many components
as there are targets. In this part of the algorithm application
dependent specifications and heuristics can enter into the
picture. If the purpose of state extraction is only visualization,
the second reduction does not have to be performed at the same
frequency as the measurements are received and can be made
less frequent. The advantages of the proposed algorithm are
that the unnecessary loss of information in the reduction in the
loop step will only be due to the finite computational budget
rather than closeness of the components. Furthermore, some
computational cost can be discounted if the state extraction
does not have to be performed for every measurement update
step.
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Update Mixture
Reduction

State
Extraction

Figure 1. The standard flowchart of the MTT algorithms has only one mixture
reduction block.

Another important advantage of the proposed algorithm is
that the number of final components in both of the reduction
algorithms is known since the computational budget is prede-
fined in the reduction in the loop algorithm. Furthermore, the
number of target states can be predetermined by summarizing
the weights in e.g., a GM-PHD filter and utilized in the reduc-
tion for extraction algorithm. The clustering or optimization
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Figure 2. The proposed block diagram of the MTT algorithm with two
mixture reduction blocks; one tailored to keep the computational complexity
within the computational budget and one tailored for state extraction.

method selected for reduction can be executed more efficiently
compared to a scenario where the number of components is
left to be decided by the algorithm itself. In section IV-D we
will show the impact of our proposition in a simulation.

III. HYPOTHESES TESTING AND ITS APPLICATION TO
MIXTURE REDUCTION

The basic problem in statistical decision theory is to make
optimal choices from a set of alternatives, i.e., hypotheses,
based on noisy observations. The intention is here to cast
the problem of greedy mixture reduction in the framework
of statistical decision theory so that the reduction method can
move towards the optimal choice. The alternative decisions
to be made in the reduction problem are whether to merge
two components or not. However, there are no observation
to base the decision on and there is only a small freedom
in the formulation of the hypotheses. The remedy in other
reduction algorithms has been to use all or some parameters
of the components as observation and the present algorithm is
not an exception.

In this section a short description of the generalized like-
lihood test (GLRT) is given in Section III-A, and in Sec-
tion III-B it is shown how it can be applied to mixture
reduction.

A. Generalized Likelihood Ratio Test

Assume that the data x has the Probability Density Function
(PDF) p(x; θ0,H0) under the null hypothesis H0 and the PDF
p(x; θ1,H1) under the alternative hypothesisH1. The statistics
of the distributions are comprised in the parameters θ0 and θ1.
The generalized likelihood ratio test [13] is given as follows.
Decide H1 if

LG(x) =
p(x; θ̂1,H1)

p(x; θ̂0,H0)
> γ, (1)



where θ̂i is the maximum likelihood estimate (MLE) of θi and
γ is some suitably chosen threshold.

Two type of errors are important to keep in mind;
• type I error p(H1|H0), i.e., decide H1 when H0 is true

and
• type II error p(H0|H1) i.e., decide H0 when H1 is true.

The errors can be calculated for each value of the threshold γ.
It is possible to reduce one error by changing the threshold,
but not both types of errors at the same time. The choice of
value for the threshold γ depends on what probability of type I
error that is tolerable i.e.

Pr(LG(x) > γ;H0) = α. (2)

The tolerable probability of type I error α should be given
as an input and the threshold γ can be calculated using
equation (2). For further reading on this subject refer to [13].

B. Reduction Algorithm Based on GLRT
An initial mixture consisting of N components is given by

p(x) =

N∑
I=1

wIq(x; θI) (3)

where I is an indicator variable with p(I) = wI . Therefore the
conditional density of x is according to p(x|I) = q(x; θI). In
order to use the hypothesis testing we need observations and
we will assume that the modes of the distribution {xi}Ni=1,
where

{xi = argmax
x

q(x; θi)}Ni=1, (4)

are given as observations. For a given merging algorithm f(·)
and for a subset L ⊂ {i}Ni=1 the two hypotheses are formulated
as

H0 : p(x|I = i) = q(x; θi) ∀i ∈ L (5a)

H1 : p(x|I = i) = q(x; θL) ∀i ∈ L (5b)

where θL = f({wi, θi}i∈L) and L is the subset of the compo-
nents that we want to decide whether to merge or not. Here the
null hypothesis corresponds to the case where the hypothetical
random observations xi are distributed independently with the
densities q(x; θi), where θi are the parameters of the individual
components. The alternative hypothesis on the other hand,
corresponds to the case where all xi are distributed (again
independently) with the same density q(x; θL), where the
merged parameter θL is a function of the individual component
weights {wi}i∈L and individual parameters {θi}i∈L. The
function f(·) represents a merging function to obtain θL. Here,
the fact that the alternative hypothesis is dependent on the
specific merging algorithm f(·) is an attractive property that
makes the merging statistics depend on the specific merging
algorithm used to combine the components.

