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Abstract
Small and medium sized Unmanned Aerial Vehicles (UAV) are today used in military
missions, and will in the future find many new application areas such as surveillance for
exploration and security. To enable all these foreseen applications, the UAV’s have to
be cheap and of low weight, which restrict the sensors that can be used for navigation
and surveillance. This thesis investigates several aspects of how fusion of navigation
and imaging sensors can improve both tasks at a level that would require much more
expensive sensors with the traditional approach of separating the navigation system from
the applications. The core idea is that vision sensors can support the navigation system by
providing odometric information of the motion, while the navigation system can support
the vision algorithms, used to map the surrounding environment, to be more efficient.
The unified framework for this kind of approach is called Simultaneous Localisation and
Mapping (SLAM) and it will be applied here to inertial sensors, radar and optical camera.

Synthetic Aperture Radar (SAR) uses a radar and the motion of the UAV to provide an
image of the microwave reflectivity of the ground. SAR images are a good complement to
optical images, giving an all-weather surveillance capability, but they require an accurate
navigation system to be focused which is not the case with typical UAV sensors. However,
by using the inertial sensors, measuring UAV’s motion, and information from the SAR im-
ages, measuring how image quality depends on the UAV’s motion, both higher navigation
accuracy and, consequently, more focused images can be obtained. The fusion of these
sensors can be performed in both batch and sequential form. For the first approach, we
propose an optimisation formulation of the navigation and focusing problem while the
second one results in a filtering approach. For the optimisation method the measurement
of the focus in processed SAR images is performed with the image entropy and with an
image matching approach, where SAR images are matched to the map of the area. In the
proposed filtering method the motion information is estimated from the raw radar data
and it corresponds to the time derivative of the range between UAV and the imaged scene,
which can be related to the motion of the UAV.

Another imaging sensor that has been exploited in this framework is an ordinary optical
camera. Similar to the SAR case, camera images and inertial sensors can also be used to
support the navigation estimate and simultaneously build a three-dimensional map of the
observed environment, so called inertial/visual SLAM. Also here, the problem is posed in
optimisation framework leading to batch Maximum Likelihood (ML) estimate of the nav-
igation parameters and the map. The ML problem is solved in both the straight-forward
way, resulting in nonlinear least squares where both map and navigation parameters are
considered as parameters, and with the Expectation-Maximisation (EM) approach. In the
EM approach, all unknown variables are split into two sets, hidden variables and actual pa-
rameters, and in this case the map is considered as parameters and the navigation states are
seen as hidden variables. This split enables the total problem to be solved computationally
cheaper then the original ML formulation. Both optimisation problems mentioned above
are nonlinear and non-convex requiring good initial solution in order to obtain good pa-
rameter estimate. For this purpose a method for initialisation of inertial/visual SLAM is
devised where the conditional linear structure of the problem is used to obtain the initial
estimate of the parameters. The benefits and performance improvements of the methods
are illustrated on both simulated and real data.
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Populärvetenskaplig sammanfattning

Obemannade flygande farkoster, eller Unmanned Aerial Vehicles (UAV) på engelska, är
en typ av farkoster där operatören inte sitter ombord utan styr den från marken. Dessa
används idag, i huvudsak, av militären för olika typer av uppdrag, men det finns en stor
potential för framtida civil användning, speciellt inom övervaknings- och kartläggnings-
uppdrag. Dessutom ger det faktum att ingen människa sitter i UAV:en en viktig fördel
över bemannade farkoster, nämligen att även uppdrag som skulle kunna vara farliga nu
kan utföras utan att liv riskeras. För att göra UAV-operatörer ännu effektivare i utförandet
av uppdragen, måste farkosterna bli mer och mer autonoma, dvs. ha förmågan att själva
utföra vissa uppgifter, som till exempel flyga en fördefinierad rutt. En kritisk komponent i
detta är navigeringssystemet, som har som huvuduppgift att beräkna och förse olika andra
system med farkostens position, höjd, fart och orientering. För att göra detta, används oli-
ka mätsensorer som mäter UAV:ens rörelse eller dess läge i förhållande till andra objekt
med kända positioner. Kraven på navigeringssystemet för att kunna klara av att ge stöd
till övriga system är att det måste ha en hög noggrannhet och tillförlitlighet.

Idag finns det navigeringshjälpmedel som ger möjlighet till en väldigt noggrann navige-
ring, som det globala satellit navigeringssystemet, eller Global Positioning System (GPS)
på engelska. Det systemet använder satelliter som kretsar runt jorden för att bestämma
sin egen position. Ett problem som dessa har är att tillgången till dem inte alltid kan
förutsättas beroende på olika omständigheter. Satelliter kanske inte syns från nuvarande
position eller är det någon som avsiktligt stör ut dessa signaler. I sådana situationer är ett
navigeringssystem som är oberoende av externa hjälpmedel högst önskvärt.

Denna avhandling presenterar olika metoder som, genom att använda information från
olika sensorer som en typisk UAV bär med sig, skapar ett navigeringssystem som kan
klara de krav som ställs på det. Sensorerna som används är främst bildalstrande sensorer,
såsom optisk kamera och radar, men även tröghetssensor som mäter UAV:ens rörelse.
Metoderna bygger på att de bildalstrande sensorerna observerar omgivningen UAV:en
flyger i, och på så sätt räknar ut hur den har rört sig. Detta löses med ett matematisk
ramverk som kallas optimering, där det gäller att hitta den bästa lösningen till det ställda
problemet.

En annan fördel sensorer såsom kamera eller radar har är att med hjälp av dessa kan kartor
över omgivningen skapas samtidigt som man löser navigeringsproblemet. Denna procedur
kallas Simultaneous Localisation and Mapping, eller förkortat SLAM, på engelska och är
huvudmetoden som utnyttjas i denna avhandling. De resulterande kartorna kan användas
för olika syften, t.ex. att skapa en karta över ett landskap där förändringar av omgivningen
kan ha skett som efter en naturkatastrof. De resultat som har erhållits visar att de använda
metoderna har en betydande potential att användas i praktiken för att skapa ett robust
navigeringssystem.

vii





Acknowledgments
First of all, I would like to thank all the people that make this little thing that I have
done possible, Prof. Fredrik Gustafsson, my supervisor, and Dr. Thomas Schön, my co-
supervisor, for all the guidance and help during this journey. Also, my thanks go to Prof.
Lennart Ljung and people at Saab Aeronautics in Linköping for giving me this opportu-
nity in the first place. All my former and present bosses; Dr. Predrag Pucar, Niklas Ferm,
Jonas Palm, Björn Kullberg, Tobias Jansson and research responsible Dr. Gunnar Holm-
berg. Your support during this time was priceless, and don’t worry, soon I’ll be back to
actually do something useful. Thanks go to the Control Theory group’s boss Prof. Svante
Gunnarsson for taking such a good care of the group and to all the administrators Ulla
Salaneck, Åsa Karmelind and Ninna Stensgård for taking care of all the practicalities.

During this long journey, you can’t survive alone, and that is why some other people de-
serve my thanks. Naturally, people at the Control Theory group with which I, in some way,
worked with, Dr. Martin Enqvist, Lic. Roger Larsson, Dr. Christian Lundquist, Dr. David
Törnqvist, Dr. Fredrik Gunnarsson, Dr. Carsten Fritsche, Dr. Umut Orguner and especially
“my partner in crime” Lic. Martin “Morgan” Skoglund. I would also like to thank people
from different parts of Saab, Dr. Patrik Dammert, Dr. Hans Hellsten, Dr. Per-Johan Nord-
lund, Dr. Ola Härkegård and Dr. Sören Mollander for the help and good discussions. It
was a pleasure to cooperate with all of you.

And since “all work and no play makes Jack a dull boy”, it is important to have fun besides
all the work. Therefore it is nice that a whole bunch of people in the Control Theory group
know how to have fun. So thanks to (in order of appearance) Dr. Jonas Callmer, Dr. Karl
Granström, Dr. Gustaf Hendeby, Dr. Henrik Ohlsson, Dr. Christian Lundquist, Dr. Chris-
tian Lyzell, Dr. Emre Özkan, Dr. Henrik Tidefelt, Dr. Ragnar Wallin, Dr. Daniel Ankel-
hed, Lic. Patrik Axelsson, Lic. André Carvalho Bittencourt, Niclas Evestedt, Lic. Rikard
Felkeborn, Ylva Jung, Lic. Sina “my name is to long to fit on the Amex card” Koshfetrat
Pakazad, Lic. Roger Larsson, Jonas Linder, George Mathai, Isak Nielsen, Hanna Nyqvist,
Michael Roth, Marek Syldatk, Lic. Niklas Wahlström. And Jonas, Kalle and Christian
Lu., thanks for sharing so many nights out both in Sweden and elsewhere.

Special thanks go to people that shared the working room with me during all these years
(and actually kept their mental sanity(?!)) Lic. Daniel Petersson, Lic. Fredrik “quiz” Lind-
sten and Manon Kok. Thanks for making our room a fun and nice place to work in.

All this work would be impossible without an infinite support from my family and friends,
thanks for all the support. And Alma, I know that this took toooooo much time but it is
soon finished ¨̂ , so thanks for having patience and trust in me during all this time ♥.

Last, but not least, thanks to the LINK-SIC Industry Excellence Center and Saab for
financing my studies.

Linköping, September 2013
Zoran Sjanic

ix





Contents

Notation xv

I Background

1 Introduction 3
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Included Publications . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Other Publications . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Estimation and Sensor Fusion Framework 11
2.1 Estimation Theory for Dynamical Systems . . . . . . . . . . . . . . . . 11
2.2 Simultaneous Localisation and Mapping . . . . . . . . . . . . . . . . . 15

2.2.1 SLAM System Models . . . . . . . . . . . . . . . . . . . . . . 15

3 Navigation System and Sensors 21
3.1 UAV Navigation System . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Inertial Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Synthetic Aperture Radar . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Real and Synthetic Aperture Radar . . . . . . . . . . . . . . . . 26
3.3.2 Measuring Focus . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Evaluation on Test Optical Image . . . . . . . . . . . . . . . . 35
3.3.4 Evaluation on Test SAR Images . . . . . . . . . . . . . . . . . 35

3.4 Optical Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.1 Projective Geometry Model . . . . . . . . . . . . . . . . . . . 51
3.4.2 Image Feature Extraction . . . . . . . . . . . . . . . . . . . . . 56

4 Concluding Remarks 59
4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xi



xii Contents

Bibliography 61

II Publications

A Simultaneous Navigation and Synthetic Aperture Radar Focusing 67
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2 Notation and Problem Formulation . . . . . . . . . . . . . . . . . . . . 72
3 Navigation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1 Aircraft Model . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 Navigation Performance . . . . . . . . . . . . . . . . . . . . . 76

4 Focus Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1 Two Entropy Measures . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Focus Measure Performance . . . . . . . . . . . . . . . . . . . 77

5 Search Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1 Joint Optimisation of Trajectory and Focus . . . . . . . . . . . 81
5.2 Gradient Search . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Calculating the Gradient . . . . . . . . . . . . . . . . . . . . . 82

6 Numerical Examples for Simulated Images . . . . . . . . . . . . . . . 85
6.1 Two-Dimensional Optimisation . . . . . . . . . . . . . . . . . 85
6.2 High-Dimensional Optimisation . . . . . . . . . . . . . . . . . 87

7 Example with Real SAR Image . . . . . . . . . . . . . . . . . . . . . . 91
8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B Navigation and SAR focusing with Map Aiding 99
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2 SAR Imaging Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3 Motion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.1 SAR Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4 Image Matching Approach . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1 Edge Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Chamfer Image Matching . . . . . . . . . . . . . . . . . . . . 110
4.3 Modified Matching Approach . . . . . . . . . . . . . . . . . . 112

5 Kinematic Parameter Estimation . . . . . . . . . . . . . . . . . . . . . 113
6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1 Results of the Image Matching Approach . . . . . . . . . . . . 114
6.2 Results for the Kinematic Parameters Estimation . . . . . . . . 115
6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 120
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C Navigation and SAR Auto-focusing Based on the Phase Gradient Approach 127
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
2 Sensor Fusion Framework . . . . . . . . . . . . . . . . . . . . . . . . 133
3 Phase Gradient Auto-focusing Method . . . . . . . . . . . . . . . . . . 135

3.1 Basics of the PG method . . . . . . . . . . . . . . . . . . . . . 135



Contents xiii

3.2 Estimating the Phase/Range Gradient . . . . . . . . . . . . . . 136
4 EKF Auto-focusing and Evaluation of the Performance . . . . . . . . . 139

4.1 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . 139
4.2 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . 140
4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 140

5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 145
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

D A Nonlinear Least-Squares Approach to the SLAM Problem 149
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

3.1 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.2 Landmark State Parametrisation . . . . . . . . . . . . . . . . . 154
3.3 Camera Measurements . . . . . . . . . . . . . . . . . . . . . . 155

4 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.1 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.2 Nonlinear Least-Squares Smoothing . . . . . . . . . . . . . . . 156

5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 160
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 161
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

E Initialisation and Estimation Methods for Batch Optimisation of Inertial/Visual
SLAM 167
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

2.1 Position and Orientation . . . . . . . . . . . . . . . . . . . . . 173
2.2 IMU Measurements . . . . . . . . . . . . . . . . . . . . . . . 173
2.3 Camera Measurements . . . . . . . . . . . . . . . . . . . . . . 174

3 SLAM Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.1 Feature Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . 175
3.2 Track Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 176
3.3 Rotation Initialisation . . . . . . . . . . . . . . . . . . . . . . . 177
3.4 Linear SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
3.5 Iterative Outlier Removal . . . . . . . . . . . . . . . . . . . . . 181

4 Nonlinear Least-Squares SLAM . . . . . . . . . . . . . . . . . . . . . 182
5 Heuristic Motivation of the Linear Initialisation . . . . . . . . . . . . . 182
6 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.1 Efficiency of the Linear Initialisation . . . . . . . . . . . . . . 184
6.2 Sensitivity to Initial Rotation Errors . . . . . . . . . . . . . . . 184
6.3 Iterative Outlier Removal . . . . . . . . . . . . . . . . . . . . . 185

7 Real Data Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.1 Clustering Results . . . . . . . . . . . . . . . . . . . . . . . . 190

8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 194



xiv Contents

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

F Expectation-Maximisation Maximum Likelihood Estimation for Inertial/Visual
SLAM 203
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
2 Expectation Maximisation . . . . . . . . . . . . . . . . . . . . . . . . 207
3 EM-SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

3.1 E-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
3.2 M-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
4.1 IMU Parametrisation . . . . . . . . . . . . . . . . . . . . . . . 210
4.2 Camera Measurements . . . . . . . . . . . . . . . . . . . . . . 212

5 Nonlinear Least-Squares . . . . . . . . . . . . . . . . . . . . . . . . . 213
6 Computation Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 214
7 Obtaining an Initial Estimate . . . . . . . . . . . . . . . . . . . . . . . 215
8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.2 Real Data Experiments . . . . . . . . . . . . . . . . . . . . . . 218

9 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 218
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

G Cellular Network Non-Line-of-Sight Reflector Localisation Based on Syn-
thetic Aperture Radar Methods 227
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
2 SAR and Multistatic SAR . . . . . . . . . . . . . . . . . . . . . . . . . 230
3 OFDM Signal and SAR Modeling . . . . . . . . . . . . . . . . . . . . 233
4 Radio Channel Measurements . . . . . . . . . . . . . . . . . . . . . . 234
5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 238
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239



Notation

ABBREVIATIONS

Abbreviation Meaning

3GPP LTE 3rd Generation Partnership Project Long Term Evaluation

ADC Air Data Computer

BFGS Broyden-Fletcher-Goldfarb-Shanno (quasi-Newton algo-
rithm)

CARABAS Coherent All RAdio BAnd Sensing

CML Constrained Maximum Likelihood (estimate)

CMAP Constrained Maximum a Posteriori (estimate)

DCT Discrete Cosine Transform (focus measure)

DOF Degrees Of Freedom

EKF Extended Kalman Filter

EM Expectation-Maximisation

E-UTRAN Evolved Universal Terrestrial Radio Access Network

GNSS Global Navigation Satellite System

GPS Global Positioning System

IDP Inverse Depth Parametrisation

IMU Inertial Measurement Unit

INS Inertial Navigation System

KF Kalman Filter

LS Least-Squares

MAP Maximum a Posteriori (estimate)

MC Monte Carlo (simulation)

MEMS Micro Electro-Mechanical Sensors

ML Maximum Likelihood (estimate)

xv



xvi Notation

ABBREVIATIONS

Abbreviation Meaning

MV Minimum Variance (estimate)

NLS Nonlinear Least-Squares

PG Phase Gradient

RAR Real Aperture Radar

RMSE Root Mean Square Error

SAR Synthetic Aperture Radar

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localisation and Mapping

SML Sum-Modified-Laplacian (focus measure)

SURF Speeded Up Robust Features

TG Tenengrad (focus measure)

UAV Unmanned Aerial Vehicle

VGA Video Graphics Array



Notation xvii

SYMBOLS AND OPERATORS

Notation Meaning

xt States vector

yt Measurements vector

ut Known inputs vector

ft(xt, ut) System dynamics

ht(xt, ut) Measurement function

wt Process noise

et Measurement noise

Qt Process noise variance

Rt Measurement noise variance or range

θ Parameter vector

x̂ Estimate of x

N (µ, P ) Gaussian distribution with mean µ and variance P

x0:N ,X Short notation for {x0, x1, . . . , xN}
pX , pY , pZ Position in Cartesian coordinates

X,Y, Z Position in Cartesian coordinates (alternative notation)

vX , vY , vZ Velocity in X−, Y− and Z−direction, respectively

aX , aY , aZ Acceleration in X−, Y− and Z−direction, respectively

q0, q1, q2, q3 Quaternions

R Rotation matrix

ωX , ωY , ωZ Angular velocity around X−, Y− and Z−direction, respec-
tively

I Optical or (complex-valued) SAR image

R Set of real numbers

O Ordo, in order of
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arg min x Minimising argument with respect to x

arg max x Maximising argument with respect to x

s. t. subject to



xviii Notation

SYMBOLS AND OPERATORS

Notation Meaning

∈ Is member of

/∈ Is not member of

diag{a, b, c} 3 × 3 matrix with elements a, b and c on the diagonal and
zeros otherwise

|x| Absolute value of x or magnitude of a complex number x

dim(x) Dimension of x

arg{x} Argument of a complex number x

<{x} Real part of a complex number x

={x} Imaginary part of a complex number x

A ∗B Convolution of matrices A and B

Tr(A) Trace of a matrix A

det(A) Determinant of a matrix A
∂
∂xf(x, y) Partial derivative of f(x, y) with respect to x
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1
Introduction

In this introductory chapter a background to the work performed in this thesis and a mo-
tivation for it will be presented. Also, a brief introduction to Unmanned Aerial Vehicles
is provided. Furthermore, all the contributions the author has been involved in are listed
and briefly described. This list is divided between publications that are included in the
Part II of the thesis and the ones that are not. The chapter is finalised with the outline of
the thesis.

1.1 Background and Motivation

Throughout the history, the exploratory nature of the people has driven them to travel and
explore their world. This has led to a need for the art of navigation, i.e., knowing where
we are in relation to some known environment. Navigation is used in many different appli-
cations, like sailing with boats or flying with aircraft. Many of these applications should
not be possible without navigation, like intercontinental flights for example. Navigation
also allows for the creation of the systems that can assist human operators in performing
different tasks (or even completely remove them), where operating the actual vehicle, like
e.g., flying, is the most basic task that the operator can be assisted with. An example of
aerial vehicles where a human operator’s involvement is partially or completely removed
is the Unmanned Aerial Vehicles (UAV). The most obvious thing in the case of UAVs is
that the operator is not actually sitting in the UAV, but rather is controlling it remotely
from the ground. In this way, the UAVs can carry out missions that might be dangerous
and where a risk for a loss of an aircraft is high. Another case might be long reconnais-
sance missions lasting for 24 hours, where it is impossible to have one pilot or crew to
operate for so long, like for Northrop-Grumman Global Hawk, Figure 1.1.

Today, most of the UAVs are used for military purposes, such as reconnaissance of the

3
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Figure 1.1: Northrop-Grumman Global Hawk fixed wing UAV. Image: Northrop-
Grumman website.

battlefield or enemy’s forces. When it comes to the civilian applications, the UAVs are not
present in a bigger scale today. However, there is a huge potential for using the UAVs in
the civilian sector, such as police or fire departments or environment surveying missions,
like assessing the damage after catastrophes like floods or earthquakes. In Figure 1.2 some
of these concepts are illustrated. Actually, saying that UAVs are not used in the civilian
sector is, from the technical point of view, not entirely correct. Auto-pilots are used in
all commercial airplanes for about 95% of the flight time implying that it is actually the
“manned” UAVs that are used every day. The potential is reinforced by the fact that many
of the tasks that the UAVs might perform are usually long, boring or, as mentioned, dan-
gerous. Also, an advantage of using UAVs over an manned aircraft is that an operator
should be able to concentrate on the mission instead of concentrating on the basic tasks,
like flying an aircraft for example. It is therefore crucial to build UAVs with as much au-
tonomy and support in the basic functions as possible. This implies that onboard systems
must be able to handle different situations, that may arise during the mission, without the
constant monitoring of the operator.

One of the most important parts of the total system to enable this is the navigation sys-
tem of the UAV. The navigation system provides all the important quantities needed for
the UAV to operate autonomously. In order to be able to do this with high reliability,
the navigation system must have high accuracy and robustness. This could be realised
with the navigation aids that give high quality navigation performance, like Global Nav-
igation Satellite Systems (GNSS) of which Nav-Star Global Positioning System (GPS)
(GPS, 2008) is the most famous one. However, the availability of these external naviga-
tion aids cannot be assumed in many applications. This can be caused by different things,
like occlusions rendering the reception of the satellite signals impossible or even mali-
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(a) Disaster damage assessing. (b) Oil spill identification.

(c) Power lines surveying. (d) Riots monitoring.

Figure 1.2: Some of the examples of UAV usage areas in the civilian sector. Images:
c© Saab AB.

cious jamming of the signals by opposing military force. In all these cases, some kind
of navigation system that is independent of the external systems, like satellites, is highly
desirable. Such problem can, in general, be solved with expensive and usually big and
heavy components, e.g., high-grade Inertial Navigation Systems (INS), like it is done in
commercial or fighter aircraft. Since another reason for using UAVs is that they should
be cheaper and smaller than manned aircraft, this is not a very good option. An exam-
ple of this is Saab V-200 Skeldar rotor UAV, Figure 1.3, which weighs 200 kg and has a
length of approximately 4 m. In this case the less the components weigh the more fuel
can be carried, which in turn gives longer mission time. The conclusion is that tactical
performance, like endurance, puts the requirements on the choice of the components and
the design of the UAV. The end result is that the used equipment, including the navigation
system, must be cheap (in this context cheap means a couple of thousand USD class),
small and lightweight. These constraints are often in conflict with the previously stated
requirements on accuracy and robustness.

In the cases where UAVs are used for surveillance and reconnaissance missions, it is im-
portant to create an overview of the environment where the operation is carried out. For
example, during a flood the configuration of the landscape changes and it is important to
obtain the latest information about the status of the environment. In the more military ori-
ented applications, an UAV can be used to create an up-to-date map of the interesting area
for tactical evaluation of the mission or if the prior map was not available. Furthermore,
the maps can also be used for navigation purposes, if the UAV carries sensors that can
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Figure 1.3: Saab V-200 Skeldar rotor UAV. Image: c© Saab AB. Photographer:
Stefan Kalm.

observe the environment and in that way relate these observations to the maps, serving as
an alternative to the high-precision external aids, like GPS.

The work in this thesis is motivated by the above-mentioned aspects of the navigation
systems in UAVs. Due to restrictions on weight and size of the equipment in small UAVs,
high-performing inertial navigation systems, which are both large in size and heavy, are
not a feasible option. Less accurate inertial navigation systems are prone to drift in navi-
gation parameters making them dependent on external aids. Fortunately, UAVs are often
equipped with imaging sensors like optical camera or imaging radar, usually due to the
mission requirements, allowing us to use these and support the navigation system. Since
these sensors primarily observe the surrounding environment, it is also possible to actually
create the map of this environment at the same time as localising the UAV. This procedure
is known as Simultaneous Localisation and Mapping, or SLAM (Durrant-Whyte and Bai-
ley, 2006; Bailey and Durrant-Whyte, 2006), and will be used as an unified framework
in order to perform stable navigation and mapping of the environment. These maps can
be used for different purposes, ranging from tactical evaluation of the terrain to creating
high-fidelity maps or even three-dimensional models of the previously uncharted areas.
They can in turn be later used to facilitate the navigation for other vehicles.

1.2 Contributions

1.2.1 Included Publications

Articles included in this thesis are listed below in chronological order together with a
short description and contribution of each paper.

Z. Sjanic and F. Gustafsson. Navigation and SAR Auto-focusing Based on
the Phase Gradient Approach. In Proceedings of 14th International Confer-
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ence on Information Fusion, Chicago, USA, July 2011.

This article, Paper C, describes a method for iterative trajectory refinement and UHF
SAR auto-focusing based on the filtering framework. Inertial measurements (accelera-
tions) are used together with an estimate of the range time derivative, or phase gradient,
in an Extended Kalman Filter (EKF) to obtain a stable estimate of the position. The
main contribution is formulation and incorporation of the phase (or range) derivative into
the filtering framework enabling sequential solution of the navigation and auto-focusing
problem. Furthermore, the importance of using the exact expression for the range and its
derivative in UHF SAR case is also shown.

Z. Sjanic, M. A. Skoglund, T. B. Schön, and F. Gustafsson. A Nonlinear
Least-Squares Approach to the SLAM Problem. In Proceedings of 18th IFAC
World Congress, Milano, Italy, August/Septemeber 2011.

In this paper, which is Paper D, a Maximum a posteriori (MAP) batch formulation of
the inertial/visual SLAM is proposed resulting in a nonlinear least squares optimisation
problem. The inherent structure and sparsity of the resulting NLS problem is utilised
to efficiently obtain the metrically correct solution to the 6-Degrees-of-Freedom (6-DoF)
estimate of the platform’s states, i.e., position, velocity and orientation, and a three dimen-
sional map of the environment. Also, for the parametrisation of the landmark location
an Inverse Depth Parametrisation (IDP) is used which also gives the special structure to
the NLS problem. The benefit of IDP, which uses six parameters, over the regular three-
parameter parametrisation is faster convergence of the landmark depth if an EKF is used
to estimate the states and the map. Here the EKF is applied to the initialisation procedure
of the estimated parameters and to obtain the data association.

Z. Sjanic and F. Gustafsson. Simultaneous Navigation and Synthetic Aper-
ture Radar Focusing. Provisionally accepted to IEEE Transactions on Aerospace
and Electronic Systems, August 2013a.

An optimisation based method for simultaneous navigation and SAR auto-focusing is pro-
posed in this contribution, Paper A, resulting in basically a Maximum Likelihood (ML)
formulation. Here, the accelerations sensors are used together with SAR images, utilis-
ing image focus measures, image entropy in particular, to obtain the likelihood function.
This likelihood is quite a complicated function of the optimisation variables, which are
here the platform’s states, making the direct gradient calculation difficult. However, as an
important part of the article’s contribution, an efficient way of calculating this gradient is
devised, which is based on the chain rule for differentiation. The solution is made even
more efficient by using quasi-Newton method where the Hessian matrix is estimated from
gradient information during the iterations.

Z. Sjanic and F. Gustafsson. Navigation and SAR focusing with Map Aiding.
Submitted to IEEE Transactions on Aerospace and Electronic Systems, June
2013b.

This paper, Paper B, devises a method for solving the navigation and SAR focusing prob-
lem with an aid from prior information in form of optical maps. The basic idea is based
on the image matching approach, called Chamfer matching, which is, in this contribution,
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reformulated in the nonlinear least squares optimisation framework. With this approach it
is possible to solve for both the global position and direction of flight, since the map has
known global coordinates, and for the flight trajectory, since the assumption is that the
most focused image will give the matching cost with the smallest value.

M. A. Skoglund, Z. Sjanic, and F. Gustafsson. Initialisation and Estima-
tion Methods for Batch Optimisation of Inertial/Visual SLAM. Submitted
to IEEE Transactions on Robotics, September 2013.

Inertial/visual SLAM problem formulation in optimisation form, as most optimisation
problems, requires an initial value of the optimisation parameters. The nonlinear and
non-convex nature of the posed problem may cause suboptimal solutions due to bad ini-
tialisation and consequently convergence to a local minimum. In Paper D EKF is used to
initialise the parameters and data association, but that solution is not feasible for large data
sets due to the cubic complexity for calculating the matrix inverse involved in the EKF iter-
ation. This article, Paper E, contributes with a multi-stage procedure for the initialisation
of the nonlinear inertial/visual SLAM optimisation problem. The approach is based on
both pure visual methods, like image based rotation estimation and appearance based data
association, and combined inertial/visual methods, where an almost linear formulation of
the problem is utilised to efficiently obtain an initial solution and data association. It is
also demonstrated that this estimate leads to a better initial values than straight forward
initialisation with measurements only.

Z. Sjanic, M. A. Skoglund, and F. Gustafsson. Expectation-Maximisation
Maximum Likelihood Estimation for Inertial/Visual SLAM. Submitted to
IEEE Transactions on Robotics, September 2013b.

Here, Paper F, an Expectation-Maximisation (EM) approach to the ML formulation of
the SLAM problem is proposed. The EM framework is usually used when the ML prob-
lem is difficult to solve by introducing a new set of unknowns, so called hidden variables.
The problem is then split into two subproblems, Expectation step (E-step) where hidden
variables are estimated conditioned on the old parameters and Maximisation step (M-step)
where parameters are estimated based on the hidden variables from the E-step by solving
an optimisation problem. This framework is highly applicable to inertial/visual SLAM
where the platform’s states are seen as hidden variables and the map is represented as pa-
rameters. In this particular case, the E-step is approximately, but efficiently, solved with
Extended Rauch-Tung-Striebel Smoother and the M-step is, also efficiently, solved with
quasi-Newton method. Since the smoother step is computationally cheap and the optimi-
sation problem in the M-step has fewer variables than the full ML formulation, the total
computational time can be lower for the big problems.

Z. Sjanic, F. Gunnarsson, C. Fritsche, and F. Gustafsson. Cellular Network
Non-Line-of-Sight Reflector Localisation Based on Synthetic Aperture Radar
Methods. Submitted to IEEE Transactions on Antennas and Propagation,
September 2013a.

This short paper, Paper G, contributes with an application of a nonparametric multi-static
SAR technique to cellular network data. The data consists of measured range to base
stations which contains both line-of-sight and non-line-of-sight signals between the phone
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and the base stations, the latter ones caused by the signal reflections from the buildings in
the urban environment. This data is used to estimate a map (or a multi-static SAR image)
of the strongest reflectors. Furthermore, with this map, it is possible to find reflector-
trajectory correspondence which can be used for outlier rejection in a cellular network
localisation application.

1.2.2 Other Publications

Other articles which are not included in the thesis are listed below. Also here, the descrip-
tion and contribution are described.

R. Larsson, Z. Sjanic, M. Enqvist, and L. Ljung. Direct Prediction-error
Identification of Unstable Nonlinear Systems Applied to Flight Test Data. In
Proceedings of the 15th IFAC Symposium on System Identification, Saint-
Malo, France, July 2009.

In this contribution a system identification method for unstable and nonlinear systems
based on direct prediction-error approach is devised. The predictor is based on the non-
linear state space description of the system and calculated using EKF. The methods are
demonstrated on estimation of aerodynamic parameters for the fighter aircraft.

Z. Sjanic and F. Gustafsson. Simultaneous Navigation and SAR Auto-focusing.
In Proceedings of 13th International Conference on Information Fusion, Ed-
inburgh, UK, July 2010.

This article introduces an early concept of solving navigation and SAR focusing problem
simultaneously and in the optimisation framework. The ideas presented here can be seen
as a predecessor to the much more thorough work done in Paper A.

Z. Sjanic and F. Gustafsson. Fusion of Information from SAR and Optical
Map Images for Aided Navigation. In Proceedings of 15th International Con-
ference on Information Fusion, Singapore, July 2012.

In this paper a method for matching of SAR images and optical map in order to aid
the navigation is proposed. In this way a global position and direction of flight can be
estimated. The method is based on the nonlinear least squares optimisation approach
which also allows for the estimate of the parameter covariance. This contribution is the
basis for Paper B.

1.3 Thesis outline

The thesis is divided into two parts, theoretical and subject background in the first part and
edited versions of published papers in the second part. Chapter 1, this chapter, introduces
the main problem and the motivation for solving it. It also briefly describes UAVs and
lists all the included publications in Part II of the thesis and scientific contributions that
are included in these articles. Chapter 2 briefly introduces the estimation theory that is
used. UAV navigation systems and all the utilised sensors, i.e., inertial sensors, optical
camera and SAR, and their properties are described in Chapter 3. Finally, the first part is
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concluded with Chapter 4 where some concluding remarks are discussed and suggestions
about the future work are given.



2
Estimation and Sensor Fusion

Framework

In this chapter an overview the sensor fusion framework with short estimation theory and
Simultaneous Localisation and Mapping (SLAM) framework is described, where only the
main ideas and concepts are mentioned.

2.1 Estimation Theory for Dynamical Systems

The primary task of the sensor fusion function is to utilise the information from all the
available sensors and fuse it together in order to improve certain properties of the output
entities of interest. It can be that sensors have noisy measurements, imperfections due to
biases or low signal fidelity. In some cases, the sensors do not measure quantities that we
want directly, and they must be calculated or estimated in some way. The general approach
to this problem is called estimation, where sensor fusion is one particular instance. In a
way, we can say that the navigation system is an estimator of the navigational quantities,
which in turn describe the motion state of the UAV, given some measurements of this
motion. Systems in motion are usually denoted dynamical systems, which means that an
input to such a system at a particular time will affect future behavior of the system. The
opposite case is the static system where the input at the particular time affects the output
at that time only.

In this framework, a particularly useful description of the dynamical systems is the state
space description, usually in the form

xt+1 = ft(xt, ut, wt) (2.1a)
yt = ht(xt, ut, et) (2.1b)

where xt are the states of the system, usually the quantities that need to be estimated,
ut are the known inputs, wt is the system noise, yt are the measurements and et is the

11
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measurement noise. The function ft( · ) describes the dynamics of the system and ht( · )
is a function that relates the measurements and the states of the system. Note that these
functions may vary in time. This is a rather general model of a system and one that is
often used is

xt+1 = ft(xt, wt) (2.2a)
yt = ht(xt) + et (2.2b)

where noise term in the measurement equation appears in an additive fashion and the
known input ut is omitted. This poses no practical problems since, in most cases, the ad-
ditive measurement noise is a plausible model and a known input can be modelled through
the time dependency of ft and ht. In the rest of this thesis ut will mostly be omitted for
notational convenience, and be included only when it is necessary. The descriptions of the
dynamics and measurements (2.1) and (2.2) are both in discrete time, which is suitable
for implementation in computers and because most of the modern sensors deliver data in
sampled form. Usually, the system dynamics is dependent on the moving platform, so it
can be fixed for each application. In our case the dynamics of the system will be modelled
as aircraft dynamics which will be described below.

Another, and a bit more general, way of describing the system (2.2) is in the form of con-
ditional probability density functions, or pdf, for state time transition and measurements

xt+1 ∼ p(xt+1|xt) (2.3a)
yt ∼ p(yt|xt) (2.3b)

Equation (2.3b) is also known as likelihood function. From the system perspective these
two descriptions are equivalent. The model above are referred to as Markov process’,
i.e., the state at time t is only dependent of the state at time t − 1. In a similar way
the measurement at time t is conditionally independent of the states in all times except
the state at time t. As an example of model (2.3), take equation (2.2b) and suppose that
the measurement noise, et, has Gaussian distribution with zero mean and variance Rt,
et ∼ N (0, Rt). This will, for one time instance, yield

p(yt|xt) = pet(yt − h(xt)) =
1

det{2πRt}1/2
e−

1
2 (yt−ht(xt))

TR−1
t (yt−ht(xt)) (2.4)

The estimation problem can now be posed as determining the states x0:N = {x0, . . . , xN}
given all the measurements y1:N = {y1, . . . , yN} and the system model (2.2) or (2.3).

