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Navigation and SAR focusing with Map Aiding
Zoran Sjanic and Fredrik Gustafsson Fellow, IEEE

Abstract—A method for fusing Synthetic Aperture Radar
(SAR) images with optical aerial images is presented. This is
done in a navigation framework, where the absolute position
and orientation of the flying platform, as computed from the
inertial navigation system, is corrected based on the aerial image
coordinates taken as ground truth. The method is suitable for new
low-price SAR systems for small unmanned vehicles. The primary
application is surveillance and to some extent remote sensing,
where the SAR image provides complementary information by
revealing reflectivity to microwave frequencies.

The method is based on first applying an edge detection
algorithm to the images and then optimising the most important
navigation states by matching the two binary images. To get a
measure of the estimation uncertainty, we embed the optimisation
in a least squares framework, where an explicit method to
estimate the (relative) size of the errors is presented. The
performance is demonstrated on real SAR and aerial images,
leading to an error of only a few pixels (around 4 meters in our
case), which is a quite satisfactory performance for applications
like surveillance and navigation.

Keywords: Optimisation, navigation, Synthetic Aperture
Radar, image matching, auto-focusing

I. INTRODUCTION

A radar mounted on a flying platform, like an aircraft or a
satellite, can be used to get an image of the surroundings by
taking intensity (or radar cross section) of the reflections and
map it to pixels. This kind of image would be of pretty bad
quality, since the resolution will be decided by the radar lobe
width which in turn is decided by the antenna length and the
frequency of the radar. For realistic antenna lengths found on
the flying platforms, this resolution is in range of several tenths
of meters or more. By taking many radar echoes from the same
area by moving the radar antenna and in this way creating a
large synthetic antenna, images with much higher resolution
can be created. This is the basics of the Synthetic Aperture
Radar (SAR) imaging, [1]. For more detailed description of
SAR and SAR images see e.g., [2]. With modern SAR systems
the resolutions in images can be as good as a couple of
decimetres, giving very detailed images of the scene. The
knowledge of the flown trajectory is very important in the
image creation principle and errors in the trajectory will lead
to defocused SAR images. A process to correct for these image
defects is called autofocusing. There exist many autofocusing
methods, of which some are based on the raw radar data and
others on the already processed SAR image, [2]–[7]. All these
methods use only SAR images without any prior information
of the scene to perform the focusing.

The goal of this work is to match SAR images with
optical images or map information, e.g., Google Maps. The
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fusion of information from these sources is then utilised for
autofocusing and correction of the navigation trajectory. The
assumptions are that the most focused images will also match
the optical map in the best way and in turn correspond to
the best possible trajectory (giving the best focus) and best
possible absolute position on the map (giving the global
navigation ability). Traditionally, SAR images are usually
used for surveillance and remote sensing purposes, but some
cases where they are used for navigation purposes have also
been studied, see e.g., [8]. The method can be useful as an
alternative to high precision navigation aids, such as Global
Navigation Satellite System (GNSS), of which GPS NavStar
is the most famous one, to stabilise inertial based navigation
systems which are known to be prone for long term drift.
The method has many similarities to the e.g., terrain aided
navigation [9], where an altitude database of the terrain is
used to support navigation. Other similar methods are visual
odometry, [10], and a method of aided navigation where
optical cameras and maps are used to navigate by matching the
camera images and the map, see e.g., [11], [12]. However, the
fusion of the SAR and optical map images is not as trivial task
as to match optical camera images to the map images, since
the SAR images have quite different properties than the optical
images. The SAR images show the reflectivity of the scene
for microwave frequencies instead of visible light frequencies.
This implies that completely different information can be
contained in the SAR images compared to the optical images,
although some of the features in the images are clearly very
similar. This makes the fusion of SAR and optical images a
promising method for surveillance and, in some cases, remote
sensing applications. As a navigation tool, SAR is not sensitive
to occlusions from clouds like optical sensors are, giving a less
weather sensitive position sensor.

As means for extracting useful information from the images,
an edge detector (Canny edge detector) and a modified image
matching method (Chamfer matching) will be used in order
to match SAR images to the optical map images. The results
of the matching and focusing method will be illustrated on
real SAR and optical images that are depicted in Figures 1
and 2. The SAR image is created by a radar operating in
Ku-band (12 – 18 GHz) with a nominal resolution of 1 m
in both directions. This work is an extension of [13], where
only image matching was considered with the assumption that
autofocusing has already been performed.

