
1

EM-SLAM with Inertial/Visual Applications
Zoran Sjanic, Martin A. Skoglund, Fredrik Gustafsson Fellow, IEEE

Abstract—The general Simultaneous Localisation and Map-
ping (SLAM) problem aims at estimating the state of a moving
platform simultaneously with map building of the local envi-
ronment. Current state-of-the-art methods such as [1] relies
on Nonlinear Least-Squares (NLS) batch formulations with
structure exploitation for memory efficiency and speed. We
investigate the Expectation Maximisation (EM) algorithm for
solving a generalized version of the NLS problem. This EM-
SLAM algorithm solves two simpler problems iteratively yielding
a low computational complexity. The iterations switch between
state estimation, which can use any state space smoother, and
map estimation, where a quasi-Newton method is suggested. The
proposed method is evaluated in real experiments and also in
simulations on a platform with a monocular camera attached
to an inertial measurement unit. The results show that EM-
SLAM has much lower computational complexity than NLS while
maintaining comparable accuracy.

Index Terms—SLAM, Expectation-Maximisation, Sensor Fu-
sion, Computer Vision, Inertial Sensors, Vision-Aided Navigation.

I. INTRODUCTION

The aim in Simultaneous Localisation and Mapping
(SLAM) is to estimate a moving platform’s position and
orientation while mapping the observed environment. A strong
trend in SLAM algorithm research is (incremental) batch opti-
misation which usually solves some form of Nonlinear Least-
Squares (NLS) problem [1]–[5]. These often suffers from poor
complexity scaling, usually quadratic in batch length. One
popular approach is GraphSLAM [6]–[8], where the idea is
that the map is implicitly defined through a set of robot poses
and the sensor measurements without the need for any explicit
map representation. Hence, the only parameters are the poses
at the cost of quadratic scaling in batch length, rather than
preferably map size [9]. To remedy this many heuristics have
been proposed, see e.g., [10], [11]. The graphs are constructed
from either incremental pose constraints due to odometry or
constraints between arbitrary poses due to loop closing based
on sensor data. Pose graphs are natural when the sensor model
is locally invertible as in the case of laser scanners [12] or
stereo vision [10].

Methods based on camera-only, such as structure from
motion (SfM) [13], [14] or Bundle Adjustment (BA) [15], [16],
have been known in the computer vision community for quite
some time. The estimated structure and motion have unknown
universal scale, since the monocular camera suffers from depth
ambiguity. In other words, given a motion of the camera, we
cannot say if the velocity was large and the scene was far

Zoran Sjanic, Martin A. Skoglund and Fredrik Gustafsson are with
the Division of Automatic Control, Department of Electrical Engineering,
Linköping University SE-581 83 Linköping, Sweden Email: {zoran, ms,
fredrik}@isy.liu.se

The authors gratefully acknowledge funding from the Vinnova Industry
Excellence Center LINK-SIC.

away or if the velocity was low and the scene was close to the
camera. One way to resolve the universal scale is to add some
kind of velocity measurement, and the inertial measurement
unit (IMU), measuring accelerations and angular velocities, is
one such way [17]–[21].

There are only a few methods with monocular vision and
inertial sensors that use pose graphs. For instance, [4], [9]
use view-based matching on whole images combined with
odometry and the obtained relative poses are used to construct
the graph. A landmark-free sliding window EKF for visual
odometry with IMU support is proposed in [22]. In the
same spirit [23] uses epipolar geometry and trifocal con-
straints which implicitly encodes landmarks, while the IMU
is integrated between image frames for complexity reduction.
However, these methods are structure-less and therefor require
other additional computation, if the map is explicitly sought.

Here, we propose a Maximum Likelihood (ML) formula-
tion which is based on the Expectation Maximisation (EM)
algorithm [24]. Contrary to GraphSLAM, both the pose and
the map are explicitly estimated as in ordinary NLS. The EM
framework allows for moving the dominating complexity of
the ML solution to scale linearly with the batch length and
the map size, rather than quadratically, while still retaining an
accuracy comparable to NLS. This is illustrated in a qualitative
analysis as well as in experiments. The method is evaluated
on, but not restricted to, a system with a monocular camera
and IMU sensors. In an EM setting, so called latent, or
hidden, variables are introduced in order to solve difficult ML
problems. This is achieved by splitting the problem into two
simpler problems, one where expectation with respect to the
conditional density of the latent variables has to be calculated
and one where a certain function needs to be maximised with
respect to the parameters. These two steps are then repeated
until convergence. In EM-SLAM, the map is viewed as the
unknown parameter and the platform states, such as position
and orientation, are considered to be the latent variables. As
a simplified and intuitive motivation for this separation we
can consider two simpler problems; one with known map and
the other one with known trajectory and orientation. The first
problem is then simply the navigation problem with known
landmarks. The second problem is known as the triangulation
problem, i.e., finding the landmark positions given the known
platform positions and camera observations. See e.g., [25] for
an example of triangulation application. Each of these prob-
lems are rather straightforward to solve separately, but hard to
solve combined. By separating the variables in the proposed
way, we split the SLAM problem into the above-mentioned
two simpler problems. In the conditional expectation step, i.e.,
navigation, the latent variables are assumed to have Gaussian
distribution and that they can be well approximated with
an Extended Rauch-Tung-Striebel (E-RTS) smoother, [26].

2

However, for other distribution assumptions on the latent
variables any appropriate state space smoother can be used.
The maximisation step, i.e., triangulation, is solved using a
quasi-Newton method. The proposed method is compared with
the NLS method, which can be seen as a straightforward ML
formulation where both the state sequence and the map are
seen as parameters. This reference method is solved using
the Levenberg-Marquardt algorithm [27]. The comparison is
done for both the performance of the estimation and for the
complexity of each approach on both simulations and real data
experiment.

The paper is organised as follows; in Section II the Ex-
pectation Maximisation algorithm is explained in more detail,
and its application to SLAM is described in Section III. The
dynamical and measurement models specific to visual/inertial
SLAM are introduced in Section IV and NLS-SLAM is
explained in Section V. Complexity comparisons between
EM-SLAM, NLS-SLAM and GraphSLAM are discussed in
Section VI, and a brief explanation about obtaining an initial
estimate for the landmarks is given in Section VII. Finally,
results, conclusions and future work are discussed in Sec-
tion VIII and Section IX.

II. EXPECTATION MAXIMISATION

Maximum likelihood in its basic form is a batch method
which takes a set of K observations, Y = {y1, . . . , yK}, and
aims at maximising the measurement likelihood, pθ(Y), w.r.t.,
the unknown parameter θ as

θ̂ML = arg max
θ

pθ(Y) = arg min
θ

− log pθ(Y). (1)

The maximisation of (1) can be very difficult and the key
idea with Expectation Maximisation is to consider the joint
likelihood, pθ(Y,X), where X = {x1, . . . , xK} are latent
variables. Then, by splitting this density into two coupled,
and hopefully easier, problems the parameters and the latent
variables can be solved for in an iterative manner. The first
step is the Expectation step, commonly denoted E-step, where
the expectation of the joint log-likelihood, log pθ(Y,X), with
respect to the density of the latent variable conditioned on all
the measurements, pθk(X|Y), is computed. The expectation
Eθk{log pθ(X,Y)|Y } will be a function, called Q(θ, θk), of
the parameter vector θ as

Q(θ, θk) =

∫
pθk(X|Y) log pθ(Y,X) dX. (2)

Note that the conditional density of the latent variables,
pθk(X|Y), is computed using the estimate of the parameters
from the previous iteration, called k, θk, which is also empha-
sised in the notation. In the Maximisation step or M-step, the
Q function, obtained in the E-step, is maximized with respect
to the parameter θ, obtaining new estimate θk+1. These two
steps are repeated until some convergence criterion is met,
usually when the change in the parameter or the likelihood
value is below a certain threshold.

