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Abstract

It is well known that the α-stable distribution, while having no closed form density function
in the general case, admits a Poisson series representation (PSR) in which the terms of the
series are a function of the arrival times of a unit rate Poisson process. In our previous
work we have shown how to carry out inference for regression models using this series rep-
resentation, which leads to a very convenient conditionally Gaussian framework, amenable
to straightforward Gaussian inference procedures. The PSR has to be truncated to a finite
number of terms for practical purposes. The residual terms have been approximated in
our previous work by a Gaussian distribution with fully characterised moments. In this
paper we present a new Central Limit Theorem (CLT) for the residual terms which serves
to justify our previous approximation of the residual as Gaussian. Furthermore, we provide
an analysis of the asymptotic convergence rate expressed in the CLT.

Keywords: α-stable distribution, Poisson series representation, central limit theorem.

1. Introduction

Among the most known and practically used results in the statistical analysis of time-
series and other fields are the central limit theorems (CLTs). According to the classical
CLT, the sample mean of independent identically distributed (iid) random variables with
finite mean and variance converges in distribution to a Gaussian, when the number of
terms goes to infinity. The requirement of identical distribution can be relaxed, while
that of finite variance can be replaced with other conditions of finiteness, see for example
Lindeberg (1922). The hypothesis of finite variance is restrictive for real world observations
that exhibit extreme values more frequently than a Gaussian distribution would allow.
Examples of such abrupt changes include variations presented by stock prices or insurance
gains/losses in financial applications, and have been studied since the seminal work of
Mandelbrot (1963) and Fama (1965). Furthermore, sudden meteorological changes appear
in the climatological sciences, see for example Katz and Brown (1992) and Katz et al. (2002).
Further applications can be found in various fields of engineering, such as communications
and signal processing (Nikias and Shao, 1995), image analysis (Achim et al., 2001, 2006)
and audio processing (Lombardi and Godsill, 2006). We refer to Nolan’s webpage for an
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Figure 1: Some α-stable pdfs Sα(σ, β, µ). If not specified α = 0.5, σ = 1, β = 0.5, µ = 0.

extensive bibliography of application areas and existing works.
In order to motivate our use of stable models in time series we may consider a standard
linear regression model extended to have non-Gaussian noise 1:

y = Gθ + v, (1)

where y is a vector of N time series observations, G is a N × P matrix of regressors,
θ is a P -dimensional vector of unknown parameters and v is a N -dimensional vector of
(typically iid) Gaussian noise disturbances.Simple and standard methods are available for
Bayesian inference in such models, using closed form results combined with such methods
as Variational Bayes or Markov chain Monte Carlo (MCMC). The aim of our approach is to
show how such methods may be readily adapted to cases where the noise terms are replaced
with general iid α-stable random variables.
The α-stable distribution is of interest because of its versatility (capability to deal both
with heavy-tailedness and skewness) and ease of interpretation through its parameters. It
was originally introduced by Lévy (1925) and it plays the key role of representing the limit
distribution in a generalized version of the CLT, formalized by Gnedenko and Kolmogorov
(1968). In this CLT the finite variance hypothesis of the classic CLT is relaxed, causing a
power tail decay of the probability density function (pdf) of the form p(x) ∼ 1

|x|1+α , |x| → ∞,

where α ∈ (0, 2) is the tail parameter. This asymptotic behaviour of the pdf corresponds
to the presence of extreme values in the distribution, with more extreme values appearing
more frequently for decreasing values of α. The other parameters of the distribution are
β ∈ [−1, 1], that represents the skewness, µ ∈ (−∞,∞), that indicates the location and
σ > 0, the scale. An α-stable distributed random variable X, X ∼ Sα(σ, β, µ), has the
following characteristic function (cf) φ(t)

log(φ(t)) =

{
−σα|t|α

{
1− iβ sgn(t) tan πα

2

}
+ iµt if α 6= 1,

−σ|t|
{

1 + iβ sgn(t) 2
π log |t|

}
+ iµt if α = 1.

