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Abstract—A method for fusing Synthetic Aperture Radar
(SAR) images with optical aerial images is presented. This is
done in a navigation framework, where the absolute position and
orientation of the flying platform is estimated based on the aerial
image coordinates taken as ground truth. The method is suitable
for new low-price SAR systems for small unmanned vehicles. The
primary application is remote sensing, where the SAR image
provides one further “colour” channel revealing reflectivity to
radio waves. It is also useful for off-line correction of the flight
trajectory.

The method is based on first applying an edge detection
algorithm to the images and then optimising the most important
navigation states by matching the two binary images. To get a
measure of the estimation uncertainty, we embed the optimisation
in a least squares framework, where an explicit method to
estimate the (relative) size of the errors is presented. The
performance is demonstrated on real SAR and aerial images,
leading to an error of only a few pixels.

I. INTRODUCTION

A radar mounted on a flying platform, like an aircraft or a
satellite, can be used to get an image of the surroundings by
taking intensity (or radar cross section) of the reflections and
map it to pixels. This kind of image would be of pretty bad
quality, since the resolution will be decided by the radar lobe
size which in turn is decided by the antenna dimension. For
realistic antenna dimensions found on the flying platforms, this
resolution is in range of several tenths of meters. By taking
many images over same area by moving the radar antenna
and in this way creating a large synthetic antenna, images with
much higher resolution can be created. This is the basics of the
Synthetic Aperture Radar (SAR) imaging. For more detailed
description of SAR and SAR images see [1]. With modern
SAR systems the resolutions in images can be as good as a
couple of decimetres, giving very detailed images of the scene.
Traditionally, SAR images are usually used for surveillance
and remote sensing purposes, but some cases where they are
used for navigation purposes have also been studied, see e.g.
[2].

The goal of this work is to formulate the method for using
SAR and optical images or map information, e.g. Google
Maps, in order to fuse information from these sources and
utilise it for absolute navigation. The method can be useful
as an alternative to high precision navigation aids, such as
Global Navigation Satellite System, of which GPS NavStar

Figure 1: SAR image of Washington D.C. Image: Sandia
National Laboratories.

is the most famous one, to stabilise inertial based navigation
systems which are known to be prone for long term drift. The
method has many similarities to the known visual odometry
method, [3], or a method of aided navigation where optical
cameras and maps are used to navigate by matching the camera
images and the map, see e.g. [4]. However, the fusion of the
SAR and optical map images is not as trivial task as to match
optical camera images to the map images, since the SAR
images have quite different properties than the optical images.
The SAR images show the reflectivity of the scene for radar
frequencies instead of visible light frequencies. This implies
that completely different information can be contained in the
SAR images compared to the optical images, although some of
the features in the images are clearly very similar. This makes
the fusion of SAR and optical images a promising method for
remote sensing applications. As a navigation tool, SAR is not
sensitive to occlusions from clouds like optical sensors are,
giving a less weather sensitive position sensor.

As means for extracting useful information from the images,
an edge detector (Canny edge detector) and an image matching
method (Chamfer matching) will be used in order to match
SAR images to the optical map images. The results of the
matching method will be illustrated on real SAR and optical
images that are depicted in Figures 1 and 2.

II. SAR AS AN IMAGING SENSOR

In order to relate the SAR image and the platform, a basic
SAR geometry can be used for this purpose, see Figure 3.
SAR images use coordinate system consisting of azimuth



Figure 2: Optical image of Capitol Hill, Washington D.C. with
surroundings. Image: Google Maps.
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Figure 3: Basic SAR geometry

direction which is parallel to antenna’s moving direction (in
most cases same as platform’s moving direction) and range
direction which is perpendicular to antenna’s moving direction.
Range direction can either be slant range or ground range
coordinates. SAR images are naturally slant range images and
the advantage of using those is that there is no need for
transforming these to ground range images. But if we want to
match these to the map images, the map must be transformed
to the slant range image. If we want to relate pixels in the SAR
image to the position of the airborne platform, the following
relations are needed (assuming a flat earth approximation)