For an explanation of the EM algorithm applied to dy-
namical systems see e.g., [28], and how it can be used in
system identification is exemplified in [29], where a particle

smoother is used to calculate the conditional expectation in the
E-step. In [30], [31] nonlinear dynamical models are treated
using EM, and the E-step is calculated using an Extended
Kalman smoother, which is the same approach that will be
used here. All these EM variants are formulated as batch
methods, but there are also online EM methods which typically
use sequential Monte Carlo and stochastic approximation
methods [32], [33]. However, in these online approaches it
is assumed that either the joint log-likelihood belongs to
the exponential family, or that the state is low dimensional
and can be well approximated with particle methods. In our
case these assumptions are not met which will require other
approximations to be applied.

III. EM-SLAM

We formulate the visual/inertial SLAM problem by defining
a state space model as

xt = f(xt−1, ut, wt), (3a)
yt = ht(xt, θ) + et, (3b)

where the measurement noise, et, is considered white and
Gaussian with mean zero and covariance R, while the pro-
cess noise, wt, is considered white with mean zero and
covariance Q. The state transition function is denoted f ,
and {ut|t ∈ {1, . . . ,K}}, where K is the total number of
signal time instances, are considered to be inputs given by
the inertial sensors from which three-dimensional position,
velocity and orientation, xt = [pTt , v

T
t , q

T
t]T , xt ∈ R10,

are computed. The measurements yt are the two-dimensional
camera measurements, i.e., features extracted from images. In
general, an IMU has a higher sampling rate than a camera and
a multi-rate system model is obtained. This can be denoted
as {yt|t ∈ G ⊆ {1, . . . ,K}}, where G contains indices to
camera observation instances, and the cardinality is |G| = N ,
i.e., there are N images. Here, we also assume that the IMU
and the camera are synchronised in time. The measurement
function, ht, relates measurements, states and parameters.
Usually, only a part of all the landmarks are measured in each
image, and that number is denoted Nt, i.e., yt ∈ R2Nt . The
parameter vector θ consists of landmark coordinates in three
dimensions, i.e., θ ∈ R3M if there are M landmarks. The
models in (3) will be defined in detail in Section IV.

The most significant difference between the proposed EM-
SLAM formulation and batch SLAM is that the map θ is
treated as a time-independent parameter, while the vehicle
state xt is a constant size vector. This separation is the key to
allow for an efficient algorithm since the computation of the
conditional expectation, E-step, scales linearly in the batch
length while the map estimation, M-step, scales linearly in
the number of landmark measurements (which will roughly
increase linearly with the batch length and the map size).
Analysis of the complexity will be treated in more detail in
Section VI.

The conditional expectation step is assumed to be well
approximated by an Extended Rauch-Tung-Striebel (E-RTS)
smoother. E-RTS is a straightforward modification of the
standard RTS smoother, [26], by using the Extended Kalman

3

Filter instead of the Kalman Filter in the forward filtering
step, while the backward smoothing step is the same as in the
original RTS smoother.

The state space formulation above constitutes the basis for
the ML formulation that is naturally put into EM setting, i.e., it
is straightforward to define the joint likelihood pθ(X,Y). Here
the platform states, X , are considered to be latent variables.
By using the Markov properties this density can be written as

pθ(Y,X) =

K∏
t=1

pθ(yt|xt)p(xt|xt−1). (4)

Notice that the process model does not depend explicitly on the
parameter θ, which will simplify the calculations significantly,
as will be shown in the next section.

Next, both the E-step and the M-step will be explained in
detail, with all derivations and approximations used.

A. E-step

In each E-step, the landmark locations θk, obtained in
the previous M-step (i.e., iteration k), are fixed and used to
estimate the platform’s state xt, t = 1, . . . ,K. Given the joint
likelihood from (4), the expectation step produces a function
template in the following form

Q(θ, θk) = Eθk

{
log

[
K∏
t=1

pθ(yt|xt)p(xt|xt−1)

] ∣∣∣∣Y
}
, (5)

where the measurement likelihood is given by

pθ(yt|xt) = pθ(et) = pθ(yt − ht(xt, θ)), (6)

and the state transition density, p(xt|xt−1), does not depend
on θ. Assuming that the likelihood has a Gaussian distribution,
the expectation (5) becomes

Q(θ, θk) = const.−

Eθk

{
K∑
t=1

1

2
‖yt − ht(xt, θ)‖2R−1 + log p(xt|xt−1)

∣∣∣∣Y
}

= −
∑
t∈G

Eθk

{
1

2
‖yt − ht(xt, θ)‖2R−1

∣∣∣∣Y}+ const. (7)

where all the terms not depending on θ are lumped into
a constant term, which will not affect the optimisation in
the subsequent step. Notice also that the summation limit is
changed to only include the time instances for the images,
resulting in N terms in the sum. Due to the nonlinear nature of
the measurement function, see Section IV-B, there is no closed
form solution. Thus, some approximations are necessary, and
one such is

Q(θ, θk) ≈ const.− 1

2

∑
t∈G

(
‖yt − ht(x̂t|K , θ)‖2R−1+

Tr(R−1∇xht(x̂t|K , θ)P st|K(∇xht(x̂t|K , θ))T)
)
.

(8)

Here, x̂t|K is the smoothed estimate of the latent variable and
P st|K is its covariance. The smoothed estimate is obtained with
an E-RTS smoother in the E-step summarised in Algorithm 1.

Algorithm 1 E-step
Input: measurements {yt|t ∈ G ⊆ {1, . . . ,K}}, inputs
{u1, . . . , uK}, covariance matrices Q and R, initial state and
its covariance, x0, P0, parameter estimate θk
Output: Q(θ, θk)

1: x̂0|0 := x0
2: P0|0 := P0

3: for t = 1 : K do
4: x̂t|t−1 := f(x̂t−1|t−1, ut)
5: Pt|t−1 := Ft−1Pt|t−1F

T
t−1 +Q

6: if Image available then
7: x̂0t|t−1 := x̂t|t−1
8: P 0

t|t−1 := Pt|t−1
9: for j = 1 : Nt do

10: Sj := Hj
t P

j−1
t|t−1(Hj

t)T +Rjj

11: Kj := P j−1t|t−1(Hj
t)T (Sj)−1

12: P jt|t := P j−1t|t−1 −K
jHj

t P
j−1
t|t−1

13: x̂jt|t := x̂j−1t|t−1 +Kj(yjt − ht(x̂
j−1
t|t−1, θ

j
k))

14: end for
15: x̂t|t := x̂Ntt|t
16: Pt|t := PNt

t|t
17: end if
18: Where Ft−1 = ∂

∂xf(x, ut, wt)|x=x̂t−1|t−1,wt=0, and
Hj
t = ∂

∂xht(x, θ
j
k)|x=x̂j−1

t|t−1
are the Jacobians of the

expressions in (3) while θjk picks out the component
corresponding to measurement yjt .

