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Abstract—The α-stable distribution is highly intractable for
inference because of the lack of a closed form density function
in the general case. However, it is well-established that the α-
stable distribution admits a Poisson series representation (PSR) in
which the terms of the series are a function of the arrival times of
a unit rate Poisson process. In our previous work, we have shown
how to carry out inference for regression models using this series
representation, which leads to a very convenient conditionally
Gaussian framework, amenable to tractable Gaussian inference
procedures. The PSR has to be truncated to a finite number of
terms for practical purposes. The residual error terms have been
approximated in our previous work by a Gaussian distribution,
and we have recently shown that this approximation can be
justified through a Central Limit Theorem (CLT). In this paper
we present a new and exact characterisation of the first and
second moments of the residual series over finite time intervals
for the unit rate Poisson process, correcting a previous version
that was only true in the infinite time limit. This enables us to
test through simulation the rapid convergence of the residual
terms to a Gaussian distribution of the Poisson series residual.
We test this convergence using both Q-Q plots and the classical
Kolmogorov-Smirnov test of Gaussianity.

I. INTRODUCTION

Among the best known and practically used results in
the statistical analysis of time-series and other fields are the
central limit theorems (CLTs). According to the classical CLT,
the sample mean of independent identically distributed (iid)
random variables with finite mean and variance converges in
distribution to a Gaussian, when the number of terms goes
to infinity. The requirement of identical distribution can be
relaxed, while that of finite variance can be replaced with other
conditions of finiteness, see for example [1]. The hypothesis
of finite variance is restrictive for real world observations
that exhibit extreme values more frequently than a Gaussian
distribution would allow. Examples of such abrupt changes
include variations presented by stock prices or insurance
gains/losses in financial applications, and have been studied
since the seminal works of [2] and [3]. Sudden changes are
also studied in the climatological sciences, see for example [4]
and [5]. Further applications can be found in various fields of
engineering, such as communications and signal processing
[6]–[9]. We refer to [10] for an extensive bibliography of
application areas and existing works.
To cope with time series presenting extreme values, in this
paper we consider discrete-time linear processes driven by
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Fig. 1. Some α-stable pdfs Sα(σ, β, µ). If not specified α = 0.5,
σ = 1, β = 0.5, µ = 0.

non-Gaussian noise:1

y = Gθ + v, (1)

where y is a vector of N time series observations, G is a
N × P matrix of regressors, θ is a P -dimensional vector
of unknown parameters and v is a N -dimensional vector
of (typically iid) noise disturbances. When v is Gaussian
distributed, simple and standard methods are available for
Bayesian inference in such models, using closed form results
combined with such methods as Variational Bayes or Monte
Carlo methods. The aim of our approach is to show how these
methods may be readily adapted to cases where the noise terms
are general iid α-stable random variables, characterized by
heavy tailed behaviour, but lacking closed form expression of
the likelihood.

A. Contribution

In particular, in this work, we focus on the Poisson series
representation (PSR) of the α-stable distribution, see [11]. The
PSR was originally introduced by P. Lévy and formalised
by [12]–[14]. The key result is that the sum of an infinite
sequence of random variables (RVs), involving the arrival
times of a Poisson process, converges almost surely (and hence
in distribution) to an α-stable RV. For practical purposes,

1A similar argument applies for nonlinear regressions where a solution can
be obtained for the Gaussian case.



the full sequence cannot be generated, requiring truncation
of the series; thus simulation and inference methods based
on the PSR are approximate. In our recent work [15] we
have proven that the residual series is asymptotically Gaussian,
thus helping to justify the use of inference techniques based
on conditionally Gaussian likelihoods. Furthermore, we have
studied the theoretical convergence rate of the distribution of
the residual to normality in the characteristic function domain
for the general stable distribution, and we will report these
new results in forthcoming publications.
In this paper we summarize these theoretical results on
the PSR for α-stable random variables. We then provide
experimental Gaussianity tests for the PSR residuals. We
have also recently reported related results for multivariate
stochastic integrals driven by α-stable Lévy processes in [16].
To perform these tests effectively, we derive non-asymptotic
expressions of the moments of the residuals of the series.
While the asymptotic moments are already stated in our earlier
publications [15]–[21], we here provide for the first time an
exact characterisation of the non-asymptotic variance of the
residual, which corrects the previous versions which were only
asymptotically true. We conclude the paper by summarizing
a Bayesian inference scheme for the parameters θ of our
motivational example, the discrete time autoregressive model
(1) driven by α-stable noise.