The merge statistics LG(x) and the GLRT are

LG({xi}i∈L) =
∏

i∈L p(x
i; θL)∏

i∈L p(x
i; θi)

> γ (6)

and the threshold γ is given by the tolerable type I error
according to (2). It should be noted that by taking the ex-
pectation over the logarithm of the likelihood ratio, E logLG,
we can achieve the merging statistics given in [5] which is
given as an upper bound on the Kullback-Leibler divergence
of the original mixture and the resulting merged Gaussian
component.

IV. CASE STUDY ON THE GAUSSIAN MIXTURE PHD
FILTER

The proposed ideas presented in the previous sections are
applied to the Gaussian mixture PHD (GM-PHD) filter in
this section. The conventional methods for reduction of the
Gaussian mixtures in the GM-PHD filter is described in
Section IV-A, some shortcomings with the standard method
are shown and simple improvements are discussed in Sec-
tion IV-B. The proposed hypothesis test based reduction al-
gorithm is more robust compared to the conventional method
and can be tuned considering the trade off between type I and
type II error instead of ad hoc choice of threshold as shown
in Section IV-C. Finally, in Section IV-D we will illustrate the
impact of the proposed framework in a single target and a two
targets scenario and show how the state estimate is improved
using our propositions in the GM-PHD filter.

A. Conventional PHD Merging and Pruning Algorithms
The Gaussian mixture PHD filter is described in [14] and

its merging and pruning algorithm follows the implementa-
tion in Figure 1. The pruning and merging block and the
state extraction block presented in [14] are repeated here for
convenience in Algorithm 1 and Algorithm 2, respectively.
The two algorithms are widely used in implementations of the
GM-PHD filter but are also used in other MTT filters where
Gaussian mixture reduction and state estimate extraction is
important such as interactive multiple models (IMM), see
e.g., [15].

In the introduction it was mentioned that a greedy approach
has three components; a metric, a threshold and a merging
algorithm. The threshold is a design variable in the algorithms.

The expression in (9) compares the Mahalanobis distance
metric of the “observation” mj

k to the Gaussian density
N (mi

k, P
i
k). There are other measures of similarity between

densities such as Bhattacharyya distance [16] or symmetrized
Kullback-Leibler divergence which can be used to construct a
metric. For a survey on divergences see [17].

The equations (10)-(12) represents the merging algorithm
and follow from the minimization of the Kullback-Leibler
divergence between the Gaussian mixture representation of the
normalized density and a single Gaussian approximation of
it. There are other statistical distances that can be minimized
between the Gaussian mixture representation and Gaussian
approximation of the mixture, which would result in a different
merging formula. Jensen-Shannon divergence [18] and integral
squared error [6] are examples of such statistical distances.

B. Shortcomings and Simple Improvements of Conventional
Algorithms

Consider the simple problem of merging two Gaussian com-
ponents {w1,m1, P 1} and {w2,m2, P 2}, where we assume
without loss of generality that w2 ≥ w1. According to (9) if
(m1 −m2)T (P 1)−1(m1 −m2) ≤ U , then the two Gaussian
components should be merged. This merging criterion has the
following shortcomings

1) P 2 is not affecting the merging decision of (9).
2) If P 1 is relatively large the condition will be satisfied.

That is, uncertain targets are sniffed into target groups
with larger weight.

3) The uncertainty of target estimates does not affect the
mean of the merged targets in (11). That is, an uncertain



Algorithm 1 Reducing Gaussian Mixtures

given {wi
k,m

i
k, P

i
k}Jk

i=1 a truncation threshold TT a merging
treshold U , and a maximum allowable number of Gaussian
terms Jmax. Set l = 0 and I = {i = 1, ..., Jk|wi

k > TT}.
repeat

l = l + 1. (7)

j = argmax {wi
k}Jk

i=1. (8)

L = {i ∈ I|(mi
k −mj

k)
T (P i

k)
−1(mi

k −mj
k) ≤ U}. (9)

w̃l
k =

∑
i∈L

wi
k. (10)

m̃l
k =

1

w̃l
k

∑
i∈L

wi
km

i
k. (11)

P̃ l
k =

1

w̃l
k

∑
i∈L

wi
k

(
P i
k + (mi

k − m̃l
k)(m

i
k − m̃l

k)
T
)
. (12)

I = I\L. (13)

until I = ∅.
if l > Jmax then replace {w̃i

k, m̃
i
k, P̃

i
k}li=1 by those of the Jmax

Gaussians with largest weights.
output {w̃i

k, m̃
i
k, P̃

i
k}li=1 as pruned Gaussian components.