To define the solution to this problem, we can start with the simple method called Max-
imum Likelihood (ML) (Fisher, 1912) which is a well known statistical method where a
model parameters, usually called θ, are estimated from a set of measurements, assumed
to be generated from this model as

yt ∼ ϕ(yt|θ) (2.5)

where ϕ(yt|θ) represents the likelihood of the measurements parametrised with θ. The
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ML solution is obtained by solving the maximisation problem

θ̂ML = arg max
θ

ϕ(y1:N |θ) (2.6)

Using (2.3b) and identifying ϕ = p and θ = x0:N , ML formulation is obtained and the
method can be applied to the state estimation problem as

x̂ML
0:N = arg max

x0:N

p(y1:N |x0:N ) (2.7)

where the joint likelihood for all the measurements, p(y1:N |x0:N ), is used. In many prac-
tical applications the measurement noise is assumed to be independent in time, which is
quite reasonable assumption in these cases. This implies that the joint likelihood can be
written as

p(y1:N |x0:N ) = p(x0)

N∏
t=1

p(yt|xt) (2.8)

where p(x0) is so called prior of the states, which acts as a belief about the state values at
time 0, i.e., before any measurements have been obtained.

The ML approach above does not utilise the state transition pdf, (2.3a), which can ac-
tually be useful information. In order to include state dynamics, we can use a concep-
tually slightly different approach than ML. In ML the true parameter θ0 is considered
as deterministic. If the parameter is seen as stochastic instead, i.e., its properties can
be described with some pdf, p(θ), in the same way as for the measurements which are
stochastic, we can “augment” the likelihood with this pdf simply by multiplying these to-
gether as p(y|x)p(x). This is one way of incorporating the prior knowledge of the states
and with help from the Bayes’ rule (Bayes, 1763)

p(x|y) =
p(y|x)p(x)

p(y)
(2.9)

a so called posterior pdf of the states given measurements is obtained. Now x0:N that
maximises this pdf can be obtained leading to so called Maximum a Posteriori estimate
(MAP)

x̂MAP
0:N = arg max

x0:N

p(x0:N |y1:N ) = arg max
x0:N

p(y1:N |x0:N )p(x0:N ) (2.10)

Here, p(y1:N ) is omitted since it does not depend on x0:N and does not influence the
maximisation solution. This formulation together with Markov and measurement model
independency assumptions leads to the following MAP optimisation

x̂MAP
0:N = arg max

x0:N

p(x0)

N∏
t=1

p(yt|xt)p(xt|xt−1) (2.11)

where p(x0) is as before the prior of the states before any measurements have arrived.
Notice that if state prior is chosen as so called flat, i.e., p(x) = constant, then the solution
to MAP and ML will coincide. However, conceptually in MAP the parameters (or states)
are still seen as stochastic while in ML they are not.

One powerful feature of the optimisation formulations (2.7) and (2.10) is that any kind
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of constraints on the states can be added, for example if states represent some physical
entities which must be in certain bounds. Another example is if the prior distribution is
degenerated, i.e., some of the states are deterministic. In these cases both maximisation
problems can be augmented with constraints leading to Constrained Maximum Likelihood

x̂CML
0:N = arg max

x0:N

p(y1:N |x0:N ) (2.12)

s. t. x0:N ∈ X

or Constrained Maximum a Posteriori formulation

x̂CMAP
0:N = arg max

x0:N

p(x0:N |y1:N ) (2.13)

s. t. x0:N ∈ X

where X is a constraint set for the states. This formulation gives a great deal of flexibility
in the problem description, allowing us to pose the problem in a form that is easy to
solve. In most cases it will be assumed that involved probability functions have Gaussian
form, i.e., the state and measurement noises are Gaussian. In that case it is appropriate to
optimise a negative logarithm of the criterion resulting in a minimisation problem. Since
the negative logarithm is a monotonously decreasing function the solutions will be the
same.

One important special case of the system and measurement models is the case where both
the dynamic and the measurement models are linear, the prior has Gaussian distribution
and the process and the measurement noise are Gaussian and white, which gives

ft(xt, wt) = Ftxt +Gtwt (2.14a)
ht(xt) = Htxt (2.14b)

x0 ∼ N (x̄, P0), wt ∼ N (0, Qt), et ∼ N (0, Rt) (2.14c)

Here, P0 is the initial state covariance matrix, i.e., the uncertainty of x0 and x̄ is its prior
value. The formulation of (2.11) in this case becomes (with negative logarithm applied)

x̂MAP
0:N = arg min

x0:N

‖x0 − x̄‖2P−1
0

+

N∑
t=1

‖yt −Htxt‖2R−1
t

+ ‖xt − Ft−1xt−1‖2(GtQtGT
t )−1

(2.15)

which is a weighted least squares problem. This example also shows a possible degener-
acy issue in the problem formulation. To pose this problem it is required that the matrix
GtQtG

T
t is actually invertible, and that is not always the case. In such problems, the

formulations (2.12) and (2.13) are really useful.

All the methods presented above assume that all the measurements are available at the esti-
mation time. If that is the case, the solution x̂0:N is called smoothed estimate. Smoothing
in this context is defined as an estimate in certain time that depends on the past and future
measurements. If that is not the case, i.e., if estimate depends only on past measurements,
we obtain a filtered estimate. One important advantage of the filtering is that it can be
implemented in a sequential manner. The general sequential solution to (2.11) is given
by recursive Bayesian filtering. The posterior distribution for each time instant can be
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obtained as, see e.g., Gustafsson (2010) for complete derivation,

p(x1|y0) = p(x0) (Initialisation) (2.16a)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
(2.16b)

p(yt|y1:t−1) =

∫
Rn

p(yt|xt)p(xt|y1:t−1) dxt (2.16c)

p(xt|y1:t−1) =

∫
Rn

p(xt|xt−1)p(xt−1|y1:t−1) dxt−1 (2.16d)

The procedure (2.16) defines a very general nonlinear filter that can be applied to a large
class of dynamic and measurements models. However, the closed form solution exists
only in a few cases. One such case is (2.14) and it can be shown that procedure (2.16)
becomes the Kalman Filter (KF) (Kalman, 1960) which is both the Minimum Variance
(MV) and the Best Linear Unbiased Estimator (BLUE). If all the measurements are avail-
able at the estimation time, i.e., smoothing solution is possible, the solution to (2.15) can
be obtained with the Kalman smoother instead of solving it directly. If the model is not lin-
ear, some approximate solutions to solve (2.16) must be applied, where Extended Kalman
Filter (EKF) (Kailath et al., 2000) and Particle Filter (PF) (Gordon et al., 1993) are the
most common approaches.

2.2 Simultaneous Localisation and Mapping

The main idea of Simultaneous Localisation and Mapping (SLAM) is to estimate a map
of the surrounding environment from a moving platform, while simultaneously localising
the platform (Durrant-Whyte and Bailey, 2006; Bailey and Durrant-Whyte, 2006). Local-
isation in this context includes estimation of navigation states, which includes position,
velocity and attitude. However depending on the sensor setup, some of the states cannot
be estimated. This will be handled from case to case. The main prerequisite for mapping
is that some of the available sensors actually observe the environment. Typical sensors
that can do that are laser ranging sensors, radars and different kinds of cameras, e.g.,
infra-red or visible light cameras. In this work, radar (and in particular imaging radar or
SAR) and optical camera will be used as the environment observing sensors. The maps
generated by different sensors will also differ in their appearance. The advantage is that
different maps may be used for different purposes depending on situation at hand. For
example a SAR image can be seen as a map of the imaged environment where certain fea-
tures of the environment are accentuated. In a similar way, an optical camera will produce
another kind of map which might be useful in a different situation. How these maps are
used is a question of tactical behaviour and will not be discussed in more detail here.

2.2.1 SLAM System Models

To put the SLAM problem in the sensor fusion framework described in Section 2.1 we
have to define the dynamics and the measurement models or equivalently the state tran-
sition pdf and the likelihood function. To do that we need to introduce two coordinate
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systems which are important for the navigation. The first one is the local navigation
frame, also called world frame, and it has a fixed position in the world. The second one
is the body frame, which is aligned with the moving platform, and moves and rotates
together with it. The navigation states basically describe body frame’s position, velocity,
acceleration and orientation relative the navigation frame. In SLAM the navigation frame
is usually free to be placed arbitrarily, since most of the measurements are relative. How-
ever, the estimation results from SLAM can be combined with the prior information, like
global maps, in order to fix the origin of the navigation frame to some global coordinate
system.

In most cases the dynamics of the platform can be described by simple model using basic
equations of motion. For linear motion, where states normally are position, linear velocity
and acceleration, a double integrator model is used as (Farrell and Barth, 1999)

ṗt = vt (2.17a)
v̇t = at (2.17b)
ȧt = wat (2.17c)

where pt, is the position of the platform expressed in the local navigation frame, vt is its
velocity and at is the acceleration. wat is the unknown input to the system, here modelled
as a jerk. The dimension of the states, i.e., p, v and a as well as the noise wa, will depend
on the application, but will usually be 2 or 3. This is continuous time description of the
system, but for the implementation we need a discrete time description. The model above
can be discretised exactly if a zero order hold assumption is made. In that case the discrete
time model is

pt+1 = pt + Tsvt +
T 2
s

2
at +

T 3
s

6
wat (2.18a)

vt+1 = vt + Tsat +
T 2
s

2
wat (2.18b)

at+1 = at + Tsw
a
t (2.18c)

where Ts is the sampling time. This model can be compactly written in a matrix form as

xt+1 = Fxt +Gwat (2.19a)

xt =

ptvt
at

 , F =

I TsI
T 2
s

2 I

0 I TsI

0 0 I

 , G =


T 3
s

6 I
T 2
s

2 I

TsI

 (2.19b)

where I and 0 are the identity and zeros matrices of appropriate dimensions.

The rotational dynamics in R3 can be parametrised with so called Euler angles, denoted
roll, φ, pitch, θ, and yaw, ψ, see Figure 2.1. These angles describe the rotation of one
three-dimensional coordinate system relative another. In this case the coordinate systems
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are the local navigation and platform’s body frames. The dynamics of these angles is

φ̇t = ωXt + sin(φt) tan(θt)ω
Y
t − cos(φt) tan(θt)ω

Z
t (2.20a)

θ̇t = cos(φt)ω
Y
t + sin(φt)ω

Z
t (2.20b)

ψ̇t = − sin(φt)

cos(θt)
ωYt +

cos(φt)

cos(θt)
ωZt (2.20c)

ω̇Xt = wωXt (2.20d)

ω̇Yt = wωYt (2.20e)

ω̇Zt = wωZt (2.20f)

and ω{X,Y,Z}t are the angular velocities and w{X,Y,Z}t are the unknown input terms, here
modelled as angular accelerations. In contrast to the linear motion dynamics (2.19), this
one is nonlinear. Although some nonlinear dynamics is possible to discretise exactly, it is
not the case here and some approximate method, like Euler sampling, must be used. It can
immediately be seen that there exists a singularity in the dynamics for θt = ±π/2. In this
case the roll and the yaw angles are undefined. Fortunately, there is another representation
of the rotations in R3, with the help of the quaternions, that does not suffer from these
limitations (Kuipers, 1999; Shuster, 1993).

Quaternions are defined in four dimensional space as q = [q0 q1 q2 q3]T , qi ∈ R. To
represent the rotation in R3, q is constrained to the unit sphere, i.e., qT q = 1. The
transformation from Euler angles to quaternions is defined as

q0 = cos(φ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) sin(ψ/2) (2.21a)
q1 = sin(φ/2) cos(θ/2) cos(ψ/2)− cos(φ/2) sin(θ/2) sin(ψ/2) (2.21b)
q2 = cos(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) sin(ψ/2) (2.21c)
q3 = cos(φ/2) cos(θ/2) sin(ψ/2)− sin(φ/2) sin(θ/2) cos(ψ/2) (2.21d)

and from quaternions to Euler angles as

φ = atan2(2(q0q1 + q2q3), 1− 2(q2
1 + q2

2)) (2.22a)
θ = arcsin(2(q0q2 − q1q3)) (2.22b)

ψ = atan2(2(q0q3 + q1q2), 1− 2(q2
2 + q2

3)) (2.22c)

where atan2( · , · ) is arctan function defined for all four quadrants. The dynamics of the
quaternions can be expressed as

q̇t =
1

2


0 −ωXt −ωYt −ωZt
ωXt 0 ωZt −ωYt
ωYt −ωZt 0 ωXt
ωZt ωYt −ωXt 0


︸ ︷︷ ︸

S(ωt)

qt =
1

2


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0


︸ ︷︷ ︸

S̃(qt)

ωt (2.23)

We see that the dynamics is still non-linear, but the non-linearities are much simpler than
for the Euler angles (it is actually bilinear if angular rates are considered as input). A nice
property of the quaternion dynamics is that, if we assume zero order hold, i.e., constant
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Figure 2.1: Illustration of Euler angles, from left to right: roll angle (φ, rotation
around x-axis), pitch angle (θ, rotation around y-axis) and yaw angle (ψ, rotation
around z-axis). Solid line coordinate system represents local navigation frame and
dashed coordinate system is the body frame.

angular rate between sampling times, the discrete time model is

qt+1 = exp

(
Ts
2
S(ωt)

)
qt (2.24)

which also preserves the norm of the quaternion. Note that the second form of the dynam-
ics, the one with S̃(q), cannot be discretised in this way and some other strategy must be
applied, e.g., Euler sampling.

Given the Euler angles or quaternions it is possible to calculate any vector coordinates
in different systems. The simplest way to perform that is via a rotation matrix, R. As
a function of Euler angles, the rotation matrix is defined as three consecutive rotations
around each of the three axis, as shown in Figure 2.1. Since the order of rotations is
important, different rotation matrices can be obtained for different orders given the same
Euler angles. The standard order in aeronautics is z−y−x, i.e., rotation is first performed
around z-axis, then around y-axis and finally around x-axis. The total rotation can then
be composed of three consecutive rotations as (with shorthand notation s · = sin( · ) and
c · = cos( · ))

R(φ, θ, ψ) =

1 0 0

0 cφ sφ

0 −sφ cφ


cθ 0 −sθ

0 1 0

sθ 0 cθ


 cψ sψ 0

−sψ cψ 0

0 0 1

 =

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 (2.25a)

and as a function of quaternions, the corresponding matrix is

R(q) =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(−q0q2 + q1q3)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(−q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3

 (2.26)
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These rotation matrices express how to rotate a vector given in navigation frame to a
vector given in body frame. To emphasise this relationship, if necessary, superscript will
be used to denote which frame vector is expressed in. For example the gravity vector, g,
always has coordinates [0 0 − 9.81] in the local navigation frame, which we can write
as gn. If we want to find its representation in a body frame, gb, we simply multiply the
rotation matrix, Rbn, with gn

gb = Rbn gn (2.27)

Superscript bn denotes the rotation from navigation to body frame. To obtain the inverse
rotation, body to navigation frame, nb, an orthonormality property of the rotation matrix
is used to obtain

Rnb = (Rbn)−1 = (Rbn)T (2.28)

i.e., the transpose of the matrix denotes the inverse rotation. In this thesis only R will
denote Rbn and RT will denote Rnb unless the frame superscript is absolutely needed.

The next thing that is needed is a measurement or likelihood function. Its task is to de-
scribe how the information from the used sensors, i.e., the measurements, is related to
the platform’s states and the environment that we want to map. It usually has a form as
in (2.1b), (2.2b) or (2.3b), but generally any function that relates sensor measurements,
platform’s states and the surrounding environment can be used in the ML and MAP opti-
misation criteria. Basically, any function of the form

F (x0:N ,M, y1:N ) (2.29)

can be used. Here, the map, M, denotes the representation of the environment that should
be mapped. Also, this function will in most cases correspond to negative log-likelihood,
implying that it should attain minimum value for the correct states and map parameters.
This representation can be quite different depending on the used sensors, for example a
SAR will produce an image which will be considered as a map of the environment. In the
next chapter, Chapter 3, where the used sensors are described in detail, concrete examples
of these functions will be given. Note also that some of the sensors will not measure the
environment, and in that case, the function will simply not depend on the map.





3
Navigation System and Sensors

In this chapter an overview of the typical UAV navigation system and the sensors used
in the estimation methods introduced in Chapter 2 is done. The utilised sensors and
their properties are described as well as how they are incorporated into the sensor fusion
framework.

3.1 UAV Navigation System

The definition of the navigation system in a UAV is the system which measures and deliv-
ers all interesting navigational quantities to the users of these data. Navigational quantities
of interest are usually

• 3D position in some global coordinate system

• 3D velocity

• 3D acceleration

• attitude (pitch, roll and heading)

• 3D angular rate

which can either be directly measured or estimated in some way. In a basic configuration
the UAV navigation system can look like the one in Figure 3.1. Basic sensors used here
are Inertial Measurement Unit (IMU), Global Positioning System (GPS) and Air Data
Computer (ADC). IMU senses specific forces and angular moments that platform exhibits
and measures these giving accelerations and angular rates (or velocities) of the platform.
In principle, the position and velocity could be calculated directly by integration of the

21
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Figure 3.1: Overview of the typical UAV navigation system. IMU is Inertial Mea-
surement Unit, GPS is Global Positioning System and ADC is Air Data Computer.
Dashed output from the GPS is used to indicate that raw GPS position could be used,
but it is usually the fused one that is used in practice.

acceleration based on the solution of (2.17)

pt = p0 +

t∫
0

vs ds (3.1a)

vt = v0 +

t∫
0

as ds (3.1b)

where pt is the position, vt is the velocity and at is the acceleration of the platform ex-
pressed in some local navigation frame. Since the accelerations are measured relative the
so called body frame which rotates together with the platform, a rotation with the atti-
tude must be performed, at = Rnb amt , where superscript m denotes the measurements
and R is the rotation matrix between body and navigation frame. The rotation is directly
dependent on the attitude of the platform which can also be integrated from the angular
velocities in a similar way. This approach can be applied when the sensor accuracy in
terms of bias and noise is high, otherwise the velocity and position will drift over time
rendering the system unusable. The solution is to use other sensors which will estimate
the bias and give more stable estimate. More detailed description of IMU is presented in
Section 3.2.

Global Positioning System (GPS) is a version of the Global Navigation Satellite System
(GNSS). Another example is Russian GLONASS. Here the GPS receiver onboard the
platform, receives Time-of-Arrival signals from the satellites orbiting the Earth. Since the
satellite positions are known quite precisely, it is possible to, with trilateration, estimate
the position (and velocity) of the platform with high accuracy.

Air Data Computer (ADC) measures static and total pressure of the air around the plat-
form. Static pressure is directly proportional to the altitude of the platform, while total
pressure is the sum of the static and dynamic pressures. Dynamic pressure is a conse-
quence of the platform’s movement through the air. In this way, the platform’s airspeed,
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the speed in relation to the surrounding air, can be calculated. ADC is not utilised di-
rectly in this work since other sensors can provide same information, but can easily be
incorporated into the presented framework.

The used sensors are able to calculate almost all navigational parameters by themselves, it
is basically only the attitude that needs to be estimated in some way from the raw sensor
data. However, in order to get good dynamical behavior, e.g., remove noise or the effects
of the different sampling times, the sensor fusion methods described in Section 2.1 must
be used.

As mentioned above, different sensors, when fused, give the desired performance of the
navigation system. In the configuration above, the performance is heavily dependent on
the GPS, since it gives the stable, drift-free position and velocity information. This is how-
ever not desirable, since GPS is easily jammed or even spoofed. Jamming is a situation
when signal is deliberately disturbed leading to the loss of GPS positioning. Spoofing is,
on the other hand, a case when a GPS signal is maliciously altered locally such that it
gives false and misleading positioning. This is, in a way, a worse case since false position
can lead to severe consequences, like UAV crash in urban area. To mitigate these risks, al-
ternative means of navigation must be devised. One way of doing this is introducing other
sensors which, in combination with sensor fusion, could give an estimate of the naviga-
tional parameters which is drift-free and has good accuracy. Here, two imaging sensors,
Synthetic Aperture Radar (SAR) and regular optical camera, will be used. Figure 3.2
shows the addition of these sensors to the navigation system. The reason why these partic-
ular sensors are chosen as a complement is that most UAVs have a camera, either as a part
of the standard equipment or as a mission specific sensor. SAR is a more mission specific
sensor, but it has certain advantages compared to an optical sensor since the wavelengths
a radar operates on make it weather-insensitive. This property is important in many situ-
ations where high availability and all-weather capability is expected. In Section 3.3 and
Section 3.4 the sensor models and functional principles for SAR and optical cameras will
be described, and how they are used in the sensor fusion framework.

Another quality that above-mentioned imaging sensors have, is that they give some kind
of information about the environment they are observing. In the case of the sensors that
will be used here, the information is an image of the surroundings. As already described,
this information will allow us to build a map of the environment, at the same time as we
estimate the navigation states.

3.2 Inertial Measurement Unit

In this section, inertial sensors, which is a collective name for accelerometers and gyro-
scopes, will be described. These are usually combined in a single Inertial Measurement
Unit (IMU) and will measure three dimensional acceleration, [aX aY aZ ]T , and angular
velocity, [ωX ωY ωZ ]T . This setup is usually called 6 Degrees-Of-Freedom (6-DOF)
inertial sensor. The accelerometers measure the specific force in an inertial frame. For ex-
ample on the surface the earth, at rest the accelerometer will measure earth’s gravity force
and force exhibited by earth’s rotation, so called coriolis effect. The basic functional prin-
ciple of the accelerometer is a damped mass on a spring. When a force is applied to the
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Figure 3.2: UAV navigation system with addition of alternative sensors, SAR and
optical camera. Both are imaging sensors, but images have different properties mak-
ing them complementary. GPS block is dashed out here to emphasise that it can be
left out.

accelerometer, the force component parallel to the longitudinal axis will move the mass
elongating the spring. The elongation is simply proportional to the applied force (or its
longitudinal component) as

F = maX = kX (3.2)

where m is the mass, k is the spring coefficient and X is the elongation. The technology
for building accelerometers based on this spring mass principle has been developed during
the recent years resulting in cheaper components. One such technology is Micro Electro-
Mechanical Sensors (MEMS) where piezo-electrical effect is used. In this case, the silicon
based rod is bent when affected by the force creating current which will be proportional to
the applied force. The big advantage of this construction is that it can be made very small
and light. This is a very attractive property of MEMS components, since both space and
weight are limited in a typical UAV. However, the downside is that they are very sensitive
for temperature variations giving large bias and noise terms.

The gyroscopes, or gyros, measure the rotational velocities around the fixed axis in the
inertial frame. The basic technology how this is performed can be based on a principle
of gyroscopic precession (Meriam and Kraige, 1998) used in mechanical gyros, e.g., the
spinning or MEMS gyros, or light interference effect used in fiber optical and ring laser
gyros. The precession is a principle where a rotating mass spinning around an axis will
start to rotate around another axis when an external torque is applied around the third axis.
This is illustrated in Figure 3.3 where the disc is spinning with angular velocity ω around
x-axis and the torque M is applied around y-axis. This will cause the disc to precess
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Figure 3.3: Illustration of the gyroscopic precession principle. A cylindrically
shaped mass spinning with angular velocity ω around x-axis will precess with angu-
lar velocity Ω around z-axis when a constant torque M is applied around y-axis.

around z-axis with angular velocity Ω and the relationship between these is

M = IΩω (3.3)

where I is the disc’s moment of inertia. Spinning gyros use real spinning discs to measure
the angular velocity while MEMS gyros use vibrating elements instead of rotating, but the
underlying principle is the same. Fiber optical and ring laser gyros are using completely
different principle based on the Sagnac effect. Here two beams of light are sent through
a long optical fiber coil in opposite directions. When the coil rotates the phase shift in
these two beams will cause interference pattern that can be observed and measured. The
size of the interference is directly proportional to the angular velocity. In order to make
errors small, optical gyros must be made large and heavy making them impractical for
small UAV applications. On the other hand the accuracy and stability of the optical gyros
is the best one with small bias and noise errors. MEMS gyros have the worst performance
and purely mechanical ones are in the middle range.

For practical reasons, IMU is rigidly mounted, or strapped, in the platform’s frame (body
frame), i.e., it has a strap-down mounting. In this way the need for moving and potentially
heavy parts is removed. This means that the acceleration is measured in the body frame.
In order to use acceleration for navigation accelerations must be expressed in the local
navigation frame, (this was used in (3.1)). The implication of this is that acceleration
must be transformed to the local navigation frame in order to use it in the navigation
application as already mentioned in Section 3.1. The measurement equation (2.2b) for
the accelerometer is then

yat = Rt(at − g) + bat + eat (3.4)
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where Rt, as already described, is a rotation matrix that expresses rotation between navi-
gation and body frame, and g = [0 0 −9.81]T is the gravitation acceleration expressed in
the local navigation frame. The bias term bat can be included in the model if the estimate
of it is not compensated for or if the estimate of it is sought. eat is the measurement noise
term, usually assumed to be white and Gaussian with et ∼ N (0, Rat ).

The measurement equation for the gyros is even simpler, it is

yωt = ωt +bωt + eωt (3.5)

where, as in acceleration case, bωt and eωt denote bias and noise terms respectively, with
eωt ∼ N (0, Rωt ).

Notice also that the output from the IMU can either be used as a measurement yt or as an
input ut in the dynamics. Since both approaches have their advantages and disadvantages,
which one is actually used will depend on the specific application.

3.3 Synthetic Aperture Radar

In this section the basic principles of the Synthetic Aperture Radar (SAR) are explained.
It starts with the Real Aperture Radar (RAR), continues with the methods to create high
resolution images and mentions some of the effects associated with SAR.

3.3.1 Real and Synthetic Aperture Radar

In the simplest setup a radar image can be created with the moving platform carrying the
side-looking radar and flying above the scene to be imaged. By sending and receiving
radar pulses along the trajectory, a range-azimuth image is created, see Figure 3.4. Since
the energy in each radar pulse is spread out over the scene, every pulse will produce a
one-dimensional image according to a simple principle; each echoed pulse is received
and gated in range bins according to the time, t, it takes to receive the pulse, using the
relation R = tc/2, where c denotes the speed of light. This means that each range bin
will contain the total energy reflected from the scene on that specific range. When all of
these simple one-dimensional images are stacked next to each other, a full RAR image is
created. RAR images will have the imaged scene smeared across the azimuth, giving very
poor effective resolution which can be seen in Figure 3.5, where a simulated example of
the RAR image of two point targets is depicted. The resolution in the azimuth direction for
the RAR images is governed by the basic laws of the electromagnetism which state that
the radar lobe width is dependent of the antenna size and the wavelength of the carrier
according to λ/d, where d is antenna size and λ is the wavelength. This will give the
resolution λR/d where R is the range to the imaged scene. We see that by decreasing
the wavelength or increasing the antenna we can make the lobe narrower and increase
the resolution. The wavelength is usually fixed to a specific value and there is not much
freedom of decreasing it, and besides there are other unwanted effects if low wavelengths
are used like cloud occlusions. There are also limits regarding how large antenna a flying
platform can carry which limits that parameter as well. However, by using the movement
of the platform a long antenna can be synthesised and the resolution of the images is
drastically increased. This principle leads to Synthetic Aperture Radar (Cutrona et al.,
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Figure 3.4: Side-looking radar geometry. The flying platform is moving along the
straight trajectory parallel to the scene with speed v while it transmits and receives
radar pulses. R is the range from the platform to the target.
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Figure 3.5: Real aperture radar image of the two point targets in Figure 3.4.
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1961).

As mentioned above the movement of the platform can be utilised to improve the reso-
lution in the azimuth direction. During the motion of the platform the scene, which can
be assumed to consist of point scatterers, will travel through the radar lobe and the slant
range to it will vary, see Figure 3.4. This slant range variation can be compensated for
each radar echo and all of the echos can be integrated in order to produce an image which
can be expressed as

ISAR =

∫
Dt

IRAR
t (R)g(R, t) dt (3.6)

where ISAR is the SAR image, IRAR
t (R) is the RAR image (or raw radar data), g(R, t)

includes possible demodulation to baseband and lobe weight terms, R is the range dimen-
sion, t is the azimuth dimension of the raw data (or time dimension), andDt is the azimuth
(or time) domain of the RAR image. Image creation can be performed in the image (or
time) domain or in the frequency domain. Some of the most important frequency do-
main methods are the Range-Doppler (Walker, 1980), the Fourier-Hankel (Fawcett, 1985;
Hellsten and Andersson, 1987; Andersson, 1988) and the ω-K migration methods (Rocca,
1987; Cafforio et al., 1991; Milman, 1993). The frequency domain methods are generally
fast, but has a downside that they assume straight trajectories in order to work properly.
However, in reality the trajectory will never be straight, especially if the flying platform
is a small UAV. This will cause image distortions and auto-focusing is more complicated.
This opens up for the use of time domain methods, which are slower, but can handle any
trajectory shape. This of course is an important benefit, particularly if SAR images are to
be used for trajectory estimation, and time domain methods will be considered from now
on.

One of the most known time domain methods is back-projection (Natterer, 1986). In
the back-projection procedure each saved radar echo, which is one dimensional, is back-
projected onto a two dimensional area. In this way a poor quality image of the scene is
obtained. Now we can sum up all these back-projected images in order to obtain the full
SAR image. This is equivalent to the integration operation in (3.6), except that integration
becomes summation due to the discrete data. This process can be described for each pixel
(i, j) in SAR image as in

ISAR
ij =

N∑
t=1

zt(R
ij
t ) (3.7a)

Rijt = ‖pt − sij‖2 (3.7b)

where pt is the position of the platform and sij is the position in the scene which corre-
sponds to the pixel (i, j). zt(R) is the compensated raw data in sampled form. Figure 3.6
describes this procedure in a schematic way and Figure 3.7 is the resulting image produced
with the back-projection method if the same raw data used for RAR from Figure 3.5 is
used.

The main downside of this kind of procedure is that the number of operations needed
to synthesise an image is proportional to O(KMN) for a K ×M image created from
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Figure 3.7: Synthetic aperture radar image of the two point targets from Figure 3.4.

N radar echos. This can be a large number for large images and long aperture times.
However during recent years a modification to the original back-projection, called fast
factorised back-projection, has been developed. This method can actually create the SAR
image in O(KM logN) number of operations (Ulander et al., 2003). This implies con-
siderable time saving and together with the development of the computers, this allows to
consider real time SAR imaging.

It is now clear that in order to perform the back-projection (or factorised fast back-pro-
jection) operation the trajectory of the platform must be known or otherwise the resulting
image will be distorted. The image distortion can manifest itself in many ways, from pure
translation through geometric distortion to defocusing. Since translation and geometric
distortions are hard to measure if the true scene is unknown, these will not be consid-
ered here. Defocusing, which is a very common distortion, is measurable, at least seen
as an image property. The main source of defocusing of the SAR images is the error in
the trajectory estimate used for creation of the images. In the frequency domain meth-
ods, a straight trajectory is used, and if the real trajectory deviates from this assumption,
it will cause image defocusing. In the time domain methods, despite the fact that the
general trajectory form is used, deviations from the real trajectory will cause the back-
projected sub images to be shifted. The summation operation of the sub images will then
cause defocusing. To illustrate this, the simple two point image from Figure 3.7 can be
used. If Gaussian white noise with different variances is added to the cross-track posi-
tion of the platform, images as in Figure 3.8 are obtained. In Figure 3.8a, the image is
created with the same trajectory as data were acquired, which results in a perfectly fo-
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(a) Focused SAR image of two point targets.

R
a
n
g
e
 p

ix
e
ls

 [
m

]

Azimuth pixels [m]

Simulated SAR image with σ = 0.5

20 40 60 80 100 120

20

40

60

80

100

120

(b) Unfocused SAR image of two point tar-
gets with σ = 0.5 m.
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(c) Unfocused SAR image of two point targets
with σ = 1.5 m.
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(d) Unfocused SAR image of two point tar-
gets with σ = 3 m.

Figure 3.8: Example SAR images with different perturbed trajectories.

cused image. In the other three images the cross-track position noise wasN (0, σ2) where
σ = {0.5, 1.5, 3} [m] and the images are created under the assumption that the trajectory
was linear. This results in defocused images, and the degree of defocusing depends on the
noise variance. Much effort has been spent to correct for this, see for example Oliver and
Quegan (2004); Wahl et al. (1994); Xi et al. (1999); Morrison and Munson (2002); Xing
et al. (2009). Traditionally, these methods are open-loop type, meaning that the image is
created with assumptions of linear flight trajectory and focusing is done afterwards in an
open-loop way discarding possible flight trajectory information. This is a consequence
of the off-line image generating process where the trajectory is no longer interesting. In
the setup where SAR images are generated on-line, an idea, as already mentioned, is to
use information from the image defocusing and navigation system together. In the next
section, different focus measures, that can be used in this procedure are covered.
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3.3.2 Measuring Focus

Sum-Modified-Laplacian

The Sum-Modified-Laplacian focus measure is defined as

∇2
MLIij =|2Iij − I(i−1)j − I(i+1)j |+

|2Iij − Ii(j−1) − Ii(j+1)| (3.8a)

SML(I) =

K−1∑
i=2

M−1∑
j=2

∇2
MLIij · I[∇2

MLIij≥T ](∇2
MLIij) (3.8b)

where Iij is the K ×M image grey-scale intensity for pixel coordinate (i, j), I is the
indicator function, and T is the threshold value. This measure has its maximum for the
most focused images. Since (2.29) is a minimisation criterion, SML can be inverted or
negated to fit into this criterion.

Tenengrad

The Tenengrad focus measure is defined as

TG(I) =

K−1∑
i=2

M−1∑
j=2

S2
ij · I[Sij>T ](Sij) (3.9)

where Sij is the Sobel gradient in pixel coordinate (i, j),

Sij =
√

(Srij)
2 + (Scij)

2 (3.10)

where Sr and Sc are row and column Sobel gradients respectively, T is threshold value
and I is the K ×M image. The Sobel gradients are obtained by convolving the image
with the row and column Sobel kernels Dr and Dc,

Sr = Dr ∗ I (3.11a)
Sc = Dc ∗ I (3.11b)

Dr =

−1 0 1

−2 0 2

−1 0 1

 (3.11c)

Dc =

−1 −2 −1

0 0 0

1 2 1

 (3.11d)

Just as SML, TG has it maximum for the most focused images. This problem is circum-
vented in the same way as for the SML.

Discrete Cosine Transform

Further, the Discrete Cosine Transform (DCT) can be used to measure image focus, see
Kristan et al. (2006). The main idea is that focused images have higher frequency compo-
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nents than unfocused images. The focus measure based on DCT is defined as

DCT(I) = 1−
∑T
ω=1

∑T
ν=1 |D(ω, ν)|2

(
∑T
ω=1

∑T
ν=1 |D(ω, ν)|)2

(3.12)

where

D(ω, ν) = αωαν

K−1∑
i=0

M−1∑
j=0

Iij cos

(
π(2i+ 1)ω

2K

)
cos

(
π(2j + 1)ν

2M

)
(3.13a)

αω =


1√
K
, ω = 0√

2
K , 1 ≤ ω ≤ K − 1

(3.13b)

αν =


1√
M
, ν = 0√

2
M , 1 ≤ ν ≤M − 1

(3.13c)

is the Discrete Cosine Transform of the image I and T is threshold. Even DCT behaves
as TG and SML, i.e., it attains the maximum value for the sharpest images.

Entropy

Another measure of the image focus is image entropy calculated as

E1(I) = −
256∑
k=1

pk log2(pk) (3.14)

where pi is an approximated grey level distribution of the K ×M grey-scale image. A
grey-scale SAR image is taken as the amplitude image |Iij |, where Iij is here consid-
ered as the complex-valued SAR image. pi can be obtained from the image histogram,
calculated as

pk =

{
# of pixel values |Iij |

}
∈ [k − 1, k]

KM
(3.15a)

k ∈ [1, 256] (3.15b)

The more focused the image is, the higher the entropy is (Ferzli and Karam, 2005), exactly
as for the previous mentioned measures. Note however that entropy measure is primarily
used for optical images, whose defocus (or rather unsharpness) have different nature from
the defocus of SAR images. In Section 3.3.4 it will be shown that the entropy for a SAR
image is lower the more focused the image is. Example histograms and entropy values
for the images in Figure 3.8 are given in Figure 3.9.

An alternative definition of entropy (and more frequently used in the SAR context) is
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Figure 3.9: Histograms for the images in Figure 3.8 and corresponding entropy 1
values. Note the log-scale on y-axis.
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(Yegulalp, 1999; Xi et al., 1999; Morrison and Munson, 2002),

E2(I) = −
K∑
i=1

M∑
j=1

pij ln(pij) (3.16a)

pij =
|Iij |2∑K

i=1

∑M
j=1 |Iij |2

(3.16b)

This entropy, on the other hand, will have its minimum for both optical and SAR images,
as will be shown in the evaluations in Sections 3.3.3 and 3.3.4.

3.3.3 Evaluation on Test Optical Image

For the purpose of evaluation of the different focus measures, the image in Figure 3.10 is
used. The evaluation will be performed for different thresholds where it is applicable and
for different degrees of defocus (or unsharpness).