II. α-STABLE DISTRIBUTION

The α-stable distribution is of interest because of its ver-
satility (capability to deal both with heavy-tailedness and
skewness) and ease of interpretation through its parameters.
It was originally introduced by [22] and it plays the key role
of representing the limit distribution in a generalized version
of the CLT, formalized by [23]. In this CLT the finite variance
hypothesis of the classic CLT is relaxed, causing a power
tail decay of the probability density function (pdf) of the
form p(x) ∼ 1

|x|1+α , |x| → ∞, where α ∈ (0, 2) is the tail
parameter. This asymptotic behaviour of the pdf corresponds
to the presence of extreme values in the distribution, with
more extreme values appearing more frequently for decreasing
values of α. The other parameters of the distribution are
β ∈ [−1, 1], that represents the skewness, µ ∈ (−∞,∞),
that indicates the location and σ > 0, the scale. An α-stable
distributed random variable X , X ∼ Sα(σ, β, µ), has the
following characteristic function (cf) φ(s)

log(φ(s)) =

{
−σα|s|α

{
1− iβ sgn(s) tan πα

2

}
+ iµs if α 6= 1,

−σ|s|
{

1 + iβ sgn(s) 2
π

log |s|
}

+ iµs if α = 1.

(2)

From (2) is possible to see that the Gaussian case is recovered
for α = 2, the Cauchy distribution for α = 1, β = 0, and the
Lévy distribution for α = 1/2, β = 1.
Unlike the cf, the pdf of α-stable distributions is not available
in closed form except in these few special cases. In Fig. 1
we give some pdf illustrations, produced by kernel smoothing
histograms of samples generated through the exact sampling

method of [24]. The lack of a closed form expression of the
pdf complicates the inference in probabilistic models based on
the α-stable distribution.

III. POISSON SERIES REPRESENTATION

If X ∼ Sα(σ, β, µ), the PSR for α-stable RVs, as given in
[11], states the following equality in distribution D=

X
D
=
∞∑
j=1

WjΓ
−1/α
j − E[W1]b

(α)
j , (3)

where E[·] denotes the expected value, {Γj}∞j=1 are the arrival
times of a unit rate Poisson process, and the {Wj}∞j=1 are in-
dependent and identically distributed (i.i.d.) random variables
independent of {Γj}∞j=1, with E[|W1|α] <∞. The coefficients
b
(α)
j are non-zero only if α ∈ [1, 2) and, for α ∈ (1, 2) they

have the telescoping structure

b
(α)
j =

α

α− 1

(
j
α−1
α − (j − 1)

α−1
α

)
.

From the PSR (3) it follows that, if Wj ∼ N (µW , σ
2
W ),

conditionally on the full sequence of arrival times {Γj}∞j=1,
X has Gaussian distribution

X
∣∣ {Γj}∞j=1 ∼ N

(
µW

∞∑
j=1

Γ
−1/α
j − b(α)

j , σ2
W

∞∑
j=1

Γ
−2/α
j

)
. (4)

As already noted, a serious issue is that the series (3) needs
to be truncated, because an infinite sequence {Γj}∞j=1 cannot
be generated in practice. When only a truncated set of Γj < c
is known, where c is a truncation constant, the distribution
of the first part of the series on the right hand side of (3),
i.e.

∑
j:Γj∈[0,c]WjΓ

−1/α
j , is Gaussian, but the unconditional

distribution of the residual term (as defined below) is not
Gaussian. Note however that the heavy-tailed behaviour of the
α-stable distribution is largely determined by the first part of
the series, see for example [11], and so we can reasonably
expect a CLT to apply to the residual series.