Algorithm 2 State Extraction

given {wi
k,m

i
k, P

i
k}Jk

i=1

Set X̂k = ∅.
for i = 1, ..., Jk do

if wi
k > 0.5 then

for j = 1, ..., round (wi
k) do

X̂k := [X̂k,m
i
k]

end for
end if

end for
output X̂k as the multi-target state estimate

target (i.e. a target with very large covariance) will
satisfy the merging criterion and affect the mean of
the merged component according to its relative weight

w1

w1+w2 .
The third shortcoming of the algorithm can be mitigated by
incorporating the covariances of the Gaussian components in
(11) and forming a weighted sum of the means as in

m̃l
k =

(∑
i∈L

wi
k(P

i
k)
−1
)−1∑

i∈L
wi

k(P
i
k)
−1mi

k, (14)

to reduce the impact of Gaussian components with large
covariances.

In order to illustrate how the merging statistics behaves
when the component covariance changes the merging statistics
of a slightly modified version of (9) (i.e. (m1 −m2)T (P 1 +
P 2)−1(m1 − m2) ≤ U ) is plotted with respect to the
component covariance in Figure 3.

A popular remedy suggested in [15] for the aforementioned
disadvantages is to consider the mean m1 as a measurement
(with measurement covariance P 1) for the random variable
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Figure 3. A slightly modified version of the merging statistics of (9); (m1−
m2)T (P 1+P 2)−1(m1−m2) ≤ U is plotted. Here m1 = −m2 = 1

2
. The

merging criterion will be satisfied if either component has a large covariance
compared to the distance of the means of the components.

x ∼ N (x;m2, p2) which yields the test

N (m1;m2, P 1 + P 2) ≥ γ, (15)

which implies that if

(m1−m2)T (P 1+P 2)−1(m1−m2) ≤ Ũ− log det(P 1+P 2),
(16)

then the two Gaussian components, where γ =
(2π)−d/2 exp (− 1

2 Ũ) and d is the dimension of m1,
are merged. This criterion is plotted with respect to the
covariance change in Figure 4. Advantages of this approach
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Figure 4. The merging statistics of − logN (m1;m2, P 1 +P 2) is plotted.
Here m1 = −m2 = 1

2
. The threshold that merges two components with

large covariance will merge two components that are close in distance and
have smaller covariance relative to their distance.

are:
1) Both P 1 and P 2 are affecting the merging decision.
2) The merging condition is less sensitive to large covari-

ances due to the second term on the right hand side of
(16).

However, this approach has also two disadvantages;
1) Two identical Gaussian components are not always

merged. If Ũ is chosen small, even if two Gaus-
sian components are identical, they are not merged if
log det(2P ) > Ũ



2) If the threshold Ũ is selected sufficiently large so that
the first disadvantage is overcome, then even two well-
separated components that have small covariances might
be merged.

C. Gaussian Mixture Reduction using GLRT
One advantage of casting the mixture reduction algorithm

as a statistical decision theory problem is that two different
reduction algorithms can be compared in terms of type I errors
and type II errors.

For example, Algorithm 1 can be cast as a decision problem
as follows. We want to decide whether or not to merge the two
Gaussian components {wi

k,m
i
k, P

i
k} and {wj

k,m
j
k, P

j
k} from

the Gaussian mixture at time k

p(x) =

N∑
r=1

wrN (x;mr
k, P

r
k ). (17)

In Algorithm 1 the merging statistics is defined in (9). In or-
der to cast the problem as a statistical decision theory problem
we need an observation. We will take mj

k as observation and in
order to be consistent with the notation used in Section III-B
we will refer to it as xj and we rewrite the test statistics of
equation (9). According to (9) the merging statistics T (·) is
defined as

T (xj) = (mi
k − xj)T (P i

k)
−1(mi

k − xj) (18)

Now we formulate the merging statistics and rewrite the test
statistics T (xj) for the observation xj as a likelihood ratio test.

