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Abstract—This paper presents a method for matching spotlight
Synthetic Aperture Radar (SAR) images with a georeferenced
3D-map as means for navigational aid. A hypothesis of the flying
platform’s absolute position, velocity and direction – which later
can be used to correct the inertial navigation system – is attained
by image matching and optimization.

A projective model with 6 DoF is used to create a simulated
SAR image from a 3D map. The parameters of the projective
model represents the most important of the platform’s navigation
state, and these are adjusted by Chamfer matching the captured
SAR image to simulated ones.

The performance is demonstrated on real spotlight SAR
images and 3D-map, and the error is shown to be only a few
pixels in average, which in our case is about 3 meters.

I. INTRODUCTION

A radar that is carried by a flying platform can be used
to obtain an image of the environment by mapping radar
reflections to image pixels. The image resolution is governed
by the radar antenna size and radar frequency, and realistically,
this resolution will be in tens of meters in size. An approach
to improve the resolution is to synthesize a larger antenna,
which is achieved by moving the platform and taking many
radar echoes from the same area. On modern systems, this
technique allows for resolution in order of decimeters, and is
the basic principle of the Synthetic Aperture Radar (SAR),
[1], [2]. Normally, the radar antenna is fixed in the platform’s
body. Such a configuration generates striplike images, i.e. strip
SAR images, while configurations where the antenna is moved
and pointed to a certain point in the scene during the whole
image acquisition time, generates spotlight SAR images, see
e.g., [3]. In this work spotlight SAR images acquired with the
experimental system, [4]–[6], have been used. See Figure 1
for an image example. Usually, these images are used for
remote sensing, mapping or surveillance, but in some cases
they have been used for navigation purposes, see e.g., [7],
[8]. The idea behind this is that the pixels of the SAR image
can be related, by a geometric relationship, to the position
that the platform had when the image was taken. If the image
is, in turn, related or matched to a map of the environment
with known coordinates in some reference frame, an absolute
position can be obtained in the same reference frame. Such
navigation aid could be used to stabilize long term drift present
in Inertial Navigation Systems (INS), similar to how Global
Navigation Satellite Systems, e.g., GPS, are used. This method
has many similarities with terrain aided navigation, [9], where
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Figure 1: Example of a spotlight SAR image in slant
range/cone angle coordinates.

a 3D terrain elevation map is used to support navigation, or
visual aided navigation, where optical cameras and maps are
used in a similar way, [10], [11]. Optical cameras, however,
have the drawback of darkness or bad weather occlusions,
while SAR can operate under these conditions, giving an all-
weather sensor.

In this work, the image matching idea is utilized to relate
a SAR image and a 3D-map of the environment in order to
correct the flying platform’s position and orientation. This is
done by projecting a 3D-map onto an imaged surface, and
in that way creating a simulated SAR image. The simulated
image is then matched, or co-registered, with the SAR image.
Since the simulated image is created from the 3D-map by
using the assumption about platform’s position and orientation,
the best match should correspond to the best position and
orientation setting. More details about the projection of the
3D-map and its parametrisation are given in Section II.

II. SAR GEOMETRY

As mentioned above, SAR creates high resolution images
by measuring the time delay and dopplershift of microwaves
back-scattered from the environment. The propagation speed
of the transmitted microwaves is normally known (or esti-
mated), so that the measurements can be expressed in terms of
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Figure 2: Basic spotlight SAR image geometry.

slant range, R, and cone angle, ϕ. The obtained measurements
are basically a projection of the 3D environment into a
2D image plane. This implies that with a 3D-map of the
environment available, a simulated SAR image can be created.
In this context, a 3D-map is defined as a terrain elevation
for each environment position. It is also assumed that map
positions are related to a fixed coordinate system, denoted xyz,
in which the position of the platform can be expressed.

To create the simulated SAR image Isim
θ (R,ϕ), the 3D

positions of the 3D-map, s̄ = [sx, sy, sz]
T , is transformed to

a slant range/cone angle representation, using the parametric
projective model described below. θ is the parameter vector
of the projective model, and consists of the aperture center
position, p̄ = [px, py, pz]

T , and the aperture direction encoded
as the velocity vector, v̄ = [vx, vy, vz]

T , i.e., θ = [p̄T v̄T ]T .
These parameters correspond to the platform’s mean position,
speed and traveling direction during image acquisition. Note
that this parameter vector can be obtained from the INS, but it
will normally be wrong due to e.g., drift errors. The parameter
vector obtained from INS is called θ0. Define further a vector
from the center position of the aperture p̄ to any 3D-map
position s̄ as d̄ = s̄− p̄.