R = r∆R +R0 (1a)
A = (alast − a)∆A (1b)

where
• R is the distance from platform to the image pixel in

range direction,
• A is the distance from the end of the image in the azimuth

direction (since platform’s position is there when image
is created),

• r is the pixel’s coordinate in the image’s range direction,
• ∆R is the resolution in the SAR image’s range direction,
• R0 is eventual minimum range in the image (pixel 0 in

the SAR image is on the range R0),
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Figure 4: Geometry for the solution of h and Rg,i

• a is the pixel’s coordinate in the image’s azimuth direc-
tion,

• alast is the last pixel’s coordinate in the image’s azimuth
direction,

• ∆A is the resolution in the SAR image’s azimuth direc-
tion.

With at least two R measurements from different ranges, it is
possible to solve for the height h and the ground range Rg,1:2
as (see Figure 4 for geometry)

Rg,1(h) =
√
R2

1 − h2 (2a)

Rg,2(h) =
√
R2

2 − h2 (2b)

∆Rg(h) =
√
R2

1 − h2 −
√
R2

2 − h2 (2c)

θ(h) = arctan

(
Rg,1(h)

h

)
− arctan

(
Rg,2(h)

h

)
(2d)

d(h) = 2R2 sin

(
θ(h)

2

)
(2e)

cos(ϕ(h)) =
(∆R)2 + (∆Rg(h))2 − d(h)2

2∆R∆Rg(h)
⇒ (2f)

ϕ(h) = arccos

(
(∆R)2 + (∆Rg(h))2 − d(h)2

2∆R∆Rg(h)

)
(2g)

sin(ϕ(h)) =
h

R1
⇒ (2h)

h = R1 sin (ϕ(h)) (2i)
h∗ = solh [0 = h−R1 sin (ϕ(h))] (2j)

R∗
g,1 =

√
R2

1 − (h∗)2 (2k)

R∗
g,2 =

√
R2

2 − (h∗)2 (2l)

where solh[ · ] denotes the solution of the equation w.r.t. h.
All these parameters are expressed in the frame relative to

the platform’s movement direction and the beginning of the
SAR image. In order to obtain the platform’s true position and
direction of flight, a matching of the SAR image to the map
image with the known geographical coordinates is performed.
With this matching result, range and azimuth pixel coordinates



from the SAR image, r and a, can be translated to the true
geographical positions, rG and aG, by simply taking the true
geographical coordinates of the matching map pixels. The
angle, χ, which is the platform’s direction of flight (angle
between the North-axis and the velocity vector) is part of the
matching results and is obtained directly. With these given, it
is now possible to calculate the platform’s position asp̂Np̂E

p̂D

 =

aGrG
0

+

cos(χ) sin(χ) 0
sin(χ) − cos(χ) 0

0 0 −1

 ARg
h

 (3)

where p̂N , p̂E and p̂D is the platform’s position in North-East-
Down coordinates (usually the states in the dynamics model).
The left hand side of Equation (3) constitutes the measurement
of the position of the platform and it can be used in the
filtering framework. It must be pointed out that this equation
is valid under the flat earth approximation, which is valid if
the SAR image is close to the platform. This is valid for most
aircraft (but not satellites). The procedure described above is
summarised in Algorithm 1.

Algorithm 1 SAR-OptMAP platform’s pose estimation

Require: (ri, ai), i = 1, . . . , N , R0, alast, ∆R, ∆A,
[p̄N p̄E p̄D]T , χ̄ (navigation information from navigation
system), Map with known geographical coordinates

Ensure: [p̂N p̂E p̂D]T

for i = 1 : N do
Calculate Ri with ri, R0 and ∆R from (1a)
Calculate Ai with ai, alast and ∆A from (1b)
Match the SAR image to the map image to obtain rG,i,
aG,i and χi with [p̄N p̄E p̄D]T and χ̄ as a prior for
initialisation

end for
Calculate h and Rg,1:N with all pairs of Ri from (2) with
p̄D as a prior for initialisation
Calculate [pN,i pE,i pD]T with h, Ai, Rg,i, χi, rG,i and
aG,i from (3) for all i
Calculate [p̂N p̂E p̂D]T from [pN,i pE,i pD]T for all i as e.g.
weighted mean with weights determined by the covariance
of the [pN,i pE,i pD]T