DecideH1 (decide to merge) if for the observation xj = mj
k

T (xj) = (mi
k − xj)T (P i

k)
−1(mi

k − xj). (19a)

= − log
N (xj ;mi

k, P
i
k)

N (xj ;mj
k, P

i
k)
< U, (19b)

or equivalently

log
N (xj ;mi

k, P
i
k)

N (xj ;mj
k, P

i
k)
> −U. (19c)

This likelihood ratio test can be a standard likelihood ratio
test for two synthesized simple hypotheses

H0 : xj = mj
k + v[0], (20a)

H1 : xj = mi
k + v[0], (20b)

where v[0] ∼ N (0, P i
k). In other words, the hypothesis test

T (·) is the likelihood ratio test, suggested by Neyman-Pearson
lemma [13], for the hypotheses formulated in (20).

Type I error p(H1|H0) and type II error p(H0|H1) for a
value of the threshold γ = exp(−U) are illustrated in Figure 5.
The tolerable type I or type II error can be given as input and
the threshold γ can then be calculated.

By taking a closer look at the formulation of the hypotheses
and observations it can be realized that the hypotheses can
better represent the merging decision than what is stated in
(20). Especially the H1 in (20) is not presenting the merging
hypothesis properly. Here we will formulate two hypotheses
and a set of observations which are better than (20) both based
on intuition and evidence which is provided in Section IV-D.

First, we will use the notation and formulation given in
section III-A to formulate the merging decision as a GLRT.

γ

Decide H0Decide H1

p(H0|H1)

p(xj |H1)

= N (xj ;mj
k, P

i
k)

p(H1|H0)

p(xj |H1) =
N (xj ;mi

k, P
i
k)

xj

Figure 5. Illustration of hypothesis testing errors p(H1|H0) and p(H0|H1)
together with their probabilities for the hypotheses formulated in (20).

Assume that a realization of a random variable x is available.
In the following section we will refer to it as (xi, xj)T

and assign the value (mi
k,m

j
k)

T i.e., the means of the two
Gaussian components to it.

We need a merging function f(·) for merging the two
Gaussian components which can be the same as (10)-(12) in
Algorithm 1. We will define the notation

[wL
k ,m

L
k , P

L
k ] = f({wl

k,m
l
k, P

l
k}l∈{i,j}) (21)

to be used the in formulation of the hypotheses.
The PDF of the observed random variable under the null

hypothesis (not merging) and the alternative hypothesis (merg-
ing) are

H0 : p(x|H0) = N
(
x;

(
θ10
θ20

)
,

(
P i
k 0

0 P j
k

))
, (22a)

H1 : p(x|H1) = N
(
x;

(
θ1
θ1

)
,

(
PL
k 0
0 PL

k

))
, (22b)

or equivalently

H0 : (xi, xj)T = (θ10, θ
2
0)

T + e[0], (23a)

H1 : (xi, xj)T = (θ1, θ1)
T + e[0], (23b)

where

p(e|H0) = N
((

0
0

)
;

(
P i
k 0

0 P j
k

))
, (24a)

p(e|H1) = N
((

0
0

)
;

(
PL
k 0
0 PL

k

))
, (24b)

and e[0] is a realization of e. To determine the most likely
hypothesis based on the observation (xi, xj)T = (mi

k,m
j
k)

T ,
i.e., the mean value of the non-merged components, the
generalized likelihood ratio test [13] is applied as follows.
Decide H1 if

LG(x
i, xj) =

p((xi, xj)T ; θ̂1,H1)

p((xi, xj)T ; θ̂0,H0)
(25a)

=

p

((
mi

k

mj
k

)
;

(
mL

k

mL
k

)
,H1

)
p

((
mi

k

mj
k

)
;

(
mi

k

mj
k

)
,H0

) (25b)

=
N (mi

k;m
L
k , P

L
k )N (mj

k;m
L
k , P

L
k )

N (mi
k;m

i
k, P

i
k)N (mj

k;m
j
k, P

j
k )

> γ, (25c)



where θ̂i is the MLE of θi (maximizes p(x; θi,Hi)). In this
problem the MLE of the mean of the Gaussian distributions
of each hypothesis are θ̂10 = mi

k, θ̂20 = mj
k and θ̂1 = mL

k . The
expression of (25c) is the product of the ratios between the
likelihood of each mean given the merged density and given
the unmerged density.