The paper is organised as follows, Section I introduces
the work, Section II explains the SAR imaging principle.
Section III introduces the navigation models and defines the
basic SAR geometry that relates the image and the flying
platform while Section IV introduces the image matching ap-
proaches. In Section V, estimation of the kinematic trajectory
parameters is explained and in Section VI the results from the
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Figure 1: SAR image of Washington D.C. Image: Sandia
National Laboratories.

Figure 2: Optical image of Capitol Hill, Washington D.C. with
surroundings. Image: Google Maps.

matching and kinematic estimation are shown. In Section VII,
conclusions are given and some future work is discussed.

II. SAR IMAGING PRINCIPLE

SAR imaging is based on a moving platform that passes
the scene that shall be imaged. During the movement, the
platform transmits radar pulses which hit the scene and return
to the platform with a certain time delay which is proportional
to the range to the scene. This returned signal is filtered
with a matched filter and then sampled. Each reflector in
the scene will contribute with its reflected power which will
then be placed in the appropriate range bin. The range is
determined as a product between signal propagation speed
(usually speed of light) and delay time. In this way a single
scene transfer function is obtained, denoted g(R). Now this
process can be repeated during platform movement, and all
the stored transfer functions are stored in a two-dimensional
array gt(R). Basically, this raw data, gt(R), is an example
of a real aperture radar (RAR). The resolution in such radar
system is proportional to the antenna lobe width and is usually
quite poor. One important thing to notice is that the lobe
width is inversely proportional to the antenna size, i.e., the
larger antenna the smaller lobe we can obtain. The idea behind
SAR is to artificially synthesize a big antenna by moving
the platform. Traditionally, this operation is performed in the
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Figure 3: The global backprojection method for creating SAR
images. The scene consists of only one point target in this
illustration. The figure is not to scale.

frequency domain using FFT like methods, e.g., the Fourier-
Hankel method [14]–[16] or the ω-K migration methods [17]–
[19]. The common denominator of these methods is that they
assume that the aircraft’s (or antenna’s) flown path is linear
and that is generally not the case in practice. If the trajectory
is not linear the integration will result in an unfocused image.
It is possible to partly correct for the deviation from the non-
linear trajectory but then the methods become computationally
inefficient. Another method that can be used is so called global
back-projection method that will be outlined below.

Given the raw (complex) data gt(R) we can back-project
each radar echo on the image giving the subimage It and each
reflector will create a circle in each subimage. The total image
can then be created by summing up all the subimages along
the synthetic aperture, [20], (i.e., solving the back-projection
integral in discrete time)

I =

N∑
t=1

It (1)

Another way of creating the image is to integrate the raw
data for each pixel in the image Iij as

Iij =

N∑
t=1

gt(R
ij
t ) (2a)

Rijt = ||pt − sij ||2 (2b)

where pt is the position of the platform and sij is the position
in the scene which corresponds to the pixel (i, j). This method
is schematically illustrated in Figure 3 for a simple scene with
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only one point target and where only a few platform positions
are considered, here N = 5.

III. MOTION MODELS

Precise knowledge of the antenna position pt in (2b) is
apparently crucial. The on-board inertial navigation system
(INS) provides a nominal trajectory p̄1:N that can be used
to construct a first (un-focused) SAR image. Our approach
to focus the SAR image is based on computing a refined
trajectory p1:N . In the sequel, we will implicitly only model
the deviation from the nominal trajectory, so pt denotes the
difference of the true position and the INS position. In this
work we assume that INS is of approximately tactical or less
performance usually used in unmanned aerial vehicles. The
dominating source of error for these sensors is acceleration
bias which has a typical value of 5 · 10−3 − 5 · 10−2 [m/s2].
With this size of acceleration bias the accumulated velocity
and position errors after 120 s are between 0.6 and 6 [m/s]
and 36 and 360 [m] respectively. The time of 120 seconds is
taken as a typical time for SAR image acquisition, and hence
it is assumed that the corrections to the navigation system are
performed with this time interval.

