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Parameter and State Estimation
in Vehicle Roll Dynamics

Rajesh Rajamani, Damrongrit Piyabongkarn, Vasilis Tsourapas, and Jae Y. Lew

Abstract—In active rollover prevention systems, a real-time
rollover index, which indicates the likelihood of the vehicle to roll
over, is used. This paper focuses on state and parameter estimation
for reliable computation of the rollover index. Two key variables
that are difficult to measure and play a critical role in the rollover
index are found to be the roll angle and the height of the center
of gravity of the vehicle. Algorithms are developed for real-time
estimation of these variables. The algorithms investigated include
a sensor fusion algorithm and a nonlinear dynamic observer. The
sensor fusion algorithm requires a low-frequency tilt-angle sensor,
whereas the dynamic observer utilizes only a lateral accelerom-
eter and a gyroscope. The stability of the nonlinear observer is
shown using Lyapunov’s indirect method. The performance of
the developed algorithms is investigated using simulations and
experimental tests. Experimental data confirm that the developed
algorithms perform reliably in a number of different maneuvers
that include constant steering, ramp steering, double lane change,
and sine with dwell steering tests.

Index Terms—Cg height estimation, parameter estimation, roll
angle estimation, roll dynamics, vehicle dynamics.

I. INTRODUCTION

V EHICLE rollover accounts for a significant percentage
of highway traffic fatalities. While only 3% of vehicle

accidents result in rollovers, 33% of all fatalities have vehicle
rollover as a contributing factor [1]. Hence, there is significant
research being conducted on the development of active rollover
prevention systems [2]–[14]. An active rollover prevention
system typically utilizes differential braking to reduce the yaw
rate of the vehicle and to slow down the vehicle speed. Both of
these factors contribute to reducing the propensity of the vehicle
to roll over.

An important challenge in the design of an active rollover
prevention system is the calculation of the rollover index, which
indicates the likelihood of the vehicle to roll over and is used
to trigger differential braking to prevent rollover. Accurate
calculation of the rollover index is important to ensure that
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Fig. 1. Rollover index using lateral load transfer.

rollovers can be prevented in time while, at the same, ensuring
that active rollover prevention is not unnecessarily triggered.

One method of defining the rollover index is based on the
use of the real-time difference in vertical tire loads between the
left and right sides of the vehicle. Fig. 1 shows a schematic of
a vehicle with a sprung mass that undergoes roll motion. The
difference between the vertical tire forces Fz� and Fzr caused
by the roll motion of the vehicle is used to define rollover index
R as [9]

R =
Fz� − Fzr

Fz� + Fzr
. (1)

If we assume that the roll motion of the sprung mass is en-
tirely caused by the lateral acceleration of the vehicle (ignoring
road and other external inputs) and assume that the unsprung
mass of the vehicle is negligible, then it can be shown that the
rollover index of (1) can be represented as [9]

R =
2hRay cosφ+ 2hRg sinφ

�wg
(2)

where ay is the lateral acceleration of the vehicle measured on
the unsprung mass, φ is the roll angle, and hR is the height
of the center of gravity (c.g.) of the vehicle from the roll center
of the sprung mass.

It should be noted that the rollover index of (2) needs the
following:

1) measurement of lateral acceleration ay;
2) roll angle φ;
3) knowledge of the track width �w;
4) knowledge of the height of the c.g. hR.
Lateral acceleration is also required for the electronic sta-

bility control system [15], [16] on the vehicle and is typically
available as a sensor measurement. However, roll angle cannot
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Fig. 2. Rollover indices (circle) R and (star) Rapprox as a function of lateral
acceleration.

be easily measured in a vehicle. Suspension deflection mea-
surements on the left and right sides of the vehicle are required
to calculate roll angle. Since suspension deflection sensors are
expensive, real-time measurement of the roll angle is typically
not available on a passenger vehicle.