III. IMAGE MATCHING APPROACH

Matching between SAR images and the optical map is a
prerequisite in order to obtain parameters aG and rG, which
together with A, Rg , h and χ are used to calculate a
measurement of the platform’s position and orientation. The
matching between those images can be obtained in many ways,
for example by simple correlation or by using image point
features extracted by some point feature detectors, like Harris
corner detector [5] or SIFT detector [6]. However, although
the SAR and optical map images can share many similarities,
in particular over man-made structured environments, they
can be very different in their structure and appearance. For

example, structures like rooftops can have completely different
intensities, very bright in the SAR images and very dark in the
optical images, and the above-mentioned methods might not
work satisfactory. In this case it might be better to increase the
feature complexity one level and use the lines (edges) in the
images. See [7] or [8] for examples where edges are used as
features. There are several well known edge detectors, where
Sobel, Prewitt and Canny [9] are maybe the most known ones.
Since the Canny edge detector is quite robust to noise, it will
be the detector of choice in the approach described here. The
next problem to be solved is to match the SAR and optical map
binary edge images. One well known method of parametric
matching of templates to the image is so called Chamfer
matching method, see [10], [11] or [12]. Since this is quite
a robust matching method, it will be the basis of the approach
proposed here. Next, a short description of the Canny edge
detector will be given as well as an introduction to Chamfer
matching and the modifications we propose for this particular
application.

A. Edge Detector

The Canny edge detector uses image gradient and thresholding
to detect edges in the images like many other detectors. Its
main advantage is better robustness to the noise in the images.
This is obtained by using hysteresis with two thresholds, one
high and one low. This avoids the problem of broken edges,
or streaking, which is almost always present in detectors with
only one threshold. The higher threshold is used to detect
edges, just as in any detector, while the lower one is used
to implement hysteresis and keep an edge even if the gradient
response would fall under the higher threshold. The general
problem of threshold tuning still remains. Individual thresholds
for different images must be found on a case by case basis.
In this work we are using an existing Canny edge detector
implemented in the Image Processing Toolbox in Matlab.

B. Chamfer Image Matching

The basics of the Chamfer image matching is the distance
transform of the edge image to which the template image is
to be matched. In this context the template image is considered
to be the edge pixels of the binary edge image. The distance
transform is calculated by assigning the pixels in the binary
image a value of the distance to the closest nonzero pixel. The
distance metric used is usually Euclidean, but also Manhattan
distance (1-norm) or even maximum norm can be used. As
an illustrative example, consider a simple binary 8× 8 image
represented as a matrix

I =



0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0





The distance transform of this image using Euclidean distance
is

D =
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Now the idea in Chamfer matching is to overlay the edge
pixels of the binary template image, T , on the distance
image for different translation, rotation and scaling values
and calculate some loss function as some metric based on
the values in the distance transform image that are hit by the
template edge pixels, for example, the total sum of the values.
From the implementation point of view this is equivalent to
taking a whole binary template image as a matrix and element-
wise multiplying it with the distance transform image. The
reason is simply the fact that edge pixels have value 1 and
non-edge ones have value 0. This can be written as

η(θ) = D � T̃ (θ) (4a)
C(θ) = f(η(θ)) (4b)

where η(θ) is the matrix resulting from the element-wise
product (�) of the extended template image, T̃ , and the
distance transform image, D. θ are the parameters that are
estimated and in the general case θ = [r, a, χ, sr, sc]

T .
Sometimes it is possible to take the subset of the θ if, for
example, some of the parameters are known or not estimated.
The extended template image, T̃ , has been created by first
rotating the original template image with χ degrees and scaling
it sr and sc times in row and column directions respectively.
The binary image created from this template is then extended
with zeros to the size of D in such way that upper left
corner of the template image is on the coordinate (r, a).
f : Rsize(D) → R+ is some positive and monotone increasing
function. This means that for a correct matching parameters,
the loss function C(θ) would obtain its minimum value and
the parameter estimates are obtained as