19: end for
20: P sK|K := PK|K
21: for t = K : 2 do

22:

St−1 := Pt−1|t−1F
T
t−1P

−1
t|t−1

x̂t−1|K := x̂t−1|t−1 + St−1(x̂t|K − x̂t|t−1)

P st−1|K := Pt−1|t−1 + St−1(P st|K − Pt|t−1)STt−1
23: end for
24: Assemble Q(θ, θk) according to (8).

The notation x̂t|s denotes the estimate of the state xt at time t
given all the measurements up to time s, and likewise for the
covariance P . Note also that the measurement update in the
forward pass of E-RTS can be processed sequentially since
the measurements are assumed to be independent. The trace
term can be thought of as a regularisation term to compensate
for the usage of the estimated latent variables instead of the
true ones. If the true ones have been used that term would
vanish and only the nonlinear least squares part had to be
solved. Note also that the terms in the sum are nonzero only
for the observed landmarks per time step. See Appendix for
derivation of (8).

B. M-step

In each M-step the platform state is fixed and the location of
the landmarks are triangulated. Maximisation (minimisation)
of the Q (−Q)-function can be done using standard optimi-
sation software. As for our particular setting, the function to
be minimised is a nonlinear function of the parameters and

4

Algorithm 2 M-step (Quasi-Newton minimisation method
with BFGS Hessian update)
Input: Function template Q(θ, θk), initial parameters θk,
initial inverse Hessian approximation B0 = λI, λ > 0,
termination threshold ε.
Output: θk+1.

1: i := 0
2: terminate := false
3: θi := θk
4: while not terminate do
5: Compute search direction:

pi := −Bi∇θQ(θi, θk)
6: Update the parameter:

θi+1 := θi + αipi
where αi is the step length computed by line search
ensuring decrease in cost

7: Compute:
si := θi+1 − θi
ri := ∇θQ(θi+1, θk)−∇θQ(θi, θk)

8: Update the inverse Hessian
Bi+1 :=

(
I − sir

T
i

rTi si

)
Bi

(
I − ris

T
i

rTi si

)
+

sis
T
i

rTi si
9: if Some termination criterion depending on ε is met

then
10: terminate := true
11: else
12: i := i+ 1
13: end if
14: end while
15: θk+1 := θi+1

nonlinear methods need to be used. We use a quasi-Newton
method called BFGS, [27], since it is quite efficient, but other
choices are also possible. In this method, the inverse Hessian
of the function to be optimised is recursively approximated
using gradient information. Suitable termination criteria may
be that the magnitude of change in parameter values, the
gradient, or the magnitude of the cost function decrease is
sufficiently small. The BFGS algorithm is summarised in
Algorithm 2.

IV. MODELS

In this section the models in (3) will be specified. The
sensors of interest are monocular camera and 6-DOF inertial
sensors, i.e., gyroscopes and accelerometers, contained in a
single sensor package. To reduce the state and parameter space
the inertial sensors are considered as inputs to a process model.
A minimal 3D point landmark parametrisation is used and
its measurement function is given by the pinhole projection
model.

A. IMU Parametrisation

The models for the gyroscopes and accelerometers are
simple as they are only considered to be inputs to the process
model. The gyroscope signals are denoted uω = [uωx , u

ω
y , u

ω
z]T

where the subscript refers to each axis of the body frame. Sim-
ilarly the accelerometer signals are denoted ua = [uax, u

a
y, u

a
z]
T

which are also given in the sensor body frame. A discre-
tised process model for the position, velocity and rotation,
[pTt , v

T
t , q

T
t]T , in the local, inertial, navigation frame is then,

pt = pt−1 + Tvt−1 +
T 2

2
RT (qt−1)

(
uat + gb + wa

t

)
, (9a)

vt = vt−1 + T RT (qt−1)
(
uat + gb + wa

t

)
, (9b)

qt = exp

(
T

2
Sω(uωt + wωt)

)
qt−1, (9c)

where the T denotes the sampling interval, R(qt) is a ro-
tation matrix parametrisation of the unit quaternion qt =
[q0t , q

1
t , q

2
t , q

3
t]T which describes the rotation from navigation

to body frame, gb = R(qt)g
n, is the gravity expressed in

the body frame, gn = [0, 0,−g] is the local gravity vector
expressed in the inertial frame where g ≈ 9.82 and exp(·) is
here considered as the matrix exponential. The noise terms are
assumed Gaussian and independent [(wa

t)
T , (wωt)T]T = wt ∼

N (0, diag (Qa, Qω)). The skew-symmetric matrix

Sω(u) =

0 −ux −uy −uz
ux 0 uz −uy
uy −uz 0 ux

uz uy −ux 0

 , (10)

parametrises the quaternion dynamics. This parametrisation is
very similar to reduced-dimension observers in [34].

B. Camera Measurements

The monocular camera is modeled as a standard pinhole
camera, see cf. [35]. The camera calibration matrix and lens
distortion were estimated prior to usage. Since the calibration
and distortion are known the undistorted pixels can be pre-
multiplied with the inverse of the camera matrix, thus the
camera then works as a projective map in Euclidean space,
P : R3 → R2. The projection is defined as P ([X,Y, Z]) =
[X/Z, Y/Z] and the Z coordinate is assumed positive and non-
zero since otherwise the point would be behind the camera.
Then a normalised camera measurement, yt = [ut, vt]

T , of a
landmark, m, at time t is

yt = P (R(qt)(m−pt)) + et, (11)

which relates the pose (position and orientation) of the camera
to the 3D location of the point. The measurement noise is
assumed i.i.d. Gaussian, et = [eut , e

v
t]
T ∼ N (0, Rf). The cor-

respondence variables at time t, cit, encode the measurement-
landmark assignment, yit ↔ mj , which gives a subset of all
M landmarks at time t, Mt = {mj}, j ∈ {1, . . . ,M | cit = j}.
At time t the stacked measurement equation is then

u1t
v1t
...
uNtt
vNtt

︸ ︷︷ ︸
ycam
t

=

P (R(qt)(m

c1t −pt))
...

P (R(qt)(m
c
Nt
t −pt))

︸ ︷︷ ︸

ht(xt,Mt)

+

e1ut
e1vt

...
eNt ut

eNt vt

︸ ︷︷ ︸
ecam
t

, (12)

5

where cit denotes the index of the corresponding landmark
and Nt is the number of camera measurements at time t and
ecam
t ∼ N (0, Rcam). Rcam is a diagonal matrix since all the

measurements are assumed to be mutually independent. In
this work the correspondences are assumed to be correctly
solved in the initialization step (see Section VII) but in
practice there will always be outliers of some kind. This is
a strong assumption which should be treated carefully since
faulty associations will bias the SLAM estimate. Interesting
approaches to data association were exploited in e.g., [36],
[37] which both make use of the EM algorithm to estimate
correspondences.