The track width �w is a parameter that remains constant and
can be easily measured. The c.g. height hR, on the other hand,
cannot be directly measured. Sensors for real-time measure-
ment of the c.g. height do not exist. While the c.g. height does
not change in real time, it does change with the number of
passengers and loading of the vehicle. In the case of sports
utility vehicles (SUVs), military vehicles, and trucks, the c.g.
height can significantly vary with cargo, with the variation
being as much as 100% of the nominal height.

This paper therefore focuses on the accurate estimation of
roll angle and the estimation of height of the c.g. of the vehicle
to enable implementation of rollover index calculation of (2).

In literature and in commercial systems, the lack of roll angle
measurement is typically handled by approximating the rollover
index of (2) with

Rapprox =
2hRay

�wg
. (3)

Fig. 2 shows the original rollover index R and its approx-
imation Rapprox as a function of lateral acceleration during
steady-state cornering around a circular track for a Volvo XC 90
SUV. It can be seen that the difference between the two curves
increases as lateral acceleration increases, resulting in higher
error during tight cornering maneuvers. Furthermore, the error
increases with increase in the height of the c.g. Thus, the use of
roll angle is important in an accurate calculation of the rollover
index. This motivates the need to estimate roll angle.

A previous result on the estimation of the c.g. height has
been provided by Solmaz et al. [17]. In [17], the c.g. height is
estimated, assuming measurement of the full state is available.
Alternately, transient effects are ignored, and a steady-state
relationship between roll angle and lateral acceleration is used
to determine the c.g. height at each sampling time instant. This

Fig. 3. Signals from tilt angle sensor and lateral accelerometer for swept steer
experiment.

paper develops a c.g. height estimation algorithm based on a
more accurate roll dynamics model that includes transients and
using a recursive least-squares (RLS) approach with a variable
forgetting factor. Furthermore, the only sensors required are a
roll rate gyroscope and a tilt angle sensor (which are the same
as the sensors required for estimation of roll angle).

II. KINEMATIC SENSOR FUSION

The following different systems can be considered for ob-
taining roll angle estimates on a vehicle:

1) use of a commercially available tilt angle sensor;
2) kinematic sensor fusion using both a tilt angle sensor and

a gyroscope;
3) dynamic estimation of roll angle using a model-based

observer.

The advantages and limitations of each of these systems are
explored and illustrated in the succeeding paragraphs.

As a first step, consider a tilt angle sensor such as the
Crossbow CXTD02 inertial angle sensor. The Crossbow tilt
angle sensor consists of two two-axis in-built accelerometers
and signal-processing algorithms that enable static tilt angle
to be calculated from the accelerometer measurements. An
example of an algorithm that can be used for this purpose can
be found in [15].

A large SUV (military vehicle) was used for the experimental
data described in the succeeding figures. Fig. 3 shows the signal
from the tilt angle sensor for experiments conducted using the
large SUV. In this experiment, a swept steer angle was used
with the vehicle operating at a longitudinal speed of 50 mi/h.
It can be seen that the tilt angle sensor closely tracks the
lateral accelerometer signal after appropriate scaling. This is
due to the fact that the angle calculation in the tilt sensor
is based on the use of a lateral and a vertical accelerometer.
Only the very low frequency portion of the tilt angle sensor
signal is expected to be reliable. At high frequencies, changes
in tilt angle are accompanied by significant accelerations due
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Fig. 4. Signals from gyroscope and differentiation of tilt angle sensor for
swept steer.

to which significant errors occur in the calculation of tilt angle
from accelerometers.

The tilt angle sensor cannot provide a good measure of
transient roll angle changes. This can be inferred by comparing
the roll rate derived from the tilt sensor with the roll rate from
a gyroscope. Fig. 4 shows a comparison of the roll rate, as
measured by the gyroscope and as estimated from differenti-
ation of the tilt angle sensor. It can be seen that the roll rate
from differentiation of the tilt sensor lacks many of the transient
features of the roll rate from the gyroscope. There is significant
transient error in the tilt angle sensor, as shown by the circled
portions of the curves in Fig. 4.