θ̂ = arg min
θ

C(θ) (5)

If the template which is to be matched to the image above is

T =
[
1 1 1 1

]
and only translation is considered, i.e. θ = [r, a]T , the surf
plot of the resulting loss function, C(θ), is according to the
Figure 5. It can be seen that the minimum value is obtained
for the translation parameters r = 2 (row) and a = 2 (column)
which is the best possible match. The function f used here is
the RMSE value of the element-wise product of the distance
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Figure 5: Chamfer matching loss function, C(r, a), of the
example matching.

transform image and the extended template image

C(r, a) =

√√√√ 1

Nnz

8∑
k=1

8∑
l=1

ηk,l(r, a)2 (6)

where ηk,l(r, a), is the matrix of the values according to (4a),
except that rotation and scaling are not considered. Nnz is the
amount of nonzero elements in the extended template image,
here Nnz = 4. Note that if, for example, the rotation was
also considered as an unknown parameter, there will also be a
perfect match for the angles ±90◦ and the solutions are r = 8,
a = 5 and r = 5, a = 5 respectively.

C. Modified Matching Approach

In this work, a slightly modified loss function is proposed,
which bears more similarity to the well known least squares
approach. The reason is that we need an uncertainty measure
to the position estimate, otherwise higher level fusion with
the on-board navigation system would be problematic. To get
a statistically correct measure of covariance is a complicated
problem, but at least we get a matrix that has the most
essential properties of a covariance matrix: it is positive
definite symmetric matrix, it reveals lack of excitation by
having a high condition number, and it shows relative size
of estimation errors by having different size of the diagonal
elements.

First, the distance transformed binary map image, D, is
transformed as

D̃ = exp(−D) (7)

where exp( · ) function acts elementwise. This will basically
“invert” the distance transform making zero valued pixels
become ones and high valued pixels become low valued. For
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Figure 6: Nonlinear least squares loss function, V (r, a), of the
example matching.

the example above D̃ looks like

D̃ =



0.24 0.37 0.37 0.37 0.37 0.24 0.11 0.04
0.37 1 1 1 1 0.37 0.14 0.05
0.24 0.37 0.37 0.37 0.37 0.24 0.11 0.04
0.11 0.14 0.14 0.24 0.37 0.24 0.11 0.04
0.24 0.37 0.24 0.37 1 0.37 0.14 0.05
0.37 1 0.37 0.37 1 0.37 0.14 0.05
0.24 0.37 0.24 0.37 1 0.37 0.14 0.05
0.11 0.14 0.14 0.37 1 0.37 0.14 0.05


Let ξ(θ) be the Nnz × 1 vector of values from D̃ hit by
the translated, rotated and scaled edge pixels of the binary
template, T (θ). Then we have the following relation

1Nnz = ξ(θ) + e (8)

where 1Nnz is the Nnz× 1 vector of ones and e is some noise.
This relation can be interpreted as a measurement equation
which is a function of parameter vector θ, and then the
minimisation criterion can be written as

V (θ) =
1

2Nnz
||1Nnz − ξ(θ)||22 =

1

2Nnz

Nnz∑
k=1

(1− ξk(θ))2 (9a)

θ̂ = arg min
θ

V (θ) (9b)

which is the nonlinear least squares formulation. The modified
loss function for the example, V (r, a), is depicted in Figure
6. This loss function has a very similar shape as the original
one, C(r, a), but it is little steeper close to the minimum.
Since both of these loss functions are defined on a grid of
discrete values, the minimisation procedure can be performed
as a global search.