A. Asymptotic normality of the PSR residual

We here summarise the CLT required for justification of our
conditionally Gaussian inference scheme. A more specialised
result that did not account for the Wj terms in the residual
was presented in [19]. The PSR can be split in terms of the
{Γj ≤ c} as

X
D
=

∑
j:Γj∈[0,c]

WjΓ
−1/α
j +R(c,∞),

where R(c,∞) is the residual term, defined as R(c,∞) :=
limd→∞R(c,d) where

R(c,d) :=
∑

j:Γj∈(c,d)

WjΓ
−1/α
j − E[W1]

bdc∑
j=1

b
(α)
j , (5)

and b·c denotes the lower integer part. In [15] we have proved
R(c,∞) is asymptotically Gaussian, as c → ∞, according to
the following theorem.



Theorem 1: Assume R(c,d) as above and let m(c,d) :=
E[R(c,d)] denote its mean and S2

(c,d) := V[R(c,d)] its variance.
If

E[W k
1 ]

E[W 2
1 ]k/2

α1−k/2

k!

(2− α)k/2

k − α
<∞, ∀k ≥ 3,

then the following convergence in distribution holds, for
d→ ∞, c→∞, d� c

Z(c,d) :=
R(c,d) −m(c,d)

S(c,d)

D−→ N (0, 1). (6)

The limiting mean and variance of R(c,∞), m(c,∞) and
S2

(c,∞), have been characterized in [15]–[21] as

m(c,∞) := E[R(c,∞)] = lim
d→∞

m(c,d),

S2
(c,∞) := Var[R(c,∞)] = lim

d→∞
S2

(c,d).

According to Theorem 1, these lead to the approximation

R(c,∞)
approx∼ N

(
m(c,∞), S

2
(c,∞)

)
,

for a sufficiently large value of c. Observe that Theorem 1 does
not rely on the distribution of the Wj being Gaussian. How-
ever, if Wj are specified as Gaussian, we may approximate
(4) with the overall conditionally Gaussian distribution

X|{Γj ∈ [0, c]} approx∼

N

µW ∑
j:Γj∈[0,c]

Γ
−1/α
j +m(c,∞), σ

2
W

∑
j:Γj∈[0,c]

Γ
−2/α
j + S2

(c,∞)

 ,

(7)

which is our preferred framework for the use of the PSR in
inference tasks.

IV. NON-ASYMPTOTIC MOMENTS OF THE PSR RESIDUAL

In this section we present for the first time the non-
asymptotic moments m(c,d) and S2

(c,d). Previous versions
reported in the literature (explicitly in [20] appendix B, [21]
appendix 9.7, [18] Chapter 5, pages 46, 49, 51-52) were only
correct in the limit d → ∞, but here we require the non-
asymptotic versions for the finite limit simulations carried out
later in the paper. The required result is given in the following
lemma.

Lemma 2: If the Wj have mean and variance µW and σ2
W ,

respectively, then the mean and variance of the residual R(c,d),
with integer d, are given by:

m(c,d) =

µW
α
α−1

(
d
α−1
α − cα−1

α

)
if α ∈ (0, 1),

µW
α
α−1

(
−cα−1

α

)
if α ∈ (1, 2),

and

S2
(c,d) = (µ2

W + σ2
W )

α

α− 2

(
d
α−2
α − c

α−2
α

)
.

The derivation scheme requires an initial conditioning with
respect to M , the random Poisson number of terms in R(c,d),
followed by marginalization over M . We define the range of

the truncated summation as S := {j : Γj ∈ (c, d)}, and
the random number of terms is M := |S|. Note that by
the properties of Poisson processes M is a Poisson random
variable with mean equal to d− c. Moreover, we refer to the
case α ∈ (0, 1), noting that, when α ∈ (1, 2), the expression
of R(c,d) differs only for the constant µW α

α−1d
α−1
α , given

by the telescoping sum of the coefficients b(α)
j . This is simply

subtracted from the expression of the mean, while the variance
is not affected. We can now proceed to derive the required
moments:

m(c,d) = E

[
E

[∑
j∈S

WjΓ
−1/α
j

∣∣∣∣∣M
]]