This error trajectory of the platform is assumed to follow a
simple second order dynamics expressed in discrete time as

pt+1 = pt + Tsvt +
T 2
s

2
at (3a)

vt+1 = vt + Tsat (3b)
at+1 = at (3c)

where pt = [Xt Yt Zt]
T is the platform’s position relative to

the begining of the synthetic aperture and vt = [vXt vYt vZt ]T is
its velocity. This model of the kinematics allows us to calculate
the whole trajectory if all the initial states, p0 and v0, and
acceleration sequence, a0:N , are known. The initial position
is basically arbitrary since the SAR image can be translated
freely, but the initial velocity is not, since it is influencing the
trajectory’s shape. It is therefore no loss of generality to take
p0 = 03×1, to define the navigation frame. In that case, the
trajectory is related to this zero-frame. However, this frame
can be translated and rotated and the trajectory will follow as
a rigid body. Usually, the accelerations are measured by the
onboard inertial measurement unit (IMU), but these are not
perfect, and that will also cause an error in the trajectory. These
errors will in turn cause the SAR image to become out of
focus as mentioned before. So the best focus, i.e., the sharpest
image should be produced if correct kinematic states are used.
The main approach in this work is basically to use optical
images or maps to match the SAR image to these in order
to determine the initial states, i.e., both trajectory parameters
and global position. This can be done by minimising some
criterion that depends on parameters for SAR image’s global
position and orientation and kinematic states from the model
in Equation (3). These parameters are collected into a vector
θ, which can for example be θ = [r a χ vX0 vY0 aX0 aY0 ]T ,
where r, a and χ are the pixel positions and orientation of the
SAR image relative to the optical map image and the other
ones are the interesting kinematic states. Since these will be
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Figure 4: Basic SAR geometry. Also a map is depicted in
order to illustrate the used notation in the matching procedure.
Figure is not to scale.

treated in a slightly different manner, we divide θ into an
image part, θI , and a kinematic part, θK , as θ = [θTI θTK ]T .
One reason is the fact that the image matching procedure to
estimate θI is the diffcult part of the procedure. The variation
of the kinematic part of the parameters, θK , will just create
different SAR images and each such image must be matched to
the optical image. In Section IV the image matching approach
(the one that estimates θI ) will be described in detail. The main
assumption is that the best focused (sharpest) image will give
the best matching criterion and in that way global position
of the platform can be resolved and the most focused image
created.

A. SAR Geometry

Aerial images and maps are orthorectified, and for matching
purposes the SAR image also needs to be orthorectified. This
section describes the geometrical transformations to get a SAR
image in the horizontal plane in order to be related with the
map.

The basic SAR geometry is illustrated in Figure 4. SAR
images use a coordinate system consisting of azimuth direction
which is parallel to antenna’s moving direction (in most cases
the same as the platform’s moving direction), here called
X , and range direction which is perpendicular to antenna’s
moving direction, here called Y . Range direction can either
be slant range or ground range coordinates. SAR images are
naturally slant range images and the advantage of using those
is that there is no need for transforming these to ground
range images. But if we want to match these to the map
images, the map must be transformed to the slant range image.
Under the flat terrain assumption this is straight forward.
However, if the terrain variation is present, we need some
terrain height information in order to accurately reproduce
geometrical distortions present in SAR images, such as layover
or shadowing, if the terrain variations in the imaged area are
considerable.

In order to relate the navigation frame and the SAR image
pixels some basic geometry must be defined. Referring to
Figure 4 the following notation is defined:
• r is the pixel’s coordinate in the SAR image range

direction expressed in the image frame.
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• a is the pixel’s coordinate in the SAR image azimuth
direction expressed in the image frame.

• A is the position of the pixel in the azimuth direction
expressed in the navigation frame (X).

• Rg is the position of the pixel in the range direction
expressed in the navigation frame (Y ).

• h is the pixel’s altitude below the navigation frame (Z).
• R is the slant range from the X-axis of the navigation

frame to the pixel point on the ground (parallel with the
Y -axis).

Given now any SAR image pixel’s coordinate, (r, a), its
position in the navigation frame (with coordinates [A Rg h]T

which is the same as sra in Equation (2b)) can be calculated
as follows; First, the pixel’s X-direction is simply obtained as

A = a∆A (4)

where ∆A is the SAR image resolution in the azimuth direc-
tion. Next, the Y -direction coordinate of the pixel is obtained
by using the right triangle with sides R, h and Rg and the
Pythagorean theorem

Rg =
√
R2 − h2 =

√
(r∆R +R0)2 − h2 (5)

where ∆R is the SAR image resolution in the range direction
and R0 is minimum slant range in the image (first row in the
SAR image is on the range R0). Last, Z-direction is taken
directly as the platform’s altitude, h.