(2)

From (2) is possible to see that the Gaussian case is recovered for α = 2, the Cauchy
distribution for α = 1, β = 0, and the Lévy distribution for α = 1/2, β = 1.
Unlike the cf, the pdf of α-stable distributions is not available in closed form except in these
few special cases. In Figure 1 we give some pdf illustrations, produced by kernel smoothing
histograms of samples generated through the exact sampling method of Chambers et al.

1. A similar argument applies for nonlinear regressions where a solution can be obtained for the Gaussian
case.
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(1976). The lack of a closed form expression of the pdf complicates the inference in prob-
abilistic models based on the α-stable distribution. This has stimulated a wide variety of
research, to allow practical use of the α-stable distribution.
In this work, we focus on the Poisson series representation (PSR) of the α-stable distribution,
see Samoradnitsky and Taqqu (1994). The PSR was originally introduced by Lévy and
formalised by LePage et al. (1981) and LePage (1989, 1981). The key result is that the sum
of an infinite sequence of RVs, involving the arrival times of a Poisson process, converges
almost surely (and hence in distribution) to an α-stable RV. For practical purposes, the
full sequence cannot be generated, thus simulation and inference methods based on the
PSR are approximate. Several studies are devoted to analysis of the convergence rate of
truncated PSR of stable distributions, see for example Janicki and Weron (1994), Bentkus
et al. (1996). However, these studies do not focus on the distribution of the remaining terms
after the truncation, which we refer to as the residual series.
The contributions of this paper are as follows. We prove that the residual series is asymptot-
ically Gaussian, thus helping to justify the use of inference techniques based on conditionally
Gaussian likelihoods. Furthermore, we study the convergence rate of the distribution of the
residual to normality in the cf domain. A CLT derived by Lemke (2014) applies to a sim-
pler version of the PSR that does not involve Gaussian random variables. Our CLT result
provides a full generalisation to the conditionally Gaussian case.

2. Poisson series representation

If X ∼ Sα(σ, β, µ), the PSR for α-stable RVs, as given in Samoradnitsky and Taqqu (1994),

states the following equality in distribution
D
=

X
D
=
∞∑
j=1

WjΓ
−1/α
j − E[W1]b

(α)
j , (3)

where E[·] denotes the expected value, {Γj}∞j=1 are the arrival times of a unit rate Poisson
process, and the {Wj}∞j=1 are independent and identically distributed (i.i.d.) random vari-

ables independent of {Γj}∞j=1, with E[|W1|α] < ∞. The coefficients b
(α)
j are non-zero only

if α ≥ 1, and for α ∈ (1, 2) they have the telescopic structure

b
(α)
j =

α

α− 1

(
j
α−1
α − (j − 1)

α−1
α

)
.

From the PSR (3) it follows that, if Wj ∼ N (µW , σ
2
W ), conditionally on the full sequence

of arrival times {Γj}∞j=1, X has Gaussian distribution

X
∣∣ {Γj}∞j=1 ∼ N

µW ∞∑
j=1

Γ
−1/α
j − b(α)

j , σ2
W

∞∑
j=1

Γ
−2/α
j

 .

As anticipated, the main problem is that the series (3) needs to be truncated, because
an infinite sequence {Γj}∞j=1 cannot be practically generated. When only a set of initial

Γj < c and respective Wj ∼ N (µW , σ
2
W ) are known, where c is a truncation constant, the
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distribution of the first part of the series on the right hand side of (3) is conditionally
Gaussian, but the distribution of the residual term is not Gaussian.
A Gaussian approximation of the residual has been proposed in Lemke and Godsill (2011,
2012, 2014), by matching of its moments to the true moments of the residual series. A
motivation for this approach is given in Lemke (2014), based on a CLT argument and
the Lévy continuity theorem (pointwise convergence of the characteristic function implies
convergence in distribution). However, this initial proof is given in the limited case Wj = 1,
which is a special case of the α-stable law and which will not lead to our desired conditionally
Gaussian structure.
We here extend this approach to include the effect of Wi and show that the CLT can be
stated under mild conditions on the distribution on the Wj , that include the Gaussian
case. Furthermore, we characterize the rate of convergence for the case Wj ∼ N (0, 1),
corresponding to the stable symmetric law with β = 0.