Now, each 3D point can be projected to the {slant range,
cone angle}-plane by computing the magnitude of d̄ and the
angle between the velocity vector v̄ and the vector d̄ as
(subscript G stands for “geometric”)

RG(θ) = ‖d̄‖ =
√
d2
x + d2

y + d2
z (1a)

ϕG(θ) = arccos

(
d̄T v̄

‖d̄‖‖v̄‖

)
(1b)

The intensity values (in range 0 to 1) in these coordinates
is simply assumed to be proportional to the incidence angle
between local terrain plane in point s̄ and the vector d̄ as

Isim
θ (RG, ϕG) =

1

π
arccos

(
d̄T n̄

‖d̄‖‖n̄‖

)
(2)
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Figure 3: A simulated slant range/cone angle SAR image
which has been used for evaluation of the method.

where n̄ represents the normal to the local plane defined as

n̄ =
[
∂
∂x s̄

∂
∂y s̄

∂
∂z s̄
]T

(3)

Refer to Figure 2 for an illustration of the setup and the
parameters defined above.

Important to note is that the image is constructed under
the assumption of straight flight trajectory. This assumption
is usually valid for these cases, since aperture lengths are
quite small. An example image created from a 3D-map with
the the projection model (1) is depicted in Figure 3. For
comparison, the real slant range/cone angle SAR image is
shown in Figure 1 in Section I.

Since SAR measures Doppler shifts and time delay of
the transmitted signals, the platform speed affects the image
construction. Hence, the pure geometrical projection model
in (1) is not sufficient when comparing SAR images to a
3D-map. We have chosen to keep the SAR image and its
metadata unspoiled, and instead compensate for the aberration
that depends on the platform speed by altering the projection
model. The effect on time delay, and thus range measurements,
of transmitted signals caused by erroneous platform speed
is well below the range resolution of the sensor. Hence, no
compensation for range projection equation (1a) is necessary.
The effect of erroneous platform speed is incorporated on the
cone angle measurement in the model by using the Doppler
frequency equation

fd =
2

λ

(
d̄T v̄

‖d̄‖

)
(4)

where λ denotes the microwave’s wave length. Combining (1b)
and (4), the cone angle can be expressed as

ϕ = arccos

(
λfd
2‖v̄‖

)
(5)

This expression is actually used by SAR systems to calculate
cone angle image coordinates from the Doppler measurements
by using the speed from the navigation system.



By using Taylor expansion on (5), a cone angle formula that
compensates for speed errors can be derived as

ϕ ≈ ϕL + ∆‖v̄‖ ∂ϕ
∂‖v̄‖

∣∣∣∣
‖v̄‖=‖v̄L‖

=

= ϕL + ∆‖v̄‖ λfd

2‖v̄L‖2
√

1−
(

λfd
2‖v̄L‖

)2
=

= ϕL + ∆‖v̄‖ λfd

2‖v̄L‖2
√

1− cos2(ϕL)
=

= ϕL + ∆‖v̄‖ 2‖v̄L‖ cos(ϕL)

2‖v̄L‖2 sin(ϕL)
=

= ϕL +
∆‖v̄‖

‖v̄L‖ tan(ϕL)
(6)

where ϕL and ‖v̄L‖ are evaluated at the linearisation point, and
∆‖v̄‖ = ‖v̄‖−‖v̄L‖ represents the deviation from it. Now, this
relation can be used to calculate the speed error compensated
cone angle by setting the linearisation point to the parameter
v̄. This gives that ϕL is set to the geometrical cone angle as
given before in (1b), and ∆‖v̄‖ is set to the difference between
the parameter speed and the INS measured speed, i.e.,

ϕL = ϕG(θ) = arccos

(
d̄T v̄

‖d̄‖‖v̄‖

)
(7a)

∆‖v̄‖ = ‖v̄‖ − ‖v̄0‖ (7b)

Now the term ∆‖v̄‖
‖v̄‖ tan(ϕG) is used to compensate for aberration

that the deviation, ∆‖v̄‖, from the actual speed, which we
want to find, and the speed measured by the navigation system
causes. This gives the final relation for the simulated image
coordinates (Rsim, ϕsim) as

Rsim(θ) = RG(θ) = ‖d̄‖ =
√
d2
x + d2

y + d2
z (8a)

ϕsim(θ) = ϕG(θ) +
∆‖v̄‖

‖v̄‖ tan(ϕG(θ))
(8b)

which can be used to generate simulated images together with
relationship in (2).