Assuming we have a successful matching of the SAR image
to the optical image, then a correspondence between the
SAR image pixels and the optical image pixels is obtained
giving the true geographical positions of the SAR image
pixels, (rG, aG), since the optical image pixels have known
geographical positions, see Figure 4. The platform’s average
direction of the flight, χ, i.e., the angle between the North-axis
and the X-axis of the navigation frame, is part of the matching
results and is obtained directly, since this is the rotation of the
SAR image relative to the map image. With these given, the
navigation frame’s position in global coordinates can readily
be obtained by means of rotation and translation of the pixel’s
coordinates in the following way

p̂0 =

X̂0

Ŷ0
Ẑ0

 =

aGrG
0


︸ ︷︷ ︸
T

+

cos(χ) sin(χ) 0
sin(χ) − cos(χ) 0

0 0 1


︸ ︷︷ ︸

R(χ)

 ARg
h

 (6)

where [X̂0 Ŷ0 Ẑ0]T is the navigation frame’s position in the
global coordinates, T is the translation vector (consisting of
map coordinates obtained by matching procedure) and R(χ)
is the matrix representation of the rotation around Z-axis with
angle χ. Note that Z-coordinate is the same as altitude h,
which we in general can obtain directly from the barometric
measurements. If these measurements are not available or have
bad performance, the approach from [13] can be used to obtain
an altitude estimate.

Since the kinematic parameters are also part of the matching
results, any position in the trajectory can now be calculated by
using Equation (3). Note that these calculations are valid under
the flat earth approximation, which is valid if the SAR image

is fairly close to the platform. This is true for most aircraft (but
not satellites). The procedure described above is summarised
in Algorithm 1. Note that if several patches are needed or
wanted to be matched the procedure is simply repeated for all
patches. After that a single estimate can be obtained by e.g.,
calculating a weighted mean from all estimates using their
covariance as weights.

Algorithm 1 SAR-OptMAP Global Position Calculation

Require: SAR image coordinates (r, a), SAR image param-
eters R0, ∆R, ∆A, information from navigation system
[X̄0 Ȳ0 Z̄0]T , χ̄ and optical image or map with known
geographical coordinates

Ensure: [X̂0 Ŷ0 Ẑ0]T and its covariance
1: Calculate A with a, alast and ∆A from (4)
2: Calculate R with r, R0 and ∆R from (5)
3: Match the SAR image to the map image to obtain rG,
aG, χ and kinematic states using [X̄0 Ȳ0 Z̄0]T and χ̄ to
initialise the search

4: Calculate [X̂0 Ŷ0 Ẑ0]T with h, A, Rg , χ, rG and aG from
(6)

5: (Optional) Calculate any trajectory position in the global
coordinates, p̂t, by using model (3) and estimated kine-
matic parameters

IV. IMAGE MATCHING APPROACH

In step 3 of Algorithm 1, we simply defined a matching step
which directly delivers the interesting parameters. In this sec-
tion, one such matching algorithm will be described in more
detail since it is a prerequisite in order to obtain the parameters
used to calculate a platform’s position and orientation. The
matching between those images can be obtained in many ways,
for example by simple correlation or by using image point
features extracted by some point feature detectors, like Harris
corner detector [21] or SIFT detector [22]. However, although
the SAR and optical map images can share many similarities,
in particular over man-made structured environments, they
can be very different in their structure and appearance. For
example, structures like rooftops can have completely different
intensities, very bright in the SAR images and very dark in the
optical images, and the above-mentioned methods might not
work satisfactory. In this case it might be better to increase
the feature complexity one level and use the lines (edges) in
the images. See [23] or [24] for examples where edges are
used as image features. Exactly as for point features, there
are several well known edge detectors, where Sobel, Prewitt
and Canny [25] are maybe the most known ones. Since the
Canny edge detector is quite robust to noise, it is suggested as
the detector in the approach described here. By applying this
detector to SAR and optical images, two binary edge images
are obtained. The next problem to be solved is to match these
SAR and optical map binary edge images to each other. One
well known method for parametric matching of templates to
the image is so called Chamfer matching method, see [26],
[27] or [28]. Since this is quite a robust matching method, it
will be the basis of the approach proposed here. Next, a short
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description of the Canny edge detector will be given as well
as an introduction to Chamfer matching and the modifications
we propose for this particular application.