3. Asymptotic normality of the PSR residual

The heavy tailed behaviour of the PSR in (3) is determined by the first terms in the sum-

mation, due to the fact that the ordered sequence {Γ−1/α
j }∞j=1 is monotonically decreasing

(the convergence is faster as α decreases). We can split the PSR now in terms of Γi ≤ c as
follows

X
D
=

∑
j:Γj∈[0,c]

WjΓ
−1/α
j +R(c,∞),

where R(c,∞) is the residual term, defined as R(c,∞) := limd→∞R(c,d) where

R(c,d) :=
∑

j:Γj∈(c,d)

WjΓ
−1/α
j − E[W1]

bdc∑
j=1

b
(α)
j ,

and b·c denotes the lower integer part. The residual is not Gaussian. However, we prove
that R(c,∞) is asymptotically Gaussian, if c→∞, as stated in the following theorem.

Theorem 1 Assume R(c,d) as above and let m(c,d) := E[R(c,d)] denote its mean and S2
(c,d) :=

V[R(c,d)] its variance. If

E[W k
1 ]

E[W 2
1 ]k/2

α1−k/2

k!

(2− α)k/2

k − α
<∞, ∀k ≥ 3, (4)

then the following convergence in distribution holds, for d→∞, c→∞, d� c

Z(c,d) :=
R(c,d) −m(c,d)

S(c,d)

D−→ N (0, 1). (5)

Proof Based on the Lévy continuity theorem, we aim to show that the cf of Z(c,d), φZ(c,d)
(s),

converges to the cf of a standard Gaussian φ(s) = exp
(
−s2/2

)
, ∀s ∈ R. We do not deal
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with the cases α = 1, that is a pole for the cf(2), and α = 2, that makes the stable

distribution Gaussian. For convenience, we define Yj := WjΓ
−1/α
j .

We start with the cf of R(c,d), φR(c,d)
(s). Observe that, by property of Poisson processes, if

N(c,d) denotes the random number of arrival times Γj ∈ (t1, t2), then N(c,d) ∼ Poisson(d−c),
with the convention that the sum of terms in the interval (c, d) is null, if N(c,d) = 0. Hence
there are two sources of uncertainty in R(c,d): the first is in the variables being summed,
the second in their number. This implies that the expectation defining the cf of R(c,d) has
to be taken both with respect to Yj and N(c,d). Moreover, the Yj become i.i.d. given N(c,d),

because Γj |N(c,d)
i.i.d.∼ U(c, d). We obtain

φR(c,d)
(s) = E

[
exp

(
isR(c,d)

) ]
= E

[
E
[

exp
(
is
( ∑
j:Γj∈(c,d)

Yj − E[W1]

bdc∑
j=1

b
(α)
j

))
|N(c,d)

]]

= exp
(
− isE[W1]

bdc∑
j=1

b
(α)
j

)
× exp((d− c)(φY1(s)− 1)),

where φY1(s) is the cf of Y1. Our proof follows the way a CLT is shown to hold for the class
of compound Poisson processes, to which R(c,d) belongs to. However, the distribution of
the variables being summed, Yj , depends on the interval (c, d), for which we take the limit.
This requires to express all the dependencies on c and d (in particular that of E[Y k

1 ]), to
make sure that the result holds. If we standardize R(c,d) to give Z(c,d) as in equation (5),
we obtain its cf as

φZ(c,d)
(s) = E

[
eisZ(c,d)

]
= exp

(−ism(c,d)

S(c,d)

)
φR(c,d)

(
s

S(c,d)

)
.

To take the limit for both d→∞ and c→∞, we expand the Taylor series of φY1

(
s/S(c,d)

)
in s = 0 in the expression of the cf of the residual, obtaining

φR(c,d)

(
s

S(c,d)

)
= exp

(
ism(c,d)

S(c,d)

)
× exp

(
−s

2

2
+

∞∑
k=3

(d− c) i
kE[Y k

1 ]

k!

sk(
(d− c)E[Y 2

1 ]
)k/2

)
.