III. POSITION AND VELOCITY PARAMETER ESTIMATION

Given the 3D-map introduced in Section II, a simulated
SAR image Isim

θ , which is assumed to cover the whole area
captured by the real SAR image, can be created for any
parameter vector θ using relationship in (8). The captured
SAR image can be used as a whole or it can be split into
smaller parts, e.g., if the whole image is too large making
the calculations computationally heavy. This is expressed as
ISAR
k , k = 1, . . . , N , where N is the number of (sub)images,

e.g., N = 1 means that the whole image is used. The
real image(s) can now be compared to the simulated SAR
image to find the best correspondence between images. Posed
as an optimisation problem, a solution θ̂ to the following
minimisation problem is sought

θ̂ = arg min
θ

N∑
k=1

V (Isim
θ , ISAR

k ) (9)

Here V ( · , · ) is some similarity measure between images that
attains its minimum value for the best match. Many similarity
measures could be used, e.g., simple image difference or some
image feature based comparison. Since the 3D-map that is
used has no radar reflectivity information included, all direct
comparison methods would most likely fail due to too large
differences in pixel values.

Another approach is to use the relative intensity differences,
i.e., edges, that arise along the contour of structures. The
edges that are formed along the structure, e.g., coast lines
and buildings, can be extracted and compared according to
[12]–[14].

One quite robust method, which relies on edge extraction,
and that has been successfully used for template matching, is
Chamfer matching, [8], [14]–[16]. Consequently we use this
measure as our image similarity measure V . The Chamfer
measure is explained in some more detail in Section III-A.

One thing to note about the used similarity measure is that
it is not analytically differentiable. This implies that if any
gradient based algorithms are to be used, numerical methods
for differentiation must be used, such as finite differences. An
alternative is to use gradient-free or grid based search methods.
For our experiments we have chosen the gradient-free alter-
native, in particular Nelder-Mead method [17]. Further, the
optimisation procedure is initialised with the parameter values
obtained from the platform’s navigation system.

A. Chamfer Matching

Chamfer image matching is a computationally cheap image
matching algorithm, which expresses image similarity in terms
of distances between edge pixels in binary template, IF , and
target, IT , images, see Figures 4a and 4b for an example.
To calculate the Chamfer distance measure between these two
images, V (IT , IF ), a distance image, D, is first constructed
from the target image. The distance image is constructed such
that the value of each pixel states the distance to the closest
edge pixel. See Figure 4c for an example where city-block
distance metric is used. In our experiments, we have used
the method presented by [18] that efficiently calculates exact
Euclidean distances.

The Chamfer measure is calculated by taking the average
of the accumulated distance values from D along the contour
of the template image as

V (IT , IF ) =
1

N

∑
e∈IF

D(e) (10)

where e represents the coordinates of the non-zero pixels in
the template image and N = |IF |, i.e., the number of non-
zero pixels. In Figure 4d and 4e the coordinates e are colored
orange and it can be seen that the sum above evaluates to
24 and 2, respectively (the sum of all values that are hit by
orange pixels). Since the total number of non-zero pixels in
the template is N = 16, the Chamfer measures for these
examples are 24/16 = 1.5 and 2/16 = 0.125. The latter
is the minimal distance that can be achieved for this set of
target and template images. Since Chamfer measure requires



(a) Binary target image,
IT .

(b) Binary template im-
age, IF .

(c) City-block distance
transform of the target
image, D.

(d) Template image (in orange) su-
perimposed on the distance trans-
formed image.

(e) Template image (in orange) su-
perimposed on the distance trans-
formed image giving the best fit.