In order to illustrate how the merging statistics for the
merging algorithm of (10)-(12) behaves when the compo-
nent covariance and the relative weight changes, the merging
statistics of (25) is plotted with respect to the components’
covariance in Figure 6 for two values of relative weight
and with respect to relative weight and relative covariance
in Figure 7. It should be noted that the merging statistics
would have different behavior if we had chosen a different
merging algorithm. The most notable strength of the proposed
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Figure 6. The performance of the proposed merging criterion using hypothe-
sis testing is plotted for two scenarios, in both scenarios m1 = −m2 = 1

2
. In

the top plot the weights of the Gaussian components are w1 = w2 = 1 while
in the bottom plot w2 = 20×w1. The merging criterion decides not to merge
Gaussian components with large weight and uncertainty, but merges Gaussian
components with small weight and large covariance. Gaussian components
with small covariance are not merged regardless of their weight.

Gaussian mixture merging statistics, as can be seen in Figure 6
and Figure 7, is that the merging statistics decides not to
merge components with large covariance with components
with small covariance, i.e., targets with good estimates are not
corrupted by targets with bad estimates, since the covariance
of the good target, given the merging algorithm we have
used (equations (10)-(12)), will be corrupted. Furthermore, the
merging statistics is sensitive to the difference in the weight
of the components and does not merge components with large
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Figure 7. The robustness of the proposed merging criterion using hypothesis
testing is shown. m1 = −m2 = 1

2
, w2 = 1 and σ2 = 1. The merging

criterion decides not to merge Gaussian components with large weight and
uncertainty, but merges Gaussian components with small weight and large
covariance. Gaussian components with small covariance are not merged
regardless of their weight.

weight and covariance, with targets with small weight and
covariance. This is a desired property, since if we merge the
components using the given merging algorithm a potentially
good estimate will be corrupted by an uncertain component.

A standard method of comparing statistical tests is via
Receiver Operating Characteristic (ROC) curve. In Figure 8
the ROC curve for both of the studied merging statistics, GLRT
and Mahalanobis Distance Test (MDT), for three Gaussian
pairs are plotted. As it is can be seen the GLRT gives lower
type II error (higher p(H1|H1)) for all values of type I error
compared to the MDT. This result is not a surprise and follows
the Neyman-Pearson lemma.
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Figure 8. The ROC curve for three pairs of Gaussian components are plotted
for two types of tests. The parameters of the Gaussian components are w1 =
1,m1 = 0, P 1 = 4 and w2 = 2,m2 ∈ {2, 4, 9}, P 2 = 1.

D. Numerical Simulation
The GM-PHD filter gives rise to a mixture with an increas-

ing number of Gaussian components even in a “no clutter
single target” scenario. The resulting mixture has to be reduced



to maintain the computational feasibility. In such a scenario
two Gaussian components one of which originating from the
Kalman filter update by a measurement, and another one
originating from prediction of the same component without
association of measurement will usually be very close. These
two components will potentially be merged in the conventional
GM-PHD filter which will result in a suboptimal estimate of
the target state and associated covariance. This phenomenon
can be alleviated if the reduction is performed according to
Figure 2.

In order to illustrate the impact of Gaussian mixture reduc-
tion in the conventional algorithm and highlight possibilities
in performing the reduction according to Figure 2, a Monte
Carlo simulation is performed for 30 realizations of a scenario
where a single target is moving along a line. The standard
GM-PHD filter according to [14] is implemented for three
values of the merging threshold U = 4, 0.4, 0.04 and the
covariance of the extracted target state is compared with the
covariance obtained from the Kalman filter in Figure 9. When
a small merging threshold is chosen, Gaussian components
are more likely to remain unmerged with other components
until their weight turns so small that they are pruned away.
Therefore, the components of the mixture which are close
to measurements have a covariance which is closer to the
estimate covariance obtained from the Kalman filter (the
optimal estimate). The simple conclusion from this experiment
is that if the proposed split reduction algorithm is adopted
with two separate reduction algorithms and the merging is
done only in response to computational feasibility rather than
proximity of components, the state estimate can be improved.

To emphasize on importance of the choice of merge statis-
tics and its sensitivity we show an example which is frequently
encountered in GM-PHD filtering. Here we want to compare
the proposed GLRT which will be denoted by LG(·) with
the conventional MDT which will be denoted by T (·), but
first we need to find equivalent thresholds for both tests.
This can be done using the ROC curve or by an intuitive
method suggested below. Consider a Gaussian component
{wi = 1,mi = 0, P i = 1} which corresponds to a target in
the GM-PHD framework. Now consider two other Gaussian
components with parameters {wj = 0.2,mj = 10, P j = 100}
and {wk = 0.2,mk = 100, P k = 10000} which if merged
with the first component will result in {wij = 1.2,mij =
1.667, P ij = 31.39} and {wik = 1.2,mik = 16.67, P ik =
3056} respectively. The jth component can be produced from
the ith target in the GM-PHD filter’s recursion, but the kth
component can be from another target rather far away from
the ith target.