Threshold Dependence

In order to evaluate the performance of the different measures, the ratio between focused
and unfocused images, F (Ifocused)/F (Iunfocused), is plotted for the test image as a function
of threshold T (F is one of TG, SML or DCT). Unfocusing is performed with the Gaus-
sian low-pass filter kernel with size 5 × 5 pixels and with standard deviation σ = 1.5.
The results are plotted in Figure 3.11. Since entropy does not depend on the threshold,
only one value is obtained for this case, E1(Ifoc)/E1(Iunfoc) = 6.99/6.80 = 1.03 and
E2(Ifoc)/E2(Iunfoc) = 12.40/12.42 = 0.99.

Blur Kernel Dependence

In Figure 3.12 the ratio F (Ifocused)/F (Iunfocused) is plotted for different standard deviations
of the 5× 5 Gaussian low-pass kernel, in the range σ ∈ [0, 4]. Higher variance will yield
a less focused image. For the measures that depend on the threshold, the threshold values
are chosen based on the results from Section 3.3.3, i.e., the threshold values that give
high ratio between focused and unfocused images. For this particular evaluation they are
TTG = 350, TSML = 270 and TDCT = 2.

3.3.4 Evaluation on Test SAR Images

For SAR images, basically the same evaluation as above will be performed, but in this
case defocusing will be caused by the different trajectory errors, which is the main reason
for SAR image defocusing.

Threshold Dependence

To get a feeling for how different focus measures perform on SAR images as a function
of the threshold, the same evaluation is done as in Section 3.3.3. The example SAR
image used in the evaluation is in Figure 3.13. Defocusing is here obtained with adding
range direction noise with standard deviation σ = 1.5. Results are plotted in Figure 3.14.
Exactly as above, since entropy does not depend on the threshold, there is only one value
for each σ. In particular, σ = 1.5 gives E1(Ifoc)/E1(Iunfoc) = 1.91/5.12 = 0.37 and
E2(Ĩfoc)/E2(Ĩunfoc) = 4.28/8.10 = 0.53.
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Figure 3.10: Test image used for evaluation of the focus measures. Image is courtesy
of University of Southern California, Los Angeles, California, USA.
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Figure 3.11: Ratio of the different focus measures for focused and unfocused optical
images as a function of the threshold.
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Figure 3.12: Ratio of the different focus measures for focused and unfocused optical
images as a function of the standard deviation of the Gaussian blur kernel.
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Figure 3.13: Example SAR image used for evaluation of the focus measures.

Position Blur Dependence

Another test of the focus measures that is performed is how they depend on the variance
of the noise in the range direction for a given threshold, similar to the evaluation in Sec-
tion 3.3.3. The simulation is performed with the same noise realisation, but different
variances, i.e., position in range direction is

Yt =
√
Qwt (3.17)

where wt is N (0, 1) and Q ∈ [0, 9] [m2] (standard deviation is between 0 and 3 m). The
result is depicted in Figure 3.15. From these plots it can be noticed that DCT and entropy
2 measures behave as expected, i.e., the ratio between focused and unfocused image is
monotonically increasing as a function of the standard deviation for DCT and decreas-
ing for entropy 2 measure. For TG, SML and entropy 1, however, there is a difference
between optical and SAR images. For optical images, all three measures will have their
maxima for focused images, while for SAR images a minimum value is obtained instead.
This behaviour can be explained both by the look of the test image, two bright points and
lot of dark area, and the nature of the SAR images, i.e., SAR images usually look like
they are negative optical images and contain more dark areas than optical images.

In order to obtain an image which is more informative, a scene in Figure 3.16 is created.
A smaller image is created to minimise the dark area. This image should be more repre-
sentative for the SAR images. The simulation above is modified and the maximum value
for the standard deviation of the noise is set to 1.5 instead of 3. This is done because
the smaller image might cause rand effects which will negatively influence the focus mea-
sures. The results are depicted in Figure 3.17. It can be noticed in these plots that TG
and SML behave as expected now, but SML has a highly non-convex form. This indicates
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Figure 3.14: Ratio of the different focus measures for focused and unfocused SAR
images as a function of the threshold.
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Figure 3.15: Ratio of the different focus measures for focused and unfocused SAR
images as a function of the standard deviation of the noise in the range direction.
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Figure 3.16: Example SAR image with more informative scene.

that SML might not be suitable measure for the SAR images. Entropy 2 and DCT still
behave as expected, and entropy 1, just as in the previous case, attains minimum for the
most focused SAR image.

Evaluation on Perturbed Trajectory

In order to evaluate the focus measures behaviour for different trajectories on the simu-
lated SAR images, simulations with different trajectory errors are performed. The trajec-
tory is simulated with the model (2.19) and trajectory errors consist of different incorrect
initial conditions on velocity in azimuth direction, vX0 , and acceleration in range direction,
aY0 . The nominal initial values are chosen as vX0 = 100 m/s and aY0 = 0 m/s2 and acceler-
ation error is varied between −0.045 and 0.045 m/s2 and velocity error is varied between
99.962 and 100.038 m/s. Those values are chosen as 3σ-values of the state errors from
the assumed typical navigation system performance in an UAV, see Paper A. The noise,
wat , is set to zero in these simulations, i.e., the trajectory is completely deterministic. This
has been done in order to be able to illustrate focus measures in a two-dimensional plot.
On the other side, all focus measures, as functions of the state noise are convex and im-
pose no problems in the minimisation step. In Figure 3.18 trajectory examples with some
different acceleration and velocity errors according to Table 3.1 are shown.

All five focus measures, TG with threshold value T = 550, SML with T = 170, DCT
with T = 5 and entropy measures 1 and 2, are compared on the image in Figure 3.16.
The thresholds are chosen according to the results from the simulations in Section 3.3.4.
Results are depicted in Figure 3.19 where 1σ-, 2σ- and 3σ-standard deviations of the
initial states vX0 and aY0 are also drawn. The contours in the plots are the level curves of
the focus measures as a function of the error in the initial states. The level curves for the
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Figure 3.17: Ratio of the different focus measures for focused and unfocused SAR
images with more informative scene as a function of the standard deviation of the
noise in the range direction.
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Figure 3.18: Example trajectories from Table 3.1. Thick line: no errors in initial
values.

Trajectory Error in aY0 [m/s2] Error in vX0 [m/s]

T1 0.02 −0.005

T2 0.01 −0.01

T3 0.005 0.005

T4 −0.01 0.02

T5 −0.035 0.005

Table 3.1: Errors in initial acceleration and velocity for example trajectories shown
in Figure 3.18.
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measures with the maximum for the correct values of the initial states, like TG or SML,
are inverted.

Further, plots where only one parameter, vX0 or aY0 , is varied are presented in Figure 3.20
(all measures are normalised between 0 and 1). From all these figures it looks like that all
measures except entropy 2 have several local minima and are highly non-convex. We also
see that TG and SML do not have minimum value for the correct velocity value and that
DCT has its minimum in the wrong value of the acceleration. The entropy measures per-
form fairly well, and entropy 1 has much sharper global minimum than entropy 2. Based
on this, the entropy 1 and the entropy 2 measures look as the most attractive measures
since they attain minimum value for the correct values of the states, they do not have any
threshold to tune and entropy 2 is also smooth and convex in the interesting region of the
state values.

The focus measures’ performance is also tested on a more unstructured scene illustrated
in Figure 3.21a. This scene is created by randomly placing 150 point targets and assigning
them a random reflectivity. The focus measures for this scene are shown in Figure 3.21.
Here it can be seen that the measures look even worse and not even the entropy 1 measure
has its global minimum for the correct values of the states. Entropy 2 is however still
convex and smooth in the vicinity of the correct values of the states, and is still the most
promising alternative to use as a focus measure in the minimisation criterion.

The focus measures above are evaluated on images that have no noise, i.e., the images are
perfect. In reality, that is not the case, and images contain some noise caused by the noise
in the radar measurements. Therefore, the same two scenes are used again, but white
Gaussian noise with variance σ2 = 1.5 is added to the radar echos. The images obtained
with this setup are depicted in Figure 3.22a and Figure 3.23a. The focus measures for
these two images are shown in Figure 3.22 and Figure 3.23. It can be seen in these plots
that entropy 2 measure is still smooth and convex in the vicinity of the true values of
the navigation states. The only thing that happens with entropy 2 is that the value of the
function is different, but the principal form is the same as for the noise free case.

Another thing that can be noticed from these plots is that the entropy 1 measure does not
have a pronounced global minimum in the case of structured scene, as it has for the noise
free case. It looks similar to the case with unstructured scene. This is not surprising since
the unstructured scene will behave like the image noise for the focus measure. It also
looks like TG measure behaves better for the noisy case, at least around the true values of
the navigation states. The explanation might be that TG measure has a threshold that can
filter out the noise.

The conclusion from the evaluation above is that entropy 2 measure works quite fine for
both cases, with and without noise in the radar measurements, and it is the smoothest
measure of all tested ones. Entropy 1 could be used as well, at least for the scenes with
structure, while TG seems to work for the case with noise in images. The drawback of
the TG measure is the threshold that must be tuned to the different imaged scenes.

Another interesting thing that can be seen in this evaluation is that there is an ambiguity
in the focus measure between initial X-direction velocity and Y -direction acceleration.
It can be seen that almost all measures have a pronounced diagonal form. Very similar
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(a) SAR image of the structured scene.
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(b) TG focus measure with T = 550.
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(c) SML focus measure with T = 170.
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(d) DCT focus measure with T = 5.
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(e) Entropy 1 focus measure.
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(f) Entropy 2 focus measure.

Figure 3.19: Focus measures for the image with more informative structured scene.
Standard deviations of the states are also drawn.



3.3 Synthetic Aperture Radar 47

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

0.5

1

1.5

Range direction acceleration error [m/s
2
]

D
if
fe

re
n

t 
fo

c
u

s
 m

e
a

s
u

re
s

 

 

TG (T = 550)

SML (T = 170)

DCT (T=5)
E

1

E
2

(a) Focus measures with no velocity error.
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(b) Focus measures with no acceleration error.

Figure 3.20: Focus measures for the structured scene with only error in aY0 and vX0 .
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(a) SAR image of the unstructured scene.
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(b) TG focus measure with T = 550.
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(c) SML focus measure with T = 170.
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(d) DCT focus measure with T = 5.
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(e) Entropy 1 focus measure.
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(f) Entropy 2 focus measure.

Figure 3.21: Focus measures for the image with more informative unstructured
scene.
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(a) Noisy SAR image of the structured scene.
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(b) TG focus measure with T = 550.
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(c) SML focus measure with T = 170.
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(d) DCT focus measure with T = 5.
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(e) Entropy 1 focus measure.
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(f) Entropy 2 focus measure.

Figure 3.22: Focus measures for the noisy image with more informative structured
scene. White Gaussian noise with variance σ2 = 1.5 is added on the radar echoes.
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(a) Noisy SAR image of the unstructured
scene.
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(b) TG focus measure with T = 550.
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(c) SML focus measure with T = 170.
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(d) DCT focus measure with T = 5.
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(e) Entropy 1 focus measure.
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(f) Entropy 2 focus measure.

Figure 3.23: Focus measures for the noisy image with more informative unstruc-
tured scene. White Gaussian noise with variance σ2 = 1.5 is added on the radar
echoes.
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focus value is obtained if acceleration and velocity errors are both negative as well as if
they are both positive. This is most clearly visible in the Entropy 2 measure. In practice
this means that many different trajectories give equally focused image. This behavior of
the focus measure puts limitations on estimation performance with focus measure only.
In this case, the sensor fusion framework, where several different sensors are used, allows
us to estimate the platform’s states better. In this case inclusion of the IMU will improve
the estimation performance.

3.4 Optical Camera

In the previous two sections IMU and SAR principles have been described and measure-
ment functions for these sensors were defined. The last sensor that is used here is a regular
optical camera. In the following section a function of an optical camera will be described.
The basic projective geometry model of the pinhole camera will be explained, as well as
how this model is used to formulate a measurement function used in the sensor fusion
framework.

3.4.1 Projective Geometry Model

Generally speaking, an optical camera is a device that creates images of the surrounding
environment, much like SAR does. The main difference is that the camera is a passive
sensor, i.e., it does not transmit any signal or energy in order to create an image1. Instead
it receives a visible light and detects the total light energy with an array of photo-sensitive
cells. Each cell will be irradiated by the portion of the light from the environment, repre-
sented as rays of light, creating the actual image value at this cell. These values are then
saved in memory and this is what we call an image. The number of these cells, or pixels, is
deciding the image resolution, usually expressed as the amount of pixels in horisontal and
vertical directions. For example, so called Video Graphics Array (VGA) format, although
originally used to refer to display hardware invented by IBM, is today also used for spe-
cific resolution, namely 640 × 480 pixels, (IBM, 1992). All modern cameras use optics,
consisting of one or several lenses to refract the light, i.e., change its propagation path,
in order to place the image plane on the right place inside the camera, i.e., on the sensor
array. A quite simple model of the lens, thin lens, can be used to explain this mechanism.
As depicted in Figure 3.24, rays passing through the point P, and which are parallel with
the optical axis, will deflect its path through the lens and pass through the focal point
placed on the focal length, f0, from the lens. In addition, rays passing through the center
of the lens, so called Optical Center, OC, will pass unchanged. These two properties of
the thin lens will define where image of P, p, will be placed, namely on the intersection of
these rays. By changing the focal length we can make the image larger or smaller, which
is known as zooming. Note also that the actual image is placed upside-down. With help
from the principle of similar triangles we obtain the fundamental equation of the thin lens

1

f0
=

1

Z
+

1

z
(3.18)

1This is true if we disregard from the flash that many cameras frequently use. However the flash is used to
enhance the image quality and is not essential for the image creation
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Figure 3.24: Basic thin lens geometry. Point P on a distance Z from the lens is
imaged as a point p on the image plane placed on a distance z. f0 is defined as the
focal length and OC is the Optical Center of the camera.

With some algebraic transformations of this equation we can obtain the u-coordinate of p
as

u = − Xf0

Z − f0
= − (z − f0)X

f0
(3.19)

where the minus sign denotes the upside-down image position.

Although this equation describes a thin lens principle quite accurately, another, and sim-
pler, model will be used to describe the projective nature of the camera. This model is
called Pinhole Camera Model and is obtained by letting the size of the lens go to zero,
(Ma et al., 2004). In that case, only the rays that are going through the optical center will
contribute to the image creation. This also implies that f0 will also go to zero and by
rewriting (3.19) as

−Z − f0

X
=
f0

u
(3.20a)

−z − f0

u
=
f0

X
(3.20b)

and letting f0 go to zero we obtain

−Z
X

= − z
u

= 0⇒ u = z
X

Z
(3.21)

This is a perfect pinhole camera projective model. In Figure 3.25 this setup is depicted.
Here the image plane is actually moved in front of the optical center in order to simplify
expressions (minus sign is omitted in that way) and also, somewhat ambiguously, the dis-
tance between the optical center and the image plane is called focal length in the pinhole
camera case and will be denoted f instead of z. In a two-dimensional image plane, the
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Figure 3.25: Illustration of the projective geometry of the pinhole camera model.
OC is the Optical Center of the camera, p is the image of the point in 3D, P, i.e.,
its projection in the image plane. f is the focal length of the camera, which is a
distance between optical center and image plane. u and v are the normalised pixel
coordinates.

ideal pinhole camera projective model is then[
u

v

]
=
f

Z

[
X

Y

]
(3.22)

where [X Y Z]T are the 3D coordinates of the imaged point P expressed in the camera
frame xyz, see Figure 3.25, and [u v]T are the coordinates of the image point p. Often,
the focal length of the camera is known, which means that we can compensate for it and
obtain the normalised pinhole camera model, where the focal length is equal to one. This
model will be defined via an operator P : R3 → R2 as[

u

v

]
= P ([Xc Y c Zc]T ) =

1

Zc

[
Xc

Y c

]
(3.23)

where we have explicitly written imaged point’s coordinates in camera frame, c, and here
[u v]T is denoting the normalised coordinates of the image point. The main property of
the projective model is its inherent depth ambiguity, i.e., without prior knowledge of the
scene, it is impossible to resolve if the observation comes from the large scene that is
far away, or from a small scene that is close to the camera. This is similar to the focus
measure ambiguity mentioned for the SAR images. This behavior can easily be seen in the
structure of (3.23). IfX and Y are scaled by a constant, making the scene larger (smaller),
then it can be compensated by scalingZ with the same constant making the distance to the
scene bigger (smaller). This corresponds to moving along the line OC-P in Figure 3.25. If
the scene is unknown and we have several camera observations from different viewpoints,
this ambiguity can be resolved, and this is known as triangulation, see for example Hartley
and Sturm (1997). However, if both camera positions and the scene are unknown, the
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Figure 3.26: Depth ambiguity of the moving camera. A camera moving fast in
positions {p1, p2, p3} perceives the point P in exactly the same way as a slowly
moving camera in positions {p̃1, p̃2, p̃3}.

problem is much more difficult. If camera is moving, the depth ambiguity manifests itself
as a possible speed scaling, which in turn causes position scaling. This can be seen in
Figure 3.26 where a camera located in positions {p1, p2, p3} gives the same images of
the point P as a camera positioned in {p̃1, p̃2, p̃3} but these two cameras are moving with
different speeds. In order to resolve this ambiguity, we need additional measurements of
the motion. As mentioned in Section 3.3.4, exactly as for the SAR, an IMU can provide
that kind of measurements and the sensor fusion framework gives the means necessary to
solve the problem.

The normalised coordinates above assume that the actual image has infinite resolution,
and they are expressed in metric units, e.g., meters. In practice, the actual digital image
consists of discrete image elements, pixels, with coordinates [px py]T in the image plane.
In order to use the projective model we need to transform the pixel coordinates to the
normalised coordinates. This will be done by an affine model, involving scaling and
shifting. Scaling is done to transform from pixel size to metric size and shifting is done
because the normalised coordinates have their origin in the middle of the image plane,
i.e., the point where optical axis and image plane intersect, while the pixel coordinates
have their origin in the upper-left corner of the image. If these, so called intrinsic camera
parameters, are given, the total transformation can be written as[

u

v

]
=

1

f

([
sx 0

0 sy

][
px

py

]
−

[
sxox

syoy

])
(3.24)

where sx and sy are the scaling parameters (in m/pixel) and ox and oy are the coordi-
nates of the middle of the image plane (in pixels). The intrinsic camera parameters can
be estimated, for a particular camera, with readily available software, see for example
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Bouguet (2010). This model assumes that there are no nonlinear distortions caused by the
lens system for example, but even that kind of calibration is possible to perform giving
a slightly more complicated model, see e.g., Ma et al. (2004). In the model (3.23) the
3D coordinates are referenced to the camera frame, but usually both platform’s states and
imaged environment points are referenced to the local navigation frame. For that reason
we need to transform these coordinates to the camera coordinates. Just as in the IMU case,
this transformation is performed as

mc = Rcn(mn−pn) (3.25)

where mc = [Xc Y c Zc]T are the environment point’s, called landmark, coordinates in
the camera frame, c, Rcn is the rotation matrix between navigation and camera frame, mn

is the coordinates of the landmark expressed in the navigation frame and, as before, pn is
the position of the platform in the navigation frame. The resulting measurement equation,
for one landmark, can finally be written as

ymt =

[
ut

vt

]
= P (Rt(m−pt)) + emt = hm(xt,m) + emt (3.26)

where the frame notation has been omitted, and we added the time dependence and noise
which is, as before, assumed to be white and Gaussian, emt ∼ N (0, Rmt ). The Equa-
tion (3.26) can be generalised for several landmarks by stacking all the measurements of
the corresponding M landmarks as in

u1
t

v1
t
...

u
Nyt
t

v
Nyt
t


︸ ︷︷ ︸

ymt

=


P (Rt(m

c1t −pt))
...

P (Rt(m
c
Nyt
t −pt))


︸ ︷︷ ︸

ht(xt,Mt)

+emt (3.27)

where Nyt denotes the number of measurements at time t and the correspondence vari-
ables, cit, encodes the measurement-landmark assignment, yit ↔ mj , which gives a subset
of the landmarks at time t, Mt = {mj}, j ∈ {1, . . . ,M | cit = j}. This relation can be
further generalised to collect the measurements for all the times, 1 : N , by stacking (3.27)
to obtain y

m
1
...
ymN


︸ ︷︷ ︸
y1:N

=

 h1(x1,M1)
...

hN (xN ,MN )


︸ ︷︷ ︸
h1:N (x0:N ,M)

+

e
m
1
...
emN


︸ ︷︷ ︸
e1:N

(3.28)

In this way, a measurement function, or likelihood function, on the form (2.29) is ob-
tained, where all the M landmarks m1, . . . ,mM are collected into the parameter M. This
parameter serves as a map of the environment that is observed by the camera. This rep-
resentation is conceptually different from the map obtained with SAR in a sense that the
camera based map is parametric, with point landmarks, while the SAR based map is sim-
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ply an image obtained with nonparametric methods. In any case, since both kind of maps
can be related to the platform’s states, we can use similar estimation methods for both the
states and the map.

3.4.2 Image Feature Extraction

In the previous section it was explained how to obtain the normalised image coordinates
from the pixel coordinates and how to relate the normalised coordinates to the platform’s
states. In this section the techniques how to obtain interesting points in the images, repre-
sented by pixel coordinates and called image features, will be introduced.

As already mentioned, the observation model for the camera is parametric, meaning that
the environment is encoded with discrete points in three dimensions, landmarks. The land-
marks are, except in very special occasions, not given in advance, implying that they must
be found and initialised during the estimation, i.e., we must use the images to extract the
landmarks. In practice, this means that some of the points in images will be remembered
in order to track them across several images and in that way establish the measurements
of the environment needed for the estimation. The ability to track the landmarks in sev-
eral images puts some requirements on which points in the images to choose. So the task
for the feature extractor is to find image points that are relatively easy to find in as many
images as possible. One way of accomplishing that is to find corners in the image. A
reason the corner points are a good choice is that they have a distinct gradient change in
all directions around a corner point. A simple edge would have change in gradient in only
one direction (across edge) and a flat region has no change in gradient, as expected. By
image gradient, we consider e.g., Sobel gradient calculated as in (3.11). A simple way to
measure this response is to build an approximation to Hessian matrix in each pixel as in

Hij =

[∑
w(Sr)2

∑
w S

rSc∑
w S

rSc
∑
w(Sc)2

]
(3.29)

where the sum is taken over a window, w, centered on pixel (i, j). The size of the window
is a parameter that is free to choose and it determines the size of the surrounding where a
feature is to be determined. Usually this window is combined with some low-pass kernel,
e.g., a Gaussian kernel. By taking a simple transformation of the matrix above

Cij = det(Hij)− κTr(Hij)
2 (3.30)

where det( · ) denotes the determinant and Tr( · ) the trace of the matrix, we obtain a
function called Harris strength. The scalar κ is seen as a tuning parameter which governs
the sensitivity between corner and edges. The Harris strength will have a high value for
the pixels where the corner is located and we can detect corners simply by seeking the
local maxima of C. This is exactly the principle behind a very popular Harris corner
detector (Harris and Stephens, 1988) and many implementations are available. As an
illustration of the Harris corner detector, consider the image in Figure 3.27. A resulting
Harris strength and 30 corner features are shown in Figure 3.28.

Although simple to understand and implement, the Harris corner detector provides us only
with the corner positions. In order to find the same corner in another image, we need some
kind of corner identity as well. Since the Harris detector does not provide that, a common
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Figure 3.27: Example image for the illustration of the Harris corner detector.
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(a) Harris strength for the image in Fig-
ure 3.27.

(b) 30 Harris corners for the image in Fig-
ure 3.27.

Figure 3.28: Harris strength and features for the example image.
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approach is to use a small image patch around the corner as a feature identity. This
allows for feature matching by a correlation method, for example. This method works
well for pure translational movement and without changing the scale of the image. To
overcome that limitation, other feature detectors, that have scale and rotation invariance,
have been proposed, and the most popular ones are Scale Invariant Feature Transform
(SIFT) (Lowe, 1999) and Speeded Up Robust Features (SURF) (Bay et al., 2006). These
feature detectors fall into the class of blob-detectors and use Difference of Gaussians
(DoG) or determinant of Hessian (DoH) approach to detect key-points at different image
scales. The key-points are chosen, just as in Harris detector case, as local maxima of
the DoG or DoH operators. In addition to the invariance to rotation and scaling, these
detectors also provide a feature descriptor, i.e., a feature identity that is needed. For SIFT
it is a 128 dimensional vector which is composed of accumulated image gradients from
small image regions in the direct surrounding of the key-point. In this way, a compact
descriptor representation is obtained and it allows us to use it for feature matching across
the images.

Given the feature detector of our choice, together with the measurement model (3.28), we
can now use the camera as a sensor in order to estimate the navigation and environment
parameters.



4
Concluding Remarks

This chapter concludes the whole thesis by summarising the main conclusions from the
publications included in Part II, in a “bird-eye view” fashion, and giving some suggestions
about future work. For more detailed treatment of the conclusions and the future work the
reader is referred to each paper.

4.1 Conclusions

In this work, a sensor fusion and optimisation based estimation approach to navigation and
mapping, also called SLAM, is presented. The approach is mainly aimed for applications
to unmanned aerial vehicles and, as such, it is using sensors that are available on these
platforms. Furthermore, the chosen sensors are independent on the external infrastructure,
like satellites in case of GNSS. The benefit this sensor setup gives is the higher availability
of the UAV in the cases where the external infrastructure cannot be assumed available. In
particular, the sensors that are used here are the inertial and imaging sensors measuring
the UAV’s ego-motion and the surrounding environment, respectively. Inertial sensors
considered here are the accelerometers and gyros, while imaging sensors are the optical
camera and SAR. In the SAR case, images can also be used to obtain the global UAV
position by matching these to a map with known global coordinates.

The proposed methods are implemented and demonstrated on both simulated and real
data. The results obtained for both considered imaging sensors are showing that they, in
combination with IMU, can be used for navigational purposes as well as for mapping
of the surroundings. Since the nature of the errors in the imaging sensors are different
from the inertial errors, i.e., velocity and position ambiguity versus drift, they serve as a
good complement to each other producing metrically correct solutions, i.e., resolving the
ambiguities, and reducing the drift caused by integrating the IMU errors.
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The structure of the SLAM problem can be exploited, mostly for the inertial/visual and
partly for inertial/SAR case, and together with the optimisation formulation used to effi-
ciently obtain the smoothed estimate of the interesting parameters. In the inertial/visual
case the problem is formulated as nonlinear least squares for which efficient algorithms
can be used. Furthermore, for the inertial/visual case, certain conditional structure can
also be used to obtain a good initial solution of the parameters. This is highly desirable
since bad initialisation of the nonlinear optimisation problem may lead to convergence to
local minima.

For the inertial/SAR case, both sequential and batch formulations of the navigation and
SAR image focusing are proposed. For the batch formulation an efficient calculation
method of the optimisation-criterion gradient is devised and a quasi-Newton method can
be applied to solve the optimisation problem in fewer iterations than only using pure
gradient search. In the sequential solution an Extended Kalman Filter is used with a
system model where range gradient is estimated from the SAR raw data and used as a
measurement function. The optimisation formulation of the joint navigation and image
focusing is further successfully extended by using maps to find global position and flight
direction of the UAV.

The SAR technique has also been applied to cellular phone time-of-arrival data to estimate
the non-line-of-sight signal propagation in urban environment. This can also be viewed
as mapping of the dominant reflector environment. In particular, a multistatic extension
of the basic SAR back-projection method has been applied to real cellular phone data and
preliminary results show good potential.

4.2 Future Work
A quite broad area that involves navigation and mapping has been treated in this thesis. In
most cases the optimisation framework has been used to estimate the parameters, which
usually represent navigational states and some parametrisation of the environment map.
Currently, a naïve implementation of these problems is done where standard MATLAB
generic optimisation functions are used. By exploiting the structure of the problems, tai-
lored solvers could be implemented which potentially can make execution more efficient
from both the execution time and memory usage.

Another interesting option that can be explored is the Moving Horizon Estimation (MHE)
where a smoothed estimate within a fixed-length window is obtained and the optimisation
methods proposed here can easily be adapted for MHE. This would also give a decreased
execution time, since the window size can be kept constant which means the the problem
size is also approximately constant.
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Abstract
Synthetic Aperture Radar (SAR) equipment is a radar imaging system that
can be used to create high resolution images of a scene by utilising the move-
ment of a flying platform. Knowledge of the platform’s trajectory is essential
to get good and focused images. An emerging application field is real-time
SAR imaging using small and cheap platforms with poorer navigation sys-
tems implying unfocused images. This contribution investigates a joint esti-
mation of the trajectory and SAR image.

1 Introduction

A general method for creating high resolution radar images from low resolution radar data,
or real aperture images, is to use relative motion between radar antenna and the imaged
scene and integrate all the partial real aperture images taken along the flown trajectory
(Cutrona et al., 1961). Traditionally, this operation is performed in the frequency domain
using FFT like methods, e.g., the Fourier-Hankel method (Fawcett, 1985; Hellsten and
Andersson, 1987; Andersson, 1988) or the ω-K migration methods (Cafforio et al., 1991;
Rocca, 1987; Milman, 1993). The common denominator of these methods is that they
assume that the aircraft’s (or antenna’s) flown path is linear and that is generally not the
case in practice. If the trajectory is not linear the integration will result in an unfocused
image. It is possible to partly correct for the deviation from the nonlinear trajectory but
then the methods become computationally inefficient. Another approach is to perform
integration in time domain by means of solving the back-projection integral (Natterer,
1986).

This process is illustrated in Figure 1 where two points are imaged. Each column of
the low resolution real aperture radar image on the bottom is back-projected to the sub
images, which means that column is mapped to the two-dimensional sub image. These
sub images are in turn summed to the final synthetic aperture radar image on the top.
The simulation plots of this setup is also depicted in Figure 2. Even in this process it is
assumed that the radar antenna’s flown path is linear with constant altitude and heading,
but the method can be extended to non-linear tracks as well. However exact inversion is
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+ ... ++ ... +

Raw radar data (Real aperture image)

Sub image

SAR image

Back−projection

Figure 1: Illustration of the back-projection method for creating of the SAR images.
Figure is not to scale.

not guaranteed. The main disadvantage of this method is the large amount of operations
required to create an image, where the complexity is proportional to O(NKM) for K ×
M pixels image using an aperture with N positions. However, by means of coordinate
transformation, an approximation to exact back-projection can be performed, which is
called Fast Factorised Back-projection, see Ulander et al. (2003). The complexity of
this algorithm is proportional to KM logN operations, which for large N implies an
important saving. With this faster algorithm it should be possible to create images in real
time, possibly in dedicated hardware. Since back-projection algorithms are dependent on
knowledge of the antenna’s position in order to get focused images, the image focus can
be measured and used for estimation of the trajectory.

An example of this is depicted in Figure 3, where two point targets are imaged. In
Figure 3a, a linear path is simulated, which results in a perfectly focused image. In
the other three images the variation in range position was added as N (0, σ2) where
σ = {0.5, 1.5, 3} [m] and the images are created with an assumption that the path was lin-
ear. This gives unfocused images as depicted. Traditional methods for auto-focusing are
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(b) Synthetic aperture radar image of the two
points.

Figure 2: Real and synthetic aperture radar images of the two point scene.

mostly open-loop type methods where either SAR images or raw radar data are used, for
example Phase Gradient Auto-focus (PGA), (Oliver and Quegan, 2004; Wahl et al., 1994;
Xing et al., 2009; Fienup, 1989; Morrison and Munson, 2002). The significant common
denominator for all these methods is that the image is created with assumptions on linear
flight trajectory and focusing is done afterwards in an open-loop way discarding eventual
flight path information. This is a consequence of the off-line image generating process
where the trajectory is no longer interesting.

In the setup where SAR images are generated on-line an idea is to use information from
the image focus and navigation system, like measured accelerations, together and in a
sensor fusion framework try to obtain the best solution to both image focusing and nav-
igation simultaneously. In the view of this approach for SAR images, the problem is
closely related to the Simultaneous Localisation and Mapping (SLAM), (Durrant-Whyte
and Bailey, 2006; Bailey and Durrant-Whyte, 2006), where a map of the unknown envi-
ronment is estimated jointly with the platform’s position. The SLAM problem has been
well studied during recent years and many different solution methods have been proposed.
One method that has been quite successful is to solve the SLAM problem in the sensor
fusion framework. In the SAR application, the map of the environment from SLAM, is
the unknown scene that is imaged and can be seen as the two dimensional map of point
reflectors. The problem of positioning the platform is the same in SLAM. However, the
main difference is that we consider a non-parametric SAR image rather than a parametric
map of point reflectors, that would be a too restrictive assumption in SAR imaging. That
is, though there are many conceptual similarities of joint navigation and mapping, the
state of the art algorithms cannot be applied here.

This contribution applies a sensor fusion framework, where the SAR image together with
a focus measure is interpreted as a “sensor” that contains information about the position
of the platform. The image creating and auto-focusing methods described above can be
illustrated in Figure 4. The method based on the sensor fusion can be implemented in
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(b) Unfocused SAR image of two point tar-
gets with σ = 0.5.
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(c) Unfocused SAR image of two point tar-
gets with σ = 1.5.

R
a
n
g
e
 p

ix
e
ls

 [
m

]

Azimuth pixels [m]

Simulated SAR image with σ = 3

20 40 60 80 100 120

20

40

60

80

100

120

(d) Unfocused SAR image of two point tar-
gets with σ = 3.

Figure 3: Example SAR images with different perturbed trajectories.

a centralised or decentralised manner. In this work we are focused on the decentralised
manner.

The outline is as follows. Section 2 summarises notation and makes a high-level mathe-
matical formulation of the approach. Section 3 introduces the navigation framework and
system and measurement models used. Section 4 describes the image focus measures
that will be used in the auto-focus procedure. In Section 5 an optimisation framework
and methods are introduced and their usage is explained. Numerical examples for the
simulated images are covered in Section 6 and for the real SAR data in Section 7. Finally,
conclusions and future work are discussed in Section 8.

2 Notation and Problem Formulation

Let the complex raw radar data be denoted zt(R), where t is the time index, and where
zt(R) denotes the returned radio energy corresponding to distance R to the scene from
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Figure 4: Top: SAR architecture where navigation data is used in an open-loop man-
ner. Middle: SAR architecture where navigation and SAR data is used together in a
decentralised sensor fusion framework. Bottom: SAR architecture where navigation
and SAR data is used together in a centralised sensor fusion framework.
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the radar. Further, let xt denote the state vector of the platform, which includes position
and orientation (radar pose). The back-projection method of producing the images, see
Figure 1, can alternatively be expressed as integration per image pixel. For each pixel
(i, j) in a complex valued image I , the total energy from each radar pulse is integrated by
summing all the values from the raw data given the range from the platform to the point
in the scene corresponding to the pixel (i, j). This can be expressed as

Iij =
N∑
t=1

zt(‖pt − sij‖2) (1)

where pt is the 3D position of the radar and sij is the coordinate of the scene point that
is mapped to the pixel (i, j) in the image. Now, for a SAR system on the UAV platform,
the pose cannot be assumed to be known. Instead, we have access to an estimated state
x̂t, and the estimated SAR image becomes

Îij =

N∑
t=1

zt(‖p̂t − sij‖2). (2)

This estimated SAR image will be out of focus, since all the contributions from raw data
will now be scattered due to the error in position estimate, see Figure 3 for an example of
this.

The key idea in this contribution is to perform a parametric focusing. To enable this, we
will make use of a focus measure F (Î), with the property that

F (Î) > F (Io), Î 6= I0, (3a)

x0
1:N = arg min

x1:N

F (Î) (3b)

where I0 denotes the true SAR image and x0
1:N the true state sequence.

We will, however, not optimise the focus w.r.t. the pose blindly. We will optimise focus
jointly with the filtering problem, in that the states obey the state dynamics and observa-
tions as well as possible.

As already noted, building up the image of size KM pixels with an aperture of N time
points requires a huge computational effort (O(NKM)). It may seem that an outer loop
that performs focusing will increase the computational burden at least an order of magni-
tude more. However, we will show that the gradient of the focus measure can be computed
efficiently, using the chain rule

∂F (x)

∂x
=
∂F

∂I

∂I

∂R

∂R

∂x
. (4)
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The first and third factor can be derived analytically, while the second one can be com-
puted from the already computed sub-images with only a little overhead.

In order to evaluate the performance of the estimation methods, some performance mea-
sures are needed. A popular measure for the parameter estimate is Root Mean Square
Error (RMSE) defined as

RMSE(θ̂) =

√∑N
k=1(θ̂k − θ0)2

N
(5)

where θ̂1, . . . , θ̂N are the unbiased estimates of the true scalar parameter θ0. To assess the
quality of the obtained SAR images, the power of the error image can be used. This can
be defined as

P̃ =

∑K
i=1

∑M
j=1 |Îij − I0

ij |2

KM
(6)

where Î is the K ×M complex SAR image obtained with the estimation procedure and
I0 is the perfect focused SAR image, i.e., created with the true trajectory.