= E

[∑
j∈S

E
[
WjΓ

−1/α
j |M

]]
= E [M ]E

[
W1Γ

−1/α
1

]
= (d− c)E

[
W1Γ

−1/α
1

]
,

and

E[R2
(c,d)] =E

[
E
[
R2

(c,d)

∣∣M]]
=E

[
E

[∑
j∈S

WjΓ
−1/α
j

∑
i∈S

WiΓ
−1/α
i

∣∣∣∣∣M
]]

=E [M ]E
[
W 2

1 Γ
−2/α
1

]
+ E

[
(M2 −M)

] (
E
[
W1Γ

−1/α
1

])2

=(d− c)E
[
W 2

1 Γ
−2/α
1

]
+m2

(c,d),

leading to

S2
(c,d) =E[R2

(c,d)]− (m(c,d))
2

=(d− c)E
[
W 2

1 Γ
−2/α
1

]
. (8)

We have also that, for k = 1, 2,

E[Γ
−k/α
i ] =

1

d− c

∫ d

c

Γ−k/αdΓ =
1

d− c

[
α

α− 1
Γ−k/α+1

]d
c

=
1

d− c
α

α− k

(
d
α−k
α − c

α−k
α

)
.

Noting that the Wi are independent of the Γi and substituting
these expressions into the moment calculations leads directly
to the lemma.

These non-asymptotic moments are used in the following
section to perform Gaussianity tests on the standardized resid-
ual Z(c,d).

V. ANALYSIS OF THE CONVERGENCE RATE

In practice, for inference tasks, we need to generate a set
{Γj < c} for each stable random variable, meaning that c
determines the average computational cost for using the PSR.
Hence it is desired to perform the truncation as soon as c is
sufficiently large for the Gaussian approximation on Z(c,d), as
defined in (6), to hold.
In [15] we have studied the convergence rate of Z(c,d) to the
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Fig. 2. Kolmogorov-Smirnov test statistic for Z(c,d), with N = 104,
d = 105, µW = 1, σW = 1, on a grid of c and α values.

standard Gaussian, with respect to c, in the characteristic func-
tion domain. In detail, we have shown that, as ρ := d/c→∞,
the cf of Z(c,d) is

φZ(c,d)
(s) = exp

(
−s2/2 + ξ

)
,

where ξ :=
∑∞
k=3 hks

k and hk are appropriately defined
coefficients. As c → ∞, ξ decays to zero, making φZ(c,d)

(s)
tend to the characteristic function of a standard Gaussian.
Furthermore, we have proven that this decay is exponential
in c when µW = 0, corresponding to the symmetric stable
distribution with β = 0 (we refer to [11] for the non-linear
transformations that map the moments of Wj and α into
{β, σ}).
In this section we present an experimental study of the
convergence rate in the pdf domain, for a generally skewed α-
stable distribution. In particular, we perform the Kolmogorov-
Smirnov test of Gaussianity for Z(c,d), see [25] for a de-
scription and further references. We recall here that the null
hypothesis assumes that a given sample (Z(c,d) in our case)
comes from a hypothesized distribution (central Gaussian
here). The test statistic is then the supremum of the distance
between the hypothesized cumulative density function (cdf)
and the empirical cdf of the sample; a small value of the test
statistic puts evidence in favour of the null hypothesis. We
work with a Z(c,d) sample of size N = 104; we set d = 105

and we increase c on a logarithmic scale of values between 100
and 5 × 103. Furthermore we use µW = 1, σW = 1, and we
repeat for a grid of values of α ∈ {0.3, 0.7, 1.1, 1.5, 1.9}, cor-
responding, respectively, to β = {0.75, 0.82, 0.86, 0.9, 0.92},
and σ = {1.52, 1.66, 1.90, 2.4, 4.8}. The result is reported
in Fig. 2, showing the following two findings. Firstly, as we
increase c for a fixed value of α, the test statistic decreases,
supporting the hypothesis that the sample comes from a
Gaussian distribution, as expected from Theorem 1. Secondly,
for a fixed value of c, the test indicates that Gaussianity
increases as α → 2; this is not surprising given that the α-
stable distribution approaches the Gaussian, as α→ 2.
To support the test, in Fig.3 we show Q-Q plots of the quantiles
of the sample distribution of Z(c,d), compared to the standard

