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Abstract

The main task for an industrial robot is to move the tool into speci�c posi-
tions. It is therefore necessary to have an accurate knowledge about the tool
position. This report desrcibes a simulation study where an accelerometer
attached to the robot tool is used. The acceleration and measured motor
angles are used with an Extended Kalman Filter (EKF) to estimate the
tool position. The work has been focused on a robot with two degrees of
freedom. Simulations have been performed with di�erent kind of errors and
on di�erent paths. The EKF uses covariance matrices of the process noise
and measurement noise which are unknown. An optimization problem has
therefore been proposed and solved to get covariance matrices that give
good estimations.
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Abstract

The main task for an industrial robot is to move the tool into spe-
ci�c positions. It is therefore necessary to have an accurate knowledge
about the tool position. This report desrcibes a simulation study where
an accelerometer attached to the robot tool is used. The acceleration and
measured motor angles are used with an Extended Kalman Filter (EKF)
to estimate the tool position. The work has been focused on a robot
with two degrees of freedom. Simulations have been performed with dif-
ferent kind of errors and on di�erent paths. The EKF uses covariance
matrices of the process noise and measurement noise which are unknown.
An optimization problem has therefore been proposed and solved to get
covariance matrices that give good estimations.

1 Introduction

The problem is to estimate the tool position for a �exible manipulator. The
manipulator is a resonant system with uncertainties in the model parameters.
There are also high demands on the accuracy of the estimation. In the past
when the robots were more rigid than today it was enough to measure the
motor angles and use kinematic models. Nowadays this is not enough due to
�exibilities in the structure. Earlier work, see [3] and [4], using experimental
data have shown that the estimation is good for frequencies from 3 to 30Hz but
not so good for lower frequencies. The aim is therefore to improve the estimation
in the low frequency range. The work is limited to a 2 DOF manipulator and
uses only simulated data.

The report desribes the robot model and the accelerometer model in Sec-
tion 2 and the observer in Section 3. The simulation setup is described in
Section 4 and the result is presented in Section 5. Conclusions and future work
is given in Sections 6 and 7.

2 Mathematical models

This section presents the mathematical models for the robot and the accelerom-
eter. The equations for the observer are presented in Section 3.
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2.1 Robot model

The robot model is a joint �exible two-axes model from [5], see Figure 2.1, that
includes both nonlinear sti�ness and friction in the joints. Let

q =
(
qa
qm

)
, u =

(
0
um

)
, (2.1)

where qa and qm are the arm and motor angles and um is the motor torque. A
dynamic equation can then be derived as

M(q)q̈ + C(q, q̇) +G(q) + τs(q) +D(q̇) + κ(q̇) = u. (2.2)

Here M(q) is the inertia matrix, C(q, q̇) is the Coriolis- and centrifugal terms,
G(q) is the gravitaional torque, τs(q) is the nonlinear sti�ness torque, D(q̇) is
the damping torque and κ(q̇) is the nonlinear friction torque. A state space
model can be derived from (2.2) as

ẋ =

 x3

x4

M−1(x1)(u− C(x1, x3)−G(x1)−D(x3, x4)− τs(x1, x2)− κ(x4))


= f(x, u), (2.3)

where

x =


x1

x2

x3

x4

 =


qa
qm
q̇a
q̇m

 . (2.4)

The equations are expressed on the arm side. This means that qm = q̃m

η ,
um = ũmη where η is the gear ratio and q̃m and ũm are the motor angle and
motor torque expressed on the motor side of the gearbox.

See [3] and [5] for more details.

2.2 Accelerometer model

The accelerometer measures the acceleration in a frame {s} �xed to the sensor.
The measured acceleration is

ρ̈Ms = ρ̈s +Rws (qa)Gw + δs + es, (2.5)

where ρ̈s is the acceleration due to the motion, Gw =
(
0 0 −g

)T
models the

gravitation in the world frame {w}, δs models the drift and es is the measurment
noise, both expressed in {s}. Rws (qa) is a rotation matrix that represents the
transformation from frame {w} to frame {s}.