3 Navigation Framework

An Inertial Navigation System (INS) in an aircraft integrates accelerometer and gyroscope
data and corrects the state with aiding sensors such as barometer and GPS using a general
dynamics and measurement equations

xt+1 = f(xt, wt) (7a)
yt = h(xt) + et (7b)

where xt are states of the system, wt denotes the process noise with variance Qt, et is
measurement noise with variance Rt and yt are the measurements. Usually an Extended
Kalman filter is applied to estimate the states, see e.g., Farrell and Barth (1999). In this
work, a simplified, yet useful, model of the dynamics will be assumed which will give
simpler expressions in the algorithms.
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Parameter Accuracy (1-σ) Stat. acc. (1-σ)

Position 3 m 0.093 m

Velocity 0.4 m/s 0.012 m/s

Acceleration 0.06 m/s2 0.015 m/s2

Table 1: Accuracy and stationary accuracy for the navigation parameters

3.1 Aircraft Model

In this setup, the following 2-DOF linear INS time discrete dynamics is used, (Farrell and
Barth, 1999),

xt+1 = Fxt +Gwt (8a)

F =

 I2 TsI2
T 2
s

2 I2

02×2 I2 TsI2

02×2 02×2 I2

 (8b)

G =


T 3
s

6 I2
T 2
s

2 I2

TsI2

 (8c)

xt = [Xt Yt v
X
t vYt aXt aYt ]T (8d)

wt = [wXt wYt ]T (8e)

where Ts is the sampling time,X is the position in azimuth direction and Y is the position
in range direction, vX and vY are the velocities in the X- and Y -directions respectively
and aX and aY are the accelerations in X- and Y -directions respectively. This model is
used for the whole trajectory. Since this model is linear and time invariant the stationary
Kalman filter can be used to estimate xt giving x̂t and its corresponding covariance Pt.

3.2 Navigation Performance

Due to the fact that the system is time invariant and linear, the covariance of the estimate
will converge to the stationary covariance P̄ . This covariance can be calculated as

P̄ = FP̄FT − FP̄HT (HP̄HT +R)−1HP̄FT +GQGT (9)

where F and G are defined above, and H is the linearised measurement equation h(xt).
In our case, it is chosen as H = I6, since we can assume that all states are measured by
the navigation system. For a typical navigation system used in an UAV, the performance
for these parameters (assumed to be measurement noise) can be summarised according to
Table 1. System noise covariance, Q, which represents disturbance on states, like wind
turbulence, can be taken as diag{0.25, 0.25}. With these values, the stationary covariance
is as given in the third column in Table 1.
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4 Focus Measures

We here review and compare two common focus measures.

4.1 Two Entropy Measures

One common focus measure in SAR or image processing literature is image entropy cal-
culated as

E1(I) = −
256∑
k=1

qk log2(qk) (10)

where qk is an approximated grey level distribution of the K ×M grey-scale image |I|,
where I is the complex-valued SAR image. It can be obtained from the image histogram
calculated as

qk =
{# of pixel values |Iij |} ∈ [k − 1, k]

KM
(11a)

k ∈ [1, 256]. (11b)

The more focused the image is, the lower the entropy is, see for example Morrison and
Munson (2002) or Xi et al. (1999). Histograms for the images in Figure 3 are given in
Figure 5. Note the log-scale on the y-axis. An alternative definition of entropy, and more
commonly used in the SAR context, is, Yegulalp (1999); Xi et al. (1999); Morrison and
Munson (2002),

E2(I) = −
K∑
i=1

M∑
j=1

qij ln(qij) (12a)

qij =
|Iij |2∑K

i=1

∑M
j=1 |Iij |2

. (12b)

4.2 Focus Measure Performance

Entropy 1 and 2 focus measures are tested and compared on a SAR image according to
Figure 6a and the results are depicted in Figure 7 where standard deviations 1− σ, 2− σ
and 3− σ are also drawn. These images are chosen since they are more informative than
the image in Figure 3 and they represent both structured and unstructured scene. In this
simulation setup the state noise in model (8) is set to zero, i.e. the trajectory is completely
deterministic. This is done in order to illustrate the focus measure functions Fi in a two
dimensional plot, since the trajectory, and consequently the focus measure, is then only
dependent on the initial values. In these figures it can be seen that entropy 2 has a convex
and pretty nice behaviour around the true value of the initial state. However it looks very
flat along the velocity direction which indicates that it is very difficult to estimate that
particular state. The entropy 1 measure has, on the other hand, a sharp minimum for the
correct value of the initial state but many local minima. This means that the two entropy
measures complement each other perfectly, and can be used in combination to obtain the
global minimum of the focus measure.
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Figure 5: Histograms for the images in Figure 3.
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(a) SAR image of the structured scene.
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(b) SAR image of the unstructured scene.

Figure 6: SAR images with a more informative scene than in Figures 2 and 3.
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(a) Entropy 1 focus measure for the struc-
tured scene.
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(b) Entropy 2 focus measure for the struc-
tured scene.
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(c) Entropy 1 focus measure for the unstruc-
tured scene.
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(d) Entropy 2 focus measure for the unstruc-
tured scene.

Figure 7: Focus measures for the image in Figure 6 with standard deviation ellipses.



5 Search Methods 81

5 Search Methods

As demonstrated in Section 4.2, the entropy 2 measure can be used as a course first step
in the optimisation to come close to the global minimum, and then entropy 1 can be used
to obtain the global minimum. Note that a special structure of the problem (8) allows
for unconstrained solution of the problem. This is due to the fact that the constraints
representing the trajectory can be taken into account while calculating the gradient of the
cost function as will be demonstrated in Section 5.3.

5.1 Joint Optimisation of Trajectory and Focus

Since the focus of the image depends on the unknown trajectory, one solution is to solve
the following minimisation problem

θ̂ = arg min
θ

γFEi(x0:N ) + γs

(
N∑
t=1

‖yt − h(xt))‖2R−1
t

+ ‖wt‖2Q−1
t

)
(13a)

s. t. θ = [xT0 , w
T
1:N ]T (13b)

xt+1 = f(xt, wt) (13c)

where γF and γs are the weights (and γF + γs = 1) and measurement equation h(x)
and system dynamics f(x,w) are defined as in Section 3. In Equation (13a), Ei(x0:N ),
i ∈ {1, 2}, is a function of the SAR image I created from the radar measurements and is
of the type “how focused is the image?” according to Section 4.

5.2 Gradient Search

Gradient search methods will be exemplified here with a couple of examples with different
trajectories and errors in them.

Only two states and their initial values are considered (vX0 and aY0 ), for illustrative pur-
poses. In general, the minimisation should be applied for these states for all or at least
some of the time instants along the trajectory. Such an example will be studied later.

A gradient search can, for the general problem minθ g(θ), be formulated as

θk+1 = θk + µkH(θk)−1∇g(θk) (14a)

∇g(θ) =
∂

∂θ
g(θ) (14b)

where µk is step size with µ0 = 1, g(θ) is the loss function as in (13a) and H(θ) is some
(positive definite) matrix. The initial estimate, θ0, can be taken as the usual estimate from
the navigation system. In the simplest case H can be chosen as the identity matrix and
the procedure becomes a pure gradient search. The disadvantage of such procedure is
the slow convergence, especially if the function to be minimised is ridge-like like entropy
1 focus measure. If H is chosen as the Hessian of g, the procedure becomes a Newton
search. The Newton search has a fast convergence, and is to prefer if the Hessian is
available. In many cases the Hessian is either not available or very difficult to obtain, as
in the case considered here, and some approximate methods must be applied. One option
is a quasi-Newton method, and BFGS in particular, where the Hessian is approximated by



82 Paper A Simultaneous Navigation and Synthetic Aperture Radar Focusing

utilising gradients of the function during the search, see Nocedal and Wright (2006). The
general gradient search procedure is summarised in Algorithm 1.

In all these procedures it is essential to obtain the gradient of the loss function. Because of
the special structure of the focus measure function and the SAR processing algorithm, the
complete analytical gradient is hard to obtain. For example, for the Entropy 1 measure it
is hard to differentiate a histogram of the image. In this case numerical methods must be
used. However, for the Entropy 2 measure it is possible to obtain analytical expressions
for most part of the gradient, enabling very efficient algorithms, and this will be described
in the next subsection.

Algorithm 1 Gradient search procedure

Input: Initial value of the optimisation parameters θ0, raw radar data, tolerance thresh-
olds ε1, ε2, ε3

Output: Solution θ̂, focused SAR image

k := 0
repeat

Calculate gradient of the cost function,∇g(θk)
Calculate (approximate) Hessian, H(θk)
µk := 1
repeat
θk+1 := θk − µkH(θk)−1∇g(θk)
µk := µk/2

until g(θk+1) < g(θk)
k := k + 1

until ‖θk − θk−1‖2 < ε1 or∇g(θk−1) < ε2 or ‖g(θk)− g(θk−1)‖2 < ε3

5.3 Calculating the Gradient

The calculations to obtain an analytical gradient of the entropy 2 function will be pre-
sented. The key to doing this is the chain rule for gradient calculation,

∂E2

∂x
=
∂E2

∂q

∂q

∂|I|
∂|I|
∂R

∂R

∂x
. (15)

In order to apply the chain rule, first the decomposition chain of the entropy 2 focus
measure will be considered and then, all partial derivatives will be presented.

The first factor to be differentiated is entropy 2 focus measure

E2 = −
K∑
i=1

M∑
j=1

qij ln qij = −
KM∑
i=1

qi ln qi (16)

where last equality is simply reformulation of the double sum by vectorising the image.
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Figure 8: SAR geometry. The figure is not to scale.

In the second factor, each qi is obtained by

qi =
|Ii|2∑
j |Ij |2

(17)

meaning that qi is a function of the absolute value of the complex-valued SAR image.

For the third factor, we need to obtain the derivative ∂|I|/∂R. In the creation of the
image, a back-projection sum is evaluated and all partial images are summed up. Each
partial image is a function of one column in the RAR image and the range from the
platform to each pixel in the SAR image, see Section 2. Unfortunately it is not easy, if
not impossible, to obtain analytical expression for the derivative ∂|I|/∂R. However, this
value can simply be obtained during image creation by means of numerical derivation.
The cost for that procedure is memory demand and execution time which both are doubled.
But this increase in cost is independent of the state, and thus constant no matter how many
parameters optimisation is performed over. A straightforward numerical gradients would
give a cost that is increasing linearly with the number of parameters.

The last factor that needs to be calculated is the gradient of the range as a function of the
states, R(xt). To calculate an analytical expression of this function some SAR geometry
preliminaries are needed. In order to express range as a function of the states, the geom-
etry setup as in Figure 8 can be considered. From the figure it can be seen that the range
Rt can, with help from Pythagoras theorem, be expressed as

Rt =
√

(Xm −Xt)2 + (Rg − Yt)2 + (Z0 − Zt)2 (18a)

Rg =
√
R2
m − Z2

0 (18b)

i.e., as a function of the trajectory. Note that Zt, the altitude of the platform, is assumed
to be known here. This can be achieved by measuring it with, for example, barometric
sensors which is always done in the aircraft applications. Here the exact expression for the
range along the trajectory is used, unlike in most of the SAR literature, where approximate
and linearised expressions are used, see for example Xing et al. (2009). This is due
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to the fact that in low frequency SAR application, as the one considered here, the ratio
between range and trajectory length is not negligible due to the lobe width. If approximate
expressions are used, too large errors would be introduced in the beginning and the end
of the trajectory.

Next, the dynamical model (8) can be used to express the position states used in the range
expression above as a function of any other state by using that

xt = F t−kxk, t > k (19)

Note that the state noise term, wt, is neglected in the following since it is equivalent
to optimise over noise and over acceleration states, at, so the latter one is used here to
simplify the expressions and reduce the amount of variables in the problem. This gives
that positions can be expressed as

Xt = X0 + Ts(t− k)vXk +
T 2
s (t− k)2

2
aXk (20a)

Yt = Y0 + Ts(t− k)vYk +
T 2
s (t− k)2

2
aYk (20b)

If these expressions are used in (18a), we can easily obtain partial derivatives of the range
with respect to the velocities and accelerations in arbitrary time points.

Now, we have everything needed to calculate the gradient of the focus measure with
respect to the trajectory states. The partial derivatives are, in turn (for t > k),

∂E2

∂qi
= − ln qi − 1 (21a)

∂qi
∂|Ij |

=


2|Ij |

∑
|I|2−2|Ij |2|Ii|

(
∑
|I|2)2 , i = j

− 2|Ij |2|Ii|
(
∑
|I|2)2 , i 6= j

(21b)

∂Rt
∂vXk

= − (Xm −Xt)Ts(t− k)

Rt
(21c)

∂Rt
∂vYk

= − (Rg − Yt)Ts(t− k)

Rt
(21d)

∂Rt
∂aXk

= − (Xm −Xt)T
2
s (t− k)2

2Rt
(21e)

∂Rt
∂aYk

= − (Rg − Yt)T 2
s (t− k)2

2Rt
(21f)

and ∂|I|/∂R is numerically calculated during image formation. Now, at least for en-
tropy 2 focus measure, we can calculate the gradient (semi-) analytically and use it in the
minimisation procedure. The second term in (13a) is easy to differentiate, since it is a
quadratic form and h(x) is a linear function in this case.
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Figure 9: Trajectory examples for different initial values of the velocity, vX0 and
acceleration, aY0 .

6 Numerical Examples for Simulated Images

In order to demonstrate the behaviour of the gradient search for this setup, the SAR image
from Figure 6a is used in two different experiments.

6.1 Two-Dimensional Optimisation

To be able to illustrate the convergence of the solution, only two optimisation variables
are considered here, θ = [vX0 , a

Y
0 ]T and the algorithm is initiated with random starting

points θ0 based on the stationary covariance of the states in the system. Those initial
values are [100.005, 0.005]T , [99.99, 0.01]T , [99.995, 0.02]T , [100.02, −0.01]T and
[100.005, −0.035]T .

The trajectories generated with these initial values are illustrated in Figure 9. In Fig-
ure 10a, the gradient search based entropy 2 measure is illustrated and we can see that
the solutions converge to the flat ridge-like area close to the correct acceleration, but not
necessarily to the correct velocity. In Figure 10b, the gradient search where the entropy 1
measure is used is depicted. In this case the algorithm is initiated with the solution from
the entropy 2 search. It can be seen that this minimisation strategy works pretty well,
although one solution is stuck in a local minimum. In that case the velocity error is the
largest one of all errors. Note also that only the focus measure is used to find estimate of
the states i.e., γs is set to zero while γF is set to one in Equation (13a).

It is interesting to see how the image created with the solution that is stuck in the local
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(a) Search trajectory for five different values of x0 using entropy 2 focus measure.
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Figure 10: Search trajectory for five different values of x0 using two different en-
tropy measures.
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minimum of the entropy 1 measure looks like compared to the unfocused image that is
initialised with. As illustrated in Figure 11, it can be seen that the image created with
values from the minimisation procedure is very close to the focused image and much
better than the unfocused images that are initialised with. The probable explanation for
this comes from the fact that small azimuth direction velocity errors do not influence the
final image much due to the quantisation effects. However the estimate of the navigation
states is not correct.
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(a) Image created with error in veloc-
ity of 0.02 m/s and in acceleration of
−0.01m/s2.
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(b) Image created with error in veloc-
ity of 0.014 m/s and in acceleration of
−0.0003m/s2.
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(c) Focused image as a reference.

Figure 11: Resulting images from the minimisation procedure with starting point
[100.02, −0.01]T .

6.2 High-Dimensional Optimisation

In the second example a more realistic setup is done. The optimisation problem to be
solved is
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θ̂ = arg min
θ

γFE1,2(x0:N ) + γs

N∑
t=1

‖amYt − aYt ‖2R−1
t

(22a)

s. t.

θ = [vX0 , a
Y
0 , a

Y
bN/4c, a

Y
bN/2c, a

Y
b3N/4c]

T (22b)

γF = 0.99 (22c)
γs = 0.01 (22d)

xt+1 = Fxt (22e)
X0

Y0

vY0
aX0

 =


0

0

0

0

 (22f)

aXt = 0, t ∈
{

0 : N
}

(22g)

aYt =


aY0 , t ∈

{
1 : bN/4c − 1

}
aYbN/4c, t ∈

{
bN/4c+ 1 : bN/2c − 1

}
aYbN/2c, t ∈

{
bN/2c+ 1 : b3N/4c − 1

}
aYb3N/4c, t ∈

{
b3N/4c+ 1 : N

}
(22h)

P0 =∞· I2 (22i)

where amY is the measured acceleration in Y -direction with additive white Gaussian
noise with Rt = 0.0022 m2/s4. E1,2(x0:N ) is either entropy 2 or entropy 1, exactly as
in the previous example. Here it is assumed that a change in Y -direction acceleration
will behave in a step like manner only a few times during the SAR image generation and
that the amplitude of the step is arbitrary. It is also assumed that the acceleration in X-
direction will vary slowly due to the platforms inherited inertia in this direction, so it can
be assumed to be zero. The meaning of the constraint in (22i) is that there is no prior
information about the initial values of the trajectory. Another spline-like interpretation
of the setup in (22) is to find a best trajectory by fitting the second order polynomials
between four points evenly spaced along the trajectory. Both scenes from Figure 6 are
used and 30 Monte Carlo simulations are performed in order to evaluate the performance
of the estimation procedure.

The resulting RMSE of the parameters and the mean value of the error image power
are presented in Table 2 and Table 3 for both structured and unstructured scene. Here,
the actual acceleration is presented instead of the process noise value, since it is more
physically interesting. It can be noticed that the improvement of the RMSE after further
minimisation with entropy 1 is not very big, it is in the magnitude of 10−5. It suggests
that the extra step of minimisation with entropy 1 can be skipped if a faster procedure is
sought.

In Figure 12, a noisy position (one of the 30 noise realisations) is used for the image
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(a) SAR image of the structured scene cre-
ated with noisy position data.
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(b) SAR image of the unstructured scene
created with noisy position data.

Figure 12: SAR images created with noisy position data.

Parameter RMSE (opt. with E2) RMSE (opt. with E1)

v̂X0 7.05 · 10−3 m/s 7.04 · 10−3 m/s

âY0 9.94 · 10−4 m/s2 9.15 · 10−4 m/s2

âYbN/4c 6.51 · 10−4 m/s2 6.34 · 10−4 m/s2

âYbN/2c 6.89 · 10−4 m/s2 6.84 · 10−4 m/s2

âYb3N/4c 6.02 · 10−4 m/s2 6.03 · 10−4 m/s2

Mean value of the er-
ror image power

149.6 126.9

Table 2: RMSE for the estimated parameters and the mean value for the error image
power for the structured scene.

Parameter RMSE (opt. with E2) RMSE (opt. with E1)

v̂X0 11.2 · 10−3 m/s 11.2 · 10−3 m/s

âY0 11.61 · 10−4 m/s2 10.98 · 10−4 m/s2

âYbN/4c 6.63 · 10−4 m/s2 6.52 · 10−4 m/s2

âYbN/2c 9.31 · 10−4 m/s2 8.86 · 10−4 m/s2

âYb3N/4c 7.77 · 10−4 m/s2 7.58 · 10−4 m/s2

Mean value of the er-
ror image power

1348 1242

Table 3: RMSE for the estimated parameters and the mean value for the error image
power for the unstructured scene.
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(a) Image of the structured scene after min-
imisation with Entropy 2 as focus measure.
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(b) Image of the structured scene after min-
imisation with Entropy 1 as focus measure.
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(c) Image of the unstructured scene after
minimisation with Entropy 2 as focus mea-
sure.
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(d) Image of the unstructured scene after
minimisation with Entropy 1 as focus mea-
sure.

Figure 13: Resulting images from the gradient search minimisation.

generation. We see that both images are unfocused and the image of the unstructured
scene is pretty bad, all the dominant targets are blurred. In Figure 13 the images after
minimisation with entropy 2 and 1 are depicted (for the same noise realisation as above).
Here it can be seen that any improvement in the image with extra minimisation with
entropy 1 is impossible to see with the naked eye, i.e., the improvement of the navigation
states does not visibly improve the images. This could be expected from the results from
MC simulations.

The resulting estimates of the parameters and error image power after entropy 1 minimisa-
tion for the two scenes and this particular realisation of the noise are presented in Table 4.
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Parameter Structured scene Unstructured scene

v̂X0 9.236 · 10−3 m/s 10.13 · 10−3 m/s

âY0 -3.057 · 10−4 m/s2 -1.707 · 10−4 m/s2

âYbN/4c -0.553 · 10−4 m/s2 -1.733 · 10−4 m/s2

âYbN/2c 11.15 · 10−4 m/s2 10.25 · 10−4 m/s2

âYb3N/4c 1.384 · 10−4 m/s2 1.234 · 10−4 m/s2

Error image power 51.37 53.12

Table 4: Error in the estimated parameters for the two scenes after entropy 1 min-
imisation procedure.

7 Example with Real SAR Image

Here, we illustrate the estimation results using data from the CARABAS II system (Hell-
sten et al., 1996) collected in western Sweden. The trajectory and the SAR image obtained
by the proposed estimation method are compared to the GPS trajectory, which is assumed
to be the ground truth. Part of the SAR image used for the estimation is illustrated in
Figure 14 where the GPS based trajectory is used to generate the image.

For the real data case, the optimisation problem to be solved is formulated according to

θ̂ = arg min
θ

γFE2(x0:N ) + γs

N∑
t=1

‖amt − at‖2R−1
t

(23a)

s. t.

θ = [vX0 , v
Y
0 , a

X
0 , a

Y
0 , a

X
i , a

Y
i ]T (23b)

i ∈ b{1 : 199}N/200c (23c)
γF = 0.36 (23d)
γs = 0.64 (23e)

xt+1 = Fxt (23f)[
X0

Y0

]
=

[
0

0

]
(23g)

ai =


a0, i ∈

{
1 : bN/200c − 1

}
abN/200c, i ∈

{
bN/200c+ 1 : bN/100c − 1

}
...

ab199N/200c, i ∈
{
b199N/200c+ 1 : N

}
(23h)

P0 =∞· I4 (23i)
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Figure 14: SAR image for the real data case created with the GPS based trajectory
(assumed to be ground truth).

where the variables are defined as

at = [aXt , a
Y
t ]T (24a)

amt = [amXt , amYt ]T (24b)

Rt = diag{RXt , RYt } = diag{0.1, 0.1}[m2/s4] (24c)

Note that in this case only the entropy 2 focus measure is used due to the computational
load to calculate the numerical gradient for the entropy 1 measure. However, according
to the results in Section 6, the improvement of the estimates by using additional optimi-
sation with entropy 1 is small and therefore it is omitted here. Also, the weights and the
covariance of the acceleration measurements are seen as tuning parameters.

Results from the optimisation procedure, which takes five steps to converge, is illustrated
in Figure 15, where the estimated trajectory is used to generate the image and Figure 16
where error between GPS and estimated trajectory is shown. That error can be compared
to the error in the trajectory with the initial values of the parameters, θ0, shown in Fig-
ure 17. It can be seen from these two plots that improvement in Y -direction is much less
than improvement in X-direction. Only the total loss function for entropy 2 is depicted
in Figure 18 and Figure 19. The image resulting form the estimated trajectory is hard do
distinguish from the GPS based trajectory image, except that it is shifted in range direc-
tion. This ambiguity is, unfortunately, unobservable in the auto-focusing process, i.e., the
method is invariant to the translation of the image.
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Figure 15: SAR image for the real data case obtained with the optimisation proce-
dure.
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Figure 16: Error in position between GPS and estimated trajectory.
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Figure 17: Error in position between GPS and initial trajectory.
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Figure 18: Total cost function as a function of the iteration number.
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Figure 19: Entropy 2 value as a function of the iteration number. Entropy 2 value
for the GPS-based image is also shown for a comparison.

8 Conclusions
A method is presented based on a decentralised sensor fusion framework, which is in-
tended to provide better focused SAR images on future cheap small SAR platforms. The
approach is based on jointly optimising a focus measure and the error in the navigation
states. As was concluded from simulation examples of the simple scene and real SAR data,
the method works fairly well, although not all states are observable. Nevertheless, even if
not the whole navigation state vector can be corrected, the resulting SAR image is much
more focused after optimisation than the original one. An important theoretical contribu-
tion, to reach the requirements on computation complexity, is an analytical expression for
the gradient of a focus measure. The result enables an implementation of gradient search
algorithms that add only marginal complexity to the SAR imaging process.
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Abstract
A method for fusing Synthetic Aperture Radar (SAR) images with optical
aerial images is presented. This is done in a navigation framework, where
the absolute position and orientation of the flying platform, as computed
from the inertial navigation system, is corrected based on the aerial image
coordinates taken as ground truth. The method is suitable for new low-price
SAR systems for small unmanned vehicles. The primary application is re-
mote sensing, where the SAR image provides one further “colour” channel
revealing reflectivity to radio waves.

The method is based on first applying an edge detection algorithm to the im-
ages and then optimising the most important navigation states by matching
the two binary images. To get a measure of the estimation uncertainty, we em-
bed the optimisation in a least squares framework, where an explicit method
to estimate the (relative) size of the errors is presented. The performance is
demonstrated on real SAR and aerial images, leading to an error of only a
few pixels.

1 Introduction

A radar mounted on a flying platform, like an aircraft or a satellite, can be used to get an
image of the surroundings by taking intensity (or radar cross section) of the reflections and
map it to pixels. This kind of image would be of pretty bad quality, since the resolution
will be decided by the radar lobe width which in turn is decided by the antenna length and
the frequency of the radar. For realistic antenna lengths found on the flying platforms, this
resolution is in range of several tenths of meters or more. By taking many images over
same area by moving the radar antenna and in this way creating a large synthetic antenna,
images with much higher resolution can be created. This is the basics of the Synthetic
Aperture Radar (SAR) imaging, (Cutrona et al., 1961). For more detailed description of
SAR and SAR images see e.g., Oliver and Quegan (2004). With modern SAR systems
the resolutions in images can be as good as a couple of decimetres, giving very detailed
images of the scene. The knowledge of the flown trajectory is very important in the
image creation principle and errors in the trajectory will lead to defocused SAR images.
A process to correct for these image defects is called autofocusing. There exist many

101
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autofocusing methods, of which some are based on the raw radar data and others on the
already processed SAR image, (Oliver and Quegan, 2004; Wahl et al., 1994; Xing et al.,
2009; Fienup, 1989; Morrison and Munson, 2002; Xi et al., 1999). All these methods use
only SAR images without any prior information of the scene to perform the focusing.

The goal of this work is to match SAR images with optical images or map information,
e.g., Google Maps. The fusion of information from these sources is then utilised for aut-
ofocusing and correction of the navigation trajectory. The assumptions are that the most
focused images will also match the optical map in the best way and in turn correspond
to the best possible trajectory (giving the best focus) and best possible absolute position
on the map (giving the global navigation ability). Traditionally, SAR images are usually
used for surveillance and remote sensing purposes, but some cases where they are used
for navigation purposes have also been studied, see e.g., Greco et al. (2011). The method
can be useful as an alternative to high precision navigation aids, such as Global Naviga-
tion Satellite System (GNSS), of which GPS NavStar is the most famous one, to stabilise
inertial based navigation systems which are known to be prone for long term drift. The
method has many similarities to the e.g., terrain aided navigation (Hostetler and Andreas,
1983), where an altitude database of the terrain is used to support navigation. other similar
methods are visual odometry, (Scaramuzza and Fraundorfer, 2011), and a method of aided
navigation where optical cameras and maps are used to navigate by matching the camera
images and the map, see e.g., Lindsten et al. (2010); Grelsson et al. (2013). However, the
fusion of the SAR and optical map images is not as trivial task as to match optical camera
images to the map images, since the SAR images have quite different properties than the
optical images. The SAR images show the reflectivity of the scene for radar frequencies
instead of visible light frequencies. This implies that completely different information can
be contained in the SAR images compared to the optical images, although some of the
features in the images are clearly very similar. This makes the fusion of SAR and optical
images a promising method for remote sensing applications. As a navigation tool, SAR
is not sensitive to occlusions from clouds like optical sensors are, giving a less weather
sensitive position sensor.

As means for extracting useful information from the images, an edge detector (Canny
edge detector) and a modified image matching method (Chamfer matching) will be used
in order to match SAR images to the optical map images. The results of the matching and
focusing method will be illustrated on real SAR and optical images that are depicted in
Figure 1 and Figure 2. This work is an extension of Sjanic and Gustafsson (2012), where
only image matching was considered with the assumption that autofocusing has already
been performed.

The paper is organised as follows, Section 1 introduces the work, Section 2 explains the
SAR imaging principle. Section 3 introduces the navigation models and defines the basic
SAR geometry that relates the image and the flying platform while Section 4 introduces
the image matching approaches. In Section 5, estimation of the kinematic trajectory pa-
rameters is explained and in Section 6 the results from the matching and kinematic esti-
mation are shown. In Section 7, conclusions are given and some future work is discussed.
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Figure 1: SAR image of Washington D.C. Image: Sandia National Laboratories.

Figure 2: Optical image of Capitol Hill, Washington D.C. with surroundings. Im-
age: Google Maps.
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2 SAR Imaging Principle

SAR imaging is based on a moving platform that passes the scene that shall be imaged.
During the movement, the platform transmits radar pulses which hit the scene and return
to the platform with a certain time delay which is proportional to the range to the scene.
This returned signal is filtered with a matched filter and then sampled. Each reflector in
the scene will contribute with its reflected power which will then be placed in the appro-
priate range bin. The range is determined as a product between signal propagation speed
(usually speed of light) and delay time. In this way a single scene transfer function is ob-
tained, denoted g(R). Now this process can be repeated during platform movement, and
all the stored transfer functions are stored in a two-dimensional array gt(R). Basically,
this raw data, gt(R), is an example of a real aperture radar (RAR). The resolution in such
radar system is proportional to the radar lobe width and is usually quite poor. One impor-
tant thing to notice is that lobe width is inversely proportional to the antenna size, i.e., the
larger antenna the smaller lobe we can obtain. The idea behind SAR is to artificially syn-
thesise a big antenna by moving the platform. Traditionally, this operation is performed in
the frequency domain using FFT like methods, e.g., the Fourier-Hankel method (Fawcett,
1985; Hellsten and Andersson, 1987; Andersson, 1988) or the ω-K migration methods
(Cafforio et al., 1991; Rocca, 1987; Milman, 1993). The common denominator of these
methods is that they assume that the aircraft’s (or antenna’s) flown path is linear and that
is generally not the case in practice. If the trajectory is not linear the integration will result
in an unfocused image. It is possible to partly correct for the deviation from the nonlinear
trajectory but then the methods become computationally inefficient. Another method that
can be used is so called global back-projection method that will be outlined below.

Given the raw (possibly complex) data zt(R) we can back-project each radar echo on the
image giving the subimage It and each reflector will create a circle in each subimage.
The total image can then be created by summing up all the subimages along the synthetic
aperture, (Natterer, 1986), (i.e., solving the back-projection integral in discrete time)

I =

N∑
t=1

It (1)

Another way of creating the image is to integrate the raw data for each pixel in the image
Iij as

Iij =

N∑
t=1

zt(R
ij
t ) (2a)

Rijt = ‖pt − sij‖2 (2b)

where pt is the position of the platform and sij is the position in the scene which corre-
sponds to the pixel (i, j). This method is schematically illustrated in Figure 3 for a simple
scene with only one point target and where only a few platform positions are considered,
here N = 5. In SAR practice, N is in the order of a few thousand. The complexity of this
operation is proportional toO(M2N) for an M ×M image and N time points. However,
by means of coordinate transformation, an approximation to exact back-projection can
be performed, which is called Fast Factorised Back-projection, see Ulander et al. (2003).
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The complexity of this algorithm is proportional to O(M2 logN) operations, which for
large N implies an important saving. With this faster algorithm it should be possible to
create images in real time, possibly in dedicated hardware. This possibility opens up for
applications where SAR images and navigation can be done concurrently.

3 Motion Models

Precise knowledge of the antenna position pt in (2b) is apparently crucial. The on-board
inertial navigation system (INS) provides a nominal trajectory p1:N that can be used to
construct a first (un-focused) SAR image. Our approach to focus the SAR image is based
on computing a refined trajectory p1:N . In the sequel, we will implicitly only model the
deviation from the nominal trajectory, so pt denotes the difference of the true position and
the INS position.

This error trajectory of the platform is assumed to follow a simple second order dynamics
expressed in discrete time as

pt+1 = pt + Tsvt +
T 2
s

2
at (3a)

vt+1 = vt + Tsat (3b)
at+1 = at (3c)

where pt = [Xt Yt Zt]
T is the platform’s position relative to the beginning of the synthetic

aperture and vt = [vXt vYt vZt ]T is its velocity. This model of the kinematics allows us to
calculate the whole trajectory if all the initial states, p0 and v0, and acceleration sequence,
a0:N , are known. The initial position is basically arbitrary since the SAR image can
be translated freely, but the initial velocity is not, since it is influencing the trajectory’s
shape. It is therefore no loss of generality to take p0 = 03×1, to define the navigation
frame. In that case, the trajectory is related to this zero-frame. However, this frame
can be translated and rotated and the trajectory will follow as a rigid body. Usually, the
accelerations are measured by the onboard inertial measurement unit (IMU), but these are
not perfect, and that will also cause an error in the trajectory. These errors will in turn
cause the SAR image to become out of focus as mentioned before. So the best focus,
i.e., the sharpest image should be produced if correct kinematic states are used. The main
approach in this work is basically to use optical images or maps to match the SAR image
to these in order to determine the initial states, i.e., both trajectory parameters and global
position. This can be done by minimising some criterion that depends on parameters
for SAR image’s global position and orientation and kinematic states from the model in
Equation (3). These parameters are collected into a vector θ, which can for example be
θ = [r a χ vX0 vY0 aX0 aY0 ]T , where r, a and χ are the pixel positions and orientation of
the SAR image relative to the optical map image and the other ones are the interesting
kinematic states. Since these will be treated in a slightly different manner, we divide θ
into an image part, θI , and a kinematic part, θK , as θ = [θTI θTK ]T . One reason is the
fact that the image matching procedure to estimate θI is the difficult part of the procedure.
The variation of the kinematic part of the parameters, θK , will just create different SAR
images and each such image must be matched to the optical image. In Section 4 the
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Figure 4: Basic SAR geometry. Figure is not to scale.

image matching approach (the one that estimates θI ) will be described in detail. The
main assumption is that the best focused (sharpest) image will give the best matching
criterion and in that way global position of the platform can be resolved and the most
focused image created.

3.1 SAR Geometry

Aerial images and maps are orthorectified, and for matching purposes the SAR image also
needs to be orthorectified. This section describes the geometrical transformation to get a
SAR image in the horizontal plane.

The basic SAR geometry is illustrated in Figure 4. SAR images use a coordinate system
consisting of azimuth direction which is parallel to antenna’s moving direction (in most
cases the same as the platform’s moving direction), here called X , and range direction
which is perpendicular to antenna’s moving direction, here called Y . Range direction can
either be slant range or ground range coordinates. SAR images are naturally slant range
images and the advantage of using those is that there is no need for transforming these to
ground range images. But if we want to match these to the map images, the map must be
transformed to the slant range image.

In order to relate the navigation frame and the SAR image pixels some basic geometry
must be defined. For any pixel coordinate in the SAR image, (r, a), we can calculate its
position in the navigation frame, sra = [Rg A]T , as (see Figure 4 for geometry)

A = a∆A (4a)

Rg =
√
R2 − h2 =

√
(r∆R +R0)2 − h2 (4b)

where

• A is the position of the pixel in the azimuth direction (X).

• Rg is the position of the pixel in the range direction (Y ).
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• h is the pixel’s altitude below the navigation frame (Z).

• R is the slant range from the X-axis of the navigation frame to the pixel point on
the ground (parallel with the Y -axis).

• r is the pixel’s coordinate in the image’s range direction.

• ∆R is the resolution in the SAR image’s range direction.

• R0 is minimum slant range in the image (first row in the SAR image is on the range
R0).

• a is the pixel’s coordinate in the image’s azimuth direction.

• ∆A is the resolution in the SAR image’s azimuth direction.

Assuming we have a successful matching of the SAR image to the optical image, then a
correspondence between the SAR image pixels and the optical image pixels is obtained
giving the true geographical positions of the SAR image pixels, (rG, aG), since the optical
image pixels have known geographical positions. The platform’s average direction of the
flight, χ, i.e., the angle between the North-axis and the X-axis of the navigation frame, is
part of the matching results and is obtained directly, since this is the rotation of the SAR
image relative to the map image. With these given, it is now possible to calculate the
navigations frame’s true position as

p̂0 =

X̂0

Ŷ0

Ẑ0

 =

aGrG
0

+

 sin(χ) cos(χ) 0

− cos(χ) sin(χ) 0

0 0 1


RgA
h

 (5)

where [X̂0 Ŷ0 Ẑ0]T is the navigation frame’s position in the global coordinates. Note that
Z-coordinate is the same as altitude h, which we in general can obtain directly from the
barometric measurements. If these measurements are not available or have bad perfor-
mance, the approach from Sjanic and Gustafsson (2012) can be used to obtain an altitude
estimate.

