
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
4

-5

0

5

10

r 2

Sample

fy,waf
fy,pim
fy,pic
fy,Tic
fwth
fwaf
fpaf
NF

Fig. 1. An example of residual data from all different fault classes.

1) System Description Summary: Sensor data have been
collected from the engine test bed during different transient
operating cycles including nominal system behavior and seven
different single-fault scenarios: air filter clogging; leakages at
the air filter and at the throttle; faults in sensors measuring
the temperature and pressure at the intercooler, pressure in
the intake manifold, and the air flow through the air filter.
The faults are injected during operation either into the engine
control unit, for example sensor faults, or by physically
manipulating the engine, for example air leakages.

The feature candidate set is a set of 42 residual generators
{r1, . . . , r42} that has been generated from a mathematical
model of the engine, using the Fault Diagnosis Toolbox in
Matlab [9]. The set of residual candidates is the same as used
in [8] and an example of residual data is shown in Fig. 1
also showing the class label for each sample1. The residuals
are evaluated using the collected data from the different faults
where 10% of the residual output data are used as training data
[13], i.e. 2024 samples in total for all classes. All residuals
have been normalized to have zero mean and variance one for
the nominal class (No Fault - NF).

2) Results: The eight different data classes (nominal and
seven faults) result in 28 performance constraints to evaluate
pairwise separation between all classes. The convergence rate
of the proposed algorithm is evaluated by comparing the
results to the solution to (1) when � = 0, i.e. no L2 penalties
[13]. Algorithm 1 is evaluated with step length ⇢ = 0.1
and the error tolerance level when solving (9) is selected
as 10�4 during the first 400 iterations and 10�6 during the
following iterations. As proposed in [3], computation time can
be improved by selecting a higher error tolerance when solving
(9) during the first iterations of the ADMM algorithm and then
lower it to achieve better numerical accuracy when the solution
is closer to the global optimum.

The solution x0 per iteration is shown in Fig. 2 where the
dashed lines represent the global solution computed using (1).
The ADMM algorithm converges to the global solution given
(1) within 450 iterations but the solution set, i.e. the resulting
non-zero elements in x0, can be identified already after 100
iterations. The computation time is presented in Fig. 3 showing
that computation time is higher in the initial iterations but
decreases significantly with increasing number of iterations.
This is expected as the interior-point method used to solve (9)
in Algorithm 1 should converge faster when the solution x0 is

1Residual data are available in the Fault Diagnosis Toolbox [9] that can be
downloaded from https://faultdiagnosistoolbox.github.io. The selected residual
subset used in this work is described in [13].

50 100 150 200 250 300 350 400 450 500 550 600

0

0.5

1

1.5

2

2.5
x
0

Iteration

Fig. 2. The solution when applying the ADMM algorithm to the engine case
study. Results show that the solution converges to the global solution and the
solution set (features corresponding to the non-zero elements in x0) can be
identified already after 100 iterations.

50 100 150 200 250 300 350 400 450 500 550 600

0

2

4

6

Ti
m

e
[s

]

Iteration

Fig. 3. The computation time per iteration of the ADMM algorithm applied
to the engine case study. The tolerance level when solving (9) is reduced from
10�4 to 10�6 after 400 iterations resulting in longer computation time.

stabilizing and the solution from the previous iteration is used
as a warm start. After iteration 400, the error tolerance level
is changed resulting in a higher computation time.

There is no rule how to select ⇢ in the general case.
However, some results are derived for specific classes of
problems, see e.g. [10]. Fig. 4 compares the convergence rate
for different choices of ⇢ by showing the square root error
with respect to the global optimum. Careful tuning of ⇢ is
important since both too small and too large step sizes require
longer time to converge which is consistent with observations
in [10]. In this case, the fastest convergence rate is achieved
for ⇢ = 0.1. The original optimization problem (1) is solved in
less than five seconds on a standard laptop, while the ADMM
approach takes longer time. The advantage of the ADMM
formulation becomes clear for larger problems as illustrated
in the next case study.

B. MNIST Data
To analyze the computational aspects when the feature

selection problem grows, i.e. a larger number of candidate
features and data classes, the MNIST image classification data

50 100 150 200 250 300 350 400 450 500 550 600

10
0

kx
0
�

x
⇤ 0
k 2

Iteration

Fig. 4. The convergence rate for different step sizes ⇢ in the engine case
study. Fastest convergence rate is achieved for ⇢ = 0.1.