V. NONLINEAR LEAST-SQUARES

Another way of solving the ML SLAM problem is to
consider all the interesting parameters explicitly instead of
having position, velocity and orientation as hidden variables.
In this case the parameter vector θ will consist of all unknown
parameters, that is landmarks, accelerations in navigation
frame and rate gyros. The dynamics for the velocity and
position is in this case used as explicit constraints. In this
setting it is also possible to include biases for accelerations
and angular rates as parameters, which was avoided in the EM
formulation. This is because the problem greatly simplifies if
the parameters affect only the measurement relation, as already
explained in Section III. Note however, that these extra terms
can be put in the state vector. The measurement models for
accelerations and angular rates are then

yat = R(qt)(at − ge) + ba + eat , (13a)
yωt = ωt + bω + eωt , (13b)

and camera measurements are defined as in (12)

ycam
t = ht(pt, qt,Mt) + ecam

t . (14)

The unknown parameters are then accelerations, a1:N , angular
rates, ω1:N , initial velocity v0, acceleration bias, ba, angular
velocity bias, bω , and landmark positions m. Notice that in this
setting the number of IMU measurements is the same as the
number of images. For the multi-rate models considered here
the IMU signals between camera measurements can simply be
averaged as

ȳa,ωt =
1

Gt −Gt−1

Gt∑
s=Gt−1

ya,ωs . (15)

where Gi denotes the i:th element of G (defined in Section III)
and ȳt is the averaged measurement used at the image time
instance t. Under the assumption that all noises are Gaussian
and white, i.e., eit ∼ N (0, Ri), the corresponding negative
log-likelihood becomes

− log pθ(Y) =

N∑
t=1

‖ȳat − R(qt)(at − ge)− ba‖2R−1
a

+

‖ȳωt − ωt − bω‖2R−1
ω

+ (16)

‖ycam
t − ht(pt, qt,Mt)‖2R−1

cam
.

where θ = [aT1:N , ω
T
1:N , v

T
0 , b

T
a , b

T
ω ,m

T]T , qt is a function of
ω1:t and pt is a function of v0 and a1:t. The ML problem can
now be formulated as

θ̂ML = arg min
θ

− log pθ(Y) (17a)

subject to

[
pt

vt

]
= F t

[
p0

v0

]
+

t∑
i=1

F i−1Bai, (17b)

F =

[
I3 TI3

0 I3

]
, B =

[
T 2

2 I3

TI3

]
,

qt =

[
t∏

k=1

exp

(
T

2
Sω(ωk)

)]
q0. (17c)

The constraints can actually be removed by expanding them
and substituting them into the cost function giving an uncon-
strained problem. This problem is solved with e.g., standard
Levenberg-Marquardt solver. The estimate obtained in this
way will be used to compare to the estimate obtained with
the EM-SLAM method.

Note that this particular choice of variables is only one
of many possibilities to formulate the NLS problem. Another
alternative is to parameterise motion as only poses [5], [38]
and parameterisation has in general a great impact on both
computational complexity and estimation result. For example,
different structural properties of the problem can be utilised,
like sparsity of the Jacobian. In many of those cases the
complexity is comparable to EM-SLAM (and very similar
to GraphSLAM), but the problem can be somewhat non-
physically formulated. As an example, if quaternions are used
as optimisation variables (which is preferred to Euler angles in
three dimensions due to gimbal lock problem) the error term
between two quaternions is not a new quaternion [39], since
they reside in a SO(3) and not in a Euclidian space (due to
the constraint qT q = 1). This implies that some kind of com-
pensation, e.g., normalisation (in each optimisation iteration)
or constrained formulation, must be done in order to solve
that kind of problem, which of course increases complexity.
Our motivation to compare with the setup in (17) is twofold;
first, the error terms should have a physical interpretation,
i.e., sensor noise; second, the optimisation variables should
reside in Euclidean space due to the nature the iterative search
methods.

VI. COMPUTATION COMPLEXITY

The main difference between NLS and EM approach is
the number of parameters in the optimisation part. While
NLS has both landmarks and platform’s motion as parameters,
EM considers the motion as latent variables. Seen the other
way around, the ML problem in (1) can be considered as
a marginalised version of (16), where motion is integrated
out. GraphSLAM, on the other hand, marginalises landmarks
and solves the problem only in the motion variables. There
are very few examples of GraphSLAM with inertial and
monocular camera sensors, due to the non-invertability of
the camera measurement equation, but for the comparison’s
sake we will give some complexity analysis for GraphSLAM
also. For densely observed environments, where the number

6

of landmarks grows much slower than number of motion
parameters, EM-SLAM has potential to have lower complexity
than GraphSLAM as will be shown below. A small numerical
simulation example will be given for execution time compar-
ison. It should be pointed out that, in our analysis, we are
not interested in the exact number of operations, since it is
implementation dependent in many cases. For example, matrix
multiplications might take into account the structure of the
matrices and thus decrease the actual number of operations
needed. Also, there are many efficient and mature implemen-
tations of various batch SLAM methods available, see e.g., [1],
[40], which handles impressively huge data sets. Instead, we
will compare different methods’ inherent complexity, i.e., the
number of terms that need to be evaluated in one iteration
during iterative optimisation, with the order of magnitude,
denoted with O-notation. That is, O(n) = O(an), where
a is a constant independent of n. It is also assumed that
all functions are analytical and that their gradients can be
evaluated with constant cost independent of the number of
landmarks, measurements or image frames.

In our analysis we will use following notation; the number
of landmarks is M , the number of time steps when landmarks
are observed is N , i.e., it is the number of image frames. The
total number of landmark observations (or measurements) is
Nc, which is defined as

Nc =
∑
t∈G

Nt, (18)

and is linear in the number of camera frames. Note that in
the case when all the landmarks are observed the whole time,
we have Nc = NM . Define further the average number of
measurements per camera time step as N̄N

c = Nc/N and the
average number of measurements per landmark as N̄M

c =
Nc/M .

A. EM-SLAM

Each iteration of EM-SLAM requires one E-step and one
M-step. For the E-step, we assume that the most demanding
operation in E-RTS is the measurement update in the forward
EKF pass. An IMU usually has a higher sampling rate than
the camera, but these data are only used in the time update
steps between camera measurements, and recall that the size
of the state is 10, which is constant. Also, in the same way,
the backward pass of the E-RTS consists of the constant size
matrices and vectors independent of the number of camera
measurements. The number of operations in the measurement
update step is assumed to be proportional to the number of
camera measurements in that step. This assumption can be
made due to the mutual independence of the measurements,
so that the update can be performed sequentially, see e.g., [41].
Since there are N measurement update steps and the average
number of measurements per time step is N̄N

c , we have
O(N̄N

c N) in total, i.e., O(Nc), using the definition of average
number of measurements per time step. Note that if the
time update and the backward pass are also considered to
contribute to the complexity, their contribution is a constant,
C, times the number of time steps N . This constant depends

on the number of states and the sampling rate of the IMU
but independent of the number of camera frames, landmarks
and measurements. In that case we will have the average
complexity of O((N̄N

c + C)N) which is still linear in N .
In the M-step, the main complexity lies in the calculation

of the Q-functions gradient with respect to parameters, θ,
which is a sum of all individual gradients for each landmark
in each frame where the landmark is observed. In average this
will be the average number of measurements per landmark
N̄M
c . Since there are M landmarks, the total complexity

is O(N̄M
c M) = O(Nc), exactly as the E-step. It is also

worth mentioning that calculation of the trace term can be
simplified by calculation only the diagonal elements of the
matrix product used in the trace. This gradient is calculated
a number of times during the minimisation procedure, so the
total complexity is O(kNc). This k is hard to estimate, and
is highly dependent on the particular choice of optimisation
routine and the implementation. For our particular setup using
BFGS, we have empirically obtained an average of 10 M-step
iterations in simulations and real data experiments, which is
negligible in comparison to other sizes. This gives that the
complexity per one iteration of EM-SLAM is O(Nc) in total.