While the gyroscope can measure roll rate, the presence of
a time-varying bias makes direct estimation of roll angle by
integration of the gyroscope signal impossible.

Consider the use of both the gyroscope and the tilt angle
sensor together to estimate the roll angle of the vehicle. Since
the gyroscope can measure roll rate while the tilt angle sensor
can measure static (or low-frequency) roll angle, the signals
from the two sensors can be combined to obtain good estimates
of both roll angle and roll rate. The following kinematic fusion
algorithm is suggested:

˙̂
φ = φ̇gyro + k(φtilt sensor − φ̂). (4)

In the frequency domain, the relation between the estimated
roll angle φ̂ and the gyroscope roll rate and tilt-angle-sensor-
measured roll angle is given as follows:

φ̂ =
1

s+ k
φ̇gyro +

k

s+ k
φtilt sensor. (5)

Thus, the estimate combines the low-frequency content of
the angle estimate from the tilt sensor with the high-frequency
content of the integrated signal from the gyroscope. This helps
eliminate the drift from integration of the gyroscope. Note that
the algorithm is stable for all values of k.

Fig. 5 shows the roll angle estimate as estimated by the
kinematic algorithm of (4). It can be seen that the estimated roll

Fig. 5. Roll angle estimate from kinematic observer and tilt angle sensor.

Fig. 6. Roll rate estimate from kinematic observer and gyroscope.

angle tracks the steady-state tilt angle signal, except for better
transient performance it provides during the period between 9
and 11 s. Fig. 6 shows the roll rate as estimated by the kinematic
algorithm and by the gyroscope. It can be seen that the roll
rate estimate from the kinematic algorithm is a far better match
for the gyroscope signal than the roll rate as estimated from
differentiation of the tilt angle sensor, as previously studied in
Fig. 4.

III. DYNAMIC OBSERVER

An alternate approach to estimation of roll angle is to use an
observer based on a dynamic model of the vehicle roll dynam-
ics, using only lateral acceleration and a roll rate gyroscope as
the measurements for the observer. Since a lateral accelerome-
ter is required by default for rollover index calculation, the only
additional sensor being used here then is the roll rate gyroscope.



RAJAMANI et al.: PARAMETER AND STATE ESTIMATION IN VEHICLE ROLL DYNAMICS 1561

Fig. 7. Roll dynamics and free-body diagram.

The need for the tilt angle sensor is eliminated. It should be
noted that the current retail cost of a tilt angle sensor is on the
order of $100.

Estimation of roll angle using only an accelerometer has been
previously presented in [5]. However, the results in [5] assume
a steady-state algebraic relation between lateral acceleration
and roll angle, ignoring transient dynamics. Furthermore, a
gravitational term and several trigonometric terms are also
ignored in [5].

To develop a dynamic model for the roll dynamics of the
vehicle, consider the free-body diagram in Fig. 7.

It should be noted that d’Alembert’s force Flat is applied at
the c.g. of the vehicle. It is also assumed that the suspension
forces on the sprung mass act parallel to the sprung mass
z-axis. Vertical force balance yields the sum of the suspension
forces as

Fsl + Fsr = mg. (6)

Taking moments about the roll center, the roll dynamics
equation can be written as(

Ixx +mh2
R

)
φ̈ =

∑
Mx

=FlathR cosφ+mghR sinφ

− Fsl
�s
2

+ Fsr
�s
2

(7)

or

(
Ixx+mh2

R

)
φ̈=FlathR cosφ+mghR sinφ+

�s
2

(Fsr−Fsl).
(8)

Suspension forces Fsl and Fsr act on both sides of the
suspension springs (Fig. 8). The suspension deflections on the
left and right sides due to roll are given as follows:

zs� = − �s
2

sinφ (9)

zsr =
�s
2

sinφ. (10)

Fig. 8. Suspension forces.

Hence, the suspension forces are

Fsl =
mg

2
+ k

�s
2

sin(φ) (11)

Fsr =
mg

2
− k

�s
2

sin(φ) (12)

Fsl − Fsr = k�s sinφ. (13)

Substituting (13) into (8) yields

(
Ixx +mh2

R

)
φ̈ = FlathR cosφ+mghR sinφ− 1

2
k�2s sinφ.