Except parameter estimate values, θ̂, it is also desirable
to estimate their covariance which in turn can be used to
estimate the covariance of the estimated navigation parameters,
position, [p̂N p̂E p̂D]T , and track angle, χ̂. These covariances
can then be used as measurement noise covariances if the
estimated position and track angle are used as measurements

Figure 7: Zoomed part of the SAR image with the three
patches used in the Chamfer matching procedure.

in the filters. The covariance can be estimated by assuming a
locally quadratic function around minimum value of the loss
function, V (θ̂), and estimating the Hessian matrix, H . This
can be done by solving the overdetermined linear system of
equations originating from the following relation

V (θ̂ + ∆) ≈ V (θ̂) + ∆TH∆ (10)

where a Taylor expansion around θ̂ is performed for some ∆
assuming that the gradient is zero (since V (θ̂) is a stationary
point, it is the minimum value). Then the covariance of the
parameter estimates can be estimated as

Cov(θ̂) = λ̂H−1 (11)

where λ̂ = V (θ̂), see [13]. Note that in the example above we
obtain the covariance which equals to zero for both parameters
and it is natural since the template fits perfectly, and there is
no uncertainty. In the general case, however, the template will
not fit perfectly and there will always be some uncertainty in
the estimates.

IV. RESULTS OF THE MATCHING APPROACH

In order to show the results of the matching procedure de-
scribed above, three patches from the SAR image in Figure 1
are matched to the optical image in Figure 2. The three patches
are depicted in Figure 7. Parameters that are optimised over are
translations and rotation, and the scaling is fixed beforehand
in order to minimise the parameter space and speed up the
search. Notice that it is the optical image that has been fixed
north up and SAR image that has been rotated. In that case the
flight direction angle, χ, is directly obtained. It should also be
pointed out that in the searching of the matching parameters a
prior from the navigation system is used to narrow down the
search space and in that way prune possible false solutions
due to the too similar environment. The results are presented
both graphically, where SAR image patches are overlaid on
the optical image, and in a table with an error and a standard
deviation of the estimates.

The first SAR patch rotated with the angle χ̂ obtained in
optimisation is depicted in Figure 8a and it is basically centred



(a) SAR image patch. (b) Binary edge image of the SAR
patch.

(c) Optical map with SAR image patch overlaid.

Figure 8: Example 1: SAR image patch and its edge image
and optical image map with the SAR patch overlaid on the
pixels given by the solution to the matching.

Parameter Error Standard Deviation
r [pixels] 0, 2, 0 5.73, 7.73, 7.38
a [pixels] 0, -3, 2 6.82, 7.40, 7.54
χ [degrees] 1, 1, 0 5.26, 6.49, 7.65

Table I: Errors and standard deviations of the parameter
estimates for the three different example SAR patches.

on the Washington monument. The result of the matching is
depicted in Figure 8c by overlaying the SAR image patch on
the optical image on the solution pixels. Two more examples
are illustrated with patches shown in Figures 9a and 10a and
solutions in Figures 9c and 10c. The errors and the standard
deviations of the estimates for these three cases are presented
in Table I.

V. CONCLUSIONS AND FUTURE WORK

Here a method of utilising the SAR images and maps based
on optical images for the navigation purposes is presented.
The method is based on the pattern matching algorithm called
Chamfer matching, which is modified to resemble a least
squares formulation. In this way a statistical performance
measure, covariance, of the estimates can also be obtained.
The evaluation of the results is focused on the SAR image and
optical map image matching performance, since it is the most
crucial step of the method. The obtained results on the real
SAR images and very simple optical map images from Google
maps show that the performance of the matching method is
quite good, with small errors and variance, even with these
simple means. However, it should also be pointed out that this
method assumes a variation in the scene in order to work.

(a) SAR image patch. (b) Binary edge image of the SAR
patch.

(c) Optical map with SAR image patch overlaid.

Figure 9: Example 2: SAR image patch and its edge image
and optical image map with the SAR patch overlaid on the
pixels given by the solution to the matching.

(a) SAR image patch. (b) Binary edge image of the SAR
patch.

(c) Optical map with SAR image patch overlaid.

Figure 10: Example 3: SAR image patch and its edge image
and optical image map with the SAR patch overlaid on the
pixels given by the solution to the matching.



The environment where edge features are hard to extract or
missing will of course give much poorer results. This can be
compared to trying to correlate an uniformly coloured patch
to a large area. Basically any position will do fine there.

The next step in this work is to obtain the SAR images
where needed parameters in Equation (1) are known and
actually create the position and flight direction estimates
according to the Algorithm 1 proposed here.
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