A. Edge Detector

The Canny edge detector uses image gradient and thresholding
to detect edges in the images like many other detectors. Its
main advantage is better robustness to the noise in the images.
This is obtained by using hysteresis with two thresholds, one
high and one low. This avoids the problem of broken edges,
or streaking, which is almost always present in detectors with
only one threshold. The higher threshold is used to detect
edges, just as in any detector, while the lower one is used
to implement hysteresis and keep an edge even if the gradient
response would fall under the higher threshold. The general
problem of threshold tuning still remains. Individual thresholds
for different images must be found on a case by case basis.
In this work we are using an existing Canny edge detector
implemented in the Image Processing Toolbox in Matlab.

B. Chamfer Image Matching

The basics of the Chamfer image matching is the distance
transform of the edge image to which the template image
is to be matched. In this context the template image is not
considered to be the actual SAR image but rather the binary
image consisting of extracted edges. The distance transform is
calculated by assigning the pixels in the binary image a value
of the distance to the closest nonzero pixel. The distance metric
is usually Euclidean, but also Manhattan distance (1-norm) or
even maximum norm can be used. As an illustrative example,
consider a simple binary 7× 7 image represented as a matrix

I =



0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 1 0
0 1 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 1 1 1 0
0 0 0 0 0 0 0


The distance transform of this image using Euclidean distance
is

D =



√
5 2

√
2 1

√
2 2

√
5√

2 1 1 0 1 1
√

2
1 0 1 1 1 0 1
1 0 1 2 1 0 1√
2 1

√
2 1 1 0 1√

5 2 1 0 0 0 1√
10

√
5
√

2 1 1 1
√

2


Now the idea in Chamfer matching is to overlay the edge
pixels of the binary template image, T , on the distance
image for different translation, rotation and scaling values
and calculate some loss function as some metric based on
the values in the distance transform image that are hit by the
template edge pixels, for example, the total sum of the values.
From the implementation point of view this is equivalent to

taking a whole binary template image as a matrix and element-
wise multiplying it with the distance transform image. The
reason is simply the fact that edge pixels have value 1 and
non-edge ones have value 0. This can be written as

η(θI) = D � T̃ (θI) (7a)
C(θI) = f(η(θI)) (7b)

where η(θI) is the matrix resulting from the element-wise
product (�) of the extended template image, T̃ , and the
distance transform image, D. In the general case θI =
[r a χ sr sc]

T , where we introduced image scaling parameters
sr and sc. Sometimes it is possible to take the subset of the
θI if, for example, some of the parameters are known or not
estimated. The extended template image, T̃ , has been created
by first rotating the original template image with χ degrees
and scaling it sr and sc times in row and column directions
respectively. The binary image created from this template is
then extended with zeros to the size of D in such a way
that the upper left corner of the template image is on the
coordinate (r, a). Here, f : Rsize(D) → R+ is some positive
and monotonously increasing function. This means that for
correct matching parameters, the loss function C(θI) would
obtain its minimum value and the parameter estimates are
obtained as

θ̂I = arg min
θ

C(θI) (8)

If the template which is to be matched to the image above is

T =

[
0 1
1 1

]
and only translation is considered, i.e., θI = [r a]T , the surf
plot of the resulting loss function, C(θI), is according to
Figure 5a. It can be seen that the minimum value is obtained
for the translation parameters r = 5 (row) and a = 5 (column)
which is the best possible match. The function f used here is
the RMSE value of the element-wise product of the distance
transform image and the extended template image

C(r, a) =

√√√√ 1

Nnz

7∑
k=1

7∑
l=1

ηk,l(r, a)2, (9)

where ηk,l(r, a) is the matrix of values according to (7a),
except that rotation and scaling are not considered. Here, Nnz
is the amount of nonzero elements in the extended template
image, in this example Nnz = 3. If rotation, χ, or scalings,
sr and sc, are also considered as unknown parameters, the
example search illustrated above must be repeated for each
considered value of the rotation and scalings. In this case
the solution is given by the minimum value of the total cost
function.

C. Modified Matching Approach

In this work, a slightly modified loss function is proposed,
which bears more similarity to the well known least squares
approach. The reason is that we need an uncertainty measure
to the position estimate, otherwise higher level fusion with
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(a) Chamfer matching loss function, C(r, a), of the matching example.
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(b) Nonlinear least squares loss function, V (r, a), of the matching
example.