Gaussian quantiles. We consider a ‘very’ heavy-tailed stable
distribution (α = 0.5) and a ‘less’ heavy tailed one (α = 1.8),
as well as two values for c, a lower one (c = 20) and a higher
one (c = 103). As expected, the normalized residuals Z(c,d)

are still heavy tailed when α = 0.5, c = 20 and the Gaussianity
is better met when c is increased. On the other hand, when
α = 1.8, the quantiles of the empirical distribution resemble
the Gaussian already when c = 20.

VI. INFERENCE IN α-STABLE REGRESSION MODELS

Here we summarize a possible Bayesian inference scheme
for the parameters θ of model (1), when v := [v1, . . . , vN ]
has α-stable components. According to our approximation
of the PSR, model (1) can be augmented to have a set of
latent vectors, T := {Γn}Nn=1, one for every element of v.
Each vector Γn := [Γ1,n, . . . ,ΓMn,n] has different length,
Mn, determined by finding the Γj,n that are under the fixed
threshold c. We compensate for the truncation by adding
the residuals as in Theorem 1, and obtaining a conditionally
Gaussian approximation for the distribution of each noise term
vn, n = 1, . . . , N

vn|{Γj,n ∈ [0, c]} approx∼ N
(
vn
∣∣µn, σ2

n

)
. (9)

The mean µn and the variance σ2
n are expressed in the same

way as in the right hand side term of equation (7). Denoting
with µ = [µ1, . . . , µN ]′ and with Σ the diagonal matrix with
diagonal elements σ2

n, n = 1, . . . , N , (1) and (9) imply that
the likelihood of data y can be written as

p(y|Gθ, T) = N (y|Gθ + µ, Σ).

Regular inference can then be carried out as for the Gaussian
model, by augmenting the set of parameters to be estimated
to {θ,T}. Assuming that the order of the model is known, a
Gibbs sampler can be devised, that at the k-th iteration draws

θk ∼ p(θ|Tk−1,y), (10)

Tk ∼ p(T|θk,y). (11)

For sampling θ in (10), a conjugate Gaussian prior can be
adopted, leading to a Gaussian conditional posterior with
accordingly defined parameters. Regarding the step on T,
the posterior full conditional in (11) can be targeted with a
Metropolis-within-Gibbs step. The posterior distribution of the
parameters of interest θ can be reconstructed by extracting the
first component of the Markov chain run for Nit iterations
{θk,Tk}Nitk=1. We refer to [15], [17] for the details and a
simulation result.

VII. CONCLUSIONS

In this work we have given an overview of a CLT for
the residual of the PSR for α-stable random variables. This
enables a conditionally Gaussian representation of the stable
distribution. The latter is useful for inference in time series
driven by α-stable noise, which currently is a research topic
due to the lack of a closed-form probability density function.
Furthermore, we have provided an experimental analysis of



Standard Normal Quantiles
-4 -2 0 2 4

Q
u
an

ti
le
s
of

Z
(c
,d
)

-4

-2

0

2

4

6

c = 20, α = 0.5

Standard Normal Quantiles
-4 -2 0 2 4

Q
u
an

ti
le
s
of

Z
(c
,d
)

-4

-2

0

2

4

c = 1000, α = 0.5

Standard Normal Quantiles
-4 -2 0 2 4

Q
u
an

ti
le
s
of

Z
(c
,d
)

-4

-2

0

2

4

c = 20, α = 1.8

Standard Normal Quantiles
-4 -2 0 2 4

Q
u
an

ti
le
s
of

Z
(c
,d
)

-4

-2

0

2

4

c = 1000, α = 1.8

Fig. 3. Comparison of the quantiles of Z(c,d), with those of a standard Gaussian d = 105, N = 104, µW = 1, σW = 1 for c ∈ {20, 1000}, α ∈ {0.5, 1.8}.

the convergence rate of the empirical distribution of the PSR
residual to the Gaussian distribution and characterized the non-
asymptotic moments of the series residual.
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