B. NLS-SLAM

For NLS-SLAM the Jacobian of the loss function (17)
is needed and it consist of derivatives of the acceleration
measurement errors w.r.t., acceleration and angular rate pa-
rameters, derivatives of the angular rate measurement errors
w.r.t., angular rate parameters and derivatives of the camera
measurement errors w.r.t., acceleration, angular rate and land-
mark parameters.

The number of elements in the part of the Jacobian that
contains acceleration errors derivatives comes from the number
of acceleration and angular rates parameters, which both are
N , and the number of acceleration measurements, which also
is N . Since error terms in a certain time depend only on
acceleration parameters from the same time there are N of
these terms. The acceleration error is dependent on the rotation
in the same time instance and the rotation can be obtained
by integration of the angular rates up to that time, see (17c).
This means that Jacobian’s row for a certain measurement will
have non-zero elements for all angular rates up to the time for
that measurement. This implies that the number of elements is
approximately .5N2. Together it gives O(N2+N) complexity
for the first part of the Jacobian.

The angular rates error terms at a certain time instance
depend only on the angular rates from the same time instance.
Since there are N such terms in total the complexity is O(N)
due to the same reason as for the acceleration errors. The last
error terms are the camera measurement terms, and they de-
pend on platform positions, rotations and landmark positions.
Platform positions at a certain time can be integrated from
accelerations up to that time, just as the rotations mentioned
above, using (17b). This means that we need to use all the
acceleration and angular rates parameters up to a time for the
camera measurement in that time. Since there are Nc camera
measurements in total, the approximate number of elements to

7

be evaluated is proportional to .5NcN for both accelerations
and angular rates, giving the complexity O(NcN). For the
derivative w.r.t., landmarks the same reasoning as for the M-
step in EM-SLAM can be applied, since these are the same
errors depending on the same parameters, and the complexity
of that part was O(N̄M

c M) = O(Nc). Summing all terms
from above, the total complexity for evaluating the Jacobian
is O(NcN +N2 +Nc +N).

C. GraphSLAM

For GraphSLAM the Jacobian matrix is consisting of deriva-
tives for positions and rotations with respect to each other. It is
a symmetric matrix and has dimension N2. The measurements
are integrated (or marginalised) into the elements that represent
the positions from which a measured landmark is observed
from. In this way the landmark parameters are removed
from the optimisation and the measurements are acting as
constraints on relative positions of the platform with shared
observed landmarks. For example, if the same landmark is
observed from three positions, there will be non-zero entries in
rows and columns that correspond to times for these positions.
This implies that number of non-zero elements for each time
step will be the number of all other elements that are connected
via all shared landmarks. This number is the average number
of measurements per landmark, NM

c , in average. Since there
are N rows (or columns), the total average complexity of
GraphSLAM is O(N̄M

c N).

D. Comparisons

After this order of magnitude complexity analysis, it is
interesting to compare the complexity of each method for dif-
ferent cases of batch length, N , and the number of landmarks,
M . In Table I the dominating computation complexity for
the three methods is compared for the cases where relative
sizes of the batch length and the number of landmarks are
varied. These are obtained by using the terms derived above
and approximating them with dominating terms. From this
table we can see that EM-SLAM has complexity that is
always better than NLS-SLAM and better than, or the same
as GraphSLAM for two cases, namely when the batch length
is much larger than the number of landmarks and when they
are approximately the same. Even with down-sampling, such
as key-frames [11], the batch length grows with time which
is a bottleneck [1]. The size of the map however grows with
the explored space and this growth rate is typically controlled
by the user.

In Figure 1 an empirical comparison between the calculation
time for a NLS Jacobian and a Q-function gradient together
with E-RTS is illustrated as a function of the number of land-
marks and the batch length. Here, the ratio between calculation
times for one iteration is defined as tNLS/(t∇θQ + tE-RTS).
GraphSLAM is not simulated since we do not have any
implementation for this particular setup. Here it is assumed
that all the landmarks are measured in every image, i.e., the
worst case. It can be seen that the relative calculation time
grows approximately linearly with the number of images for
a fixed number of landmarks. For an increasing number of

Complexity Ratio EM-
SLAM

NLS-SLAM GraphSLAM

N �M O(Nc) O(NcN) O(NcN)

Average N ≈M O(Nc) O(NcN) O(Nc)

N �M O(Nc) O(NcN) O(Nc/M)

N �M O(N) O(N2) O(N2)

Worst case N ≈M O(NM) O(N2M) O(N2)

N �M O(M) O(M) O(N2)

Table I: Comparison of the average and the worst case (all
landmarks are measured all the time) complexity for evaluating
elements needed in one iteration for the three methods with
respect to the relative number of time steps and landmarks.

0

50

100

150

200

0

20

40

60

80
0

2

4

6

8

10

12

#Images

Relative calculation time between NLS and EM

#LM

Figure 1: Relative calculation time between a NLS Jaco-
bian and a gradient of the Q-function together with E-RTS,
tNLS/(t∇θQ + tE-RTS).

landmarks, given a fixed number of images, the ratio seems
to reach a constant value. These empirical results are in line
with the theoretical calculations in Table I.

Also, in Table II a result of a small simulated complexity
benchmark example between EM-SLAM and NLS-SLAM is
shown. In this example the number of landmarks is M = 50,
number of time steps (images) is N = 205 and number of
observations is Nc = 4829 so the number of landmarks is
approximately 4 times smaller than number of time steps and
all the landmarks are not observed the whole time. The total
solution time is around 3 times lower for EM-SLAM method
than NLS-SLAM method.

Furthermore, for large maps, the limited memory version
L-BFGS could be used. It has footprint of O(kM) for both
storage and computations, where k is the number of iterations.

Method EM-SLAM NLS-SLAM
Relative solution time [-] 1.0 3.1

Table II: Complexity comparison of the total solution time for
each method through simulation. The number of landmarks is
M = 50, the number of observations is Nc = 4829 and the
number of time steps is N = 205.

8

VII. OBTAINING AN INITIAL ESTIMATE

Both EM and NLS-SLAM need an initial value of the
parameters in order to do the iterations. This initial value is
also important for the performance of the methods, since both
formulations are non-linear and non-convex. The initialisation
can be performed by simply randomising parameter values but
that can lead to solutions that are stuck in local minima. A
better estimate of the initial values can be obtained by noting
that the NLS-SLAM problem, defined in (17), is actually
almost linear if rotations are fixed, [20]. In that case (13b)
is not needed any more and (13a) is linear in parameters. For
the landmark measurements consider the projection according
to (11) which for fixed rotations can be rewritten as[

[ut R3,:(qt)− R1,:(qt)](m− pt)
[vt R3,:(qt)− R2,:(qt)](m− pt)

]
=

[
R3,:(qt)(m− pt)eut
R3,:(qt)(m− pt)evt

]
,

(19)

where Ri,:(qt) denotes the i:th row of the rotation matrix.
The only thing that makes this equation non-linear is the
parameter dependent noise term. However this formulation
leads to a well known Iterative Reweighted Least Squares
(IRLS) method which is solved efficiently, see e.g., [42]. The
accuracy of the estimate obtained in this way is dependent of
the fixed rotations, but it still constitutes a much better initial
value for the EM and NLS-SLAM then simply random values,
see [43] for more details. The initial rotations can be obtained
in several ways, for example simply by integrating rate gyros
using (9c), or by some camera based method like 8-point, see
e.g., [35]. The first method works quite fine if the gyro bias is
small, while the latter one demands that the scene geometry
is beneficial.