Since the kinematic parameters are also part of the matching results, any position in the
trajectory can now be calculated by using Equation (3). Note that these calculations are
valid under the flat earth approximation, which is valid if the SAR image is fairly close
to the platform. This is true for most aircraft (but not satellites). The procedure described
above is summarised in Algorithm 2.

4 Image Matching Approach

In step 4 of Algorithm 2, we simply defined a matching step which directly delivers the
interesting parameters. In this section, one such matching algorithm will be described in
more detail since it is a prerequisite in order to obtain the parameters used to calculate a
platform’s position and orientation. The matching between those images can be obtained
in many ways, for example by simple correlation or by using image point features ex-
tracted by some point feature detectors, like Harris corner detector (Harris and Stephens,
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Algorithm 2 SAR-OptMAP Global Position Calculation

Require: (ri, ai), i = 1, . . . , N , R0, ∆R, ∆A, [X̄0 Ȳ0 Z̄0]T , χ̄ (information from navi-
gation system), Optical image or map with known geographical coordinates

Ensure: [X̂0 Ŷ0 Ẑ0]T

1: for i = 1 : N do
2: Calculate Ai with ai, alast and ∆A from (4a)
3: Calculate Ri with ri, R0 and ∆R from (4b)
4: Match the SAR image to the map image to obtain rG,i, aG,i, χi and kinematic

states with [X̄0 Ȳ0 Z̄0]T and χ̄ as a prior for initialisation
5: end for
6: Calculate [X̂0,i Ŷ0,i Ẑ0]T with h, Ai, Rg,i, χi, rG,i and aG,i from (5) for all i
7: Calculate [X̂0 Ŷ0 Ẑ0]T from [X̂0,i Ŷ0,i Ẑ0]T for all i as e.g., weighted mean with

weights determined by the covariance of the [X̂0,i Ŷ0,i Ẑ0]T

8: (Optional) Calculate any trajectory position in the global coordinates, p̂t, by using
model 3 and estimated kinematic parameters

1988) or SIFT detector (Lowe, 2004). However, although the SAR and optical map im-
ages can share many similarities, in particular over man-made structured environments,
they can be very different in their structure and appearance. For example, structures like
rooftops can have completely different intensities, very bright in the SAR images and very
dark in the optical images, and the above-mentioned methods might not work satisfactory.
In this case it might be better to increase the feature complexity one level and use the lines
(edges) in the images. See Wagner (2007) or Taylor and Kriegman (1995) for examples
where edges are used as image features. Exactly as for point features, there are several
well known edge detectors, where Sobel, Prewitt and Canny (Canny, 1986) are maybe the
most known ones. Since the Canny edge detector is quite robust to noise, it is suggested as
the detector in the approach described here. By applying this detector to SAR and optical
images, two binary edge images are obtained. The next problem to be solved is to match
these SAR and optical map binary edge images to each other. One well known method
for parametric matching of templates to the image is so called Chamfer matching method,
see Barrow et al. (1977), Borgefors (1988) or Ericsson and Thid (2006). Since this is
quite a robust matching method, it will be the basis of the approach proposed here. Next,
a short description of the Canny edge detector will be given as well as an introduction to
Chamfer matching and the modifications we propose for this particular application.

4.1 Edge Detector

The Canny edge detector uses image gradient and thresholding to detect edges in the
images like many other detectors. Its main advantage is better robustness to the noise
in the images. This is obtained by using hysteresis with two thresholds, one high and
one low. This avoids the problem of broken edges, or streaking, which is almost always
present in detectors with only one threshold. The higher threshold is used to detect edges,
just as in any detector, while the lower one is used to implement hysteresis and keep an
edge even if the gradient response would fall under the higher threshold. The general
problem of threshold tuning still remains. Individual thresholds for different images must
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be found on a case by case basis. In this work we are using an existing Canny edge
detector implemented in the Image Processing Toolbox in MATLAB.

4.2 Chamfer Image Matching

The basics of the Chamfer image matching is the distance transform of the edge image
to which the template image is to be matched. In this context the template image is
considered to be the edge pixels of the binary edge image. The distance transform is
calculated by assigning the pixels in the binary image a value of the distance to the closest
nonzero pixel. The distance metric is usually Euclidean, but also Manhattan distance (1-
norm) or even maximum norm can be used. As an illustrative example, consider a simple
binary 7× 7 image represented as a matrix

I =



0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 1 0 0 0 1 0

0 1 0 0 0 1 0

0 0 0 0 0 1 0

0 0 0 1 1 1 0

0 0 0 0 0 0 0


The distance transform of this image using Euclidean distance is

D =



√
5 2

√
2 1

√
2 2

√
5√

2 1 1 0 1 1
√

2

1 0 1 1 1 0 1

1 0 1 2 1 0 1√
2 1

√
2 1 1 0 1√

5 2 1 0 0 0 1√
10

√
5
√

2 1 1 1
√

2


Now the idea in Chamfer matching is to overlay the edge pixels of the binary template
image, T , on the distance image for different translation, rotation and scaling values and
calculate some loss function as some metric based on the values in the distance transform
image that are hit by the template edge pixels, for example, the total sum of the values.
From the implementation point of view this is equivalent to taking a whole binary template
image as a matrix and element-wise multiplying it with the distance transform image. The
reason is simply the fact that edge pixels have value 1 and non-edge ones have value 0.
This can be written as

η(θI) = D � T̃ (θI) (6a)
C(θI) = f(η(θI)) (6b)

where η(θI) is the matrix resulting from the element-wise product (�) of the extended
template image, T̃ , and the distance transform image, D. In the general case θI =
[r a χ sr sc]

T , where we introduced image scaling parameters sr and sc. Sometimes it
is possible to take the subset of the θI if, for example, some of the parameters are known
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(b) Nonlinear least squares loss function,
V (r, a), of the matching example.

Figure 5: Different loss functions for the matching example.

or not estimated. The extended template image, T̃ , has been created by first rotating the
original template image with χ degrees and scaling it sr and sc times in row and column
directions respectively. The binary image created from this template is then extended with
zeros to the size of D in such a way that the upper left corner of the template image is
on the coordinate (r, a). Here, f : Rsize(D) → R+ is some positive and monotonously
increasing function. This means that for correct matching parameters, the loss function
C(θI) would obtain its minimum value and the parameter estimates are obtained as

θ̂I = arg min
θ

C(θI) (7)

If the template which is to be matched to the image above is

T =

[
0 1

1 1

]
and only translation is considered, i.e., θI = [r a]T , the surf plot of the resulting loss
function, C(θI), is according to Figure 5a. It can be seen that the minimum value is
obtained for the translation parameters r = 5 (row) and a = 5 (column) which is the best
possible match. The function f used here is the RMSE value of the element-wise product
of the distance transform image and the extended template image

C(r, a) =

√√√√ 1

Nnz

7∑
k=1

7∑
l=1

ηk,l(r, a)2, (8)

where ηk,l(r, a) is the matrix of values according to (6a), except that rotation and scaling
are not considered. Here, Nnz is the amount of nonzero elements in the extended template
image, here Nnz = 3.
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4.3 Modified Matching Approach

In this work, a slightly modified loss function is proposed, which bears more similarity to
the well known least squares approach. The reason is that we need an uncertainty measure
to the position estimate, otherwise higher level fusion with the on-board navigation system
would be problematic. To get a statistically correct measure of covariance is a complicated
problem, but at least we get a matrix that has the most essential properties of a covariance
matrix: it is a positive definite symmetric matrix, it reveals lack of excitation by having a
high condition number, and it shows relative size of estimation errors by having different
size of the diagonal elements.

First, the distance transformed binary map image, D, is transformed as

D̃ = exp(−D) (9)

where exp( · ) function acts element-wise. This will basically “invert” the distance trans-
form making zero valued pixels become ones and high valued pixels become low valued.
For the example above D̃ looks like

D̃ =



0.11 0.14 0.24 0.37 0.24 0.14 0.11

0.24 0.37 0.37 1 0.37 0.37 0.24

0.37 1 0.37 0.37 0.37 1 0.37

0.37 1 0.37 0.14 0.37 1 0.37

0.24 0.37 0.24 0.37 0.37 1 0.37

0.11 0.14 0.37 1 1 1 0.37

0.04 0.11 0.24 0.37 0.37 0.37 0.24


Let ξ(θI) be the Nnz × 1 vector of values from D̃ hit by the translated, rotated and scaled
edge pixels of the binary template, T (θI). Then we have the following relation

1Nnz = ξ(θI) + e (10)

where 1Nnz is the Nnz × 1 vector of ones and e is some noise. This relation can be
interpreted as a measurement equation which is a function of parameter vector θI , and
then the minimisation criterion can be written as

θ̂I = arg min
θI

V (θI), (11a)

V (θI) =
‖1Nnz − ξ(θI)‖22

2Nnz
=

1

2Nnz

Nnz∑
k=1

(1− ξk(θI))
2 (11b)

which is a nonlinear least squares formulation. The modified loss function, V (r, a), for
the example is depicted in Figure 5b. This loss function has a very similar shape as the
original one, C(r, a), but it is a little bit steeper close to the minimum. Since both of these
loss functions are defined on a grid of discrete values, the minimisation procedure can be
performed as a global grid search.

Besides the parameter values, θ̂I , it is also desirable to estimate the covariance which in
turn can be used to estimate the covariance of the estimated navigation parameters, po-
sition of the navigation frame, [X̂0 Ŷ0 Ẑ0]T , and track angle, χ̂. These covariances can
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then be used as for weighting purpose in Algorithm 2. The covariance can be estimated
by assuming a locally quadratic function around the minimum value of the loss function,
V (θ̂I), and estimating the Hessian matrix, H . This can be done by solving the overdeter-
mined linear system of equations originating from the following relation

V (θ̂I + ∆) ≈ V (θ̂I) + ∆TH∆ (12)

where a Taylor expansion around θ̂I is performed for some ∆ assuming that the gradient
is zero (since V (θ̂I) is a stationary point, it is the minimum value). Then the covariance
of the parameter estimates can be estimated as

Cov(θ̂I) = λ̂H−1 (13)

where λ̂ = V (θ̂I), see Gustafsson et al. (2010). Note that in the example above we obtain
the covariance which equals zero for both parameters and it is natural since the template
fits perfectly, and there is no uncertainty. In the general case, however, the template will
not fit perfectly and there will always be some uncertainty in the estimates.

5 Kinematic Parameter Estimation

The procedure described in Section 4 considers how to estimate the image parameters θI
given a SAR image produced with some trajectory p̂0:N . By varying the values of the
kinematic part of the parameter vector, θK , and using the model (3) and possibly accelera-
tions measured by the onboard IMU, different SAR images I(θK) can be obtained. Each
of these images can now be matched according to the solution of Equation (11) which
produces another loss function,

J(θK , θ̂I) = VθK (θ̂I), (14)

where VθK (θ̂I) is the value of the image matching loss function obtained for a SAR image
created with θK as kinematic parameters. The loss function J is, exactly as V , a non-
convex function with many local minima, implying that a grid search is the best option to
find a solution according to

θ̂K = arg min
θK

J(θK , θ̂I). (15)

This will give the total solution θ̂ = [θ̂TI θ̂
T
K ]T , with the best focus in this metric, and an ac-

curate global position. The covariance estimation approach from Equations (12) and (13)
can be used here as well in order to obtain covariance of the kinematic parameters.

6 Results

In this section we will present both the results for the image matching approach and
the kinematic parameter estimation. The image matching approach will be presented in
more detail on two example patches from the SAR image assuming the focused image.
For the kinematic parameter estimation, a low-frequency SAR simulation environment,
CARABAS II in particular, (Hellsten et al., 1996), is used where it is possible to vary
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Figure 6: Zoomed part of the SAR image with the three patches used in the Chamfer
matching procedure.

Parameter Error Standard Deviation

r [pixels] 0, 2 5.73, 7.73
a [pixels] 0, -3 6.82, 7.40
χ [degrees] 1, 1 5.26, 6.49

Table 1: Errors and standard deviations of the parameter estimates for the two dif-
ferent example SAR patches.

trajectories and create different SAR images. This environment makes it possible to create
realistic SAR images of the scene and to evaluate the focusing results in a controlled
manner.

6.1 Results of the Image Matching Approach

In order to show the results of the matching procedure described in Section 4, two patches
from the SAR image in Figure 1 are matched to the optical image in Figure 2. These two
patches are depicted in Figure 6. Parameters that are optimised over are translations and
rotation, and the scaling is fixed beforehand in order to minimise the parameter space and
speed up the search. Notice that it is the optical image that has been fixed north up and
the SAR image that has been rotated. In that case the flight direction angle, χ, is directly
obtained. It should also be pointed out that in the search for the matching parameters a
prior from the navigation system is used to narrow down the search space and in that way
prune possible false solutions due to a possibly too similar environment. The results are
presented both graphically, where SAR image patches are overlaid on the optical image,
and in a table with an error and a standard deviation of the estimates.

The SAR patches rotated with the angle χ̂ obtained in the optimisation are depicted in
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(a) SAR image patch. (b) Binary edge image of the SAR patch.

(c) Optical map with SAR image patch over-
laid.

(d) Optical map with the frame placed on the
matching pixels.

Figure 7: Example 1: SAR image patch and its edge image and optical image map
with the SAR patch overlaid on the pixels given by the solution to the matching.

Figure 7a and Figure 8a. The result of the matching is depicted in Figure 7c and Figure 8c
by overlaying the SAR image patch on the optical image on the solution pixels, (r̂, â).
The errors and the standard deviations of the estimates for these two cases are presented
in Table 1.

6.2 Results for the Kinematic Parameters Estimation

For the kinematic parameter estimation results, one patch from the SAR image is chosen,
see Figure 9. This patch is produced with the CARABAS II simulation environment, and
it can be seen that it is quite realistic. First, a simple case where initial velocity in X-
direction is unknown while all the other parameters are known is examined. In this case,
θK = vX0 , and the error in speed was varied, first between −4% and 4%. The resulting
loss function J(θK , θ̂I) is depicted in Figure 10. Here it can be seen that the minimum
value is obtained for the correct initial velocity, and furthermore there is no matching
error. Note that grid has higher resolution in the middle of the plot. Another simple case
that is examined concerns variation of initial acceleration in the Y -direction, while all
the other parameters are known. In this case θK = aY0 and the resulting loss function is
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(a) SAR image patch. (b) Binary edge image of the SAR patch.

(c) Optical map with SAR image patch over-
laid.

(d) Optical map with the frame placed on the
matching pixels.

Figure 8: Example 2: SAR image patch and its edge image and optical image map
with the SAR patch overlaid on the pixels given by the solution to the matching.

Figure 9: SAR image patch used for the evaluation of the kinematic parameters
estimation.
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Figure 10: The value of the loss function as a function of a percentual error in initial
velocity in X-direction.
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Figure 11: The value of the loss function as a function of an error in initial acceler-
ation in Y -direction.

presented in Figure 11. Even here the minimum value is obtained for the correct value of
the acceleration, and there was no matching error in this case either. In both cases it can be
seen that loss function has much more irregular behaviour close to the optimum and that
some of the loss function values are close to the value for the correct acceleration. If both
initial velocity in X-direction and acceleration in Y -direction are set as parameters, i.e.,
θK = [vX0 aY0 ]T , the loss function is according to Figure 12 for both large and small error
in states. In this case the global minimum of the loss function is obtained for a correct
value if the error was large, i.e., the grid resolution was coarse, while a non-correct value
of the parameters is obtained for the small error case, θ̂K = [−0.30 − 0.02]T ([% m/s2])
although the correct value was the second smallest. This error is, however, quite small
giving a trajectory RMSE error of about 6 m and the SAR image patch resulting from this
trajectory is shown in Figure 13. The matching errors in this case are 1 and 2 pixels in
range and azimuth directions, respectively, and the error in rotation of the patch is 0.5◦.
We see that the actual difference in the image quality is hard to distinguish with the naked
eye, and that the navigation parameter estimates are also quite good. Note also that in all
cases it is obvious that the loss function is highly non-convex and that a grid based search
is necessary. This also implies that the grid resolution will set the accuracy limit, and
the number of operations grows exponentially with the number of grid points. However,
it is possible to evaluate each grid point individually, which suits parallel computation
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(a) Loss function for the large initial velocity
and acceleration error.
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Figure 12: The value of the loss function as a function of an error in initial velocity
in X-direction and acceleration in Y -direction.

Figure 13: SAR image patch obtained with the estimated trajectory given the values
from the small error case.
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architectures.

6.3 Discussion

In this section a discussion on the method’s results and performance and some possi-
ble improvements is provided. The performance of the method for both patch matching
and kinematic parameter estimation is highly dependent on different quantisation effects.
Both optical and SAR images have finite pixel resolution. This sets the limit on the perfor-
mance of the edge detector and on the matching performance. Furthermore, the standard
implementation of the Canny detector uses greyscale images which implies that additional
quantisation is present. All these effects will put the limit on matching and rotation es-
timation performance. The obtained performance for the examples studied here is fairly
good and in the magnitude of what can be expected.

For the kinematic parameters, the grid resolution will naturally set the limit on the perfor-
mance. The finer grid, the better possibility to get good performance. But if the resolution
is too small, the difference in the trajectories created with neighboring grid parameter val-
ues will not be enough to make SAR images different enough from the focusing point
of view. Then, in practice, only the numerical accuracy and their effects will dominate.
The grid size and resolution set also the limit on the execution speed. Therefore the grid
resolution and size are seen as tuning parameters.

In Sjanic and Gustafsson (2013a), an auto-focusing approach based on the SAR image
only is exploited using image entropy as a focus measure. The entropy is here defined as

E = −
M∑
i=1

K∑
j=1

qij log qij (16a)

qij =
|Iij |2∑

k

∑
l |Ikl|2

. (16b)

where Iij is the complex-valued pixel (i, j) in the SAR image. Note that E is a function
of θK . Then, we could combine the entropy and the loss function J(θ) around the global
minimum to improve the estimation results. In the case used above, the combined loss
function J +E is shown in Figure 14. We see that for this function a correct value of the
parameters is obtained.

7 Conclusions and Future Work

A method of matching SAR images and optical images is presented, for the primary pur-
pose of autofocusing and adding the radar reflectance image to ordinary images as another
’color’ channel, which can be useful in remote sensing applications. The method is based
on the pattern matching algorithm called Chamfer matching, which is modified to resem-
ble a least squares formulation and a grid based optimisation of the kinematic parameters.
For both cases a statistical performance measure, covariance, of the estimates can also
be obtained. The evaluation of the results is performed on the SAR image and optical
map image, and both matching performance and autofocusing performance is evaluated
based on a couple of SAR image patches. The obtained results on the real SAR images
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and very simple optical map images from Google Maps show that the performance of the
matching and autofocusing methods is fairly good, with small errors and variance, even
with these simple means. However, it should also be pointed out that this method assumes
a variation in the scene in order to work. The environment where edge features are hard
to extract or missing will of course give much poorer results.

As a future extension of this work, as preliminary results show in the discussion above,
entropy measure can be incorporated in the total cost function to eventually improve the
results of the kinematic parameters estimation and in turn the autofocusing performance.
As a future application, the methodology can also be used as an all-weather GNSS-like
support and backup for the inertial navigation system.
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Abstract

Synthetic Aperture Radar (SAR) equipment is an all-weather radar imaging
system that can be used to create high resolution images of the scene by utilis-
ing the movement of the flying platform. It is therefore essential to accurately
estimate the platform’s trajectory in order to get good and focused images.
Recently, both real time applications and smaller and cheaper platforms have
been considered. This, in turn, leads to unfocused images since cheaper plat-
forms, in general, have navigation systems with poorer performance. At the
same time the radar data contain information about the platform’s motion that
can be used to estimate the trajectory and get more focused images. Here, a
method of utilising the phase gradient of the SAR data in a sensor fusion
framework is presented. The method is illustrated on a simulated example
with promising results. At the end a discussion about the obtained results
and future work is covered.

1 Introduction

The method of creating high-resolution radar images by utilising the relative motion be-
tween imaged scene and a platform that carries the radar, usually an aircraft, is known
as Synthetic Aperture Radar (SAR). Typically, during flight, radar echos are collected
along the trajectory and saved, giving the Real Aperture Radar (RAR) image with low
resolution, see Figure 1. The partial sub images from the RAR image are then integrated
to obtain the SAR image with much higher resolution, (Cutrona et al., 1961). This inte-
gration can be performed in the frequency domain with Fast Fourier transforms with its
advantage of fast processing, (Fawcett, 1985; Hellsten and Andersson, 1987; Andersson,
1988; Rocca, 1987; Cafforio et al., 1991; Milman, 1993). However, these methods have
one major shortcoming, they assume a straight flying trajectory in order to work. In real-
ity, the trajectory will newer be straight, and some other method must be applied, or SAR
images will be distorted and back-projection is one of the most known ones, (Natterer,
1986). In the back-projection procedure each saved radar echo, which is one dimensional,
is back-projected onto a two dimensional area. In this way a low resolution image of
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Figure 1: Real aperture radar image (magnitude of the raw radar data) of the two
point targets.

the scene is obtained. Now we can sum up all these back-projected images in order to
obtain the full SAR image. Figure 2 describes this procedure in a schematic way. It is
now clear that in order to perform the back-projection operation the trajectory of the plat-
form must be known and deviations from the real trajectory will cause the back-projected
sub images to be shifted. The summation operation of the sub images will then cause
defocusing, which is one of the most common SAR image distortions. This is illustrated
in Figure 3, where Figure 3a is created using the true trajectory, resulting in a perfectly
focused image, while Figure 3b is created using a trajectory where Gaussian white noise
wt ∼ N (0, σ2), σ = 1.5, is added to the cross-track position of the platform.

The process of correcting for this distortion is called auto-focusing and much effort has
been spent on it during recent years, see for example Oliver and Quegan (2004); Yeg-
ulalp (1999); Wahl et al. (1994); Xi et al. (1999); Morrison and Munson (2002); Xing
et al. (2009); Fienup (1989). Traditionally, these methods are open-loop type, meaning
that the image is created with assumptions of linear flight trajectory and focusing is done
afterwards in an open-loop way discarding possible flight trajectory information. This is
a consequence of the off-line image generating process where the trajectory is no longer
interesting. In the setup where SAR images are generated on-line, an idea is to use in-
formation from the image defocusing and navigation system together. The approach is to
fuse this information in a sensor fusion framework and to try to obtain the best possible
solution to both navigation states and image focusing simultaneously.
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Figure 3: Example SAR images without and with perturbed trajectory.
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One approach to simultaneous navigation and auto-focusing is to use complete SAR im-
ages to obtain a focus measure as a function of the platform trajectory. This off-line ap-
proach is examined in Sjanic and Gustafsson (2010) with good results. Since essentially
the same information is contained in the raw SAR measurements (RAR images), these
can be used for the same goal, i.e., auto-focus and extracting the platform’s trajectory, but
in the on-line setup. Raw SAR data contains phase delay information (which is discarded
during image formation), and it is that information that is mainly used for auto-focusing.
The methods based on phase information are called Phase Gradient (PG) or Phase Differ-
ence (PD) methods. An example of these methods can be found in Fienup (1989), where
phase corrections are done by estimating the phase error by shear averaging of the raw
radar data. Slightly different and expanded approach can be found in Wahl et al. (1994)
and Yegulalp (1999) where the phase gradient is estimated after the preprocessing of the
complete SAR images. Recent work based on phase gradient auto-focus is found in Xing
et al. (2009) where SAR images are focused with means of the motion compensation ob-
tained from the phase gradient estimate and parametric straight line fitting. One drawback
of these approaches is that they are all off-line and basically developed for high frequency
SAR systems, where some approximations simplify the focusing process, see Section 3
for further discussion.

In this work, an on-line trajectory estimation and auto-focusing method for a low fre-
quency SAR system, CARABAS (Hellsten et al., 1996), is proposed. The main approach
is to fuse the phase information from RAR images and inertial measurement system in
the sensor fusion framework and obtain good estimate of the platform’s trajectory and
in turn focused SAR images. The information from the RAR images is essentially the
phase gradient while the inertial information is the acceleration measurements. Note that
high precision navigation aid, like GPS, is not used in this setup. However, the proposed
method makes it possible to include such measurements as well.

2 Sensor Fusion Framework

A standard approach when using sensor fusion framework is to define a discrete time
dynamical model of the system whose states are to be estimated,

xt+1 = f(xt, wt) (1a)
yt = h(xt; θ) + et (1b)

where xt are states of the system, wt is system noise with variance Qt, et is measurement
noise with varianceWt, yt are measurements, f( · ) describes dynamics of the system and
h( · ) is the measurement equation that relates measurements and states of the system. θ is
used here to explicitly denote the parametrisation of the measurement equation. In most
cases, the dynamics (1a) corresponds to 6-DOF aircraft dynamics. In order to present the
main ideas of the proposed approach, the much simpler 2-DOF model will be used here,
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(Farrell and Barth, 1999),

xt+1 = Fxt +Gwt (2a)

F =

 I2 TsI2
T 2
s

2 I2

02×2 I2 TsI2

02×2 02×2 I2

 (2b)

G =


T 3
s

6 I2
T 2
s

2 I2

TsI2

 (2c)

xt = [Xt Yt v
X
t vYt aXt aYt ]T (2d)

wt = [wXt wYt ]T (2e)

where Ts is the sampling time,X is the position in azimuth direction and Y is the position
in range direction, vX and vY are the velocities in the X- and Y -directions respectively
and aX and aY are the accelerations inX- and Y -directions respectively. wX and wY are
the unknown forces acting in the azimuth (X) and range direction (Y ) respectively. This
is just the discretised double integrator dynamics. However, the proposed methods are
easily extended to the full 6-DOF model with expense of increased complexity. Note that
there are no states for the rotation of the platform because the position and orientation of
the global frame is arbitrary and here it is assumed to be aligned with the flight direction.

In order to apply the framework, an equation of the form (1b) is also needed. To obtain
such equation, the ideas from PG method can be used.
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3 Phase Gradient Auto-focusing Method

3.1 Basics of the PG method

The basis for this approach is the fact that the phase delay of the radar echo data is pro-
portional to the range to the imaged scene, which will vary hyperbolically as a function
of time, see Figure 4,

ϕt = −4π

λ
Rt (3)

where λ is the wavelength of the radar carrier. It is seen that phase delay and range
are proportionally related to each other. That means that phase and range can be used
equivalently, it is only the factor −4π/λ that differs. We can now calculate the time
derivative of the phase delay and obtain

ϕ̇t = −4π

λ
Ṙt (4)

The range derivative, Ṙt, can be calculated by taking the time derivative of the range Rt
that can be expressed as a function of the states, xt, according to the setup in Figure 4.
From the figure it can be seen that the range Rt can, with help from cosine theorem, be
expressed as

Rt =
√
R2
N + Y 2

t − 2RN sin (Ψ)Yt (5a)

RN =
√
R2
m + (Xm −Xt)2 (5b)

By using the chain rule we obtain

Ṙt =
−(Xm −Xt)v

X
t + Ytv

Y
t −RN sin(Ψ)vYt

Rt
+
Yt sin(Ψ)(Xm −Xt)v

X
t

RNRt
(6)

In the SAR applications where radar frequency is high or antenna size is large, the lobe is
narrow and an approximate expression for the range and its gradient can be used without
much loss of accuracy. The source of the approximation in this case is the fact that the
synthetic aperture length, 2Xm, and deviation Yt are much shorter than the range to the
middle of the scene, Rm. The range can then be approximated with the Taylor expansion
as

Rt ≈ Rm +
(Xm −Xt)

2 + Y 2
t

2Rm
− sin(Ψ)Yt (7)

where all the terms with R2
m in the denominator are neglected. Now the range gradient

can be calculated from this approximate expression. By using Xt = vX0 t and Yt = vY0 t+
0.5 aY0 t

2, i.e., the acceleration aXt is zero and velocity in X-direction and acceleration
in Y -direction are constant (reasonable assumptions for short aperture times) the gradient
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becomes

Ṙt ≈
−(Xm − vX0 t)vX0 + (vY0 t+ 0.5aY0 t

2)(vY0 + aY0 t)

Rm
− sin(Ψ)(vY0 + aY0 t) ≈ (8a)

≈ −Xmv
X
0

Rm
− sin(Ψ)vY0 +

(
(vX0 )2 + (vY0 )2

Rm
− sin(Ψ)aY0

)
t (8b)

where terms in t2 and t3 has been neglected in (8b). The PG methods try to estimate
the slope and constant term of this affine function in t from the raw data in order to
compensate for the phase delay error caused by the platform’s unknown motion, as in
e.g., Oliver and Quegan (2004) or Xing et al. (2009). This compensation is then applied
during image formation in order to focus the image. For the time domain image formation
approach, this is equivalent to estimating the unknown motion. The assumption made
above about narrow radar lobe is not applicable to the SAR systems which operate with
low frequency. This will imply that range gradient cannot be approximated with the linear
function except in the narrow band around zero phase delay. Due to this, the method of
fitting a linear function in order to compensate for the phase delay error described above
will not work satisfactory for low frequency SAR. That is why the exact expression for
the range is used here.

If we look at the equation (6) we see that the right hand side consists of states of the
dynamical model, i.e., positions, velocities and some (known) constants. The left hand
side of the equation is the entity that can be estimated from the SAR data (either raw or
partially processed) which will be explained in the next subsection. This implies that we
have a measurement equation from the standard sensor fusion framework in the form (7a)
with θ = [Rm Xm Ψ]T , and some standard sensor fusion methods, such as the Extended
Kalman Filter (EKF), can be applied.

3.2 Estimating the Phase/Range Gradient

In order to create measurements, yt, in (7a), we need an estimate of the phase delay gradi-
ent. The phase delay gradient estimation kernel, proposed in Fienup (1989), is (superindex
m stands for measured)

ϕ̇mt =
1

Ts
arg

{∑
R

IRAR(R, t)I∗RAR(R, t− Ts)
}

(9)

where IRAR(R, t) is the complex RAR image, i.e., raw radar data, see Figure 1, I∗ denotes
the complex conjugate,R is the range dimension, t is the azimuth (or time) dimension and
Ts is the time between radar pulses which is the inverse of the pulse repetition frequency
(here used as a sampling time). The motivation for this approach is the fact that the
complex raw radar data, IRAR(R, t), can be written in polar coordinates as

IRAR(R, t) = |IRAR(R, t)|eiϕt (10)

where ϕt is defined in (3), see even Oliver and Quegan (2004). The estimate (9) can
be then interpreted as the first order difference approximation of the derivative ϕ̇t. This
estimate can be calculated in a sequential manner, pulse by pulse and be interpreted as
a measurement yt for each time instance and used in the sensor fusion framework. This
estimation kernel is developed for the high frequency SAR systems where phase gradient
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Figure 5: Simulated SAR image of the scene with 10 point targets.

can be approximated with a linear function. Since this is not the case in the low frequency
SAR system some other method must be applied. If seen in the context of back-projection
and sub image processing described in Section 1, if each radar echo is used to generate
a sub image, the complete SAR image is then simply the sum of all sub images. Each
sub image is created with some assumption about range from the platform to the scene,
either correct or perturbed, and the raw data contain information about the correct range.
This in turn means that each (complex valued) pixel in the back-projected sub image will
contain information about the range between the platform and the scene. Nevertheless,
due to the phase wrapping effect in the complex number arithmetic, the absolute value
of the range cannot be obtained. However, it is possible to estimate the range derivative
from the consecutive sub images in a manner similar to (9) in the following way

ϕ̇mt =
1

TsM2

M∑
i=1

M∑
j=1

arg
{
Ĩij(t)Ĩ

∗
ij(t− Ts)

}
(11)

where Ĩij(t) is the complex M ×M sub image generated from radar echo t, see Figure 2,
and Ts is the time between radar pulses as before. This is basically an estimate of the aver-
age range to the centre of the imaged scene. The sub image is created with an assumption
of straight and constant velocity trajectory with nominal state values. Note that it is only
raw data used for the image generation that is summed here, not the whole range dimen-
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(b) Range derivative, only the last few seconds of the trajectory.

Figure 6: Range derivative estimated from data (dotted line) and calculated with
the analytical expression (solid, dashed and dot-dashed lines). Solid line curve is
generated with correct trajectory, while dashed is not. Dot-dashed line is generated
with approximated expression in (8b).
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sion as in (9). This is important, if the image to be created is not the same size as the raw
data. Range gradient estimated with (11) for the image in Figure 5 is illustrated in Fig-
ure 6 (plotted with dotted line) together with analytically calculated range gradients based
on (6) (plotted with solid and dashed lines). The one plotted with solid line is based on the
correct trajectory, i.e., data are collected with the same trajectory used for the analytical
expression. For the range gradient plotted with dashed line another trajectory, different
from the one used for collecting data, is used. As a comparison, range gradient obtained
with the approximated expression (8b) is plotted with dot-dashed line. It is clearly seen
that despite correct states are used, the values of this analytical expression deviate from
the estimated range gradient in the beginning and the end of the trajectory. This further
motivates use of the complete expression for the range gradient, (6). All this gives that the
estimate of the range gradient (11) can be interpreted as a measurement yt and together
with (6) as h(xt; θ) a standard EKF can be applied.

4 EKF Auto-focusing and Evaluation of the
Performance

4.1 Extended Kalman Filter

Given the dynamical and the measurement models of the system as in (1), the EKF is
defined by the following recursive steps, (Kailath et al., 2000; Gustafsson, 2010),

x̂t+1|t = f(x̂t|t, 0) (12a)

Pt+1|t = FtPt|tF
T
t +GtQtG

T
t (12b)

Ft =
∂

∂x
f(x,w)

∣∣∣∣
x=x̂t|t, w=0

(12c)

Gt =
∂

∂w
f(x,w)

∣∣∣∣
x=x̂t|t, w=0

(12d)

x̂t|t = x̂t|t−1 +Kt(yt − h(x̂t|t−1)) (12e)
Pt|t = Pt|t−1 −KtHtPt|t−1 (12f)

Ht =
∂

∂x
h(x)

∣∣∣∣
x=x̂t|t−1

(12g)

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)

−1 (12h)

Here x̂t|t is the estimate of the states in the time t given all the measurements up to the
time t and x̂t|t−1 is the estimate of the states at time t given all the measurements up to
the time t− 1. Pt|t and Pt|t−1 are their respective covariances. Qt and Rt are considered
tuning parameters.
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4.2 Measurement Model

The measurements are the range gradient Ṙmt obtained from (11) and scaled with factor
−4π/λ, and the accelerations inX- and Y -direction. The measurement equation becomes ãXtãYt

Ṙmt


︸ ︷︷ ︸

yt

=

aXtaYt
Ṙt


︸ ︷︷ ︸
h(xt;θ)

+

ea
X

t

ea
Y

t

eṘt


︸ ︷︷ ︸

et

(13)

where ãt is the measured acceleration, Ṙt is defined in (6) and et is white Gaussian
noise with covariance matrix W = diag{Wa, Wa, WṘ}. In order to use EKF, the
Jacobian of the measurement equation with respect to the states, ∂h/∂x is needed. For
the measurement equation above, the Jacobian is (omitting time index for readability)

H =
∂h

∂x
=


∂h1

∂X
∂h1

∂Y
∂h1

∂vX
∂h1

∂vY
∂h1

∂aX
∂h1

∂aY

∂h2

∂X
∂h2

∂Y
∂h2

∂vX
∂h2

∂vY
∂h2

∂aX
∂h2

∂aY

∂h3

∂X
∂h3

∂Y
∂h3

∂vX
∂h3

∂vY
∂h3

∂aX
∂h3

∂aY

 (14)

and the nonzero elements are (with sin(Ψ) = sΨ)

∂h1

∂aX
= 1 (15a)

∂h2

∂aY
= 1 (15b)

∂h3

∂X
=
vX + (Xm−X)vY sΨ

RN
− Y vXsΨ

RN
+ (Xm−X)2Y vXsΨ

R3
N

R
−
L(Xm −X)

(
1− Y sΨ

RN

)
R3

(15c)

∂h3

∂Y
=
vY + (Xm−X)vXsΨ

RN

R
+
L (Y −RNsΨ)

R3
(15d)

∂h3

∂vX
= −

Xm −X − (Xm−X)Y sΨ
RN

R
(15e)

∂h3

∂vY
=
Y −RNsΨ

R
(15f)

L =(Xm −X)vX − Y vY + vYRNsΨ −
(Xm −X)vXY sΨ

RN
(15g)

4.3 Numerical Results

Using the dynamic model (2) and the measurement model (13), an EKF has been applied
to two cases, one where range gradient measurement has not been used and one where it
has. In order to simulate somewhat more realistic acceleration measurements, a bias of
5 · 10−3 m/s2 is added to the X-direction and −5 · 10−3 m/s2 to the Y -direction in addi-
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tion to the i.i.d. Gaussian noise, eat ∼ N (0, 3.6 · 10−3). The bias and measurement noise
values are chosen as representative for the inertial sensors in the interesting performance
class. The performance is then assessed in terms of Root Mean Square Error (RMSE) of
the trajectory and mean of the error SAR image power. The RMSE is defined as

RMSE(x̂t) =

√∑N
k=1(x̂kt − xt)2

N
(16)

where x̂t = [x̂1
t , . . . , x̂

N
t ]T , are unbiased estimates of the scalar parameter xt (which is a

function of time). The error SAR image power is defined as

EÎ =

∑M
i=1

∑N
j=1 |Îij − Iij |2

MN
(17)

where Î is the M × N complex SAR image obtained with the estimation procedure and
I is the perfect focused SAR image, i.e., created with the true trajectory.