We now show that, for each k ≥ 3, the following coefficients are vanishing, when both
d→∞ and c→∞

hk =
ik

k!

(d− c)E[Y k
1 ](

(d− c)E[Y 2
1 ]
)k/2 =

ik

k!

E[W k
1 ] α
α−k

(
d(α−k)/α − c(α−k)/α

)(
E[W 2

1 ] α
α−2(d(α−2)/α − c(α−2)/α)

)k/2 .
Notice that (α−2)/α and (α−k)/α are both negative for our scenario with k ≥ 3. In order
to take the limits, we reparametrize in terms of ρ = d/c and c. We first take the limit in
ρ→∞, and we obtain

hk
ρ→∞−→ hk :=

ik

k!

E[W k
1 ] α
k−αc

1−k/2(
E[W 2

1 ] α
2−α

)k/2 . (6)
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This implies that the characteristic function φZ(c,d)
(s), as ρ→∞, can be expressed as

φZ(c,d)
(s) = exp

(
−s

2

2
+ ξ

)
,

where the remaining terms of the series expansion of φY1

(
s/S(c,d)

)
are aggregated in ξ :=∑∞

k=3 hks
k and hk is defined in (6). To conclude, we take the limit as c → ∞, observing

that h̄k
c→∞−→ 0 if the condition (4) in the statement of the theorem is satisfied. Under this

assumption, we obtain that limc,ρ→∞ φZ(c,d)
= exp

(
−s2/2

)
, which is the cf of a standard

normal distribution, as desired.

The limiting mean and variance ofR(c,∞), m(c,∞) and S2
(c,∞), have been exactly characterized

by Lemke and Godsill (2011, 2012, 2014) and Lemke et al. (2015). These limiting moments
of R(c,d), as d → ∞, are used in the following approximation for a sufficiently large value
of c

R(c,∞)
approx∼ N

(
E[W1]

α

1− α
c
α−1
α︸ ︷︷ ︸

m(c,∞)

, E[W 2
1 ]

α

2− α
c
α−2
α︸ ︷︷ ︸

S2
(c,∞)

)
.

Observe that Theorem 1 does not rely on the distribution of the Wj to be Gaussian. How-
ever, this is required in order to get the overall approximately conditionally Gaussian dis-
tribution

X|{Γj ∈ [0, c]} approx∼ N

µW ∑
j:Γj∈[0,c]

Γ
−1/α
j +m(c,∞), σ

2
W

∑
j:Γj∈[0,c]

Γ
−2/α
j + S2

(c,∞)

 , (7)

which is our ultimate objective for the use of the PSR in inference tasks.

4. Analysis of the convergence rate

The asymptotic normality of the PSR residual is proven in the previous section. This
asymptotic property as c→∞ which states that ξ vanishes is of theoretical interest. How-
ever, this assumption cannot be satisfied in practice where the Poisson series is truncated
at a finite c. In fact, it is desired to keep the computational cost of generating samples as
low as possible. Hence, the truncation should be performed as soon as the the truncation
limit c is sufficiently large.
In this section, the rate of convergence of the remaining term ξ to zero is studied in the
characteristic function domain. We further analyse the pointwise convergence with respect
to the parameters c and α which will be useful for developing inference algorithms for
α-Stable distributions based on their PSR.
Let us now consider the simplified case where Wj , as in equation (3), is drawn from a central
normal distribution with variance σ2

W . The moments of Wj in such a case are given by

E
[
W k

1

]
=

{
0 if k is odd,

σkW (k − 1)!! if k is even,

6
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where !! denotes the double factorial. Accordingly,

hk =

0 if k is odd,
ikσkW (k−1)!! α

k−α c
1−k/2

k!(σ2
W

α
2−α)

k/2 if k is even.

Let p := k/2 for even k > 3. Then, for p ≥ 2 the following equality holds

h2p =
(−1)pcα

(2p− α)p!

(
2− α
2cα

)p
.