(14)

Including suspension damping in addition to stiffness, the
roll dynamics model can finally be written down as(
Ixx +mh2

R

)
φ̈ = mayhR cosφ+mghR sinφ

−1
2
k�2s sinφ− 1

2
c�2s(cosφ)φ̇. (15)

It should be noted that the roll dynamics depend on the
lateral dynamics through the lateral acceleration term ay . By
avoiding further expansion of this term in terms of lateral tire
forces and lateral dynamic states, a complicated coupled set of
equations between roll and lateral dynamics is avoided. Instead,
the variable ay is assumed to be measured.

The following observer is proposed to estimate roll angle:

˙̂
φ = φ̇meas + k(φ̂�f − φ̂) (16)(

Ixx +mh2
R

) ¨̂
φ�f =mayhR cosφ�f +mghR sinφ�f

− k

2
�2s sinφ�f − c

2
�2s(cosφ�f )φ̇�f .

(17)

The first equation in the observer (16) combines the inte-
grated roll rate from the gyroscope with a low-frequency roll
angle estimate provided by the (17). Equation (17) is a replica
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of the roll-dynamics-model-based equation. Hence, the steady-
state roll angle estimate from (17) should converge to the actual
steady-state roll angle of the stable dynamics of (15). As the
analysis here shows, the steady-state roll angle converges to
zero in the absence of lateral acceleration and to the steady-
state value given by (18), shown below, in the presence of lateral
acceleration.

Analysis of Observer Stability: With the equation of motion
given by (15) and with the condition (1/2)k�2s > mghR being
satisfied, the steady-state roll angle converges to zero in the
absence of lateral acceleration for all roll angles satisfying
|φ| ≤ φm, where φm depends on the parameters of the roll
dynamics equation and is typically greater than 30◦. In the
presence of lateral acceleration, the steady-state roll angle
converges to

φss =
ay

k�2s
2mhR

− g
(18)

for all roll angles satisfying |φ| ≤ φm.
Proof: The equation of motion (15) can be rewritten in

short notation in the absence of lateral acceleration as

φ̈ = −a sinφ− bφ̇ cosφ (19)

where a and b are positive constants. Let a Lyapunov function
candidate be given by

V = [φ φ̇]TP [φ φ̇] = p1φ
2 + p2φ̇

2 + 2p3φφ̇. (20)

To ensure that V is positive definite, the following constraint
between p1, p2, and p3 needs to be satisfied:

√
p1p2 > p3. (21)

Note that, if (21) is satisfied, then p3 can be rewritten as

p3 = (
√
αp1)(

√
βp2) (22)

with α < 1 and β < 1.
Then

V = p1φ
2 + p2φ̇

2 + 2p3φφ̇

= (1 − α)p1φ
2 + (1 − β)p2φ̇

2 + αp1φ
2

+ βp2φ̇
2 + 2(

√
αp1)(

√
βp2)φφ̇

or

V = (1 − α)p1φ
2 + (1 − β)p2φ̇

2 + (φ
√
αp1 + φ̇

√
βp2)2

which is positive definite.
Taking derivatives of the Lyapunov function candidate

V̇ = 2p1φφ̇+ 2p2φ̇φ̈+ 2p3φφ̈+ 2p3φ̇
2

V̇ = 2p1φφ̇− 2p2φ̇a sinφ− 2p3aφ sinφ

− 2p2φ̇
2 cosφ− 2p3bφφ̇ cosφ+ 2p3φ̇

2

or

V̇ = φφ̇[2p1 − 2bp3 cosφ] − 2p2φ̇a sinφ

+ φ̇2[−2p2 cosφ+ 2p3] − 2p3aφ sinφ. (23)

Fig. 9. Right- and left-hand sides of (24).

The last two terms are negative definite, as long as p3 >
p2 cosφ.