Figure 5: Different loss functions for the matching example.

the on-board navigation system would be problematic. To get
a statistically correct measure of covariance is a complicated
problem, but at least we get a matrix that has the most essential
properties of a covariance matrix: it is a positive definite
symmetric matrix, it reveals parameter identifiability problems
by having a high condition number, and it shows relative size
of estimation errors by having different size of the diagonal
elements.

First, the distance transformed binary map image, D, is
transformed as

D̃ = exp(−D) (10)

where exp( · ) function acts elementwise. This will basically
“invert” the distance transform making zero valued pixels
become ones and high valued pixels become low valued. For

the example above D̃ looks like

D̃ =



0.11 0.14 0.24 0.37 0.24 0.14 0.11
0.24 0.37 0.37 1 0.37 0.37 0.24
0.37 1 0.37 0.37 0.37 1 0.37
0.37 1 0.37 0.14 0.37 1 0.37
0.24 0.37 0.24 0.37 0.37 1 0.37
0.11 0.14 0.37 1 1 1 0.37
0.04 0.11 0.24 0.37 0.37 0.37 0.24


Let ξ(θI) be the Nnz × 1 vector of values from D̃ hit by
the translated, rotated and scaled edge pixels of the binary
template, T (θI). Then we have the following relation

1Nnz = ξ(θI) + e (11)

where 1Nnz is the Nnz× 1 vector of ones and e is some noise.
This relation can be interpreted as a measurement equation
which is a function of parameter vector θI , and then the
minimisation criterion can be written as

θ̂I = arg min
θI

V (θI), (12a)

V (θI) =
||1Nnz − ξ(θI)||22

2Nnz
=

1

2Nnz

Nnz∑
k=1

(1− ξk(θI))
2 (12b)

which is a nonlinear least squares formulation. The modified
loss function, V (r, a), for the example is depicted in Figure
5b. This loss function has a very similar shape as the original
one, C(r, a), but it is a little bit steeper close to the minimum.
Since both of these loss functions are defined on a grid of
discrete values, the minimisation procedure can be performed
as a global grid search.

Besides the parameter values, θ̂I , it is also desirable to
estimate the covariance which in turn can be used to estimate
the covariance of the estimated navigation parameters, position
of the navigation frame, [X̂0 Ŷ0 Ẑ0]T , and track angle, χ̂.
These covariances can then be used for weighting purpose in
Algorithm 1. The covariance can be estimated by assuming a
locally quadratic function around the minimum value of the
loss function, V (θ̂I), and estimating the Hessian matrix, H .
This can be done by solving the overdetermined linear system
of equations originating from the following relation

V (θ̂I + ∆) ≈ V (θ̂I) + ∆TH∆ (13)

where a Taylor expansion around θ̂I is performed for some ∆
assuming that the gradient is zero (since V (θ̂I) is a stationary
point, it is the minimum value). Then the covariance of the
parameter estimates can be estimated as

Cov(θ̂I) = λ̂H−1 (14)

where λ̂ = V (θ̂I), see [29]. Note that in the example above we
obtain the covariance which equals zero for both parameters
and it is natural since the template fits perfectly, and there is
no uncertainty. In the general case, however, the template will
not fit perfectly and there will always be some uncertainty in
the estimates.
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V. KINEMATIC PARAMETER ESTIMATION

The procedure described in Section IV considers how to
estimate the image parameters θI given a SAR image produced
with some trajectory p̂0:N . By varying the values of the
kinematic part of the parameter vector, θK , and using the
model (3) and possibly accelerations measured by the onboard
IMU, different SAR images I(θK) can be obtained. Each of
these images can now be matched according to the solution
of Equation (12) which produces another loss function,

J(θK , θ̂I) = VθK (θ̂I), (15)

where VθK (θ̂I) is the value of the image matching loss func-
tion obtained for a SAR image created with θK as kinematic
parameters. The loss function J is, exactly as V , a non-convex
function with many local minima, implying that a grid search
is the best option to find a solution according to

θ̂K = arg min
θK

J(θK , θ̂I). (16)

This will give the total solution θ̂ = [θ̂TI θ̂TK ]T , with the
best focus in this metric, and an accurate global position. The
covariance estimation approach from Equations (13) and (14)
can be used here as well in order to obtain covariance of the
kinematic parameters.