Using the changes of variables a := α/2 and t := (1−a)s2

2ca , and by resorting to Lemma 2 (see
the appendix), we can show that ξ can be rewritten as

ξ =ca

∞∑
p=2

(−t)p

(p− a)p!
=

(1− a)s2

2a
∆, (8)

where ∆ := 1−e−t
t − γ(1−a,t)

t1−a + a
1−a and γ(s, t) :=

∫ t
0 x

s−1 e−x dx, is the incomplete gamma

function. By means of the identity limt→0
γ(1−a,t)
t1−a = 1

1−a and the fact that t
c→∞−→ 0, we can

establish that

lim
c→∞

∆ = 1− 1

1− a
+

a

1− a
= 0,

which is consistent with Theorem 1. Furthermore, the first factor in the right hand side
term of (8) does not depend on c. Thus, to characterize the convergence rate, it is sufficient
to study the dependence of ∆ on c via the variable t. Since the first two terms of ∆
have exponential nature with respect to t and t ∝ 1

c we conclude that approximately

ξ ∝ (1− e−
Ω
c ), for some positive Ω.

4.1 Numerical illustration of the convergence rate

In this section the nested function ξ will be illustrated in figures to show its dependence
on its arguments α, c and s. In Figure 2, first the function ξ is plotted versus each of its
argument while keeping the other two constant. Secondly, the contour surface of ξ = 0.01
is given in another subfigure. Furthermore, some cross sections of the contour surface are
plotted to illustrate the dependence of c to α. The latter subfigure shows an exponential
decay of c versus α. If the trend seen in this graph can be generalized, one can conclude that
for values of α close to 2 the Poisson series can be truncated at lower values of c compared
to values of α close to 0, while keeping the deviation from the Gaussian at the same level
in the cf domain.

5. Inference in α-stable regression models

The following simple scenario could be considered as a motivational example for our con-
ditionally Gaussian representation of α-stable distributions. The latter can of course be
embedded into any inference scheme which exploits a conditionally Gaussian structure, in-
cluding for example Rao-Blackwellised MCMC or particle filters, as already proposed in
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Figure 2: Top-left: ξ as a function of c. Top-right: ξ as a function of α. Bottom-left: ξ as a function
of s. Bottom-right: contour-surface for a fixed value of ξ = 0.01. In all subfigures, when
not stated s = 1, α = 0.5 and c = 1000.

the literature (Lemke and Godsill (2012); Lemke (2014); Lemke and Godsill (2014); Lemke
et al. (2015)). We note that the model (1) can be augmented to have an (almost surely
infinite) set of latent variables {Γj,n}∞j=1, n = 1, . . . , N , for every element of the noise vector
v := [v1, . . . , vN ]. We recall that, for each n, the Γj,n are distributed a priori as the arrival
times of a unit rate Poisson process. We truncate this set of infinite sequences to the set
of vectors T := {Γn}Nn=0, where each vector Γn := [Γ1,n, . . . ,ΓTn,n] has different length,
determined finding the Γj,n that are under the fixed threshold c. We then compensate for
the truncation by adding the residuals as in Theorem 1, obtaining a conditionally Gaussian
approximation for the distribution of each noise term vn, n = 1, . . . , N

vn|{Γj,n ∈ [0, c]} approx∼ N
(
vn
∣∣µn, σ2

n

)
, (9)

where the mean µn and the variance σ2
n are expressed in the same way as in the right hand

side term of equation (7). Denoting with µ = [µ1, . . . , µN ]′ and with Σ the diagonal matrix
with diagonal elements σ2

n, n = 1, . . . , N , (9) implies that the likelihood of data y can be
written as

p(y|Gθ, T) = N (y|Gθ + µ, Σ).

Regular inference can then be carried out as for the Gaussian model, by augmenting the set
of parameters to be estimated to {θ,T}. Assuming that the order of the model is known,

8



Central Limit Theorem for the α-Stable Distribution

a Gibbs sampler can be devised, that at the k-th iteration draws

θk ∼ p(θ|Tk−1,y), (10)

Tk ∼ p(T|θk,y). (11)

For sampling θ in (10), a conjugate Gaussian prior can be adopted, p(θ) = N (θ|µθ,Σθ),
leading to a Gaussian conditional posterior p(θ|T,y) = N (θ|t,C). The prior parameters
are updated through the likelihood parameters, to give

C = (G′ΣG + Σ−1θ )−1, t = C(GΣ(y − µ) + Σ−1θ µθ).