VIII. RESULTS

Evaluation of the proposed method is carried out on both
simulated and experimental data.

A. Simulations

Simulations give the ability to choose noise levels, cor-
respondences, the true parameters and the true accuracy of
the method. Monte Carlo (MC) simulations with 30 different
measurement noise realisations have been performed in order
to evaluate the performance of the proposed method and to
compare EM-SLAM with NLS-SLAM. In Figure 2 the setup
used for the simulations is illustrated and it is fixed for all the
30 simulations and the realisations of the measurement noise
on accelerations, angular rates and camera observations are
sampled from Gaussian distributions. The standard deviations
for these distributions are σa = 10−3 m/s2, σcam = 10−4 m
and σω = .5◦/s.

Table III shows the average of the landmark estimation error
and its standard deviation, averaged over all landmarks, for the
two methods, while in Figure 3 the RMSE of the trajectory, for
both methods, is plotted. In general, both methods have similar
performance in terms of accuracy for both map and navigation
states, although the NLS-SLAM has a smaller variance for the
landmark estimate.

−30
−25

−20
−15

−10
−5

0
5

−50

−40

−30

−20

−10

0

−2

−1.5

−1

−0.5

0

0.5

X [m]

Trajectory

Y [m]

Z
 [m

]

(a)

−40

−20

0

20

40

60

−40

−20

0

20

40

60

−40

−35

−30

−25

−20

−15

−10

−5

0

X [m]

Landmarks

Y [m]

Z
 [
m

]

(b)

Figure 2: Environment setup used in Monte Carlo simulated
experiments with simulated trajectory in (a) and simulated
landmarks in (b). Both trajectory and landmarks are projected
on all planes for a clearer view.

Method EM-SLAM NLS-SLAM
Mean ‖θ̂ − θ∗‖/dim(θ∗)[m] 0.030 0.030

Std. Dev. [m] ±0.003 ±0.0002

Table III: Mean estimation error and its standard deviation (1-
σ), for the varying measurement noise (30 MC realisations).
Note that θ contains only landmarks in this case.

B. Real Data Experiments

For the real data experiment, we use the data collected with
the Yamaha Rmax UAV helicopter, owned by the Department
of Computer and Information Science at Linköping University,
during the flight trials performed in Revingehed, southern
Sweden. The helicopter is equipped with GPS, IMU unit
containing accelerometers and gyroscopes, monocular camera
and facilities to record these data. In this experiment the IMU
data rate was 20Hz and the image rate was 4Hz. For more

9

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Position RMSE
X

 [
m

]

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

Y
 [

m
]

0 1 2 3 4 5 6 7 8
0

0.05

0.1

Z
 [

m
]

Time [s]

Figure 3: RMSE of EM-SLAM and NLS-SLAM estimated
trajectories, EM in solid, NLS in dashed. 30 MC simulations
are used.

Figure 4: Yamaha Rmax helicopter used for data collection in
the real data experiment.

information about the test platform see e.g., [44].
Camera calibration parameters as well as relative position

between the camera and the IMU are known. An open
source SIFT implementation from [45] was used to extract
the features used as camera measurements. We used a part
of the total trajectory, lasting about 80s and making a loop
covering about 100×50 m2, see Figure 5 where the GPS data
for the trajectory is shown in the Nort/East local plane. This
GPS data is only used as a ground truth in order to evaluate
the trajectory estimation accuracy from EM-SLAM and NLS-
SLAM methods. In the data, the number of used images is
325 and the number of landmarks is 106.

The position error for each axis is shown in Figure 6 for
the EM-SLAM and NLS-SLAM respectively. For the X and Y
position, i.e., horizontal plane, both methods have very similar
error, of about couple of meters, with maximum of 5 m. For
the Z direction, i.e., altitude, EM-SLAM has a smaller error,

−70 −60 −50 −40 −30 −20 −10 0 10 20 30
−25

−20

−15

−10

−5

0

5

10

15

X (East direction) [m]

Y
 (

N
or

th
 d

ire
ct

io
n)

 [m
]

GPS trajectory

Figure 5: GPS trajectory of the helicopter in the East/North
local plane.

0 10 20 30 40 50 60 70 80 90
−10

−5

0

5
Position errors for EM−SLAM and NLS−SLAM

∆
X

 [m
]

0 10 20 30 40 50 60 70 80 90
−10

−5

0

5

∆
Y

 [m
]

0 10 20 30 40 50 60 70 80 90
−10

−5

0

5

∆
Z

 [m
]

Time [s]

Figure 6: Errors between GPS based and estimated position
from EM-SLAM (solid) and NLS-SLAM (dashed).

which is in the same order as horizontal error, while NLS-
SLAM has an error which is about twice as big.

In this data set, no ground truth is available for the land-
marks, but we evaluate the estimation performance by repro-
jecting the landmarks 3D position in the images where they
are not observed. These reprojections are visually compared
with the actual measurements from the images in which these
landmarks are observed. Two examples of this comparison
are given in Figure 7. Both EM-SLAM and NLS-SLAM give
similar performance for map estimation.

IX. CONCLUSIONS AND FUTURE WORK

In this work we present a method for visual/inertial SLAM
which uses the EM algorithm to utilize the problem structure
and keep low computational complexity for the case where the
batch length, N is much larger than the number of landmarks,

10

Measurement of a landmark #27 in frame 276

(a)

Projection of a landmark #27 in frame 260

(b)

Measurement of a landmark #40 in frame 1

(c)

Projection of a landmark #40 in frame 320

(d)

Figure 7: Comparison between measured and reprojected
landmarks. Measurement of landmark #27 from image 276
in (a) and its reprojection in image 260 in (b). Measurement
of landmark #40 from image 1 in (c) and its reprojection in
image 320 in (d). EM-SLAM (◦) and NLS-SLAM (+) in both
(b) and (d). Note also that landmarks are not measured in the
images where they are reprojected.

M while maintaining an accuracy which is comparable to
NLS. In average EM-SLAM has O(Nc) complexity, where
Nc is the total number landmark measurements, while NLS-
SLAM and GraphSLAM have O(NcN). In the worst case,
where all landmarks are measured in each frame, both NLS
and GraphSLAM have complexity which is quadratic in batch
length, while EM-SLAM scales linearly in the batch length.
The low computational complexity is obtained by modeling
landmarks as static parameters and platform’s motion as latent
variables.

In future work it would be interesting to change the E-RTS
smoother to a particle smoother as it may handle nonlinearities
in the models better. Finally, the current implementation is not
very efficient in terms of memory or speed and would therefore
be interesting to improve and apply to other sensors.

ACKNOWLEDGMENTS

Authors would like to thank Mariusz Wzorek and Piotr
Rudol at the Department of Computer and Information Science
at Linköping University for the Yamaha Rmax data and
support with these.