The RMSE for the position and velocity based on the 30 Monte Carlo EKF runs as a
function of time for cases with and without range gradient measurement is depicted in
Figure 7a and Figure 7b. The mean of the SAR error image power obtained from these
30 Monte Carlo runs is 384.1 for the case with range gradient included as a measurement
and 2690 for the case with only inertial measurements. The resulting images created with
one of the 30 estimated trajectories are depicted in Figure 8. The error image power is
2620 for the image in Figure 8a and 323 for the image in Figure 8b. These images clearly
show that addition of the range gradient measurement improves the image focus and the
estimate of the navigation states, especially compared to the pure inertial estimates.

As a comparison, an approximate expression of the range derivative (8a) is used as h(xt; θ)
in a measurement equation and EKF is run. In order to obtain the measurement equation
as a function of the states, Xt = vX0 t, Yt = vY0 t+ 0.5aY0 t

2 and vYt = vY0 + aY0 t are used
giving the nonzero elements of the Jacobian (14) as

∂h1

∂aXt
= 1 (18a)

∂h2

∂aYt
= 1 (18b)

∂h3

∂Xt
=
vX0
Rm

(18c)

∂h3

∂Yt
=

vYt
Rm

(18d)

∂h3

∂vYt
=

Yt
Rm
− sin(Ψ) (18e)

The results from this simulation are presented in Figure 9. It can be seen that estimate with
exact expression has much better RMSE value than the one with approximate expression
which is even worse than pure inertial estimate. Here, the tuning of the measurement noise,
Rt, was changed to eight times higher value in order to get somewhat comparable values
(same tuning produces RMSE values in order of 20 m). These results clearly demonstrate
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(a) RMSE for the EKF estimated position for the example scene.
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Figure 7: RMSE for the estimated position and velocity for the example scene. X is
the azimuth (or along track) dimension and Y is the range (or cross track) dimension.
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(a) Image of the example scene created with trajectory from the pure inertial estimate.
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(b) Image of the example scene created with trajectory from the estimate with range
gradient as additional measurement.

Figure 8: Images of the example scene created with estimated trajectories with and
without range gradient measurement.



144 Paper C Navigation and SAR Auto-focusing Based on the Phase Gradient Approach

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time [s]

R
M

S
E

 [
m

]

RMSE of the position

 

 

Exact measurement equation (X)

Linear approximation (X)

Exact measurement equation (Y)

Linear approximation (Y)
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the importance of the exact expression for the range derivative.

5 Conclusions and Future Work
Here, a method of simultaneous navigation and low frequency SAR auto-focusing based
on a sensor fusion framework is presented. The basis for the approach is the gradient
of the range between flying platform and the scene which is used as a measurement in
a nonlinear filtering setup. It has also been shown that it is important to use the exact
expression for the range gradient instead of the linear approximation common in the high
frequency SAR where the lobe is narrow. The average performance in terms of the trajec-
tory RMSE and the focused images is significantly improved compared to the ones based
on pure dead-reckoning, without high precision navigation aids like GPS. The RMSE of
the position has been largely reduced, as well as of the velocity. The image created with
the range gradient supported estimate is hardly distinguishable from the correct image,
see Figure 8b and Figure 5.

The evaluation of the proposed methods is, at the moment, only done with the simulated
SAR and inertial data. In this way, the ground truth is readily available and the evaluation
of the performance easily done. However, in order to fully assess the method, the real
SAR and inertial data shall be used, and this is the next step in this work.
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Abstract
In this paper we present a solution to the simultaneous localisation and map-
ping (SLAM) problem using a camera and inertial sensors. Our approach is
based on the maximum a posteriori (MAP) estimate of the complete SLAM
problem. The resulting problem is posed in a nonlinear least-squares frame-
work which we solve with the Gauss-Newton method. The proposed algo-
rithm is evaluated on experimental data using a sensor platform mounted on
an industrial robot. In this way, accurate ground truth is available, and the
results are encouraging.

1 Introduction

In this paper we present an optimisation based solution to the simultaneous localisation
and mapping (SLAM) problem formulated as nonlinear least-squares, and solved with
the Gauss-Newton method. The method aims at providing high quality SLAM estimates
which could e.g., be used as priors for computing detailed terrain maps.

SLAM is the problem of estimating a map of the surrounding environment from a moving
platform, while simultaneously localising the platform. These estimation problems usu-
ally involve nonlinear dynamics and nonlinear measurements of a high dimensional state
space.

In Dellaert and Kaess (2006) a nonlinear least-squares approach to SLAM, called square
root Smoothing and Mapping (

√
SAM) is presented. We extend this approach by consid-

ering a full 6 DOF platform, 3 DOF landmarks, inputs using inertial sensors and camera
measurements. The resulting algorithm is evaluated on experimental data from a struc-
tured indoor environment and compared with ground truth data.

For more than twenty years SLAM has been a popular field of research and is considered
an important enabler for autonomous robotics. An excellent introduction to SLAM is
given in the two part tutorial by Durrant-Whyte and Bailey (2006); Bailey and Durrant-
Whyte (2006) and for a thorough overview of visual SLAM Chli (2009) is highly recom-
mended. In the seminal work of Smith et al. (1990) the idea of a stochastic map was
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presented and was first used in Moutarlier and Chatila (1989), where the estimate is com-
puted with an Extended Kalman Filter (EKF). There are by now quite a few examples
of successful EKF SLAM implementations, see e.g., Guviant and Nebot (2001); Leonard
et al. (2000). Another popular approach is the FastSLAM method (Montemerlo et al.,
2002, 2003) which uses particle filters. These are known to handle nonlinearities very
well. Both EKF SLAM and FastSLAM suffer from inconsistencies due to poor data as-
sociation, linearisation errors (Bailey et al., 2006a) and particle depletion (Bailey et al.,
2006b).

Some impressive work where the SLAM problem is solved solely with cameras can be
found in Davison et al. (2007); Davison (2003); Eade (2008); Klein and Murray (2007).
The camera only SLAM methods have many similarities with bundle adjustment tech-
niques, (Hartley and Zisserman, 2004; Triggs et al., 2000), and the stochastic map estima-
tion problem can be seen as performing structure from motion estimation (Fitzgibbon and
Zisserman, 1998; Taylor et al., 1991). Without any other sensors measuring the platform
dynamics, the image frame rate and the visual information contents in the environment
are limiting factors for the ego motion estimation, and hence the map quality.

Recent years’ increase in computational power has made smoothing an attractive option
to filtering. One of the first SLAM related publications, where the trajectory is not filtered
out to a single estimate is Eustice et al. (2006), where the whole time history is estimated
with a so called delayed state information filter. Other, more optimisation like approaches
are Dellaert and Kaess (2006); Kaess et al. (2008); Bibby and Reid (2007); Bryson et al.
(2009), which all optimise over the whole trajectory and a feature based map.

2 Problem Formulation

We assume that the dynamic model and the measurements are on the following form

xt = f(xt−1, ut) +Bwwt︸ ︷︷ ︸
w̃t

, (1a)

mt = mt−1, (1b)
ytk = h(xtk ,mtk) + etk , (1c)

where xt and mt are vehicle and landmark states, respectively, and the inertial measure-
ments can be modelled as inputs ut. The meaning of ytk is a measurement relative to
landmark mtk at time tk, and this is because the measurements and the dynamic model
deliver data in different rates. If we assume that all the measurements and the inputs for
t = {0 : N} and k = {1 : K} (K � N ) are available and the noise is independent and
identically distributed (i.i.d.), then the joint probability density of (1) is

p(x0:N , mN |y1:K , u1:N ) =

p(x0)

N∏
t=1

pw̃t(xt|xt−1, ut)

K∏
k=1

petk (ytk |xtk ,mtk). (2)

Note that the map, mN , is static and the estimate is given for the last time step only.
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Furthermore, the initial platform state x0 is fixed to the origin without uncertainty. This
is a standard SLAM approach and x0 is therefore treated as a constant. The smoothed
maximum a posteriori (MAP) estimate of x0:N and mN is then

[x∗0:N , m
∗
N ] = arg max

x0:N , mN

p(x0:N , mN |yt1:tK , u1:N ) =

arg min
x0:N , mN

− log p(x0:N , mN |yt1:tK , u1:N ). (3)

If the noise terms w̃t and etk are assumed to be Gaussian and white, i.e., etk ∼ N (0, Rtk)

and w̃t ∼ N (0, Q̃t), (3) then becomes

[x∗0:N , m
∗
N ] = arg min

x0:N , mN

N∑
t=1

‖xt − f(xt−1, ut)‖2Q̃−1
t

+

K∑
k=1

‖ytk − h(xtk ,mtk)‖2
R−1

tk

,

(4)

which is a nonlinear least-squares formulation.

3 Models

Before we introduce the details of the dynamic model some coordinate frame definitions
are necessary:

• Body coordinate frame (b), moving with the sensor and with origin fixed in the
IMU’s inertial centre.

• Camera coordinate frame (c), moving with the sensor and with origin fixed in the
camera’s optical centre.

• Earth coordinate frame (e), fixed in the world with its origin arbitrary positioned.

When the coordinate frame is omitted from the states it is assumed that they are expressed
in the earth frame e.

3.1 Dynamics

The dynamic model used in this application has 10 states consisting of the position and
velocity of the b frame expressed in the e frame, pe = [Xe Y e Ze]T and ve = [vx vy vz]

T ,
respectively. The orientation is described using a unit quaternion qbe = [q0 q1 q2 q3]T

defining the orientation of the b frame expressed in the e frame. The IMU measurements
are treated as inputs, reducing the state dimension needed, and we denote the specific
force uba = [abx a

b
y a

b
z]
T and denote the angular rate ubω = [ωbx ω

b
y ω

b
z]
T . The dynamics of
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the sensor in (1a) is then petvet
qbet


︸ ︷︷ ︸
xt

=

I3 TsI3 0

0 I3 0

0 0 I4


pet−1

vet−1

qbet−1

+

T
2
s

2 I3 0

TsI3 0

0 Ts

2

[R(qbet−1)Tuba,t + ge

S(ubω,t)q
be
t−1

]
︸ ︷︷ ︸

f(xt−1,ut)

+

T
2
s

2 I3 0

TsI3 0

0 Ts

2 S̃(qbet−1)


︸ ︷︷ ︸

Bw(xt−1)

[
wba,t
weω,t

]
︸ ︷︷ ︸
wt

, (5)

where

wba,t ∼ N (0, Qa), Qa = σaI3, (6a)
wew,t ∼ N (0, Qw), Qw = σwI3, (6b)

S(ubω,t) =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 , S̃(qbet ) =


−q1 −q2 −q3
q0 −q3 q2

q3 q0 −q1
−q2 q1 q0

 , (6c)

and R(qbet ) ∈ SO(3) is the rotation matrix parametrised using the unit quaternion and
R(qbet )Tuba,t+g

e is the specific force input expressed in the e frame. Vector ge = [0 0 g]T ,
where g ≈ −9.82, compensates for the earth gravitational field.

3.2 Landmark State Parametrisation

Landmark states are encoded in the Inverse Depth Parametrisation (IDP) (Civera et al.,
2008). The first three states, Xe, Y e and Ze, represent the 3D position of the camera
when the landmark was first observed. The last three states describe a vector to the land-
mark in spherical coordinates parametrised with azimuthal angle ϕe, elevation angle θe

and inverse distance ρe, giving me = [x y z θ φ ρ]T . The angles ϕe, θe and the inverse
distance ρe are expressed in the right handed earth coordinate frame e with Ze-axis point-
ing upwards. This means that a landmark m, with earth fixed coordinates [Xe

m Y em Zem]T

is parametrised as

Xe
m

Y em
Zem

 =

Xe

Y e

Ze

+
1

ρe
γ(ϕe, θe), (7a)

γ(ϕe, θe) =

cosϕe sin θe

sinϕe sin θe

cos θe

 . (7b)
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Since the camera is calibrated, as in Zhang (2000) using the toolbox (Bouguet, 2010), the
landmark states can be introduced using normalised pixel coordinates [u v]T according to

pe =

Xe

Y e

Ze

 , (8a)

le =

lexley
lez

 = R(qbet )T R(qbc)

uv
1

 , (8b)

ϕe = arctan 2(ley, l
e
x), (8c)

θe = arctan 2
(
‖[lex ley]T ‖2, lez

)
, (8d)

ρe =
1

de0
. (8e)

Here, qbc is the unit quaternion describing the fixed rotation from the camera frame to
the body frame. Furthermore, pe is the camera position when the landmark is observed
and d0 is the initial depth for the landmark. Finally, θ = arctan 2( · ) is the four-quadrant
arc-tangent, θ ∈ [−π, π]. The complete landmark vector is of the dimension 6×nlandmarks
and nlandmarks will vary depending on when new landmarks are initiated.

3.3 Camera Measurements

The measurements are sub-pixel coordinates in the images given by the SIFT feature
extractor (Lowe, 1999). The dimension of the measurement vector ytk is 2×naf, where naf
denotes the number of associated features. The measurements are expressed in normalised
pixel coordinates. The camera measurement equation relating states and measurements
has the form

ytk = h(xtk ,mtk)︸ ︷︷ ︸
yctk

+etk , (9)

where

etk ∼ N (0, Rtk), Rtk = σfeaturesI2×naf . (10)

Using the IDP, (7) and (8), for a single landmark j and omitting time dependency, the
measurement (9) is calculated as

mc
j =

mc
x,j

mc
y,j

mc
z,j

 = R(qbc)T R(qbe)
(
ρej
(
pe − pej − R(qbe)T rbc

)
+ γ(ϕj , θj)

)
, (11a)

ycj =
1

mc
z,j

[
mc
x,j

mc
y,j

]
, (11b)
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where pej and ρej are defined in (8a) and (8e), respectively. The translation rbc and ori-
entation R(qbc) defines the constant relative pose between the camera and the IMU. The
parameters in rbc and R(qbc) were estimated in the previous work by Hol et al. (2010).

4 Solution

The proposed solution starts with an initialisation of the states using EKF SLAM and the
initial states are then smoothed using nonlinear least squares.

4.1 Initialisation

The nonlinear least-squares algorithm needs an initial estimate x0
0:N , m

0
N , which is ob-

tained using EKF SLAM. The time update is performed with the model (5) in a standard
EKF, for details, see e.g., Kailath et al. (2000). The the landmark states (1b) are stationary
and will therefore only be corrected in the measurement update.

The measurement update needs some further explanation. Each time an image is available
(which in our experiments is 8 times slower than the specific force and the angular rate
inputs) a measurement update is made.

The measurement update needs an association between the features extracted from the
current image and the landmarks present in the state vector. The associations computed
during EKF SLAM are found in the following way; first, all landmarks are projected into
the image according to (9) and the most probable landmarks are chosen as the nearest
neighbours inside a predefined region. Second, the SIFT feature descriptors for the land-
marks and features inside the region are matched. In this way a data association sequence
is created for each image, relating the measurements and the landmarks in the state vec-
tor. To enhance the feature tracking we discard unstable features (i.e., those that are only
measured once or twice) and features are proclaimed usable only if they are found at least
three times.

4.2 Nonlinear Least-Squares Smoothing

The nonlinear problem (4) is in our approach solved using the Gauss-Newton method, i.e.,
at each iteration we solve the linearised version of the problem.

In order to formulate the linearised least-squares smoothing problem for our specific setup
we first need some definitions:

Ft ,
∂f(x, u)

∂x

∣∣∣∣
(x,u)=(x0

t−1,ut)

, (12)

is the Jacobian of the motion model and

Hj
tk

,
∂h(x,m)

∂x

∣∣∣∣
(x,m)=(x0

tk
,m0

j )

, (13)

is the Jacobian of the measurement k at time tk with respect to the vehicle states.

The IDP gives a special structure to the equations since the measurements of the features
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are related to the pose where the features where initialised. Therefore, the landmark
Jacobian is split into two parts. The first part is

Jjxtk
,
∂h(x,m)

∂x

∣∣∣∣
(x,m)=(x0

tk
,m0

j )

, (14)

which is the Jacobian of measurement k at time tk, with respect to the position where
landmark j was initialised. The second part is the Jacobian of measurement k at time tk
of the states φj , θj and ρj of landmark j

Jjtk ,
∂h(x,m)

∂ m

∣∣∣∣
(x,m)=(x0

tk
,m0

j )

. (15)

From the initialisation, Section 4.1, a trajectory x0
0:N and a landmark m0

N estimate is
given and is therefor treated as a constant. The linearised process model at time t is then

x0
t + δxt = Ft(x

0
t−1 + δxt−1) +But +Bw(x0

t−1)wt. (16)

The linearised measurement equations are given by

yjtk = h(x0
tk
,m0

j ) +Hj
tk
δxtk + Jjxtk

δxtk + Jjtkδ mj +ejtk . (17)

The linearised least-squares problem for the prediction and measurement errors is then

[δx∗t , δ m
∗
j ] = arg min

δxt,δ mj

N∑
t=1

‖Ftδxt−1 − Iδxt − at‖2Q̃−1
t

+

K∑
k=1

‖Hj
tk
δxtk + Jjxtk

δxtk + Jjtkδ mj −cjtk‖
2
R−1

tk

(18)

where at = x0
t − Ftx0

t−1 − But and cjtk = yjtk − h(x0
tk
,m0

j ). Here at and cjtk are the
prediction errors of the linearised dynamics around x0

t and the innovations, respectively.
The stacked version of the problem (18) can be solved iteratively according to

ηi+1 = arg min
η

‖A(ηi)η − b(ηi)‖22, η0 = 0, (19)

where we define η = [δxt, δ mj ], and A(η) and b(η) is the matrix part and the vector
part of (18), respectively. The structure of the A matrix is perhaps best explained using
an example:
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A(η) =

[
A11 0

A21 A22

]
=



−I
F2 −I

F3

. . .

. . . −I

F6

. . .

. . . −I

F10

. . .

. . . −I
J1
x5

H1
5 J1

5

J2
x5

H2
5 J2

5

J2
x9

H2
9 J2

9

J1
x13

H1
13 J1

13



, (20)

tk = 1 : Two landmarks are seen for the first time giving the landmarks’ initialisation
positions, i.e., the columns where the Jacobians (14) are placed.

tk = 5 : The second camera measurement arrives, landmarks 1 and 2 are observed
and the first two block rows of A21 and A22 are added.

tk = 9 : Camera measurement 3 arrives, landmark 2 is observed and the third block
row of A21 and A22 is added.

tk = 13 : Camera measurement 4 arrives, landmark 1 is observed and the fourth block
row of A21 and A22 is added.

A single iteration of the nonlinear least-squares smoothing algorithm can be summarised
in pseudo code as seen in Algorithm 3.

The least-squares problem is weighted, so it is assumed that all of the terms in (18) are
multiplied with the corresponding matrix square root of the inverse of the covariance ma-
trices for the process and the measurement noise, respectively. Note that the covariance
matrix of the process noise, Q̃t = Bw(x0

t )QtBw(x0
t )
T , is singular rendering the use of

normal inversion impossible. In order to overcome this, we simply regularise the problem
by adding a diagonal matrix ∆I to the covariance matrix, with ∆ being a small number,
rendering the covariance matrix invertible. Furthermore, it is assumed that the associ-
ations from the initialisation is good enough and that we do not have to compute new
associations after each iterate.

5 Experiments

The implementation is done in MATLAB, except for the SIFT binaries, where we use a C
code library from Hess (2010).
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Algorithm 3 Nonlinear Least-Squares Smoothing for SLAM

Input: x0,m0 (trajectory and map from previous iteration), u (inputs), data association

Output: xs,ms (smoothed estimate of the trajectory and the map)
N = # IMU measurements
A = [ ], a = [ ], c = [ ]
for i = 1 to N do

predict states, xi = f(x0
i−1, ui)

if image available then
use the data association and calculate h(x0

i ,m
0
i )

calculate A11 = [A11 A
i
11]T ,

A21 = [A21 A
i
21] and

A22 = [A22 A
i
22] according to (12) - (20)

calculate ai = x0
i − xi

calculate ci = yi − h(x0
i ,m

0
i )

set a = [aT aTi ]T

set c = [cT cTi ]T

else
calculate A11 = [A11 A

i
11]T

calculate ai = x0
i − xi

set a = [aT aTi ]T

end if
end for
Assemble up A according to (20) and b = [aT cT ]T

solve the least squares problem (19)
calculate [xsT , msT ]T = [x0T , m0T ]T + η
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5.1 Experimental Setup

For the purpose of obtaining high quality ground truth motion data we used an IRB 1400
industrial robot from ABB. In an industrial robot the rotation and translation of the end
tool can be logged with high accuracy. This gives an excellent performance evaluation
possibility, which is otherwise difficult. The actual robot trajectory was not possible to
acquire during the experiment. However, since the industrial robot is very accurate the
actual output of the robot will be very close to the programmed trajectory.

We constructed a small synthetic environment with known topography to obtain realistic
ground truth map data, see Figure 1b. We use a combined IMU/camera sensor unit, shown
in Figure 1a. The sensor unit is mounted at the end tool position of the industrial robot.
The IMU measurements are sampled at 100 Hz and images of size 640 × 480 pixels are
sampled at 12.5 Hz.

(a) The combined strap down IMU and cam-
era system.

(b) An image from the camera during the ex-
periment.

Figure 1: The IMU/camera sensor unit used in the experiments and an image from
the camera over-viewing the synthetic environment.

5.2 Results

The resulting trajectories and map obtained with the data from an experiment are pre-
sented in Figure 2. The Ground truth trajectory is a reference trajectory for the robot.
From these plots it is clearly visible that the smoothed estimate is closer to the true tra-
jectory than the initial estimate. The improvement is also visible if the initial estimate
and the final smoothed landmark estimate are compared as in Figure 3. Note that some
landmark positions are already quite accurately estimated since the change is small after
the smoothing. The smoothed estimate also has a more accurate universal scale.

Both the smoothed horizontal speed of the platform, defined as ‖[vxt v
y
t ]T ‖2, and resulting

estimate from the initialisation are plotted in Figure 4. We see that the smoothed speed is
much closer to 0.1 m/s, which is the true speed.
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Figure 2: The smoothed trajectory in red, the initial EKF trajectory in blue and
the ground truth trajectory in black. The black crosses are the smoothed landmark
estimates.

6 Conclusions and Future Work
In this work we have presented the SLAM problem formulated as nonlinear least-squares.
For evaluation we have used a combined camera and IMU sensor unit mounted at the
manipulator of an industrial robot which gives accurate ground truth.

The experimental results in Section 5.2 show that the nonlinear least-squares trajectory,
Figure 2, and the speed estimate, Figure 4, show a significant improvement of the initial
estimate. The sparse point cloud in Figure 3, illustrating the initial landmark estimate and
final smoothed estimate, shows also an improvement. The universal scale of the environ-
ment is improved since the landmarks have moved towards more probable positions.

For a long-term solution another initialisation procedure is necessary, since EKF SLAM is
intractable for large maps. A possible alternative is to use IMU supported visual odometry
to get a crude initial estimate. This approach needs a supporting global data association
scheme.
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Figure 3: The initial landmark estimates given by the EKF in blue bullets and the
final smoothed estimate in red diamonds, where the black dashed line illustrate the
relative displacement.
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Figure 4: The smoothed horizontal speed of the camera in red and EKF in blue.
The true speed is 0.1 m/s except for when the robot stops and changes direction, this
happens at about 4 seconds and 6 seconds.
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Abstract
Simultaneous Localisation and Mapping (SLAM) denotes the problem of
jointly localising a moving platform and mapping the environment. This
work studies the SLAM problem using a combination of inertial sensors,
measuring the platform’s accelerations and angular velocities, and a monoc-
ular camera observing the environment. We formulate the SLAM problem
on a nonlinear least squares (NLS) batch form, whose solution provides a
smoothed estimate of the motion and map. The NLS problem is highly
nonconvex in practice, so a good initial estimate is required. We propose
a multi-stage iterative procedure, that utilises the fact that the SLAM prob-
lem is linear if the platform’s rotations are known. The map is initialised
with camera feature detections only, by utilising feature tracking and cluster-
ing of feature tracks. In this way, loop closures are automatically detected.
The initialisation method and subsequent NLS refinement is demonstrated on
both simulated and real data.

1 Introduction

The goal in Simultaneous Localisation and Mapping (SLAM) is to estimate a map of the
surrounding environment from a moving platform, while simultaneously localising the
platform, or more generally, to estimate the state of the platform including both position
and orientation. For more than twenty years SLAM has been a popular field of research
and is considered an important enabler for autonomous robotics. An excellent introduc-
tion to SLAM is given in the two part tutorial by Durrant-Whyte and Bailey (2006);
Bailey and Durrant-Whyte (2006).

There are many types of sensors used in SLAM applications and the laser range scanners
are probably the most popular while cameras have increased in popularity in recent years,
see Chli (2009) for a thorough overview of visual SLAM. Bundle Adjustment (BA), (Hart-
ley and Zisserman, 2004; Triggs et al., 2000; Agarwal et al., 2009), belongs to these meth-
ods. The idea is to minimise the reprojection error for all camera poses and the structure
as a (potentially) large nonlinear least-squares (NLS) problem. The online (filtering) meth-
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Figure 1: The setup with inertial and visual sensors. The camera is observing the
environment represented by point landmarks, m1, . . . ,m8, and the inertial sensors
are measuring accelerations and angular rates in the body coordinate system, (b),
which moves together with the camera. Also, a global, fixed navigation coordinate
system, (n), is drawn.

ods, which handle sequential data, are known as Structure from Motion (SfM) (Fitzgibbon
and Zisserman, 1998; Taylor et al., 1991). A typical pipeline combining SfM and BA ini-
tialises the BA optimiser with a solution obtained from running SfM on the complete data.
Without any other sensors measuring the platform’s dynamics, the trajectory and map can
only be estimated up to a universal scale. It is therefore necessary to enforce a scale (typ-
ically unit) when solving a BA system, since otherwise all coordinates will converge to a
point. The underlying idea in visual/inertial SLAM is to implicitly estimate the scale using
the inertial measurements. By adding an Inertial Measurement Unit (IMU) measuring ac-
celerations and angular rates (up to an unknown bias and noise), this, otherwise unknown,
scale can be resolved, see e.g., Kneip et al. (2011b); Martinelli (2012); M. Bryson and M.
Johnson-Roberson and S. Sukkarieh (2009); Lupton and Sukkarieh (2012). Inertial/visual
SLAM is a branch of research with many applications in entertainment, augmented real-
ity and autonomous robotics. There are both on-line and batch solutions to the SLAM
problem. EKF-SLAM (P. Moutarlier and R. Chatila, 1989) and FastSLAM(Montemerlo
et al., 2002) belong to the class of on-line algorithms. They are quite efficient for ground
robotics, which was the driving application when the SLAM problem was originally for-
mulated. However, these algorithms scale badly with the dimension of the map and plat-
form state and are difficult to apply in their standard formulations. Batch algorithms can
potentially overcome this limitation. The SLAM problem is easily formulated in a NLS
framework, but the NLS cost function is highly non-convex. Thus, proper initialisation is
needed. Although there are many batch formulations of the SLAM problem in literature,
see for instance Dellaert and Kaess (2006); Thrun and Montemerlo (2006); Grisetti et al.
(2007); Jung and Taylor (2001), initialisation is not discussed in detail. This paper is en-
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tirely devoted to the initialisation problem for a combination of monocular camera and
inertial sensors. See Figure 1 for an illustration of this setup.

A multi-stage procedure for estimation of initial motion, map and data association based
on images-only as well as combined visual/IMU methods is devised in this work. The
initialisation is utilising a reformulation of the standard reprojection error given that
platform’s rotations are known, resulting in an almost linear formulation of the SLAM
problem. That is, without measurement noise the problem would be completely linear,
see Sinha et al. (2010); Martinelli (2012); Kneip et al. (2011b), but in our case the noise
is parameter dependent and is estimated in an iterative fashion. Moreover, another impor-
tant issue related to the visual part is the data association between camera measurements
and map landmarks. These associations should be as accurate as possible since erroneous
labeling can cause inconsistency in the estimate. The correspondence problem is fun-
damental in both SLAM and Bundle Adjustment. It is however somewhat easier with
sequential data because features can be tracked in order to find the relative displacements
of the platform and to predict positions of the tracked features. While locally consistent
correspondences are rather easy to obtain, consistent loop closures are more difficult and
there are no standard methods. In the proposed approach data association is based on
data clustering, see for instance Hastie et al. (2009), of feature tracks. The feature tracks,
see e.g., Thormählen et al. (2008), are estimated as a linear program formulation of the
assignment problem. Outliers are efficiently eliminated using an iterative procedure on
the reprojection errors using the IMU data. This initial estimate of the motion and map to-
gether with the data association can be used for warm starting for example a NLS SLAM
procedure or other nonlinear estimators where all the parameters, including rotations, are
treated as unknown. The initialisation procedure suggested in this paper provides such a
value and leads to a better total estimate than for example naïve initialisation based on
measurements only.

The block diagrams in Figure 2a serve as illustrative overview of the proposed method.
The initialisation procedure computes a set of landmarks with its corresponding measure-
ments (this includes the loop closure candidates), an estimate of the trajectory and veloc-
ity using IMU data and a camera-only rotation estimate. The flow of this procedure is
illustrated in Figure 2b. The landmark initialisation in Figure 2b represents the image
processing operations such as feature tracking and track clustering. Feature tracks are
extracted from matching correspondence pairs in the image sequence. The feature tracks
are then clustered based upon their average feature descriptor in order to find loop closure
candidates. The clustered feature tracks are then used to initialise 3D point landmarks.

The paper is organised as follows; Section 2 describes the models of the different sensors
used in the formulation of the problem. Section 3 handles the initialisation procedure
based on the almost linear formulation of the visual/inertial SLAM problem. Here, all
steps for the initialisation of the trajectory, orientation, landmarks and data association are
described. Each subsection here represents a particular block in Figure 2b and Figure 2c.
In Section 4 a nonlinear refinement method is used where the initial point is given by
the proposed initialisation procedure. In Section 5 some comments and discussion that
motivate the linear initialisation method are given. Finally, results on both simulated and
real data are shown in Section 6 and Section 7 respectively, and some conclusions and
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(c) Image processing procedure.

Figure 2: An overview of the proposed method. Most blocks corresponds to a
subsection in Section 3 and Section 4 with the same name
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future work are discussed in Section 8.

2 Models

The sensors of interest are monocular camera and 6-DOF inertial sensors, gyroscopes
and accelerometers, contained in a single unit. A standard Cartesian 3D point landmark
parametrisation is used and its measurement is given by the pinhole projection model.
In this work we assume that both the camera and the relative pose of the camera optical
center with respect to the center of the IMU are calibrated. The camera calibration implies
that image pixel coordinates can be transformed to metric coordinates and all the inertial
measurements can be assumed to measure the camera’s rotation and acceleration.

2.1 Position and Orientation

Given the accelerations, a = [ax, ay, az]T , and angular velocities, ω = [ωx, ωy, ωz]T , of
a moving and rotating object expressed in the non-moving frame, the so called navigation
(or world or earth) frame. The the position, velocity and orientation (parametrised as unit
quaternion q = [q0, q1, q2, q3]T , qT q = 1) of the object in the navigation frame, [p, v, q],
can be written as a discrete time dynamic model as

pt = pt−1 + Tsvt−1 +
T 2
s

2
at (1a)

vt = vt−1 + Tsat (1b)

qt = exp

(
Ts
2
Sω(ωt)

)
qt−1 (1c)

where Ts is the sampling time, the skew-symmetric matrix

Sω(ω) =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 , (2)

parametrises the quaternion dynamics and here exp( · ) denotes the matrix exponential.

2.2 IMU Measurements

The IMU measures the specific force and rotation speed in a frame attached to the IMU
body frame, denoted b. Usually these measurements are imperfect and contain both biases
and measurement noise. The biases are assumed constant and this is usually only a good
approximation for a short period of time since in practice biases will vary due to e.g.,
temperature. Under these assumptions the measurements can then be described as

yat = Rbe(qt)(a
e
t − ge) + ba + eat (3a)

yωt = ωt +bω + eωt (3b)

where ge = [0, 0,−g] is the local gravity vector expressed in the navigation frame, and
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g ≈ 9.82, Rbe(q) is the rotation matrix parametrisation of the quaternion and the measure-
ment noises are assumed i.i.d. Gaussian with zero mean and time invariant covariances
Ra and Rω , i.e., eat ∼ N (0, Ra) and eωt ∼ N (0, Rω) .

2.3 Camera Measurements

The monocular camera is modeled as a standard pinhole camera, see cf. Hartley and
Zisserman (2004). The camera calibration matrix and lens distortion need to be estimated
prior to usage. Since the calibration and distortion are known the distorted pixels can be
pre-multiplied with the inverse of the camera matrix and distortion can be compensated
for. Thus, the camera then works as a projective map in Euclidean space, P : R3 →
R2. The projection is defined as P ([X,Y, Z]T ) = [X/Z, Y/Z]T and normalised camera
measurement ymt = [ut, vt]

T of a landmark, m, at time t is then

ymt = P (Rce(qt)(m−pt)) + emt (4)

which relates the absolute pose of the camera w.r.t. the 3D location of the point. The
measurement noise is assumed i.i.d. Gaussian, emt ∼ N (0, Rm). The correspondence
variables at time t, cit, encodes the measurement-landmark assignment, yit ↔ mj , which
gives a subset of all M landmarks at time t, Mt = {mj}, j ∈ {1, . . . ,M | cit = j}. At
time t the stacked measurement equation is then

u1
t

v1
t
...

u
Ny

t

v
Ny

t


︸ ︷︷ ︸

yt

=


P (Rce(qt)(m

c1t −pt))
...

P (Rce(qt)(m
c
Ny
t −pt))


︸ ︷︷ ︸

ht(xt,θ)

+emt , (5)

where cit denotes the index of the corresponding landmark and Ny is the number of mea-
surements, which of course varies over time. Methods for estimation of correspondence
variables are discussed in Section 3.2.

3 SLAM Initialisation

In this section a method intended for initialisation of monocular visual/inertial SLAM
from sequential data is described. The output of the method is a landmark map and the
motion of the platform. It also establishes local correspondences via assignment vari-
ables using image features descriptors. Classical algorithms that solve assignment prob-
lems are the Hungarian (Munkres) algorithm (Kuhn, 1955) and the popular Auction algo-
rithm (Bertsekas, 1991). Here a slightly different approach is adopted which results in a
sequence of linear optimisation problems. In the landmark initialisation procedure we use
appearance based correspondence matching, see e.g., Cummins and Newman (2010); Ho
and Newman (2006). It aims at finding similar features corresponding to the same phys-
ical object in different images. Appearance based matching relies on feature descriptors
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that are distinctive and holds some invariance properties. For instance, image intensity in-
variance can be important in outdoor environments where lighting conditions may change
and matching over large baselines requires invariance against scale, rotation and possibly
invariance against change of viewpoint is desirable. In the following subsections we will
describe the total initialisation procedure in detail and provide algorithms that implement
these steps.