We need to ensure that the term φφ̇[2p1 − 2bp3 cosφ−
2p2a(sinφ/φ)] is dominated by the last two terms so that V̇
is negative definite. This can be done by choosing p1, p2, and
p3 such that[
2p1 − 2bp3 cosφ− 2p2a

sinφ
φ

]

≤ (
√

2p2 cosφ− 2p3)

(√
2ap3

sinφ
φ

)
. (24)

The left- and right-hand sides of (24) are plotted in Fig. 9 for
roll angles ranging from 0 to 0.8 rad (see Table I for vehicle
parameters). It can be seen that inequality (24) is satisfied for
all of these roll angles, thus showing that the Lyapunov function
derivative is negative; hence, the steady-state roll angle will
converge to zero.

In the case when lateral acceleration is nonzero, the steady-
state roll angle can be obtained by setting φ̇ = φ̈ = 0 in (15) to
obtain the steady-state value in (18).

Since (15) and (17) have identical dynamics, the steady-
state roll angle of the estimator in (17) will be identical to
that of the original system. Hence, the low-frequency dynamics
of the observer in (16) are determined by the estimate from
(17), whereas the high-frequency dynamics are obtained from
integration of the gyroscope.

It should be noted that use of the observer in (16) and
(17) requires knowledge of the roll inertia, height of the c.g.,
and suspension spring stiffness. Knowledge of the damping
coefficient is not important since it only affects the transient
performance of the observer and not the steady-state value. The
transient performance can be obtained from fusion with the
gyroscope signal, as in (16).

IV. EXPERIMENTAL RESULTS WITH DYNAMIC OBSERVER

Fig. 10 shows the tilt angle sensor signal for steering, consist-
ing of a sine with dwell maneuver. Again, it can be seen that the
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Fig. 10. Tilt angle sensor and accelerometer signals for FMVSS data.

Fig. 11. Roll rate from gyroscope and differentiation of tilt angle signal for
FMVSS data.

tilt angle sensor signal closely tracks the lateral accelerometer
signal. However, as shown in Fig. 11, the differentiated tilt
sensor signal has significant transient error, compared with the
roll rate signal, as measured by the gyroscope.

Fig. 12 shows the estimated roll angle using the dynamic
observer of (14) and (15). It can be seen that the roll angle
tracks the steady-state values of the tilt angle sensor but has
significantly richer transient features in its signal, which is seen
particularly in the time duration between 4 and 7 s in the shown
plot.

Fig. 13 shows the estimated roll rate from the dynamic
observer. It can be seen that the estimated roll rate matches
the roll rate signal from the gyroscope much better than the
differentiated tilt angle signal.

Fig. 12. Roll angle estimated from dynamic observer.

Fig. 13. Roll rate estimated from dynamic observer.

V. CENTER OF GRAVITY HEIGHT ESTIMATION

As described in Section I, the height of the c.g. of the vehicle
plays an important role in the computation of the rollover index.
The c.g. height can significantly change in SUVs, military
vehicles (due to top loading), and trucks. Furthermore, there is
no convenient method available to measure c.g. height. Unlike
longitudinal c.g. position, which can be obtained by measuring
weights at the front axle and rear axle at a weigh station, there
is no convenient technique for measuring c.g. height.

This section proposes and experimentally evaluates an algo-
rithm for c.g. height estimation.

Formulation 1: Start with the following model for the roll
dynamics of the vehicle:(
Ixx +mh2

R

)
φ̈ = mayhR cosφ+mghR sinφ

−1
2
k�2s sinφ− 1

2
c�2s(cosφ)φ̇. (25)
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At steady-state conditions (during steady cornering), the roll
rate and acceleration can be assumed to be constant. In that
case, (25) becomes

0 = mayhR cosφ+mghR sinφ− 1
2
k�2s sinφ (26)

or

hR(may cosφ+mg sinφ) =
1
2
k�2s sinφ. (27)

This can be rewritten in a parameter identification form as

y = ψT θ (28)

with

y =
k

2
�2s sinφ

ψ =may cosφ+mg sinφ, and θ = hR. (29)

Formulation 2: Alternatively, without assuming steady-state
cornering, the transient dynamics of (25) can be accounted for
by using

y =
k

2
�2s sinφ+

c

2
�2sφ̇ cosφ+ Ixx

s

τs+ 1
φ̇

ψ =may cosφ+mg sinφ (30)

where s is the Laplace operator, and the influence of the term
mh2

R has been ignored and assumed to be significantly smaller
than Ixx.