VI. RESULTS

In this section we will present both the results for the image
matching approach and the kinematic parameter estimation.
The image matching approach will be presented in more detail
on two example patches from the SAR image assuming the
focused image. For the kinematic parameter estimation, a
low-frequency SAR simulation environment, CARABAS II in
particular, [30], is used where it is possible to vary trajectories
and create different SAR images. This environment makes it
possible to create realistic SAR images of the scene and to
evaluate the focusing results in a controlled manner.

A. Results of the Image Matching Approach

In order to show the results of the matching procedure
described in Section IV, two patches from the SAR image
in Figure 1 are matched to the optical image in Figure 2.
These two patches are depicted in Figure 6. The optimised
parameters are translations and rotation, and the scaling is
fixed beforehand to minimise the parameter space and speed
up the search. It is the optical image that has been fixed north
up and the SAR image that has been rotated. In that case the
flight direction angle, χ, is directly obtained. It should also be
pointed out that in the search for the matching parameters,
information from the navigation system is used to narrow
down the search space and in that way prune possible false
solutions due to a possibly too similar environment. The results
are presented both graphically, where SAR image patches are
overlaid on the optical image, and in a table with an error and
a standard deviation of the estimates.

The SAR patches rotated with the angle χ̂ obtained in the
optimisation are depicted in Figures 7a and 8a. The result of
the matching is depicted in Figures 7c and 8c by overlaying

Figure 6: Zoomed part of the SAR image with the two patches
used in the Chamfer matching procedure.

Parameter Error Standard Deviation
r [pixels] 0, 2 5.73, 7.73
a [pixels] 0, -3 6.82, 7.40
χ [degrees] 1, 1 5.26, 6.49

Table I: Errors and standard deviations of the parameter
estimates for the two different example SAR patches.

the SAR image patch on the optical image on the solution
pixels, (r̂, â). The errors and the standard deviations of the
estimates for these two cases are presented in Table I.

B. Results for the Kinematic Parameters Estimation

For the kinematic parameter estimation results, one patch from
the SAR image is chosen, see Figure 9a. Also, the same patch
created with a non-correct trajectory, causing defocusing, is
depicted in Figure 9b. These patches are produced with the
CARABAS II simulation environment, and it can be seen
that they are quite realistic. First, a simple case where ini-
tial velocity in X-direction is unknown while all the other
parameters are known is examined. In this case, θK = vX0 ,
and the error in speed was varied, first between −4% and 4%.
The resulting loss function J(θK , θ̂I) is depicted in Figure 10.
Here it can be seen that the minimum value is obtained for the
correct initial velocity, and furthermore there is no matching
error. Note that grid has higher resolution in the middle of
the plot. Another simple case that is examined concerns
variation of initial acceleration in the Y -direction, while all
the other parameters are known. In this case θK = aY0 and the
resulting loss function is presented in Figure 11. Even here
the minimum value is obtained for the correct value of the
acceleration, and there was no matching error in this case
either. In both cases it can be seen that loss function has
much more irregular behaviour close to the optimum and that
some of the loss function values are close to the value for
the correct acceleration. If both initial velocity in X-direction
and acceleration in Y -direction are set as parameters, i.e.,
θK = [vX0 aY0 ]T , the loss function is according to Figure 12
for both large and small error in states. In this case the global
minimum of the loss function is obtained for a correct value if
the error was large, i.e., the grid resolution was coarse, while
a non-correct value of the parameters is obtained for the small
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(a) SAR image patch. (b) Binary edge image of the SAR
patch.

(c) Optical map with SAR image patch
overlaid.

(d) Optical map with the frame placed
on the matching pixels.

Figure 7: Example 1: Illustration of the proposed matching
procedure starting with the SAR image patch, going through
extracted edge image and showing the results of the matching
by overlaying SAR patch on the optical image map. Also, only
a frame is placed on the optical map for comparison.

(a) SAR image patch. (b) Binary edge image of the SAR
patch.

(c) Optical map with SAR image patch
overlaid.

(d) Optical map with the frame placed
on the matching pixels.

Figure 8: Example 2: Illustration of the proposed matching
procedure starting with the SAR image patch, going through
extracted edge image and showing the results of the matching
by overlaying SAR patch on the optical image map. Also, only
a frame is placed on the optical map for comparison.

(a) Focused image patch created with the correct (true) trajectory

(b) Unfocused image patch created with the non-correct trajectory.