Both the simulation model and the observer must have a mathematical ex-
pression for ρ̈s. First a vector from the origin in frame {w} to the origin in
frame {s}, see Figure 2.2, is de�ned as

ρw =
(
x(qa)
z(qa)

)
= Γ(qa), (2.6)
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0ẑ

1aq

2aq

P

1111 ,,, ljm ξ

2222 ,,, ljm ξ

11 ),( ds ⋅τ

22 ),( ds ⋅τ

1111 ),(,, η⋅mmm fqj

1mu

2mu

2222 ),(,, η⋅mmm fqj

Figure 2.1: Serial robot with two degrees of freedom. The kinematic and the
dynamic equations are derived in [5].

where Γ is a system of nonlinear equations for the robot kinematics. The deriva-
tive of (2.6) with respect to time gives

ρ̇w = Γ̇(qa) = J(qa)q̇a, (2.7a)

ρ̈w = Γ̈(qa) = J(qa)q̈a + J̇(qa)q̇a, (2.7b)

where J(qa) = ∂Γ
∂qa

is the jacobian matrix. The vector ρ̈w is then transformed
from frame {w} to frame {s} according to

ρ̈s = Rws (qa)ρ̈w. (2.8)

It is now possible to calculate the acceleration caused by the motion of the
robot in di�erent positions. Insert (2.8) in (2.5) and the �nal expression for the
measured acceleration can be expressed as

ρ̈Ms = Rws (qa)(ρ̈w +Gw) + δs + es. (2.9)

More about the accelerometer modeling can be found in [3].

3 Observer

An Extended Kalman Filter (EKF), see [1], is used as the observer. The EKF
is a suboptimal �lter that linearizes the system equation and the measurement
equation around the estimated states at every time step before a Kalman �lter
is applied.

3.1 System and Measurement Equations

The continuous-time model f(x, u) in (2.3) is �rst discretized before the EKF
is used. By using a �rst order Taylor approximation, we get

xk+1 = F (xk, uk) + vk, (3.1a)

F (xk, uk) = xk + Tsẋk = xk + Tsf(xk, uk), (3.1b)
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Figure 2.2: The vector ρw is a vector from the origin of frame {w} to the origin
of frame {s}.

where Ts is the sample time and vk is process noise. This approximation can
introduce some errors but is used for its simplicity. Measurements are available
of the motor angles and the acceleration of the sensor in frame {s}. This can
be expressed as

zk = h(xk, uk) + wk =
(

x2k

Rws (x1k)(ρ̈w +Gw)

)
+ wk, (3.2)

where wk is measurement noise. The drift is included in the accelerometer
model (2.8) but not in the measurement equation (3.2). This means that the
EKF can not handle the drift and make a good estimation. Therefore, let

bk+1 = bk + vk, (3.3)

be a dynamic model for the drift where vk is noise. This model says that the
drift is a random walk that only changes with the noise. Augmenting the state
space vector (2.4) with bk gives

x =


x1

x2

x3

x4

x5

 =


qa
qm
q̇a
q̇m
b

 . (3.4)

A new model and measurement equation are now obtained as

xk+1 =
(
F (xk, uk)

x5k

)
+ vk, (3.5)

zk = h(xk, uk) + wk =
(

x2k

Rws (x1)(ρ̈w +Gw) + x5k

)
+ wk. (3.6)

Here the new state for the drift is included in the measurement equation and
the observer should then be able to handle the drift. It remains to Section 5 to
see whether this new model description is better or not, but according to [2] this
is a common way to handle bias in sensors. The EKF based on (3.5) and (3.6)
is called AEKF in the rest of this report.
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3.2 EKF algorithm

The EKF is a recursive algorithm based on a measurement update and a time
update.

Measurement update

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1 (3.7a)

x̂k|k = x̂k|k−1 +Kk(zk − h(x̂k|k−1, uk)) (3.7b)

Pk|k = Pk|k−1 −KkHkPk|k−1 (3.7c)

Time update

x̂k+1|k = F (x̂k|k, uk) (3.8a)

Pk+1|k = AkPk|kA
T
k +Qk (3.8b)

Initial values

x̂1|0 = x0 =
(
qm1(0) qm2(0) qm1(0) qm2(0) 0 0 0 0

)T
(3.9a)

P1|0 = P0 (3.9b)