Now let us look at the merge statistics given by the GLRT
and the MDT. For the pair {i, j}, T ({i, j}) = 1. Let us assume
that the merging of the pair {i, j} defines the threshold for
a tracking application i.e. the threshold for the MDT is set
to 1. In order to draw equivalence between the thresholds
we calculate LG({i, j}) = 0.1008, i.e. we use 0.1008 as the
threshold in the GLRT merging statistics. Now, let us look at
the pair {i, k}. Although from the parameters of the Gaussian
components it is obvious that merging the pair {i, k} is unde-
sired, because of large displacement of the estimate of a target,
T ({i, k}) = 1, i.e., the statistics based on the Mahalanobis
distance will merge the pair {i, k}, while the statistics based
on the GLRT will not: Lik

G = 0.0100 < 0.1008. In this simple
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Figure 9. A single target moving in one dimensional space with nearly
constant velocity model. The covariance of the estimate of target’s position
Pk is plotted versus time in a box plot. The impact of merging threshold U
on the estimate covariance is shown for three scenarios of GM-PHD filtering
with different merging thresholds in the top three plots. In the bottom plot
the estimate covariance given by the Kalman filtering is presented. Simulation
parameters are PD = 0.85, Number of Monte Carlo simulations =30,
measurement covariance=4 and process noise covariance=4∗I2. The estimate
covariance decreases as the threshold decreases and more components are
pruned rather than merged with other components.

example we illustrated the importance of a properly designed
merge statistics and how the implicit feedback from the
resulting merged Gaussian in the merge statistics strengthen
the test with respect to outliers. The type of problem that is
highlighted here can not be solved by simply reducing the
merging threshold since regardless of the threshold the same
type of realistic scenario can be produced. Inspired by this
simple example we simulated a tracking scenario composed of



two targets moving along the same line with some longitudinal
distance in between and a tracker using a GM-PHD filter
which is illustrated in Figure 10. The difference between the
two position estimates is due to the different merge statistics
in the two GM-PHD filters implemented on the same set
of measurements. There are two occasions where the MDT
merges Gaussian components from the two distinct targets and
creates erroneous state estimates. See time indices 80 and 95
for the undesired merging instances.
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Figure 10. Tracks of two targets moving along the same line give by GM-
PHD filter. The difference between the two position estimates is only due
to the different merge statistics in two GM-PHD filters implemented on the
same set of measurements. There are two occasions where the MDT merges
Gaussian components from the two distinct targets and creates wrong state
estimates. See time indices 80 and 95 for the undesired merging instances.

In multiple target tracking scenarios, the Gaussian compo-
nents with large weight and covariance are created when the
means of several components are spread close to each other
or when a clutter measurement happens to be close to the
prediction of a target or two targets get too close to each other.
Large covariance can also be created due to target maneuvers
and large process noise in the model which was the case for
our simulation.

V. CONCLUSION

We have proposed a sequentially pairwise mixture reduction
criterion and algorithm based on statistical decision theory and
generalized likelihood ratio test. The advantages and disadvan-
tages of some of the previous reduction schemes and the newly
proposed algorithm are discussed in detail. The results are
evaluated on a Gaussian mixture implementation of the PHD
filter in a two target scenario and it is illustrated how robust
the proposed merging statistics is with regard to uncertain
Gaussian components. Using the proposed framework the
merging statistics is selected in a way that is tightly coupled
with the merging algorithm and the choice of the threshold is
connected to type I and type II errors in decision theory. Using
the hypotheses test framework a window towards using other
measures defined over distributions and other statistical test
will be opened which will allow a more rigorous treatment of
reduction algorithms. The second contribution in this paper has
been splitting of the reduction algorithm into two subroutines,

one for computational feasibility, the other for the state extrac-
tion each of which tailored for its purpose. The future work on
this subject can be comparison of the proposed method with
other existing algorithms such as the algorithm proposed by
Runnalls in [5]. Further evaluation of the proposed reduction
algorithm for aggressive reductions such as in the reduction
for state extraction and less aggressive reductions focused on
maintaining the computational feasibility can be mentioned as
a future work as well.
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