Regarding the step on T, the posterior full conditional in (11) can be expressed as p(T|θ,y) =
p(T|v = y−Gθ) =

∏N
n=1 p(Γn|vn), where the factorization follows from independence of the

noise terms vn and the associated Γn. Each posterior factor is p(Γn|vn) ∝ N (vn|µn, σ2
n)p(Γn)

and we can target it with a Metropolis-within-Gibbs step. If, for example, we choose the
prior p(Γn) as the proposal distribution, this leads to the probability of accepting each
proposed vector Γ′n given the previous vector Γn, equal to

min

(
1,
N (vn|µ′n, σ′

2
n)

N (vn|µn, σ2
n)

)
,

where µ′n and σ′2n are defined in the same way as µn and σ2
n, using the proposed vector Γ′n

instead of Γn. The posterior distribution of the parameters of interest θ can be reconstructed
by extracting the first component of the Markov chain run for Nit iterations {θk,Tk}Nitk=1.
Results of successful application of the proposed method can be found in Lemke and Godsill
(2012) for an autoregressive model with P = 5 parameters.

6. Conclusions

In this work we have given a comprehensive proof of a CLT for the residual of the PSR for α-
stable random variables. This enables a conditionally Gaussian representation of the stable
distribution. The latter is useful for inference in time series driven by α-stable noise, which
currently is a research topic due to the lack of a closed-form probability density function.
Furthermore, we have provided a novel analysis of the convergence rate of the characteristic
function of the residual to that of a Gaussian. The study indicates a nearly exponential
convergence as the number of terms used for the conditionally Gaussian approximation
increases. The proposed convergence analysis is currently limited to the symmetric stable
case. However, a possible future work could be in the direction of generalizing this result.
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Appendix

In this appendix we prove the following Lemma, which is referred to in Section 4.

Lemma 2 For t ≥ 0 and a ∈ (0, 1), the following identity holds:

∞∑
p=2

(−t)p

(p− a)p!
= −1

a
e−t − 1

a
taγ(1− a, t) +

t

1− a
+

1

a
.

Proof Define the series ψ :=
∑∞

p=0
(−t)p

(p−a)p! and find its derivative with respect to t as

ψ′ = −
∑∞

p=0
p(−t)p−1

(p−a)p! . Using the identity e−t =
∑∞

p=0
(−t)p
p! and the following equality

tψ′ − aψ =
∞∑
p=0

(p− a)(−t)p

(p− a)p!
= e−t,

we find that ψ is the solution to the ordinary differential equation (ODE) ψ′ − a
tψ = e−t

t .

Then, let u(t) := e
∫ −a

t
dt = e−a log t+c1 = c2t

−a for some generic constants c1 and c2. The
solution to the homogeneous ODE ψ′− a

tψ = 0 is 1
u(t) = c2t

a. Therefore, the solution to the
nonhomogeneous ODE is given by

ψ =
1

u(t)

(∫
u(t)

e−t

t
dt+ c3

)
= c3t

a + ta
∫
t−a−1e−tdt,

for some constant c3. Using integration by parts,
∫
udv = uv −

∫
vdu, the integral on the

right hand side can be simplified to the sum of known functions given in the following

ψ = c3t
a + ta

(
−1

a
t−ae−t −

∫
1

a
t−ae−tdt

)
= c3t

a − 1

a
e−t − 1

a
ta
∫
t−ae−tdt

= c3t
a − 1

a
e−t − 1

a
taγ(1− a, t). (12)

The constant c3 = 0 because all the derivatives of ψ are finite at the origin, while for nonzero
c3 the derivative of the term c3t

a is infinite in the origin for a < 1 (α < 2). Furthermore,
the derivatives of all other terms in (12) are finite at the origin. By subtracting the first
two terms of the series expression for ψ, the proof follows.
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