Here is P the covariance matrix for the estimation error and K is the �lter gain.
The matrices Ak and Hk are obtained from a linearization of (3.1a) and (3.2)
around the estimated states according to

xk+1 = F (x̂k|k, uk) +Ak(xk − x̂k|k) + vk, (3.10a)

zk = h(x̂k|k−1, uk) +Hk(xk − x̂k|k−1) + wk, (3.10b)

where

Ak =
∂F (x, uk)

∂x

∣∣∣∣
x=x̂k|k

, (3.11a)

Hk =
∂h(x, uk)

∂x

∣∣∣∣
x=x̂k|k−1

. (3.11b)

For the AEKF (3.5) and (3.6) are linearized instead. In (3.7a) and (3.8b) Rk
and Qk denote the measurement and process noise at time k. These matrices
are assumed to be constant over time in the rest of this report.

3.3 Tuning of covariance matrices

In order to use the EKF one must choose good estimates of the covariance ma-
trices Q and R. This has been done in an automatic way in [3]. The same
approach has been used in this work with some changes. Firstly, the optimiza-
tion algorithm has been changed from Complex-RF to an Active Set method
(fmincon in Matlab). Secondly, the path error is calculated in a di�erent way.
Here the path error is calculated as

ek = min
i

√
|px,k − p̂x,i|2 + |pz,k − p̂z,i|2, (3.12)

5



2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

x−direction

z−
di

re
ct

io
n

a

b

c

d

 

 
True
Estimated

Figure 3.1: Geometric interpretation of the path error. The stars and black
squares indicate the original data points and the gray squares are interpolated
data points.

where px,k, p̂x,i, pz,k and p̂z,i are the true and estimated position for the tool
in x- and z-direction at time k and time i, respectively. The path error is the
shortest distance between the true path and the estimated path for every data
point in the true path. Figure 3.1 shows how (3.12) should be interpreted,
and it is easy to see that the shortest distance is b. The stars and the black
squares in Figure 3.1 are the original data points in the true and estimated
paths, respectively. Equation (3.12) eliminates the time dependence and only
takes the geometrical properties into consideration. A qubic spline interpolation
is performed to obtain the data points indicated with gray squares.

The problem is now to minimize the L2-norm of the path error (3.12) with
respect to the covariance matrices and it can be formulated as

Minimize fobj(p̂x, p̂z) =
√∑N

k=1 |ek|2

subject to λj > 0 j = 1, . . . , 5

Q̃λ =


λ1I2×2 0 0 0

0 λ2I2×2 0 0
0 0 λ3I2×2 0
0 0 0 λ4I2×2

 Q̃

R̃λ =
(
λ5I2×2 0

0 I2×2

)
R̃

(p̂x, p̂z) = EKF(Q̃λ, R̃λ)
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where λj are the optimization parameters. Q̃ and R̃ are diagonal matrices
with the elements taken from the covariances of the process noise v and the
measurement noise w. The noise is estimated as

v̂k = xk+1 − F (xk, uk), (3.13)

ŵk = zk − h(xk, uk). (3.14)

It is possible to estimate the noise like this since this work is performed on
simulated data were the true states are avilable. The process noise includes both
discretization errors and measurement noise that has been �ltered throught the
controller. The EKF does not use the cross-correlation between the states and
the cross-correlation between the measurements since only the diagonal elements
are used.

The matrices Q and R in the optimization problem are restricted to the
diagonal elements to simplify the optimization.

4 Simulation Setup

The simulations were performed on four di�erent paths as can be seen i Fig-
ure 4.1. The path starts at the star and goes clockwise. The circle indicates the
tool position in the zero-position of the robot and the thick line indicates which
part of the path that has been magni�ed in later �gures. The reference signals
for these four paths were created using a standard ABB controller. Figure 4.2
shows the location of the four paths relative the zero-position of the robot. Four
simulations according to Table 4.1 were performed on all four paths to cover
model errors, drift, and calibration errors. How realistic these errors are can
be questioned. The calibration errors in the x- and z-direction may be a bit
large, it would be possible to place the sensor more accurate. The error for the
orientation is more di�cult to say something about. An error of 2◦ is choosen
because it is small enough so that the sensor can look like being straight. The
model errors can be seen as the worst case and are chosen based on suggestions
from the authors of [5].