APPENDIX

Given a smoothed estimate of the latent variables, x̂s =
x̂1:K|K the measurement function h(x, θ) can be linearised

around these as

h(x, θ) ≈ h(x̂s, θ)︸ ︷︷ ︸
ĥ

+∇xh(x̂s, θ)︸ ︷︷ ︸
H

(x− x̂s)︸ ︷︷ ︸
x̃

. (20)

Using this approximation and expanding the norm in (7) for
one time instant, while dropping the time index for readability,
we obtain

‖y − ĥ−Hx̃‖2R−1 = (y − ĥ−Hx̃)TR−1(y − ĥ−Hx̃) =

yTR−1y − yTR−1ĥ− yTR−1Hx̃−
ĥTR−1y + ĥTR−1ĥ+ ĥTR−1Hx̃−
(Hx̃)TR−1y + (Hx̃)TR−1ĥ+ (Hx̃)TR−1(Hx̃) (21)

and taking the expected value

Eθk{‖y − ĥ−Hx̃‖2R−1} = yTR−1y − yTR−1ĥ−
ĥTR−1y + ĥTR−1ĥ+ Eθk{(Hx̃)TR−1(Hx̃)|Y }, (22)

since all terms with only x̃ evaluate to zero under the as-
sumption (x̃|Y) ∼ N (0, P s). Because (Hx̃)TR−1(Hx̃) is
scalar it is equal to its trace, and by using the trace rule
Tr(ATBA) = Tr(BAAT) together with the linearity of the
trace and expectation operators, the last term becomes

Eθk{(Hx̃)TR−1(Hx̃)|Y } = Eθk{Tr((Hx̃)TR−1(Hx̃))|Y }
= Eθk{Tr(R−1Hx̃x̃THT)|Y }
= Tr(R−1HEθk{x̃x̃T |Y }HT)

= Tr(R−1HP sHT) (23)

which results in

Q(θ, θk) ≈ const.−
1

2

∑
t∈G

(
‖yt − ĥt‖2R−1 + Tr(R−1HtP

s
t|NH

T
t)
)

=

const.− 1

2

∑
t∈G

(
‖yt − ht(x̂t|N , θ)‖2R−1+

Tr(R−1∇xht(x̂t|K , θ)P st|K(∇xht(x̂t|K , θ))T)
)

(24)

which is the expression in (8).

REFERENCES

[1] S. Williams, V. Indelman, M. Kaess, R. Roberts, J. Leonard, and
F. Dellaert, “Concurrent filtering and smoothing: A parallel architecture
for real-time navigation and full smoothing,” International Journal of
Robotics Research, vol. 33, pp. 1544–1568, 2014. [Online]. Available:
http://ijr.sagepub.com/content/33/12/1544

[2] M. Kaess and A. Ranganathan and F. Dellaert, “iSAM: Incremental
Smoothing and Mapping,” IEEE Transansactions on Robotics, vol. 24,
no. 6, pp. 1365–1378, December 2008.

[3] H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Scale drift-aware large
scale monocular slam,” in Robotics: Science and Systems, Y. Matsuoka,
H. F. Durrant-Whyte, and J. Neira, Eds. The MIT Press, 2010.

[4] A. Kim and R. Eustice, “Pose-graph visual slam with geometric model
selection for autonomous underwater ship hull inspection,” in Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Confer-
ence on, 2009, pp. 1559–1565.

[5] Z. Sjanic, M. A. Skoglund, T. B. Schön, and F. Gustafsson, “A Nonlinear
Least-Squares Approach to the SLAM Problem.” in Proceedings of 18th
IFAC World Congress, Milano, Italy, August/Septemeber 2011.

11

[6] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” AUTONOMOUS ROBOTS, vol. 4, pp. 333–349,
1997.

[7] S. Thrun and M. Montemerlo, “The GraphSLAM algorithm with appli-
cations to large-scale mapping of urban structures,” INTERNATIONAL
JOURNAL ON ROBOTICS RESEARCH, vol. 25, no. 5, pp. 403–430,
2006.

[8] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based SLAM,” IEEE Intelligent Transportation Systems Mag-
azine, vol. 2, no. 4, pp. 31–43, 2011.

[9] E. Eade, P. Fong, and M. Munich, “Monocular graph SLAM with
complexity reduction,” in Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, Oct 2010, pp. 3017–3024.

[10] K. Konolige and M. Agrawal, “FrameSLAM: From Bundle Adjustment
to Real-Time Visual Mapping,” IEEE Transactions on Robotics, vol. 24,
no. 5, pp. 1066–1077, 2008.

[11] H. Strasdat, J. M. M. Montiel, and A. Davison, “Real-time monocular
slam: Why filter?” in Robotics and Automation (ICRA), 2010 IEEE
International Conference on, May 2010, pp. 2657–2664.

[12] E. Olson, “Real-time correlative scan matching,” in Robotics and Au-
tomation, 2009. ICRA ’09. IEEE International Conference on, May
2009, pp. 4387–4393.

[13] A. W. Fitzgibbon and A. Zisserman, “Automatic Camera Recovery for
Closed or Open Image Sequences,” in ECCV (1), 1998, pp. 311–326.

[14] C. Taylor, D. Kriegman, and P. Anandan, “Structure and Motion in
Two Dimensions from Multiple Images: A Least Squares Approach,”
in Proceedings of the IEEE Workshop on Visual Motion, Princeton, NJ,
USA, October 1991, pp. 242 –248.

[15] D. C. Brown, “A solution to the general problem of multiple station
analytical stereo triangulation,” Technical Report RCA-MTP Data Re-
duction, Patrick Airforce Base, Florida, Tech. Rep. Technical Report No.
43 (or AFMTC TR 58-8), 1958.

[16] B. Triggs, P. Mclauchlan, R. Hartley, and A. Fitzgibbon, “Bundle adjust-
ment - a modern synthesis,” in Vision Algorithms: Theory and Practice,
ser. Lecture Notes in Computer Science, B. Triggs, A. Zisserman, and
R. Szeliski, Eds., vol. 1883. Springer-Verlag, 2000, pp. 298–372.

[17] M. Bryson and M. Johnson-Roberson and S. Sukkarieh, “Airborne
smoothing and mapping using vision and inertial sensors,” in Pro-
ceedings of the International Conference on Robotics and Automation
(ICRA). Kobe, Japan: IEEE Press, 2009, pp. 3143–3148.

[18] L. Kneip, M. Chli, and R. Siegwart, “Robust Real-Time Visual Odom-
etry with a Single Camera and an IMU,” in Proceedings of the British
Machine Vision Conference. BMVA Press, 2011, pp. 16.1–16.11,
http://dx.doi.org/10.5244/C.25.16.

[19] L. Kneip, A. Martinelli, S. Weiss, D. Scaramuzza, and
R. Siegwart, “Closed-Form Solution for Absolute Scale Velocity
Determination Combining Inertial Measurements and a Single
Feature Correspondence,” in International Conference on Robotics
and Automation, Shanghai, China, May 2011. [Online]. Available:
http://hal.inria.fr/hal-00641772

[20] A. Martinelli, “Vision and IMU Data Fusion: Closed-Form Solutions
for Attitude, Speed, Absolute Scale, and Bias Determination,” Robotics,
IEEE Transactions on, vol. 28, no. 1, pp. 44 –60, feb. 2012.

[21] T. Lupton and S. Sukkarieh, “Visual-Inertial-Aided Navigation for High-
Dynamic Motion in Built Environments Without Initial Conditions,”
Robotics, IEEE Transactions on, vol. 28, no. 1, pp. 61 –76, feb. 2012.