Figure 9: SAR image patch used for the evaluation of the
kinematic parameters estimation. Both focused and unfocused
images are shown.
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Figure 10: The value of the loss function as a function of a
percentual error in initial velocity in X-direction.

error case, θ̂K = [−0.30 − 0.02]T ([% m/s2]) although the
correct value was the second smallest. This error is, however,
quite small giving a trajectory RMSE error of about 6 m and
the SAR image patch resulting from this trajectory is shown
in Figure 13. The matching errors in this case are 1 and 2
pixels in range and azimuth directions, respectively, and the
error in rotation of the patch is 0.5◦. We see that the actual
difference in the image quality is hard to distinguish with the
naked eye, and that the navigation parameter estimates are
also quite good. Note also that in all cases it is obvious that
the loss function is highly non-convex and that a grid based
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Figure 11: The value of the loss function as a function of an
error in initial acceleration in Y -direction.
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(a) Loss function for the large initial velocity and acceleration error.
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(b) Loss function for the small initial velocity and acceleration error.

Figure 12: The value of the loss function as a function of
an error in initial velocity in X-direction and acceleration in
Y -direction.

Figure 13: SAR image patch obtained with the estimated
trajectory given the values from the small error case.

search is necessary. This also implies that the grid resolution
will set the accuracy limit, and the number of operations grows
exponentially with the number of grid points. However, it is
possible to evaluate each grid point individually, which suits
parallel computation architectures.

C. Discussion

In this section a discussion on the method’s results and
performance and some possible improvements is provided. The
performance of the method for both patch matching and kine-
matic parameter estimation is highly dependent on different
quantization effects. Both optical and SAR images have finite
pixel resolution. This sets the limit on the performance of
the edge detector and on the matching performance. Further-
more, the standard implementation of the Canny detector uses
greyscale images which implies that additional quantization is
present. All these effects will put the limit on matching and
rotation estimation performance. The obtained performance for
the examples studied here is fairly good and in the magnitude
of what can be expected.

For the kinematic parameters, the grid resolution will nat-
urally set the limit on the performance. The finer grid, the
better possibility to get good performance. But if the resolution
is too small, the difference in the trajectories created with
neighboring grid parameter values will not be enough to make
SAR images different enough from the focusing point of view.
Then, in practice, only the numerical accuracy and their effects
will dominate. The grid size and resolution set also the limit
on the execution speed. Therefore the grid resolution and size
are seen as tuning parameters.

In [31], an auto-focusing approach based on the SAR image
only is exploited using image entropy as a focus measure. The
entropy is here defined as

E = −
M∑
i=1

K∑
j=1

qij log qij (17a)

qij =
|Iij |2∑

k

∑
l |Ikl|2

. (17b)

where Iij is the complex-valued pixel (i, j) in the SAR image.
Note that E is a function of θK . Then, we could combine the
entropy and the loss function J(θ) around the global minimum
to improve the estimation results. In the case used above, the
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Figure 14: Combined entropy, E, and loss function, J , around
the global minumum of the loss function.

combined loss function J + E is shown in Figure 14. We
see that for this function a correct value of the parameters is
obtained.

VII. CONCLUSIONS AND FUTURE WORK

A method of matching SAR images and optical images
is presented, for the primary purpose of autofocusing and
adding the radar reflectance image to ordinary images as
complementary information, which can be useful in, primarily,
surveillance, and, in some cases, remote sensing applications.
The method is based on the pattern matching algorithm called
Chamfer matching, which is modified to resemble a least
squares formulation and a grid based optimisation of the
kinematic parameters. For both cases a statistical performance
measure, covariance, of the estimates can also be obtained.
The evaluation of the results is performed on the SAR image
and optical map image, and both matching performance and
autofocusing performance is evaluated based on a couple of
SAR image patches. The obtained results on the real SAR
images and very simple optical map images from Google Maps
show that the performance of the matching and autofocusing
methods is fairly good, with small errors and variance, even
with these simple means. This performance is good enough
for surveillance, but probably not for many remote sensing
applications. For that kind of applications a smaller matching
error should be obtained. It must also be pointed out that this
method assumes a variation in the scene in order to work.
The environment where edge features are hard to extract or
missing will of course give much poorer results.

As a future extension of this work, as preliminary results
show in the discussion above, entropy measure can be incor-
porated in the total cost function to eventually improve the
results of the kinematic parameters estimation and in turn
the autofocusing performance. As a future application, the
methodology can also be used as an all-weather GNSS-like
support and backup for the inertial navigation system.
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