The true path for Sim2 is di�erent compared to the other simulations due
to model errors in the controller, compare Figures 5.2 to 5.4. Some of the
simulations were then used to optimize the covariance matrices used in the
EKF and the AEKF, which can be seen in Table 4.2. Di�erent combinations of
the simulations and the matrices were then used to estimate the tool position
for all four paths.

5 Result

In this work the largest path errors for the estimations are less than 3mm. In
Figure 5.1 the whole path is shown. As can be seen it is impossible to distinguish
the true path and the estimates. Figures 5.2 to 5.5 show therefore a fraction
of the path. Figure 5.2 shows that the EKF for Cov1, Cov2 and Cov3 are
very similar to the true paths which is not odd since Sim1 is without errors.
Figures 5.3 to 5.5 where calibration errors, drift and model errors are present
show instead that the estimations di�er from the true paths. The estimations
di�er more from the true path in Figure 5.3 than Figures 5.4 and 5.5 due to
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Figure 4.1: References for the four paths that has been simulated. The path
starts at the star and the robot moves clockwise. The circle indicates the tool
position for the zero-position. The thicker segment of the path shows which
part that is magni�ed during the evaluation.
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Name Description

Sim1 Without calibration errors, drift and model errors.
Sim2 With calibration errors (4mm in x-direction, -5mm in z-direction

and 2◦ in orientation), drift (0.1m/s2 in both directions) and
model errors (20% in sti�ness parameters and 50% in friction pa-
rameters).

Sim3 With calibration errors (4mm in x-direction, -5mm in z-direction
and 2◦ in orientation), drift (0.1m/s2 in both directions) and with-
out model errors.

Sim4 With calibration errors (4mm in x-direction, -5mm in z-direction
and 2◦ in orientation), drift (0.2m/s2 in both directions) and with-
out model errors.

Table 4.1: Four di�erent simulation scenarios used to evaluate the observers.

Name Description

Cov1 Covariance matrices for the EKF tuned on path A for Sim1
Cov2 Covarinace matrices for the EKF tuned on path A for Sim2
Cov3 Covarinace matrices for the EKF tuned on path A for Sim3
Cov4 Covarinace matrices for the AEKF tuned on path A for Sim2
Cov5 Covarinace matrices for the AEKF tuned on path A for Sim3

Table 4.2: Five di�erent covariance matrices used to evaluate the observers.

model errors. Model errors is thus a big problem which in practice is inevitable.
The drift in Figure 5.5 is twice the drift in Figure 5.4 but the estimation is still
very similar. It could imply that the estimation is robust for changes in the drift
but a more detailed study must be performed to conclude it and is therefore left
for future work.

It can also be seen that the EKF produces the same type of estimation
error independent of which covariance matrices that are used. It is only the
magnitude that changes. This can be seen better in Figure 5.6 where the path
error is shown as a function of time for the AEKF on Sim2. It is easy to see
that the path errors oscillate in the same way but with di�erent magnitudes.
The path error for the other simulations gives the same behavior both for the
EKF and the AEKF and is therefore not included here.

Figure 5.7 shows how the bias parameter b in (3.4), (3.5) and (3.6) changes
over time for Sim3. The parameters oscillate more for the covariance matrices
optimized on Sim3 (Cov5) compared to the one optimized on Sim2 (Cov4).
But the parameters converge to the same value in both cases. Since the drift is
constant and known in the simulations, 0.1m/s2 or 0.2m/s2, the bias parameters
should converge to that value but that is not the case here. The bias parameters
for Sim2 and Sim4 show the same behavior and is therefore not included here.

Tables 5.1 to 5.4 show maximal and mean of the path error for the EKF
and Tables 5.5 to 5.8 show the same for the AEKF. The smallest maximal error
is indicated with bold numbers and the smallest mean error is indicated with
italic numbers. We can see that the error is larger for path B, C and D. This
could imply that the covariance matrices are dependent of the states. But it
would require a more thorough study with motions in all possible areas of the
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workspace to conclude this and is therefore left for future work. We can also
see that the AEKF does not reduce the estimation error.