3.1 Feature Tracks

Feature tracks are established from the appearance of correspondences over multiple
views by a matching scheme. Feature descriptor vectors, f , from the popular Scale-
Invariant Feature Transform (SIFT) (Lowe, 1999) are used for establishing correspon-
dences. Given a sequence of images It, t ∈ {1, . . . ,K}, the feature matching prob-
lem consists of assigning a subset of feature measurements from image It, f it , i ∈
{1, . . . , Nt}, to a subset of feature measurements from the next image It+1, f

j
t+1, j ∈

{1, . . . ,Mt+1}, such that each measurement gets assigned to exactly one, unique, other
measurement. In a manner similar to measurement-landmark assignment described be-
fore these assignments are also encoded by correspondence variables (which are binary in
this case), cijt ∈ {0, 1}, which are collected into ct and the assignments for all images are
collected into c. Furthermore, each assignment is associated with a matching cost Gijt as

Gijt = −‖f it − f jt+1‖
−1
2 , (6)

which is the negative inverse Euclidean distance between the feature descriptor vectors.
The costs are used to construct a matrix and to find pairwise matches in the image se-
quence. This is done by solving the assignment problem which can be formulated as the
following binary program (BP)

ĉt = arg min
cijt

Nt∑
i=1

Mt+1∑
j=1

Gijt c
ij
t

s. t.
Nt∑
i=1

cijt ≤ 1,∀j (7)

Mt+1∑
j=1

cijt ≤ 1,∀i

cijt ∈ {0, 1}

which is typically hard to solve. A standard method is to relax the binary constraints
cijt ∈ {0, 1} to 0 ≤ cijt ≤ 1. This relaxation gives that (7) becomes a linear program (LP)
which is much easier to solve. A compact representation of the relaxed BP assignment
problem (7) on matrix form is (omitting time index for readability)̂̄c = arg min

c̄
Ḡ
T
c̄

s. t. Ac̄ ≤ 1(N+M)×1 (8)
0NM×1 ≤ c̄ ≤ 1NM×1
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where Ḡ and c̄ are the vectorised versions of the matrices G and c where columns are
stacked on top of each other. The matrices 1i×j and 0i×j are the i × j matrix of ones
and zeros respectively. Matrix A, which has dimension (N + M) ×NM , has a specific
structure as follows: The first M rows look like

A1 = IM ⊗ 11×N (9a)

and the last N rows look like

A2 = 11×M ⊗ IN (9b)

and A = [AT1 AT2 ]T . ⊗ represents the Kronecker’s matrix product. This constraint ma-
trix A is totally unimodular, that is, all possible square sub-matrices are unimodular i.e.,
having determinant equal to ±1. An important observation is that the matrix of (relaxed)
constraints is unimodular. This means that the LP problem is integral, i.e., its optimum
has an integer value corresponding to the optimum of the original BP problem (Papadim-
itriou and Steiglitz, 1982). This means the assignment problems are simple since good
and fast LP solvers are readily available. In this work Gurobi Optimizer (Gurobi Opti-
mization Inc, 2013) is used. The computational bottleneck for these problems is creating
the cost matrix G since each element must be calculated.

The solution to the assignment problem will always use all the measurements from the
smaller set no matter how bad the fit is. The reason is because the cost will always
decrease by assigning one more variable, no matter how small the decrease is. This is not
a desired behavior since these matches can in principle be arbitrarily bad. It is therefore
necessary to model features which are unique for each measurement such that they do
not end up being assigned. One way of doing this is to add a regularisation term to the
assignment cost as

Gijt = −‖f it − f jt+1‖
−1
2 + η, (10)

where η > 0 is a tuning parameter which controls the rejection of the excess assignments
that are bad. Thus, η will force the cost of certain, unlikely, assignments to become
positive, implying that those assignments will never be chosen since they would increase
the total cost.

3.2 Track Clustering

Feature tracks are defined as a time sequence of pairwise matching feature correspon-
dences Ct:t+s = [ft,ft+1, . . . ,ft+s]. The minimum length of a track is then a pair
because a feature without a match is not useful. The length of the tracks has a twofold in-
terpretation; a feature descriptor is unique with respect to others in the sequence, i.e., the
feature has a unique surrounding, and the other case is when the camera is stationary and
thus the scene has been observed for a long time. However, in case of a moving camera,
feature tracks may be lost due to e.g., occlusion or change of perspective. Therefore, new
feature tracks may represent previously initiated tracks. To cater for this a track clustering
scheme is employed joining tracks that may represent observations of the same feature.
For simplicity of calculation, each track is represented by the mean value, C̄, of all the
descriptors that constitute that track. The distance between tracks used for clustering is
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Figure 3: Example of time-disjoint track clustering where only Track 1 and Track
3 are allowed to be clustered. Subscript figures on the descriptors, f , are the time
indices and superscript figures are the enumeration of features at each time instant.

then

dij = ‖C̄i − C̄
j‖2. (11)

Since tracks have a temporal meaning and each feature can be measured only once in each
image, valid clusters of tracks contain only time-disjoint tracks. That is, Ci:j and Ck:l are
allowed to be clustered together only if {i : j} ∩ {k : l} = ∅. Time-disjoint clustering
is illustrated in Figure 3. Solving for these constraints can be done by simply removing
time-overlapping tracks within clusters. Since the amount of landmarks is unknown, a
clustering method where the number of clusters is not explicitly given is used. One such
method is single-linkage clustering where the clustering stops when some condition on
the between-cluster distance is fulfilled, (Hastie et al., 2009). This distance is viewed as a
tuning parameter. Another benefit of the single-linkage clustering is its speed, since there
are good implementations available. Furthermore, data reduction and automatic loop clo-
sure detection is obtained since loops are defined by clusters containing more than one
track. This implies that the between-cluster distance used for termination of the cluster-
ing controls the quality of the loop closures; if stopping too soon, there will be many small
clusters and some loop closures will be missed and if stopping too late the risk of clus-
tering wrong tracks together is increased. The track clustering algorithm is summarised
in Algorithm 4. In this way, a set of landmarks has been obtained representing the initial
map of the environment. Errors introduced, outlier measurements, in the clustering and
in the feature tracks should be removed. This will be done according to Algorithm 6.

3.3 Rotation Initialisation

From sets of correspondences, estimated as in Section 3.1, for each image pair in the im-
age sequence the relative transformations (up to a scale of the translation) can be obtained.
This is done with the Eight-Point Algorithm, see e.g., Hartley and Zisserman (2004), re-
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Algorithm 4 Track Clustering

Input: The set of all tracks {Ci}NC
i=1, where Ci = [fk,fk+1, . . . ,fk+l], l − k > 1.

Output: Track clusters C
1: Compute track means:

C̄
i

= 1
l−k

∑l
t=k ft, i = 1, . . . , NC

2: Cluster the tracks:
C̃ = Cluster_data(C̄

i
), i = 1, . . . , NC

3: for all clusters do
4: if tracks within the cluster are time disjoint then
5: keep the cluster
6: end if
7: end for
8: Remaining clusters are C

sulting in a rotation sequence

Rc = {Rci}K−1
i=1 , (12)

where Rci is the relative rotation of the cameras, (c), from time i to i + 1. The global
rotation, from world to camera, (ce), for any time, j, can be calculated by the matrix
product

Rcej =

0∏
i=j

Rci . (13)

Note that rotation matrices do not generally commute meaning that the product must be
done in the reverse time order. Also note that the rotations are initialised with camera only
and the gyro is not used. This is because the dominating error from the gyro is bias giving
drifting rotation estimates. Errors from camera estimated rotations have more random like
behaviour resulting in the random walk errors. There may also be correspondence errors
in the feature tracks resulting in bad rotations. The sensitivity to initial rotation errors are
further analysed in Section 6.2.

3.4 Linear SLAM

Methods of 3D structure estimation using linear methods and image point correspon-
dences are well known. The basic idea is to form an overdetermined triangulation prob-
lem, which is linear in the unknowns, and solve it by linear least squares. This is es-
sentially the Direct Linear Transformation (DLT) (Abdel-Aziz and Karara, 1971) which
may work well in practice. However, instead of minimising the discrepancy between
measured image coordinates and the back projection of points, an algebraic error without
good geometrical interpretation is minimised (Hartley and Zisserman, 2004). It is there-
fore common to proceed with a nonlinear optimisation over the reprojection residuals
with the linear method as a starting point. Given the correct weighting of the measure-
ments, then the linear method minimises the reprojection error, see for instance Zhang
and Kanade (1998). This weighting does however depend on the unknown depth of the
points but iterative re-weighting often improves the linear solution.
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The projection is a convex operation and this can be exploited in many ways. Optimal
approaches to reconstruction consider reprojection errors under the L∞ norm (Hartley
and Schaffalitzky, 2004; Kahl and Henrion, 2007) since it preserves (quasi)-convexity,
see Olsson and Kahl (2010); Kahl (2005), and have a single optimum which is typically
not the case for the L2 cost. These approaches assume outlier free measurements because
otherwise the maximum error will correspond to an outlier and by using this insight an
iterative method for outlier removal using L∞ was proposed (Sim and Hartley, 2006),
however, it does not scale to large problems (Agarwal et al., 2008). In common, it is
assumed that rotations are known beforehand and in many situations this is a reasonable
alternative since rotations may be estimated from point correspondences. Known (or error-
free) orientation was considered for fusion of vision and inertial sensors in Martinelli
(2012) and for the case of visual odometry with inertial measurements in Kneip et al.
(2011a,b). The assumption of known orientation will also be used here which results in
an almost linear method. Assuming known rotations it is possible to rewrite (4) in the
following way (omitting time index)

δ = Rce(q)(m−p) (14)[
u

v

]
=

[
δx
δz
δy
δz

]
+

[
eu

ev

]
⇒ (15)[

uδz

vδz

]
=

[
δx

δy

]
+

[
euδz

evδz

]
(16)

where δ(p,m) = [δx, δy, δz]
T is the difference between landmark and camera positions

expressed in the camera coordinate system. Equation (16) is linear in the unknown pa-
rameters m and p, but has noise that is dependent on the parameters. With δ explicit (16)
becomes

R3,:(m−p)

[
u− eu
v − ev

]
=

[
R1,:(m−p)
R2,:(m−p)

]
, (17)

where Ri,: denotes the i:th row of the rotation matrix Rce. The accelerometer measure-
ments with bias are as in Section 2.2

yat = Rcet (at − ge) + ba + eat (18)

where ge, ba are assumed constant and eat ∼ N (0, Ra). Usually, the sampling rate of an
IMU is faster than a camera which can be handled in a straightforward fashion e.g., by
averaging accelerations between the camera samples

yat =
1

(St − St−1)

St∑
s=St−1

yas , (19)

where St maps the time indices between the camera and IMU. Treating the accelera-
tions, its bias, initial velocity and landmarks as unknown parameters and defining θ =
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Algorithm 5 Iterative Reweighted Least Squares
Input: IMU measurements, ya1:N , (ω1:N ), feature measurements, ym1:N , rotations Rec1:N ,
data associations c, initial parameters θ0 = [a1:N , v0, ba, (bω),m]T , number of iterations
K
Output: Parameter estimates θinit

1: for k := 1 . . .K do
2: Create the WLS problem according to (21) with R̃m = δz(θk−1)2Rm
3: Solve the WLS problem giving θk
4: end for
5: θinit := θk

[a1:N , v0, ba,m]T , the following formulation is proposed

θinit = arg min
θ

N∑
t=1

‖yat − Rcet (at − ge)− ba‖2R−1
a

+ ‖ymt δz(pt,m)− δx,y(pt,m)‖2
R̃−1

m

s. t.

[
pt

vt

]
= F t

[
p0

v0

]
+

t∑
i=1

F i−1Bai, (20)

F =

[
I3 TsI3

0 I3

]
, B =

[
T 2
s

2 I3

TsI3

]
,

where R̃m = δz(p
0
t ,m

0)2Rm, and superscript 0 indicates that the parameters used for
weighting are fixed for each iteration. The constraints represent the second order linear
dynamics introduced in (1). In turn, this can also be interpreted as a second order inter-
polation of the trajectory. The formulation in (20) would be a constrained weighted linear
least squares (WLS) problem if the measurement noise in the camera did not depend on
the landmark. Now since any pt can be expressed as a (linear) function of v0 and a1:t

the constraint can be directly substituted into the cost function resulting in the following
unconstrained problem

θinit = arg min
θ

N∑
t=1

‖yat − Rcet (at − ge)− ba‖2R−1
a

+

‖ymt δz(v0, a1:t,m)− δx,y(v0, a1:t,m)‖2
R̃−1

m
, (21)

where R̃m = δz(v0, a1:t,m)2Rm. The only difference between this problem and usual
WLS is the parameter dependent noise for the landmark measurements. This can be
treated in an iterative fashion where δz is used for weighting the noise covariance which
is evaluated using the parameter values from the previous iteration. This approach is also
known as Iterative Reweighted Least Squares (IRLS) which is a well known method, see
e.g., Björck (1996). The procedure is described in Algorithm 5. This approach usually
converges after a few iterations and in our implementation three (K = 3) iterations were
a suitable choice.

The problem (21) can be augmented with linear terms for initial gyro bias estimation,
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Algorithm 6 Iterative Outlier Rejection
Input: IMU measurements, ya1:N , feature measurements, ym1:N , rotations Rec1:N , data asso-
ciations c, initial parameters a1:N , v0, ba, m, rejection threshold λ
Output: Data associations c

1: terminate := false
2: k := 0
3: ck := c
4: while not terminate do
5: Solve the problem according to Algorithm 5 given the assignments ck and all the

parameters and produce a set of landmark residuals for each image i, εim
6: for each image i do
7: ε̄ := εim\max(εim)
8: if all max(εim)� ε̄ > λ then
9: remove the assignment that is associated with max(εim) from ck

10: end if
11: end for
12: if no assignments removed from ck then
13: terminate := true
14: else
15: k := k + 1
16: end if
17: end while
18: c := ck

‖qt − Ts

2 Sω(ωt + bω)qt−1‖2R−1
q

, which is the first order approximation of (1c). Using

the bilinear relation Sω(b)q = S̃q(q)b, this can be written as ‖qt − Ts

2 Sω(ωt)qt−1 −
Ts

2 S̃q(qt−1)bω‖2R−1
q

, which is also a linear function of bω , since rotations are assumed
to be known. These terms are decoupled from the rest of the parameters and the WLS
problem defined by these can be solved separately if required.

3.5 Iterative Outlier Removal

The landmark initialisation produced by Algorithm 4 will introduce erroneous associa-
tions due to the unavoidable ambiguity of the feature descriptors. These associations
should be considered outliers. It is difficult to discriminate outliers based on descriptors
alone. However, given the IMU data, which describe the motion independently of cluster
appearance, a strategy for inertial based outlier rejection can be devised according to the
pseudo-code in Algorithm 6. This procedure will terminate when all of the residuals are
of similar size, where similar is defined here by the rejection threshold λ. The operator �
denotes element-wise division.
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4 Nonlinear Least-Squares SLAM

Accelerations, initial velocity, landmarks and biases estimated with the linear method
described in Section 3.4 are used as an initial value for NLS. Here the reprojection error
is formulated in its original form, that is

ymt = P (Rce(qt)(m−pt)) + et (22)

where the operator P is defined as in (4). The second addition is that rotations are not
fixed any more, but are estimated together with the rest of the parameters. This is done by
adding the angular velocities ω1:N to the parameter set. Now, the measurement relation
from Section 2.2 can be used

yωt = ωt + bω + eωt . (23)

and the rotations can be calculated by using the relation (1c) as

qt =

[
t∏

k=1

exp

(
Ts
2
Sω(ωk)

)]
q0, (24)

where q0 is assumed given. These two modifications give the new parameter vector θ =
[a1:N , ω1:N , v0, ba, bω,m]T and the new nonlinear least squares (NLS) formulation of the
problem according to

θ̂ = arg min
θ

N∑
t=1

‖yat − Rcet (at − ge)− ba‖2R−1
a

+

‖yωt − ωt − bω‖2R−1
ω

+ (25)∥∥∥∥ymt − δx,y(v0, a1:t, ω1:t,m)

δz(v0, a1:t, ω1:t,m)

∥∥∥∥2

R−1
m

and Rcet is now a function of ω1:t and δ is defined in (14). This problem can be solved
efficiently with e.g., a standard Levenberg-Marquardt solver, (Nocedal and Wright, 2006).

5 Heuristic Motivation of the Linear Initialisation

In tracking and navigation the measurement models are often nonlinear and so are most
SLAM systems stemming from e.g., transformations between reference frames by rota-
tions, perspective divide, among others. In practice this means that there exist local min-
ima which should be avoided. In order to reach the global minimum the initialisation
point should be in the proximity of the global minimum or at least the function should be
monotone between the initial point and the global minimum and even better is of course if
it is also convex along this direction. In fact, it is sufficient that the function is convex on
a path that the minimisation procedure will take in order to end up in the global minimum.
Here we propose an initialisation procedure based on the almost linear method. We will
use a simple heuristics to motivate that the initial point created in this manner is better
than an initial point created using available measurements.
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The definition of convex function f(θ) : Rn → R is

f(λθ1 + (1− λ)θ2) ≤ λf(θ1) + (1− λ)f(θ2), (26a)
0 ≤ λ ≤ 1, (26b)
∀θ1, θ2 ∈ dom f ⊂ Rn. (26c)

Geometrically, this is interpreted as the hyperplane that lies between points (θ1, f(θ1))
and (θ2, f(θ2)) is always above the function f . If this is fulfilled for all θ then the function
is convex. Convex functions have a property that there is only one global minimum, so
any minimisation procedure can be used to obtain that. For example linear least squares
problems fall into this category. However, many functions, although non-convex on the
whole domain, are convex on a subset of the domain, usually in the proximity of the
local minima. This can be motivated with the fact that Taylor expansion around the local
minimum will be quadratic function plus a rest term of a higher degree. If this rest term is
not dominating over the quadratic term, the function is (locally) convex in this region. As
stated before, in order to apply a local minimisation procedure, and successfully obtain
the global minimum, the path between the initial point and minimum should also fulfill
the convexity property (26).

The main idea is to check the local convexity of the NLS cost function given the initial
point produced with the linear initialisation procedure. This can be done approximately
by using a dense sampling of the cost function along the search direction as given by the
initialisation and then evaluate if the path is convex according to (26). In addition, we also
require that the search direction in the initial point, p0, is well aligned with the direction
from the initial point to the true solution, θ∗ − θ0. The intuition behind this is that an
initial search direction is crucial for convergence to a good solution. This is determined
with the angle between these two directions defined as

γ = arccos

(
pT0 (θ∗ − θ0)

‖p0‖2 ‖θ∗ − θ0‖2

)
, (27a)

p0 = −(JT0 J0)−1JT0 ε0, (27b)

where J0 is a Jacobian matrix of the cost function evaluated in θ0 and ε0 is the residual in
θ0. These criteria will be evaluated in a Monte Carlo fashion for the linear initialisation
procedure and compared to other initialisation approaches, for example using measure-
ments only.

6 Monte Carlo Simulations

Monte Carlo (MC) simulations are used to evaluate the whole initialisation approach.
That is, to find out if the linear method gives a good starting point for the nonlinear opti-
misation and if the outlier rejection procedure seems reasonable. For the initialisation of
the landmarks, i.e., the clustering approach, only real data are used since it is complicated
to make simulated SIFT features and these results are presented in Section 7.
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Initialisation method Linear Naïve

Average initial angle γ [◦] 17.7 66.6
Average error ‖θ̂−θ∗‖/dim(θ∗) 1.6 · 10−3 221 · 10−3

# of non convex paths 0 0

Table 1: MC simulation results for the initialisation method, see Section 6.1, where
the measurement noise was varying. The angle γ is defined in (27a), θ̂ is defined in
(25) and θ∗ is the true solution.

6.1 Efficiency of the Linear Initialisation

Here, the method according to Section 3.4 is evaluated. In the first set of simulations a tra-
jectory and a set of landmarks are created and different white Gaussian noise is simulated
and added to the measurements for each MC simulation. No outliers are present. Initial
rotation used for the linear optimisation is also randomly perturbed but fixed together with
the trajectory and the scene. The linear solution produced in this way is compared with
the naïve guess where the initial point is created from the measurements and randomised
landmark positions.

The first set of MC simulations consist of 50 simulations performed on a data set with
20 landmarks and 30 time points. Landmarks were placed in a general configuration,
with varying distance to the camera. The noise standard deviation was fixed and is set
to σa = 10−3 m/s2, σm = 10−4 m and σω = .5◦/s. The results are listed in Table 1.
Both the proposed initialisation method and the naïve one have convex paths between the
initial and the true point, but the initial angle between the search direction and the direc-
tion to the true solution is much larger (approximately four times) for the measurement
initialised optimisation. This causes the average error of the solution to be much larger
(approximately 140 times) for the naïve initialisation.

6.2 Sensitivity to Initial Rotation Errors

In the second set, consisting of 3 times 25 realisations, the trajectory and the scene are
fixed as before, no noise is added to the measurements and no outliers are present. Here
the initial rotations are varied randomly with different perturbation magnitude 0.1, 1 and
5 [◦/s]. The solutions to the linear initialisations given different rotation perturbations
are then used to solve the non-linear optimisation problem and the results are in Table 2.
Here it can be seen that both error in the linear solution as well as initial angle grow with
the magnitude of the error in rotation. As a consequence the number of non-convex paths
also increases with the perturbation magnitude and the average error of the estimate is
large. The reason for the very large average for the perturbation of 1 degree per second
is the presence of 4 really bad solutions. With these removed the value is 0.45 which is
more reasonable. This evaluation shows the importance of the initial estimation of the
rotations.
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Perturbation magnitude [◦/s] 0.1 1 5

Average initial angle γ [◦] 1.64 40.2 84.0
Average error ‖θ̂ − θ∗‖/dim(θ∗) 8.34 · 10−9 69.1 1.0
Average error ‖θinit − θ∗‖/dim(θ∗) 0.08 0.63 0.78
# of non convex paths 0 3 18

Table 2: MC simulation results for the initialisation method, see Section 6.2, where
the initial rotation error was varying. The angle γ is defined in (27a), the NLS
estimate θ̂ is defined in (25), the initial estimate θinit is defined in (21) and θ∗ is the
true solution.

6.3 Iterative Outlier Removal

The third set is used to evaluate the performance of the outlier rejection method proposed
in Algorithm 6. Here the outlier measurement rate is varied while the trajectory, scene
and the initial rotations are fixed. The performance is evaluated according to the amount
of outlier measurements that are left and the amount of inlier measurements that are re-
moved.

Results are presented in Table 3, in this case the scene is fixed to 30 landmarks in 21
images and the outlier rate is varied, both as a number of landmark outliers and as a num-
ber of images where outliers are present. The outliers are created by randomly flipping a
pair of associations in an image. For example, if the number of landmarks to be outliers
are two, then in all images where outliers are present the measurements from these two
landmarks are flipped with two other randomly chosen landmarks. This strategy is chosen
because it is the behaviour of the data association method employed here. Three different
rejection thresholds are used, λ = {3, 5, 8}, in the experiments. The result shows that,
as a general trend and as expected, the rejection threshold governs the amount of outliers
that are left and number of inliers that are rejected. It is of general interest to reject as
many outliers as possible and to keep as many inliers as possible. The lower threshold
means better outlier rejection, but the price is that more inliers are also rejected. This
also emphasises the importance of having many landmark measurements in order to be
resilient to removing inliers. Note that this statistics is conservative in the way that only
measurements that are created as outliers are considered as true outliers. In many cases
all measurements for a landmark that is creating outliers are removed, implying that this
landmark is no longer deemed as usable and it can be excluded from the statistics. This
means that results in Table 3 would be somewhat better if these are taken into account.

7 Real Data Experiments

In the real data experiments, a sensor unit, see Figure 4, equipped with monocular mono-
chrome VGA camera (Pointgrey firefly) and three axis inertial sensors (gyroscopes and
accelerometers) was used. It contains also magnetometers and a temperature sensor which
is used for internal calibration. In one of the experiments the sensor unit was mounted at
the tool position of an IRB-1400 industrial robot from ABB for the purpose of an accu-
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λ = 3 Outliers left [%] Inliers removed [%]
IO \ LO 0.07 0.13 0.2 0.07 0.13 0.2

0.05 0 0 0 13 22 22
0.10 0 0 0 18 23 31
0.14 0 0 0 17 26 41
0.19 0 6.3 0 29 36 40
0.24 0 0 0 20 20 52
0.29 0 0 0 20 46 48
0.33 0 0 2.4 23 44 52
0.38 6.3 0 2.1 42 50 54

λ = 5 Outliers left [%] Inliers removed [%]
IO \ LO 0.07 0.13 0.2 0.07 0.13 0.2

0.05 0 50 0 9.1 12 14
0.10 0 0 0 11 21 32
0.14 0 8.3 5.6 17 25 42
0.19 0 0 0 21 34 38
0.24 0 5 0 19 25 54
0.29 0 0 0 16 36 49
0.33 7 0 0 21 34 51
0.38 6.3 0 0 39 35 54

λ = 8 Outliers left [%] Inliers removed [%]
IO \ LO 0.07 0.13 0.2 0.07 0.13 0.2

0.05 0 0 8.3 8.1 9.2 15
0.10 0 0 0 17 20 27
0.14 0 0 11 16 18 26
0.19 0 0 0 15 25 35
0.24 0 5 10 22 34 58
0.29 8.3 0 0 16 25 42
0.33 0 0 2.4 27 42 38
0.38 6.3 0 8.3 34 31 66

Table 3: Outlier rejection simulation results. IO is the fraction of images in which
outliers are present. LO is the fraction of the landmark set in which outliers are
present. Three different rejection thresholds λ are used.
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Figure 4: Sensor unit containing both camera and inertial sensors.

rately known ground truth. Also, a small scene with objects of known size was created
so that the estimated scene could be compared with respect to its size. In the second ex-
periment, a free-hand movement of the camera is used in a room, and no accurate ground
truth is available. In this case the accuracy is evaluated based on the approximate measure-
ments in the room and approximately “knowing” where camera was. Prior to usage, the
camera was calibrated using the toolbox (Bouguet, 2010) and the relative pose of the cam-
era centre with respect to the IMU centre was calibrated as described in Hol et al. (2010).
A open source SIFT implementation from Vedaldi and Fulkerson (2008) was used.

In Figure 6 the trajectory estimate from the linear initialisation and the nonlinear refine-
ment are plotted together with the ground truth trajectory for the first data set. An image
with the feature measurements is illustrated in Figure 5. Velocity in x, y-plane is shown
in Figure 7. Since the true rotations are known, errors in quaternions and Euler angles
are depicted in Figure 8 and Figure 9 respectively. Landmark estimates for initial and
nonlinear estimation are shown in Figure 10.

For the second data set (free-hand run), an example image together with plotted features
is showed in Figure 11. The resulting trajectory estimate is shown in Figure 12. The x, y-
plane velocity, quaternions, Euler angles and landmark estimates are plotted in Figure 13,
Figure 14, Figure 15 and Figure 16 respectively.

In both cases the nonlinear refinement improves the initial estimate for both rotations and
kinematic parameters. In the first data set the landmark estimate is much better than the
initial estimate, and for the second data set this is harder to assess, but the positions of
the landmarks look reasonable given the environment. For example we see that there are
three levels in the bookshelf with distinct features, which can be seen in both Figure 11
and Figure 16.
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Figure 5: Example image from the robot run with extracted features shown as red
stars.
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Figure 6: Trajectory from the linear estimation (green), from nonlinear refinement
(red) and ground truth (blue).



7 Real Data Experiments 189

0 1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Horizontal Velocity

Time [s]

v
x
,y

 [
m

/s
]

Figure 7: Estimated horizontal velocity from the linear estimation (green) and from
the nonlinear refinement (red). True velocity is 0.1 m/s except in three time points
when it is zero.
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Figure 9: Estimated Euler angles error in degrees from camera (dash-dotted) and
after nonlinear refinement (solid). Blue is the yaw, green is the pitch and red is the
roll angle.

7.1 Clustering Results

For the landmark initialisation approach (track clustering) a helicopter data set made with
a Yamaha Rmax helicopter is used. In this data set only the images were available, i.e.,
no IMU, implying that no outlier rejection nor complete SLAM could be done and this
data set is only used to evaluate the clustering performance. The flight is performed in
a circle, meaning that the helicopter visits the same place. The total length of one such
loop was 325 images taken in 4 Hz giving the total time of 81.25 s. An example of the
loop-closure is illustrated in Figure 17 where two tracks, one from the beginning and one
from the end of the loop, are clustered together. With this cluster tuning the amount of
loop-closures is about 4%. This should be compared to the amount of images showing
the overlapping environment which were 7% of the total amount of images. For the other
two data sets this number is higher, especially for the free-hand run data set, where large
parts of the environment were visible the whole time. In general, most of the clusterings
are local loops where for example a feature is lost for a few images and is then tracked
again. One such example can be seen in Figure 18.

Even some outliers are introduced in the clustering process, which is, as explained earlier,
expected, and one such is depicted in Figure 19. The total amount of outlier landmark was
about 10%, which is similar for the other two data sets. Many of the outliers are caused
by the too similar environment, for the example in Figure 19 the road edge looks similar
to SIFT and the descriptors are too similar. This will cause the erroneous clustering.
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Figure 10: Landmark estimates from the linear estimation (green) and from non-
linear refinement (red). Most of the landmarks should lie on the −0.5 m plane and
some should be higher up.

Figure 11: Example image from the free-hand run with extracted features shown as
red stars.
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Figure 12: Trajectory from the linear estimation (green), from nonlinear refinement
(red).
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Figure 13: Estimated horizontal velocity from the linear estimation (green) and from
the nonlinear refinement (red).
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Figure 14: Estimated rotations from camera (dashed) and after nonlinear refinement
(solid).
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Figure 15: Estimated Euler angles in degrees from camera (dash-dotted) and after
nonlinear refinement (solid). Blue is the yaw, green is the pitch and red is the roll
angle.
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Figure 16: Landmark estimates from the linear estimation (green) and from nonlin-
ear refinement (red). Three distinct layers can be recognised which basically come
from the bookshelf’s levels.

8 Conclusions and Future Work

In this work we presented a method for initialisation of optimisation based visual/inertial
SLAM on batch form. This sensor combination makes it possible to obtain full Euclidian
reconstruction of the environment and trajectory. The method is based on a multistage
strategy where visual methods, such as the Eight-Point Algorithm, feature extraction and
clustering of feature tracks, are used for rotation and landmark initialisation. Inertial
data are used for data association including outlier rejection and initialisation of trajec-
tory and landmark location parameters. The method exploits the conditional linearity of
visual/inertial SLAM. The experiments done on the simulated and real data sets show
that the initialisation method gives better starting point for the subsequent full nonlinear
optimisation than naïve initialisation with measurements only.

Also, the landmark initialisation method based on clustering of the tracked features gives
quite promising results where many possible loop-closures are identified while the amount
of wrong associations is rather low. This allows for the iterative outlier rejection method
with aid from the inertial data. Even this method shows good results with efficient outlier
removal while keeping the inlier amount relatively high.

It must be pointed out that this approach requires a large amount of landmark measure-
ments in order to produce good results, i.e., the equation system must be highly overde-
termined. On top of that, since a camera is a bearings-only sensor, there is also a demand
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(a) Image 7. (b) Image 8.

(c) Image 9. (d) Image 321.

(e) Image 322. (f) Image 323.

(g) Image 324. (h) Image 325.

Figure 17: Example of successful loop-closure clustering with the helicopter data.
The tracked feature is marked with the red star.
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(a) Image 3. (b) Image 4.

(c) Image 12. (d) Image 13.

Figure 18: Example of clustering creating local loops with the helicopter data. The
tracked feature is marked with the red star.
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(a) Image 299. (b) Image 300.

(c) Image 314. (d) Image 315.

Figure 19: Example of erroneous clustering causing an outlier with the helicopter
data. The tracked feature is marked with the red star.
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for sufficient viewpoint change, also known as parallax, in order to accurately estimate
landmark position. The trajectory estimation can be compensated with the inertial data,
but even there a good SNR is required.

In the future it can be interesting to use proper constrained clustering algorithm instead
of discarding clusters with overlapping times, as it is done now. Also alternative feature
detectors might be used to see if descriptors from those have different behaviour compared
to SIFT.
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Abstract

The general Simultaneous Localisation and Mapping (SLAM) problem aims
at estimating the state of a moving platform simultaneously with building a
map of the local environment. There are essentially three classes of algo-
rithms. EKF-SLAM and FastSLAM solve the problem on-line, while Non-
linear Least Squares (NLS) is a batch method. All of them scales badly with
either the state dimension, the map dimension or the batch length. We investi-
gate the EM algorithm for solving a generalised version of the NLS problem.
This EM-SLAM algorithm solves two simpler problems iteratively, hence
it scales much better with dimensions. The iterations switch between state
estimation, where we propose an Extended Rauch-Tung-Striebel smoother,
and map estimation, where a quasi-Newton method is suggested. The pro-
posed method is evaluated in real experiments and also in simulations on a
platform with a monocular camera attached to an intertial measurement unit.
It is demonstrated to produce lower RMSE than with a standard Levenberg-
Marquardt solver of NLS problem, at a computational cost that increases
considerably slower.

1 Introduction

The aim in Simultaneous Localisation and Mapping (SLAM) is to estimate a moving plat-
form’s position and orientation while mapping the observed environment. In the seminal
work of Smith et al. (1990) the idea of a stochastic map was presented and was first used
in P. Moutarlier and R. Chatila (1989), where the estimate is computed with an Extended
Kalman Filter (EKF) and some later ones are J. E. Guviant and E. M. Nebot (2001); J. J.
Leonard and H. Jacob and S. Feder (2000). Another popular approach is the FastSLAM
method, (Montemerlo et al., 2002, 2003), which uses particle filters which are known to
handle nonlinearities very well. However, these approaches have some downsides, like
constantly increasing covariance matrix size for the EKF-SLAM, making it computation-
ally infeasible for large data sets. Additionally, linearisation errors can contribute to the
inconsistencies in the estimates, (Bailey et al., 2006a). However, FastSLAM estimates
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can also be inconsistent due to particle depletion (Bailey et al., 2006b) and FastSLAM
also scales badly with the state dimension of the moving platform. Recently, some ap-
proaches based on optimisation, and Nonlinear Least-Squares (NLS) in particular, have
been proposed. These methods solve batch problems, i.e., a smoothed estimate is obtained,
but for online applications a moving horizon strategy could be applied. A downside of
NLS is the quadratic scaling in batch length. Popular approaches applying optimisation
are e.g., GraphSLAM, (Thrun et al., 2005) and Square Root Smoothing and Mapping,√

SAM, (Dellaert and Kaess, 2006). A common denominator of these approaches is that
they solve some form of Maximum Likelihood (ML) problem. Also it is usual that the
sparsity of the problems is utilised enabling fast computations.

Here, we propose a formulation of the SLAM problem in a ML form and use an approach
based on the Expectation Maximisation algorithm, (Dempster et al., 1977). In an EM set-
ting, so called latent, or hidden, variables are introduced in order to solve ML problems
that can be difficult. This is achieved by splitting the problem into two simpler problems,
one where expectation with respect to the conditional density of the latent variables has
to be calculated and one where a certain function needs to be maximised with respect to
the parameters. These two steps are then repeated until convergence. This motivates the
name of the method. In EM-SLAM, the map is viewed as the unknown parameter and the
platform states, such as position and orientation, are considered to be the latent variables.
As a simplified and intuitive motivation for this separation we can consider two simpler
problems; one with known map and the other one with known trajectory and orientation.
The first problem is then simply the navigation problem with known landmarks. The sec-
ond problem is known as the triangulation problem, i.e., finding the landmark positions
given the known platform positions and camera observations. See e.g., Hartley and Sturm
(1997) for an example of triangulation application. Each of these problems are rather
straightforward to solve separately but hard to solve combined. By separating the vari-
ables in the proposed way we basically split the SLAM problem into the above-mentioned
two simpler problems. In the first of these problems some approximations are necessary
in order to implement the algorithm. In the conditional expectation step the latent vari-
ables are assumed to have Gaussian distribution and that they can be well approximated
with an Extended Rauch-Tung-Striebel (E-RTS) smoother, (Rauch et al., 1965). The max-
imisation step is solved using a quasi-Newton method. The proposed method is compared
with the NLS formulation which can be seen as a straightforward ML formulation where
both the state sequence and the map are seen as parameters. This reference method is
solved using the Levenberg-Marquardt algorithm, (Nocedal and Wright, 2006). The com-
parison is done for both the performance of the estimation and for the complexity of each
approach.

SLAM is a general class of problems where the combination of sensors vary and one
sensor which have gained in popularity is the camera. Methods based on camera only has
been known in the computer vision society as the structure from motion (SfM) problem
for quite some time, see e.g., Fitzgibbon and Zisserman (1998); Taylor et al. (1991). The
structure and motion recovered from SfM will have unknown universal scale, since the
camera suffers from the depth ambiguity problem. In other words, given a motion of
the camera, we cannot say if our velocity was large and the scene was far away or if the
velocity was low and the scene was close to the camera. One way to solve this problem
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and to resolve the universal scale is to add some kind of velocity measurement, and the
inertial measurement unit (IMU) measuring accelerations and angular velocities is one
such way (M. Bryson and M. Johnson-Roberson and S. Sukkarieh, 2009; Kneip et al.,
2011a,b; Martinelli, 2012; Lupton and Sukkarieh, 2012). The combination of inertial
sensors measuring linear accelerations and angular velocities and monocular camera for
observation of the environment is particular challenging from a complexity point of view.
For that reason, both the simulations and real data experiments are based on a monocular
camera and inertial sensors.