[22] M. Li and A. I. Mourikis, “High-precision, consistent ekf-based
visual-inertial odometry,” International Journal of Robotics Research,
vol. 32, no. 6, pp. 690–711, May 2013. [Online]. Available:
http://dx.doi.org/10.1177/0278364913481251

[23] V. Indelman, A. Melim, and F. Dellaert, “Incremental light bundle ad-
justment for robotics navigation,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 11/2013 2013. [Online]. Available:
http://www.cc.gatech.edu/∼vindelma/Publications/indelman13iros.pdf

[24] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
Likelihood from Incomplete Data via the EM Algorithm,” Journal
of the Royal Statistical Society. Series B (Methodological),
vol. 39, no. 1, pp. 1–38, 1977. [Online]. Available:
http://web.mit.edu/6.435/www/Dempster77.pdf

[25] R. I. Hartley and P. Sturm, “Triangulation,” Computer Vision and Image
Understanding, vol. 68, no. 2, pp. 146 – 157, 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1077314297905476

[26] Rauch, H. E. and Striebel C. T. and Tung F., “Maximum likelihood
estimates of linear dynamic systems,” AIAA Journal, vol. 3, no. 8, pp.
1445–1450, 1965.

[27] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York: Springer, 2006.

[28] T. B. Schön, “An Explanation of the Expectation Maximization Algo-
rithm,” Department of Electrical Engineering, Linköping University, SE-
581 83 Linköping, Sweden, Tech. Rep. LiTH-ISY-R-2915, Aug. 2009.

[29] A. Wills, B. Ninness, and T. Schön, “Estimating State-Space Models in
Innovations Form using the Expectation Maximisation Algorithm,” in
The 49th IEEE Conference on Decision and Control (CDC), Atlanta,
USA, Dec. 2010.

[30] Z. Ghahramani and S. T. Roweis, “Learning Nonlinear Dynamical
Systems using an EM Algorithm,” in Advances in Neural Information
Processing Systems, vol. 11. MIT Press, 1999, pp. 599–605.

[31] S. Duncan and M. Gyongy, “Using the EM algorithm to estimate the
disease parameters for smallpox in 17th century London,” in Computer
Aided Control System Design, 2006 IEEE International Conference on
Control Applications, 2006 IEEE International Symposium on Intelligent
Control, 2006 IEEE, oct. 2006, pp. 3312 –3317.

[32] E. Ozkan, C. Fritsche, and F. Gustafsson, “Online EM algorithm for
joint state and mixture measurement noise estimation,” in Information
Fusion (FUSION), 2012 15th International Conference on, july 2012,
pp. 1935 –1940.

[33] S. Le Corff, G. Fort, and E. Moulines, “Online Expectation Maxi-
mization algorithm to solve the SLAM problem,” in Statistical Signal
Processing Workshop (SSP), 2011 IEEE, june 2011, pp. 225 –228.

[34] W. J. Rugh, Linear System Theory. Prentice Hall, Engelwood Cliffs,
NJ, 2nd ed., 1996.

[35] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2004.

[36] C. Bibby and I. Reid, “Simultaneous localisation and mapping in
dynamic environments (SLAMIDE) with reversible data association,”
in In Proceedings of Robotics: Science and Systems, 2007.

[37] F. Dellaert, S. Seitz, C. Thorpe, and S. Thrun, “EM, MCMC, and Chain
Flipping for Structure from Motion with Unknown Correspondence,”
Machine Learning, vol. 50, no. 1-2, pp. 45–71, 2003.

[38] Dellaert, F. and Kaess, M., “Square Root SAM: Simultaneous
Localization and Mapping via Square Root Information
Smoothing,” International Journal of Robotics Research,
vol. 25, no. 12, pp. 1181–1203, 2006. [Online]. Available:
http://dx.doi.org/10.1177/0278364906072768

[39] M. D. Shuster, “Constraint in attitude estimation part II: Unconstrained
estimation,” The Journal of the Astronautical Sciences, vol. 51, no. 1,
pp. 75–101, Jan.–Mar. 2003.

[40] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
Shanghai, China, May 2011.

[41] B. D. O. Anderson and J. B. Moore, Optimal Filtering, T. Kailath, Ed.
Prentice-Hall, 1979.

[42] Å. Björck, Numerical Methods for Least Squares Problems. SIAM,
1996.

[43] M. A. Skoglund, Z. Sjanic, and F. Gustafsson, “Initialisation and
Estimation Methods for Batch Optimisation of Inertial/Visual SLAM,”
Department of Electrical Engineering, Linköping University, Tech. Rep.
LiTH-ISY-R-3065, 2013.

[44] G. Conte and P. Doherty, “Vision-Based Unmanned Aerial Vehicle
Navigation Using Geo-Referenced Information,” EURASIP Journal on
Advances in Signal Processing, vol. 2009, pp. 1–18, Jun. 2009.

[45] A. Vedaldi and B. Fulkerson, “VLFeat: An Open and Portable
Library of Computer Vision Algorithms,” 2008. [Online]. Available:
http://www.vlfeat.org/

Zoran Sjanic received the M.Sc. degree in computer
science and engineering 2001 and the Ph.D. degree
in Automatic Control in 2013 both from Linköping
University. His research interests are sensor fusion
for navigation of manned and unmanned aircraft, Si-
multaneous Localisation and Mapping (SLAM) and
nonlinear estimation methods. He is also employed
by Saab Aeronautics in Linköping, Sweden, since
2001 where he works at the Sensor Fusion and
Tactical Control Department as a system engineer.
He also worked as a technical manager for the

navigation system in both Gripen fighter aircraft and Skeldar UAV before
starting his PhD studies in 2008.

12

Martin A. Skoglund received the M.Sc. degree in
Applied Physics and Electrical Engineering in 2008,
and the Ph.D. degree in Automatic Control in 2014,
both from Linköping University. At present he is
working as a postdoctoral researcher at the Division
of Automatic Control at the Department of Electrical
Engineering, Linköping University, Linköping, Swe-
den. His research interests include inertial navigation
and mapping, sensor fusion and nonlinear estimation
with applications to image processing and mobile
robotics.

Fredrik Gustafsson is professor in Sensor In-
formatics at Department of Electrical Engineering,
Linköping University, since 2005. He received the
M.Sc. degree in electrical engineering 1988 and the
Ph.D. degree in Automatic Control, 1992, both from
Linköping University. During 1992-1999 he held
various positions in automatic control, and 1999-
2005 he had a professorship in Communication Sys-
tems. His research interests are in stochastic signal
processing, adaptive filtering and change detection,
with applications to communication, vehicular, air-

borne, and audio systems. He is a co-founder of the companies NIRA
Dynamics (automotive safety systems), Softube (audio effects) and SenionLab
(indoor positioning systems).

He was an associate editor for IEEE Transactions of Signal Process-
ing 2000-2006 and is currently associate editor for IEEE Transactions on
Aerospace and Electronic Systems and EURASIP Journal on Applied Signal
Processing. He was awarded the Arnberg prize by the Royal Swedish
Academy of Science (KVA) 2004, elected member of the Royal Academy of
Engineering Sciences (IVA) 2007, elevated to IEEE Fellow 2011 and awarded
the Harry Rowe Mimno Award 2011 for the tutorial ”Particle Filter Theory
and Practice with Positioning Applications”, which was published in the AESS
Magazine in July 2010.