Another important conclusion, not seen in these tables, is that the estimation
changes with the optimization of the covariance matrices. Table 5.1 show that
Cov1 gives minimum values for Sim1, Cov2 gives minimum values for Sim2,
and Cov3 gives minimum values for Sim3. This would be an obvious result
since Cov1 is optimized for Sim1, Cov2 is optimized for Sim2, and Cov3 is
optimized for Sim3 but this is not always correct. Cov3 gives sometimes the
best estimation on Sim1 although Cov1 is optimized for Sim1 which would give
a minimum. This concludes that the optimization gives a local minimum.
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Figure 5.1: Estimation of path A, B, C and D on Sim1 with Cov1 (-), Cov2 (--)
and Cov3 (-.). The grey line is the true path.
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Figure 5.2: Magni�ed estimation of path A, B, C and D on Sim1 with Cov1 (-),
Cov2 (--) and Cov3 (-.). The grey line is the true path.
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(a) EKF. Cov1 (-), Cov2 (--) and Cov3 (-.).
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Figure 5.3: Magni�ed estimation of path A, B, C and D on Sim2 for EKF (a)
and AEKF (b). The grey line is the true path.
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(a) EKF. Cov1 (-), Cov2 (--) and Cov3 (-.).
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(b) AEKF. Cov4 (-) and Cov5 (--).

Figure 5.4: Magni�ed estimation of path A, B, C and D on Sim3 for EKF (a)
and AEKF (b). The grey line is the true path.
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Figure 5.5: Magni�ed estimation of path A, B, C and D on Sim4 with Cov4 (-)
and Cov5 (--). The grey line is the true path.
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Figure 5.6: Path error for the estimation of Sim2 for AEKF with Cov4 (-) and
Cov5 (--).
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Table 5.1: Max and mean error in mm for the EKF on path A.

Path A
EKF

Cov1 Cov2 Cov3
Max Mean Max Mean Max Mean

Sim1 0.078 0.025 0.080 0.025 0.080 0.026
Sim2 1.681 0.550 1.577 0.543 1.910 0.661
Sim3 0.400 0.113 0.903 0.172 0.079 0.027

Table 5.2: Max and mean error in mm for the EKF on path B.

Path B
EKF

Cov1 Cov2 Cov3
Max Mean Max Mean Max Mean

Sim1 0.124 0.035 0.126 0.035 0.112 0.035
Sim2 1.908 0.654 1.966 0.657 2.137 0.687
Sim3 0.419 0.082 0.842 0.120 0.111 0.035

Table 5.3: Max and mean error in mm for the EKF on path C.

Path C
EKF

Cov1 Cov2 Cov3
Max Mean Max Mean Max Mean

Sim1 0.085 0.027 0.085 0.028 0.105 0.030
Sim2 2.340 0.605 2.272 0.607 2.360 0.637
Sim3 0.329 0.081 0.457 0.117 0.103 0.030

Table 5.4: Max and mean error in mm for the EKF on path D.

Path D
EKF

Cov1 Cov2 Cov3
Max Mean Max Mean Max Mean

Sim1 0.152 0.035 0.169 0.034 0.134 0.035
Sim2 1.812 0.611 1.805 0.619 2.219 0.590

Sim3 0.394 0.093 0.907 0.124 0.142 0.035

Table 5.5: Max and mean error in mm for the AEKF on path A.

Path A
AEKF

Cov4 Cov5
Max Mean Max Mean

Sim2 1.594 0.520 1.453 0.568
Sim3 0.729 0.157 0.076 0.020

Sim4 0.728 0.155 0.076 0.020
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Table 5.6: Max and mean error in mm for the AEKF on path B.

Path B
AEKF

Cov4 Cov5
Max Mean Max Mean

Sim2 1.831 0.643 1.925 0.587

Sim3 0.624 0.112 0.089 0.028

Sim4 0.629 0.111 0.089 0.028

Table 5.7: Max and mean error in mm for the AEKF on path C.

Path C
AEKF

Cov4 Cov5
Max Mean Max Mean

Sim2 2.297 0.578 2.240 0.582
Sim3 0.412 0.101 0.100 0.024

Sim4 0.419 0.099 0.100 0.024

Table 5.8: Max and mean error in mm for the AEKF on path D.