Figure 4: To calculate the city-block Chamfer measure, the
binary target image has to be transformed into a distance
image, D. The similarity of the target and template images
is acquired by taking the average of all distance values along
the contour of the template edges. The measures for the bottom
left and right images are consequently 1.5 (24/16) and 0.125
(2/16), respectively.

binary images to be used, some kind of edge detector must be
applied to the images. One quite robust and well-known variant
is the Canny edge detector, [19]. It uses image gradients and
thresholding to detect edges in the images. Its main advantage
is high robustness to the noise in the images, which is a
preferable feature when it comes to the SAR images. The main
principle behind this detector is hysteresis with two different
thresholds, one high and one low. In this way the problem
of broken edges, or streaking, which is almost always present
in detectors with only one threshold is avoided. The higher
threshold is used to detect edges, while the lower one is used
to implement hysteresis and keep an edge even if the gradient
response would fall under the higher threshold.

The Canny detector is not free from the general problem
of threshold tuning, and individual thresholds for different
images must be found on a case by case basis. In this work
we are using an existing Canny edge detector implemented in
the Image Processing Toolbox in Matlab.

IV. RESULTS

The optimisation approach from Section III is illustrated on
a real SAR image in Figure 5a. The corresponding simulated
image is shown in Figure 5b where the initial parameter values,
i.e., the ones from navigation system, are used. These images
are basically the same ones as the images in Figure 1 and
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(a) Real SAR image.
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(b) Simulated image.

Figure 5: Real SAR and simulated image used for the experi-
ment. Note that the images are projected on the East-North-Up
local plane.

3, but projected from range/cone angle coordinates to a East-
North-Up local plane. This is done to easier evaluate matching
results in terms of distances on the ground.

Unfortunately, we don’t have ground truth for the navigation
parameters for these images, but only measured values from
the actual flight. For that reason we choose to evaluate the
performance of the method by comparing a set of control
points manually chosen in the images and evaluate the match-
ing efficiency. We also give the difference between initial and
final parameter values as information just to illustrate the order
of magnitude for the correction that method provides. The
control points for both images are shown in Figure 6.

When the images are superimposed with the initial value
of θ, it can be seen that the control points are quite far
away from each other. This is mostly caused by the error
in the velocity vector of the platform which manifests itself
as a rotation of the image in the plane, see Figure 7a. As
shown by Figure 7b, the distance between the corresponding
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(a) Control points in the real SAR image.
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(b) Control points in the simulated image.

Figure 6: Control points in the real (red circles) and simulated
(white crosses) image used for the evaluation of the perfor-
mance.

Point Initial error [m] Final Error [m]
1 317 6
2 319 4
3 299 0
4 294 3
5 308 2
Average 307 3

Table I: Estimation results for the control points.

control points is much shorter after the optimization has been
performed. The distances (error) between the corresponding
control points for the initial and final value of θ, as well
as the average error for all the points, are given in Table I.
The difference between the final and initial parameter value
is θ̂ − θ0 = [6.62, 13.7,−3.75,−0.299, 0.740,−0.0135]T .
The first three values, which represents the correction of the
platform’s position in m, is much smaller than the control
points’ total correction (which is about 300 m). This is due to
the fact that image is captured at a large distance, and even
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(a) The real SAR image is superimposed on the simulated SAR image, where
the simulated image was generated with the initial parameter values.
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(b) The real SAR image is superimposed on the simulated SAR image, where
the simulated image was generated with the optimised parameter values.

Figure 7: The results of the optimisation approach.

the smallest deviation in the velocity vector (the last three
parameter values, expressed in m/s) generates large geocoding
errors.

V. CONCLUSIONS AND FUTURE WORK

In this work we present a method for estimating position,
velocity and flight direction of a flying platform by matching
a spotlight SAR image with a 3D-map of the environment.
The basis for the image comparison is the Chamfer matching
measure, which is a robust way of matching template images to
target images. The performance of the algorithm is evaluated
on real SAR images and 3D-map. Great improvement of the
correspondence between the images are shown. In this way, an
extra all-weather “sensor”, SAR, can be used to support nav-
igation, even without presence of the high-precision systems
like GPS.

It is however worth noting that it is crucial to have feature
rich environment for this method to work, since the matching



performance is highly dependent on this. In this case it is the
presence of the well defined (and possibly unique) edges that
is important. This implies that in e.g., ocean or desert areas
the method will perform quite poorly.

In the future it would be interesting to add some kind
of radiometric (radar reflectance) information in the 3D-map
in order to get more accurate simulated SAR images and
in this way make image matching even more robust. Also,
an alternative edge detector, more tailored to SAR image
properties, instead of generic one, like Canny, would be
interesting to test.
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