The paper is organised as follows; in Section 2 the Expectation Maximisation algorithm is
explained more detailed and application to SLAM is described in Section 3. The dynami-
cal and measurement models specific to visual/inertial SLAM are introduced in Section 4
and an alternative method of solving ML SLAM problem, NLS, is explained in Section 5.
Comparison between EM-SLAM and NLS-SLAM is discussed in Section 6, and a brief
explanation about obtaining an initial estimate for the landmarks is given in Section 7.
Finally, results, conclusions and future work are discussed in Section 8 and Section 9.

2 Expectation Maximisation

Maximum Likelihood in its basic form is a batch method which takes a set of observations
Y = {y1, . . . , yN}, where the index denotes time, and aims at finding the maximum
likelihood (ML) estimate of the parameters θ from the measurement likelihoods as

θ̂ML = arg max
θ

pθ(Y), (1)

which can be solved by considering minimising the sum of the negative measurement log-
likelihoods. Naturally, pθ(Y) is the probability density function parametrised by the un-
known θ. Often, the maximisation of (1) can be very difficult and the key idea with Expec-
tation Maximisation is to consider the joint density pθ(Y,X ), where X = {x1, . . . , xN}
are latent variables. Then, by splitting this density into two coupled, and hopefully eas-
ier, problems the parameters and the latent variables can be solved for in an iterative
manner. The first step is the Expectation step, commonly denoted E-step, where the ex-
pectation of the joint log-likelihood, log pθ(Y,X ), with respect to the density of the latent
variable conditioned on all the measurements, pθk(X|Y), is computed. The expectation
Eθk{log pθ(Y,X )|Y} will be a function, called Q(θ, θk), of the parameter vector θ as

Q(θ, θk) =

∫
pθk(X|Y) log pθ(Y,X ) dX . (2)

Note that the conditional density of the latent variables, pθk(X|Y), is computed using the
previous estimate of the parameters, θk, which is also emphasised in the notation. In the
Maximisation step or M-step, the Q function obtained in the E-step is maximised with
respect to the parameter θ obtaining new estimate θk+1. These two steps are repeated
until some convergence criterion is met, usually when the change in the parameter or
likelihood value is below a certain threshold. For an explanation of the EM algorithm
applied to dynamical systems see e.g., Schön (2009), and how it can be used in system
identification is exemplified in Wills et al. (2010), where a particle smoother is used to
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calculate the conditional expectation in the E-step. In Ghahramani and Roweis (1999);
Duncan and Gyongy (2006) nonlinear dynamical models are treated using EM where the
E-step is calculated using an Extended Kalman smoother, which is the same approach
that will be used here. All these EM variants are formulated as batch methods, but there
are also online EM methods which typically use sequential Monte Carlo and stochastic
approximation methods (Ozkan et al., 2012; Le Corff et al., 2011). However in these
online approaches, certain criterion must be fulfilled on the models involved in order to
have working estimators. As will be shown, in our case these are not met which will
require different approximations to be applied.

3 EM-SLAM

A common way of formulating visual/inertial SLAM problem is to define a state space
model as

xt = f(xt−1, ut, wt), (3a)
yt = ht(xt, θ) + et, (3b)

where the measurement noise, et, is considered white and Gaussian with mean zero and
covariance R while the process noise, wt, is considered white with mean zero and covari-
ance Q. f describes the state transition function and ut are considered to be inputs given
by the inertial sensors from which pose and velocity, x = [p, v, q]T , are computed. The
measurements yt here are the camera measurements i.e., features extracted from images
and h is the measurement function relating measurements, states and parameters. The
parameter vector θ, consists of landmark coordinates in three dimensions. These models
will be defined in detail in Section 4. The most significant difference, as opposed to tradi-
tional SLAM state space model formulation, is that the map is seen as a parameter which
parametrises the measurement equation and in turn, the measurement likelihood function.
This formulation is quite natural since the map is time independent and is naturally seen
as a parameter and not part of the state vector. Furthermore, the conditional expectation
step is assumed to be well approximated by an Extended Rauch-Tung-Striebel (E-RTS)
smoother. E-RTS is a straightforward modification of the standard RTS smoother, (Rauch
et al., 1965), by using the Extended Kalman Filter instead of the Kalman Filter in the
forward filtering step, while the backward smoothing step is the same as in the original
RTS smoother.

The state space formulation above constitutes the basis for the ML formulation that is nat-
urally put into EM setting, i.e., it is straightforward to define the joint likelihood pθ(Y,X ).
Here the platform states, X , are considered to be latent variables. By using the Markov
properties this density can be written as

pθ(Y,X ) =

N∏
t=1

pθ(yt|xt)p(xt|xt−1). (4)

Notice that the process model does not depend explicitly on the parameter θ, which will
simplify the calculations significantly as it will be shown in the next section.

Next, both E-step and M-step will be explained in detail with all the derivations and
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approximations used.

3.1 E-step

Given the joint likelihood from (4) the expectation step gets the following form

Q(θ, θk) = Eθk

{
log

[
N∏
t=1

pθ(yt|xt)p(xt|xt−1)

] ∣∣∣∣Y
}
, (5)

where the measurement likelihood is given by the PDF

pθ(yt|xt) = pθ(et) = pθ(yt − ht(xt, θ)), (6)

and the state transition density, p(xt|xt−1), does not depend on θ. Assuming that the
likelihood has Gaussian distribution the expectation (5) becomes

Q(θ, θk) = const.−Eθk

{
N∑
t=1

1

2
‖yt − ht(xt, θ)‖2R−1

t
+ log p(xt|xt−1)

∣∣∣∣Y
}

= const. −
N∑
t=1

Eθk

{
1

2
‖yt − ht(xt, θ)‖2R−1

t

∣∣∣∣Y} (7)

where all the terms not depending on θ are lumped into a constant term, which will not
affect the optimisation in the subsequent step. Due to the nonlinear nature of the measure-
ment function, see Section 4.2, there is no closed form solution. Thus, some approxima-
tions are necessary and one such is

Q(θ, θk) ≈ const.− 1

2

N∑
t=1

(
‖yt − ht(x̂t|N , θ)‖2R−1+

Tr(R−1∇xht(x̂t|N , θ)P st|N (∇xht(x̂t|N , θ))T )
)

(8)

Here, x̂t|N is the smoothed estimate of the latent variable and P st|N is its covariance. The
smoothed estimate is obtained with an E-RTS smoother which is summarised in Algo-
rithm 7. The trace term can be thought of as a regularisation term to compensate for the
usage of the estimated latent variables instead of the true ones. If the true ones have been
used that term would vanish and only the nonlinear least squares part had to be solved.
See Appendix for derivation of (8).

3.2 M-step

Maximisation of the Q-function can be done using standard optimisation software. Opti-
misation software usually assumes that the cost function should be minimised, which can
easily be obtained by defining a new function as −Q(θ, θk). In the continuation the min-
imisation of the function will be considered. An important special case is linear systems
since then the minimisation step can be solved by linear least-squares. As for our partic-
ular setting, the function to be minimised is a nonlinear function of the parameters and
nonlinear methods need to be used. We use a quasi-Newton method called BFGS, (No-
cedal and Wright, 2006) since it is quite efficient but other choices are also possible. In
this method, the Hessian of the function to be optimised is recursively approximated using
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Algorithm 7 Extended Rauch-Tung-Striebel Smoother (E-RTS)
Input: measurementsY = {y1, . . . , yN}, inputsU = {u1, . . . , uN}, covariance matrices
Q and R, parameter estimate θk
Output: smoothed state estimates x̂s = {x̂1|N , . . . , x̂N |N}, covariances
P s1:N |N

1: Run a forward Extended Kalman filter (EKF) where measurement equation uses fixed
value of the parameter θ = θk, and store time and measurement updates for states,
x̂t|t, x̂t|t−1, the covariances Pt|t, Pt|t−1 and the Jacobians of the dynamics, Ft−1 =
∂
∂xf(xt−1, ut, wt)|xt−1=x̂t−1|t−1,wt=0, defined in (3a).

2: P sN |N := PN |N
3: for t = N : 2 do

4:

St−1 := Pt−1|t−1F
T
t−1P

−1
t|t−1

x̂t−1|N := x̂t−1|t−1 + St−1(x̂t|N − x̂t|t−1)

P st−1|N := Pt−1|t−1 + St−1(P st|N − Pt|t−1)STt−1

5: end for

the gradient information. The BFGS algorithm is summarised in Algorithm 8.

4 Models

In this section the models in Equation (3) will be specified. The sensors of interest are
monocular camera and 6-DOF inertial sensors, gyroscopes and accelerometers, contained
in a single sensor package, Inertial Measurement Unit (IMU). To reduce the state and pa-
rameter space the inertial sensors are considered as inputs to a process model. A minimal
3D point landmark parametrisation is used and its measurement is given by a pinhole pro-
jection model. Also, since, in general, an IMU has a higher sampling rate than a camera,
a multirate system model is obtained. Basically, it implies that several state updates are
performed, using the process model, between the measurements. This however poses no
limitations for the methods presented here, since the E-RTS can easily handle multirate
models.

4.1 IMU Parametrisation

The models for the gyroscopes and accelerometers are simple as they are only considered
to be inputs to the process model. The gyroscope signals are denoted uω = [uωx , u

ω
y , u

ω
z ]T

where the subscript refers to each axis of the body frame. Similarly the accelerometer
signals are denoted ua = [uax, u

a
y, u

a
z]
T which are also given in the sensor body frame.

A discretised process model for the position velocity and rotation, [p, v, q], in the local,
inertial, navigation frame is then,
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Algorithm 8 M-step (Quasi-Newton minimisation method with BFGS Hessian update)
Input: smoothed states x̂s, measurements Y , initial parameters θk, inverse Hessian ap-
proximation B0 ≈

(
∇2
θQ(θk, θk)

)−1
, termination threshold ε.

Output: θk+1.
1: i := 0
2: terminate := false
3: θi := θk
4: while not terminate do
5: Compute search direction:

pi := −Bi∇θQ(θi, θk)
6: Update the parameter:

θi+1 := θi + αipi
where αi is the step length computed by line search ensuring decrease in cost

7: Compute:
si = θi+1 − θi
ri = ∇θQ(θi+1, θk)−∇θQ(θi, θk)

8: Update the inverse Hessian
Bi+1 :=

(
I − sir

T
i

rTi si

)
Bi

(
I − ris

T
i

rTi si

)
+

sis
T
i

rTi si

9: if ‖∇θQ(θi+1, θk)‖ < ε then
10: terminate := true
11: else
12: i := i+ 1
13: end if
14: end while
15: θk+1 := θi+1
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pt = pt−1 + Tsvt−1 +
T 2
s

2
RT (qt−1)

(
uat + gb + wa

t

)
(9a)

vt = vt−1 + Ts R
T (qt−1)

(
uat + gb + wa

t

)
(9b)

qt = exp

(
Ts
2
Sω(uωt + wωt )

)
qt−1 (9c)

where the Ts denotes the sampling interval, R(q) is a rotation matrix parametrisation of
the unit quaternion q = [q0, q1, q2, q3]T which describes the rotation from navigation to
body frame, gb = R(q)gn, is the gravity expressed in the body frame, gn = [0, 0,−g]
is the local gravity vector expressed in the inertial frame where g ≈ 9.82 and exp( · )
is here considered as the matrix exponential. The noise terms are assumed Gaussian
and independent [(wa

t )
T , (wωt )T ]T = wt ∼ N (0, diag (Qa, Qω)). The skew-symmetric

matrix

Sω(uω) =


0 −uωx −uωy −uωz
uωx 0 uωz −uωy
uωy −uωz 0 uωx
uωz uωy −uωx 0

 , (10)

parametrises the quaternion dynamics. This parametrisation is very similar to reduced-
dimension observers in Rugh (1996).

4.2 Camera Measurements

The monocular camera is modeled as a standard pinhole camera, see e.g., Hartley and
Zisserman (2004). The camera calibration matrix and lens distortion was estimated prior
to usage. Since the calibration and distortion are known the undistorted pixels can be
pre-multiplied with the inverse of the camera matrix, thus the camera then works as
a projective map in Euclidean space, P : R3 → R2. The projection is defined as
P ([X,Y, Z]) = [X/Z, Y/Z] and the Z coordinate is assumed positive and non-zero since
otherwise the point would be behind the camera. Then a normalised camera measurement
ymt = [ut, vt]

T of a landmark, m, at time t is

ymt = P (R(qt)(m−pt)) + emt (11)

which relates the pose (position and orientation) of the camera to the 3D location of the
point. The measurement noise is assumed i.i.d. Gaussian, emt = [eut , e

v
t ]
T ∼ N (0, Rm).

The correspondence variables at time t, cit, encode the measurement-landmark assign-
ment, yit ↔ mj , which gives a subset of all M landmarks at time t, Mt = {mj}, j ∈
{1, . . . ,M | cit = j}. At time t the stacked measurement equation is then
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
u1
t

v1
t
...

u
Ny

t

v
Ny

t


︸ ︷︷ ︸
ymt

=


P (R(qt)(m

c1t −pt))
...

P (R(qt)(m
c
Ny
t −pt))


︸ ︷︷ ︸

ht(xt,θ)

+emt , (12)

where cit denotes the index of the corresponding landmark and Ny is the number of mea-
surements, which of course varies over time. In this paper the correspondences assumed
correctly solved for in the initialisation step (see Section 7) but in practice there will
always be outliers of some kind. This is a strong assumption which should be treated
carefully since faulty associations will bias the SLAM estimate. Interesting approaches
to data association was exploited in e.g., Bibby and Reid (2007); Dellaert et al. (2003)
which both make use of the EM algorithm to estimate correspondences.

5 Nonlinear Least-Squares

Another way of solving the ML SLAM problem is to consider all the interesting parame-
ters explicitly instead of having position, velocity and orientation as hidden variables. In
this case the parameter vector θ will consist of all unknown parameters, that is landmarks,
accelerations in navigation frame and rate gyros. The dynamics for the velocity and posi-
tion is in this case used as explicit constraints. In this setting it is also possible to include
biases for accelerations and angular rates as parameters, which was avoided in the EM
formulation. This is because the problem greatly simplifies if the parameters affect only
the measurement relation, as already explained in Section 3. Note however, that these
extra terms can be put in the state vector.

The measurement models for accelerations and angular rates are then

yat = R(qt)(at − ge) + ba + eat (13a)
yωt = ωt + bω + eωt (13b)

and camera measurements are defined as in Equation (12)

ymt = ht(pt, qt,Mt) + emt . (14)

The unknown parameters are then accelerations, a1:N , angular rates, ω1:N , initial velocity
v0, acceleration bias, ba, angular velocity bias, bω , and landmark positions m. Under the
assumption that all noises are Gaussian and white, i.e., eit ∼ N (0, Ri), the corresponding
negative log-likelihood becomes
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− log pθ(Y) =

N∑
t=1

‖yat − R(qt)(at − ge)− ba‖2R−1
a

+ ‖yωt − ωt − bω‖2R−1
ω

+

‖ymt − ht(pt, qt,Mt)‖2R−1
m
. (15)

where θ = [aT1:N , ω
T
1:N , v

T
0 , b

T
a , b

T
ω ,m

T ]T , qt is a function of ω1:t and pt is a function of
v0 and a1:t. Maximum likelihood minimisation problem can now be formulated as

θ̂ML = arg min
θ

− log pθ(Y) (16a)

s. t.

[
pt

vt

]
= F t

[
p0

v0

]
+

t∑
i=1

F i−1Bai, (16b)

F =

[
I3 TsI3

0 I3

]
, B =

[
T 2
s

2 I3

TsI3

]
,

qt =

[
t∏

k=1

exp

(
Ts
2
Sω(ωk)

)]
q0 (16c)

The constraints can actually be removed by expanding them and substituting them into the
cost function giving an unconstrained problem. This problem is solved with e.g., standard
Levenberg-Marquardt solver. The estimate obtained in this way will be used to compare
to the estimate obtained with the EM-SLAM method.

6 Computation Complexity

The main difference between NLS and EM approach is the number of parameters. While
NLS has both landmarks and platform’s motion as parameters, EM considers the motion
as latent variables. Seen the other way around, the ML problem in (1) can be considered
as a marginalised version of (15), where motion is integrated out. As such, the complex-
ity of the EM approach is actually lower than the NLS approach. To see this, consider
the problem sizes of the two approaches, given N time instances where landmarks are
observed, M landmarks and Nm landmark measurements, the NLS problem will have
6(N − 1) + 3M + 3 variables (6 more if biases are also included) and 6(N − 1) + 2Nm
measurements. So, the size of the problem grows both with the number of landmarks
and time and it grows quadratically in time. For the EM approach, the E-step is realised
as an E-RTS smoother with constant size state vector (unlike traditional EKF-SLAM for
example), meaning that the complexity increases linearly with the amount of time points,
even if a multirate model is considered, since it is the measurement update which is dom-
inating. For the M-step, the size of the problem to be solved is 3M variables and 2Nm
measurements, although the problem is slightly more difficult than NLS. However, since
the BFGS approach is quite efficient, it has superlinear convergence properties, see No-
cedal and Wright (2006), this is not a problem. This basically means that each step in the
EM-SLAM will eventually be cheaper in total when the number of time steps grows.
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7 Obtaining an Initial Estimate

Both EM and NLS-SLAM need an initial value of the parameters in order to do the it-
erations. This initial value is also important for the performance of the methods, since
both formulations are non-linear and non-convex. The initialisation can be performed
by simply randomising parameter values but that can lead to solutions that are stuck in
local minima. A better estimate of the initial values can be obtained by noting that the
NLS-SLAM problem, defined in Equation (16), is actually almost linear if rotations are
fixed, (Martinelli, 2012). In that case Equation (13b) is not needed any more and Equa-
tion (13a) is linear in parameters. For the landmark measurements consider the projection
according to Equation (11) which for fixed rotations can be rewritten as[

[ut R3,:(qt)− R1,:(qt)](m− pt)
[vt R3,:(qt)− R2,:(qt)](m− pt)

]
=

[
R3,:(qt)(m− pt)eut
R3,:(qt)(m− pt)evt

]
(17)

where Ri,:(qt) denotes the i:th row of the rotation matrix. The only thing that makes
this equation non-linear is the parameter dependent noise term. However this formulation
leads to a well known Iterative Reweighted Least Squares (IRLS) method which is solved
efficiently, see e.g., Björck (1996). The accuracy of the estimate obtained in this way is
dependent of the fixed rotations, but it still constitutes a much better initial value for the
EM and NLS-SLAM then simply random values, see Skoglund et al. (2013) for more
details. The initial rotations can be obtained in several ways, for example simply by
integrating rate gyros using Equation (9c), or by some camera based method like 8-point,
see e.g., Hartley and Zisserman (2004). The first method works quite fine if the gyro bias
is small, while the latter one demands that the scene geometry is beneficial.

8 Results

Evaluation of the proposed method is carried out on both simulated and experimental
data.

8.1 Simulations

Simulations give the ability to choose noise levels, correspondences, the true parameters
and the true accuracy of the method. Monte Carlo (MC) simulations with 30 different
measurement noise realisations have been performed in order to evaluate the performance
of the proposed method and to compare EM-SLAM with the NLS-SLAM. In Figure 1
the setup used for the simulations is illustrated. The true trajectory is in black and true
landmarks are represented with red circles. One of the resulting trajectory (magenta) and
landmark (blue stars) estimates is also plotted. Table 1 shows the average of the landmark
estimation error for the two methods, while in Figure 2 the RMSE of the trajectory, for
both methods, is plotted. In general it can be seen that the EM-SLAM method performs
slightly better in average than the NLS-SLAM method.
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Figure 1: The setup used in the MC simulations. True trajectory is in black and
true landmarks are red circles. One of 30 simulation results is depicted as magenta
trajectory and blue landmarks.

Method EM-
SLAM

NLS-
SLAM

Mean ‖θ̂ − θ∗‖/dim(θ∗) 0.11 0.19

Table 1: MC simulation results for the varying measurement noise (30 realisations).
Note that θ contains only landmarks in this case.



8 Results 217

0 5 10 15 20 25
0

1

2

3

X
−

p
o

s
it
io

n
 [

m
]

RMSE of the trajectory

0 5 10 15 20 25
0

1

2

Y
−

p
o

s
it
io

n
 [

m
]

0 5 10 15 20 25
0

0.1

0.2

Z
−

p
o

s
it
io

n
 [

m
]

Time [steps]

Figure 2: RMSE of the EM-SLAM and NLS-SLAM estimated trajectories, EM in
blue, NLS in red. 30 MC simulations are used.
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Figure 3: Sensor unit containing both camera and inertial sensors.

8.2 Real Data Experiments

In the experiments, a sensor unit, see Figure 3, equipped with monocular monochrome
VGA camera (Pointgrey firefly) and three axis inertial sensors (gyroscopes and accelerom-
eters) is used. The sensor unit also contains magnetometers, which are not used here, and
a temperature sensor which is used for obtaining internal calibration of the inertial sensors.
For the purpose of an accurately known ground truth the sensor unit was mounted at the
tool position of an IRB-1400 industrial robot from ABB. Also, a small scene with objects
of known size was created so that the estimated scene could be compared with respect
to its size. Prior to usage, the camera was calibrated using the toolbox (Bouguet, 2010)
and the relative pose of the camera centre with respect to the IMU centre was calibrated
as described in Hol et al. (2010). A open source SIFT implementation from Vedaldi and
Fulkerson (2008) was used to extract the features used as camera measurements. The
results of the estimation are depicted in Figure 4, Figure 5 and Figure 6. We see that both
NLS and EM methods have similar performance on this data set. EM performs somewhat
worse for the rotations which might be explained by the lack of biases as opposed to NLS.

9 Conclusions and Future Work

In this work we presented a Maximum Likelihood method for solving inertial/visual
SLAM problem based on the EM algorithm. The particular structure of the SLAM prob-
lem, where landmarks are seen as static parameters while the platform’s motion is intro-
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Figure 4: Trajectory from the linear initialisation (green), EM (magenta), NLS (red)
and ground truth (blue).
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duced as latent variables, makes the EM scheme a natural way to formulate the problem.
This gives better scaling of the problem compared to both FastSLAM, EKF-SLAM and
NLS. In particular, a qualitative analysis of the computational complexity is made compar-
ing EM-SLAM and NLS. Furthermore, it is also shown that somewhat better results are
obtained for EM-SLAM than the straightforward formulation in the form of NLS. These
results are demonstrated on both simulated and real data sets.

In the future work it would be interesting to change E-RTS smoother estimate of the states
with the particle smoother estimate, since it may handle nonlinearities in the models better
and see if the performance improves.

Appendix

Given a smoothed estimate of the latent variables, x̂s = x̂1:N |N the measurement function
h(x, θ) can be linearised around these as

h(x, θ) ≈ h(x̂s, θ)︸ ︷︷ ︸
ĥ

+∇xh(x̂s, θ)︸ ︷︷ ︸
H

(x− x̂s)︸ ︷︷ ︸
x̃

. (18)

Using this approximation and expanding the norm in (7) for one time instant, while drop-
ping the time index for readability, we obtain

‖y − ĥ−Hx̃‖2R−1 =(y − ĥ−Hx̃)TR−1(y − ĥ−Hx̃) =

yTR−1y − yTR−1ĥ− yTR−1Hx̃− ĥTR−1y + ĥTR−1ĥ+

ĥTR−1Hx̃− (Hx̃)TR−1y + (Hx̃)TR−1ĥ+ (Hx̃)TR−1(Hx̃)
(19)

and taking the expected value

Eθk{‖y − ĥ−Hx̃‖2R−1} =yTR−1y − yTR−1ĥ− ĥTR−1y + ĥTR−1ĥ+

Eθk{(Hx̃)TR−1(Hx̃)|Y}, (20)

since all terms with only x̃ evaluate to zero under the assumption (x̃|Y) ∼ N (0, P s).
Because (Hx̃)TR−1(Hx̃) is scalar, it is equal to its trace and by using the trace rule
Tr(ATBA) = Tr(BAAT ) together with the linearity of the trace and expectation opera-
tors, the last term becomes

Eθk{(Hx̃)TR−1(Hx̃)|Y} =Eθk{Tr((Hx̃)TR−1(Hx̃))|Y} =

Eθk{Tr(R−1Hx̃x̃THT )|Y} =

Tr(R−1HEθk{x̃x̃T |Y}HT ) =

Tr(R−1HP sHT ) (21)
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which results in

Q(θ, θk) ≈ const. − 1

2

N∑
t=1

(
‖yt − ĥt‖2R−1 + Tr(R−1HtP

s
t|NH

T
t )
)

=

const.− 1

2

N∑
t=1

(
‖yt − ht(x̂t|N , θ)‖2R−1+

Tr(R−1∇xht(x̂t|N , θ)P st|N (∇xht(x̂t|N , θ))T )
)

(22)

which is the expression in (8).
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Abstract
The dependence of radio signal propagation on the environment is well known,
and both statistical and deterministic methods have been presented in the lit-
erature. Such methods are either based on randomised or actual reflectors
of radio signals. In this work, we instead aim at estimating the location of
the reflectors based on geo-localised radio channel impulse response mea-
surements and using methods from synthetic aperture radar (SAR). Radio
channel data measurements from 3GPP E-UTRAN have been used to verify
the usefulness of the proposed approach. The obtained images show that the
estimated reflectors are well correlated with the aerial map of the environ-
ment. Also, which part of the trajectory contributed to different reflectors
have been estimated with promising results.

1 Introduction

Radio signal propagation significantly depends on the environment through which the sig-
nal propagates. Free space propagation is different from line-of-sight (LOS) propagation
close to the ground, which in turn is different from non-line-of-sight (NLOS) propaga-
tion where obstacles and reflectors have a significant impact on the propagation proper-
ties. Modeling radio signal propagation properties based on environment characteristics
is therefore important to properly plan and analyse terrestrial wireless communication
systems.

Numerous activities are focusing on propagation channel modeling featuring NLOS prop-
agation, and the efforts can be separated into statistical models and ray-tracing models.
The former can be motivated by theoretical modeling, or designed as parametric models
that can be tuned and validated based on empirical data. The surveys Jensen and Wallace
(2004); Almers et al. (2007) cover statistical models well. One key statistical model exam-
ple is the 3GPP Spatial Channel Model (SCM) (3GPP, 2012), which has been empirically
validated (Medbo et al., 2006). In brief, the model describes random scatterers that reflect
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incident radio waves toward the radio receiver. Ray-tracing models (Jensen and Wallace,
2004; Fügen et al., 2006) on the other hand, aim at modeling the properties of the physi-
cal multi-path propagation channel, including knowledge about the location of scatterers
and reflectors. Such information can be derived from building databases, but will still be
associated with uncertainty.

In order to model the NLOS propagation in a specific area, one either needs to tune the
parameters of the statistical model so that it generates reflectors representative for the area,
or to analyse building data to determine the reflectors and occlusions deterministically. In
this paper, we take an intermediate approach, using geo-localised impulse response mea-
surements to estimate the reflector locations. Furthermore, the ambition is also to estimate
where in an area a particular reflector is active. Since the number of reflectors is unknown,
a non-parametric method must be applied to get an initial map of the reflector locations
that can be refined with some parametric method afterwards. One non-parametric method
to get initial estimate of the map is based on the multistatic Synthetic Aperture Radar
(SAR)-like technique, (Cutrona et al., 1961; Willis, 2007; Krishnan et al., 2010).

The paper is organised as follows; Section 2 describes SAR in general terms, and Section 3
the considered application based on measurements in 3GPP Long Term Evolution. In Sec-
tion 4, the radio channel measurement campaign is described, while Section 5 adopts the
SAR methods to enable reflector estimation and provides some results. Finally, Section 6
concludes the paper.

2 SAR and Multistatic SAR

The SAR imaging is based on a moving platform, moving along a scene that shall be
imaged. During the movement, the platform transmits radar pulses which will hit the
scene and return to the platform with a certain time delay, which is proportional to the
range to the scene. This returned signal is filtered with a matched filter and then sampled.
Each reflector in the scene will contribute with its reflected power, and will then be placed
in an appropriate range bin. The range R is determined as a product between signal
propagation speed (usually speed of light) and delay time. In this way a single scene
transfer function is obtained, denoted g(R). Now this process can be repeated during the
platform movement at different time instances t, yielding a transfer function gt(R) which
can be stored in a two-dimensional array. Basically, this raw data, gt(R), is an example
of a real aperture radar or RAR. The resolution in such a radar system is proportional to
the radar lobe width and is usually quite poor. One important thing to notice is that the
lobe width is inversely proportional to the antenna size, i.e., the larger antenna the smaller
lobe we can obtain.

The idea behind SAR is to artificially synthesise a large antenna by moving the platform,
(Cutrona et al., 1961; Oliver and Quegan, 2004). One way that this can be done is by a
global back-projection method, (Natterer, 1986; Andersson, 1988; Fawcett, 1985), that
can be described in the following way; given the raw (possibly complex valued) data
gt(R) we can back-project each radar echo on the image yielding the subimage It and
each reflector will create a circle in each subimage. A total image I can then be created
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by summing up all the subimages along the synthetic aperture

I =

N∑
t=1

It (1)

This method can schematically be described as in Figure 1. Another way of creating the
image is to integrate the raw data for each pixel in the resulting image Imn as

Imn =

N∑
t=1

gt(R
mn
t ) (2a)

Rmnt = ‖pt − smn‖2 (2b)

where pt is the position of the platform, smn is the position in the scene which corresponds
to the pixel (m,n) and || · ||2 is the usual vector 2-norm. The complexity of this operation
is proportional to O(NM2) for an M × M image and N time points. This describes
the principle of the mono-static SAR in which transmitting and receiving antennas are
co-located. The principle can be generalised with transmitting and receiving antennas at
different positions to principles of multi-static SAR. Also, the specific case of bi-static
SAR with one separate transmitting antenna and multiple receiving antennas or antenna
positions, is highly relevant.

Figure 2 illustrates a case with one transmitter (or base station) in one position pBS and a
receiving antenna at positions p1 to p4. The only difference to the case in (2) is to add the
distance Rmn0 between the transmitter and the pixel coordinate (m,n) to the total range.

Imn =

N∑
t=1

gt(R
mn
0 +Rmnt ) (3a)

Rmn0 = ‖pBS − smn‖2 (3b)
Rmnt = ‖pt − smn‖2 (3c)
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In this case each reflector will describe an ellipse in the image with focal points located
in pBS and pt. It shall be noted that the integration above can be done with the complex
valued raw data (coherent) or with the magnitude of the complex valued data (incoherent).

3 OFDM Signal and SAR Modeling

In this section, the considered OFDMA signals are modeled, and associations to the SAR
theory are established.

Even though the methods described in the sequel apply to a general radio network, the
modeling will adopt 3GPP LTE (Dahlman et al., 2011) nomenclature and describe broad-
casted signals from base stations based on Orthogonal Frequency Division Multiplexing
(OFDM). The transmitted signal consists of coded symbols which can be described as

dt =

N−1∑
k=0

Ske
2πjk t

T , 0 ≤ t < T (4)

where Sk are the transmitted symbols, N is the number of symbols and T is the OFDM
symbol time and the bandwidth needed is B = N/T . This baseband signal is then trans-
formed to a passband signal centered at carrier frequency fc

zt = <{e2πjfctdt}, 0 ≤ t < T (5)

where <{ · } denotes the real part of a complex number. The received signal yt should
ideally be scaled (by A0) and time delayed (by τ0) version of the transmitted signal (i.e.,
LOS signal)

yt = A0zt−τ0 + et (6)

where et denotes some channel noise. However, because of the urban environment and
presence of multipath signals, the actual received signal can be written as

yt =

P∑
p=0

Apzt−τp + et (7)

where the number of the multipath reflectors is P . In general, the amplitudes Ap will be
proportional to (Rpt )

−α = (c0τp)
−α, but many of them, including the LOS amplitude,

can also be zero, for example if there is an occlusion present. α is here defined as a path
loss exponent.

The received signal is usually collected in the frequency domain since the matched filter-
ing can be implemented with multiplications instead of convolutions, and the time domain
signal is simply obtained as an inverse discrete Fourier transform (IDFT) of the frequency
signal, yt = F−1{Yf}.

The received signal or impulse response yt can be seen as the scene transfer function
for one time instant during the data acquisition, i.e., yt = gt(R) according to the SAR
notation.
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Figure 3: Configurations of the three base stations used in the experiment in Kista,
Stockholm. The driven trajectory is in white starting near base station 2 in the lower
part of the image.

4 Radio Channel Measurements

Radio channel data has been gathered during initial E-UTRAN trials in Kista Stockholm.
More complete details can be obtained from Medbo et al. (2009). The base station con-
figuration was according to Figure 3. Three base stations are used with the commercially
available antennas having transmit power of about 35 dBm at the antenna ports. The four
receiving antennas were mounted on the rooftop of a van and synchronisation of the trans-
mitting and receiving signal is obtained by the rubidium clocks from Stanford Research
Systems with the Allan standard deviation less than 10−12 s, which corresponds to an
error in propagation of less than 1 m during an 8 min period.

In the actual experiment, the symbols are transmitted in the whole bandwidth B ≈
20 MHz on the carrier frequency fc = 2.66 GHz. The frequency response of the chan-
nel is sampled every ∆t = 5.3 ms with the frequency resolution of ∆f = 45 kHz and
saved in a memory with L = 432 samples. This gives the effective range resolution of
c0/(L∆f) ≈ 15 m, where c0 is the speed of light. The frequency response is transformed
to the spatial domain with the IDFT for each time instant. On top of measuring the base
station signals, the GPS based position of the receiver is saved for each time instant. The
GPS position data are also synchronised to the signal receiving times with the high accu-
racy clock.
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Figure 4: Raw data (logarithm of the magnitude of the impulse response) from one
base station. Solid black line is the range to the base station 3 (LOS range) based on
the GPS trajectory. Non-continuous line is the NLOS range to the point (100, 300)
in Figure 6.

An example of the impulse response data collected from one base station (BS3) and aver-
aged over all 4 receiving antennas is depicted in Figure 4. Also the LOS range to the base
station is plotted with the solid black line. It can be seen in this figure that during certain
times obvious occlusions happen, for example time interval between ca. 0 to 170 s. This
time interval corresponds to the parts of the trajectory located at the farthest end from the
base station 3, between coordinates ca. (350, 0) and (150, 280), see Figure 3, where high
buildings are probable cause for the occlusions. The non-continuous line segments marks
the parts of the impulse response with the most evident non-line of sight propagation. The
line segments are further discussed in Section 5.

5 Results

The resulting image of the estimated reflectors can be seen in Figure 5. The estimated
image, in grayscale, of the reflectors is overlaid on the image of the Kista area in Stock-
holm. To enhance the visibility, the level curves are also drawn. The trajectory used for
the estimation is plotted as a thick black line, and three base stations, denoted BS1, BS2
and BS3, are shown as black triangles. The estimated reflectors seem to be well corre-
lated with the aerial map of the environment, although their resolution is somewhat low.
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Figure 5: Image of the reflectors estimated from all three base stations in light gray
together with level curves overlaid on the test area image. The trajectory is drawn as
a thick black line and base station positions are represented with black triangles.

This is a consequence of the SAR processing where many time points (full aperture) are
needed in order to obtain the full image resolution, see Section 2. In many cases here, the
reflectors were visible only for a short periods of time causing the low resolution in the
image.

The reflections can be further analysed by identifying parts of the trajectory where the
identified reflector has been active. Figure 6 illustrates such an analysis with an identified
reflector marked as a white square at coordinate (100, 300) in the image. Parts of the
trajectory that contribute to that reflector point seen from base station BS3 are highlighted
in black. The result is natural, since BS3 is not directly visible from that part of the
trajectory due to the occlusion from the buildings. Instead, signals from BS3 propagates
via the identified reflector to this part of the trajectory. These parts of the trajectory are
also marked with corresponding NLOS range, via the identified reflector, in Figure 4.
Beyond doubt, it is the identified reflector that is active in the NLOS propagation during
these segments.



5 Results 237

BS3

100 200 300 400 500 600

100

200

300

400

500

600

Figure 6: Identified reflector marked with a white square, together with the parts of
the trajectory (in black) that are associated to this reflector.
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6 Conclusions and Future Work
In this paper we devise a method for estimating a map of NLOS reflectors for a mobile
radio network based on multistatic SAR imaging. We apply the back-projection principle
for the image creation which is a well known method from computerised tomography
and also conventional SAR imaging. The obtained images give promising results where
the reflectors are well correlated with the large buildings detectable in the aerial map of
the environment. Also, the possibility to extract which part of the trajectory contributed
to different reflectors and from which base station is added. In this way a map where
dominating reflectors are present can be built up.

The applicability of the estimated reflectors is still unexploited. One possible applica-
tion area is to consider the estimated reflectors and occlusions in positioning estimation,
(Gustafsson and Gunnarsson, 2005).
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