Path D
AEKF

Cov4 Cov5
Max Mean Max Mean

Sim2 1.827 0.591 1.720 0.560

Sim3 0.558 0.119 0.094 0.020

Sim4 0.565 0.119 0.094 0.020
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6 Conclusions

The aim was to improve the estimation in the low frequency range. A �rst look
at the result would say that the aim is ful�lled. This is an incorrect conclusion
since the o�set in the low frequency range was not present in this simulation
study at all. There are anyway a few things to point out. The optimization of
the covariance matrices is a hard work. The optimzation problem in Section 3.3
works decent but a global solution is not guaranteed. Moreover, the estimation
seems robust for changes in the drift, this requires however a more detailed
study. The estimation seems also robust for the paths. A more detailed study
is once more necessary to conclude this. Another important observation is that
model errors a�ect the estimation negative. This is a big problem which in
practice is inevitable.

7 Future Work

This work has introduced more questions than answers and most of the questions
have been put to future work. It can be summerized as:

• Validate the result on experimental data.

• Choice of covariance matrices. Is there a better way to solve the opti-
mization problem or is it possible to optimize the matrices in a better way
than in Section 3.3.

• Are the covariance matrices depending of the states? That is, must the
EKF use di�erent matrices depending in which area of the workspace the
robot operates. Moreover, the covariance matrices can change when the
velocity, corner zones etc. changes for the path.

• Does Euler forward introduce errors during the discretization? Investigate
how di�erent methods to discretize the system a�ect the result.

• Investigate if the estimation changes with higher values on the calibration
error, drift, and model errors.

Other types of observers that can be tested are:

• Unscented Kalman Filter (UKF)

• Particle Filter (PF)

• Other type of nonlinear observer

References

[1] Fredrik Gustafsson. Adaptive Filtering and Change Detection. Wiley, Chich-
ester, England, 1 edition, 2000.

[2] Fredrik Gustafsson, Lennart Ljung, and Mille Millnert. Signalbehandling.
Studentlitteratur, Lund, Sweden, 2 edition, 2001.

18



[3] Robert Henriksson. Observatör för skattning av verktygspositionen hos
en industrirobot. Master's thesis, Linköping University, 2009. ISRN
LITH-ISY-EX--09/4271--SE.

[4] Robert Henriksson, Mikael Norrlöf, Stig Moberg, Erik Wernholt, and
Thomas B. Schön. Experimental comparison of observers for tool position
estimation of industrial robots. In Proceedings of 48th IEEE Conference on

Decision and Control, Shanghai, China, December 2009.

[5] Stig Moberg, Jonas Öhr, and Svante Gunnarsson. A benchmark problem for
robust control of a multivariable nonlinear �exible manipulator. Technical
report, Department of Electrical Enginering, Linköping University, 2008.
URL: http://www.robustcontrol.org.

19



Avdelning, Institution

Division, Department

Division of Automatic Control
Department of Electrical Engineering

Datum

Date

2009-12-08

Språk

Language

� Svenska/Swedish

� Engelska/English

�

�

Rapporttyp

Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

�

URL för elektronisk version

http://www.control.isy.liu.se

ISBN

�

ISRN

�

Serietitel och serienummer

Title of series, numbering
ISSN

1400-3902

LiTH-ISY-R-2926

Titel

Title
A Simulation Study on the Arm Estimation of a Joint Flexible 2 DOF Robot Arm

Författare

Author
Patrik Axelsson

Sammanfattning

Abstract

The main task for an industrial robot is to move the tool into speci�c positions. It is therefore
necessary to have an accurate knowledge about the tool position. This report desrcibes a
simulation study where an accelerometer attached to the robot tool is used. The acceleration
and measured motor angles are used with an Extended Kalman Filter (EKF) to estimate
the tool position. The work has been focused on a robot with two degrees of freedom.
Simulations have been performed with di�erent kind of errors and on di�erent paths. The
EKF uses covariance matrices of the process noise and measurement noise which are unknown.
An optimization problem has therefore been proposed and solved to get covariance matrices
that give good estimations.

Nyckelord

Keywords Extended Kalman Filter, Industrial manipulator, Accelerometer

http://www.control.isy.liu.se

	Introduction
	Mathematical models
	Robot model
	Accelerometer model

	Observer
	System and Measurement Equations
	EKF algorithm
	Tuning of covariance matrices

	Simulation Setup
	Result
	Conclusions
	Future Work