RLS Identification: Define error e(t) as

e(t) = y(t) − ψ(t)T θ̂(t) (31)

where θ̂(t) is the vector of estimated parameters, ψ(t) is the
regression vector, and y(t) is the measured output.

The RLS algorithm [18] will be used in this paper to it-
eratively update the unknown parameter vector θ̂(t), at each
sampling time, using the past input and output data contained
within the regression vector ψ(t). The RLS algorithm updates
the unknown parameters to minimize the sum of the squares
of the modeling errors. The procedure of the RLS algorithm at
each time step t = kΔT , with ΔT being the sampling time, is
given as follows:

Step 1) Measure the system output y(k), and calculate the
regression vector ψ(k).

Step 2) Calculate the identification error e(k), which is the
difference between the system’s actual output at this
time and the predicted model output obtained from
the estimated parameters in the previous sample,
θ̂(k − 1), i.e.,

e(k) = y(k) − ψ(k)T θ̂(k − 1). (32)

Step 3) Calculate the updated gain vector K(k) as

K(k) =
P (k − 1)ψ(k)

λ+ ψT (k)P (k − 1)ψ(k)
(33)

Fig. 14. Lateral acceleration in constant steering maneuver.

and calculate the covariance matrix P (k) using

P (k) =
1
λ

[
P (k − 1) − P (k − 1)ψ(k)ψT (k)P (k − 1)

λ+ ψT (k)P (k − 1)ψ(k)

]
.

(34)

Step 4) Update the parameter estimate vector θ(k) as

θ(k) = θ(k − 1) +K(k)e(k). (35)

The parameter λ is called the forgetting factor. It is used to
effectively reduce the influence of old data that may no longer
be relevant to the model. This allows the parameter estimates to
quickly track changes in the process. A typical value for λ is in
the interval (0.9, 1).

While (32)–(35) can be used to estimate the height of the c.g.
in real time, an important issue needs to be noted:

This algorithm requires that the roll angle be nonzero. In the
case where the roll angle is zero, as when the car is being driven
straight with zero steering, both the left- and right-hand sides of
(27) are zero.

Hence, to apply this technique for c.g. height estimation, it
is required that the data used be from a maneuver in which the
vehicle is under a cornering maneuver with nonzero steering.
Since c.g. height is a quasi-constant parameter and does not
change for long periods of time, it is a viable approach to wait
for a cornering maneuver to do the c.g. height estimation. In the
case of the experimental results described here, the algorithm
was set to update the parameter estimates only when the lateral
acceleration of the vehicle exceeded a threshold of 0.5 m/s2.

Fig. 14 shows lateral acceleration for a constant steering
angle maneuver on the same experimental vehicle, as described
earlier. As seen in the figure, lateral acceleration is approxi-
mately constant between 6 and 21 s in the data.

The estimated c.g. height using the algorithm with formula-
tion 1 of (27) is shown in Fig. 15. In this case, a forgetting factor
of λ = 0.995 was used. With this large forgetting factor, almost
all of the data is used in the recursive calculations, leading to a
smooth noise-free estimate, with a steady-state value of about
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Fig. 15. Estimated c.g. height using a forgetting factor of 0.995.

Fig. 16. Estimated c.g. height using a forgetting factor of 0.9.

0.9 m. However, it takes almost 5 s for the estimated c.g. height
value to converge to 90% of its steady-state value.

Faster convergence can be obtained using a smaller forgetting
factor. A forgetting factor of λ = 0.9 was used in Fig. 16. It
can be seen that the estimate now quickly converges within
a second. However, it has significant noise at steady state. To
achieve a noise-free steady-state estimate while also obtaining
quick convergence, a variable forgetting factor was used in the
data shown in Fig. 17.

For the variable forgetting factor, the identification error
e(k) is monitored throughout the period of contact. An alarm
is signaled if the identification error has been larger than a
threshold for a certain amount of time. The recursive formula
of this method is shown as

ak = max (ak−1 + |ek| − d, 0) , k = 1, 2, . . .

a0 = 0.

As can be seen, given the identification error ek calculated
in an ordinary RLS as the input, an output alarm signal can
be generated. If the alarm value ak > h, a smaller forgetting

Fig. 17. Estimated c.g. height using a variable forgetting factor.

factor will be chosen in the RLS. Here, the threshold value
h is used to determine when the forgetting factor should be
adjusted, in the condition that an alarm signal has been on
for a sufficiently long time. The other threshold value d in
the preceding equation is used to judge when to turn on the
alarm. This makes the process ignore errors smaller than d. If
the estimation system can swiftly track any abrupt change in
parameter, the identification error will drop below the threshold,
thus resulting in a zero value of the alarm signal. At this stage,
the alarm is turned back off, and a larger forgetting factor is
chosen for its high immunity to noise at steady state.

Fig. 18 shows lateral acceleration for a swept steering ma-
neuver in which the steering angel continuously increases and
then briefly remains a constant. The corresponding c.g. height
estimate from the algorithm is shown in Fig. 19. It can be
seen in Fig. 19 that the estimate varies quite a bit in the
range between 0.85 and 0.97 m. This variation happens due
to the nonsteady nature of the steering maneuver since the roll
rate and roll acceleration no longer satisfy the zero transient
dynamics assumption of (27). However, it can be seen from the
figure that an approximate estimate of c.g. height can still be
obtained under these conditions.

Formulation 1 using (27) assumes steady-state cornering in
which the roll angle is constant. Hence, it will lead to errors
during time periods when the roll rate and roll acceleration
are nonzero. Formulation 2 does not require roll rate and roll
acceleration to be zero. It requires the measurement of roll rate
and roll acceleration. Roll acceleration is obtained by numerical
differentiation of roll rate in (30).

The estimated c.g. height using formulation 2 is shown in
Fig. 20. It can be seen that the variation of the c.g. height
estimate is less than the variation of the previous formulation
in Fig. 19.

VI. CONCLUSION

The roll angle and height of the c.g. are important variables
that play a critical role in the calculation of real-time rollover
index for a vehicle. Sensors for measuring roll angle are
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Fig. 18. Lateral acceleration during a swept steering maneuver.

Fig. 19. Estimated c.g. height in swept steering maneuver.

expensive. Sensors for directly measuring the c.g. height of a
vehicle in real time do not exist.

This paper has focused on algorithms to estimate real-time
roll angle and c.g. height. The algorithms investigated include a
sensor fusion algorithm that utilizes a low-frequency tilt angle
sensor and a gyroscope, and a nonlinear dynamic observer that
utilizes only a lateral accelerometer and a gyroscope. The first
algorithm entails additional cost for the tilt angle sensor but is
a simple, reliable, and robust algorithm. The second algorithm
does not need the additional sensor but requires knowledge of
the roll dynamics model. The performance of the developed
algorithms has been investigated using experimental tests on a
large SUV. Experimental data have confirmed that the devel-
oped algorithms reliably performed in a number of different
maneuvers that include constant steering, ramp steering, and
sine with dwell steering tests.

The c.g. height estimation algorithm performs well during
maneuvers with changing steering angle if terms related to roll
velocity and roll acceleration are included in the parameter
identification equation.

Fig. 20. Estimated c.g. height using formulation 2.

TABLE I
TABLE OF PARAMETER VALUES

The results in this paper provide solutions that will enable
accurate calculation of rollover index, thus enabling better
rollover prevention systems to be developed.
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