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Abstract

A method to �nd the orientation and position of a three degree-of-freedom
(DOF) accelerometer mounted on a six DOF industrial robot is proposed
and evaluated on experimental data. The method consists of two consecu-
tive steps, where the �rst is to estimate the orientation of the sensor using
data from static experiments. In the second step the sensor position rela-
tive to the robot base is identi�ed using sensor readings when the sensor
moves in a circular path and where the sensor orientation is kept constant
in a path �xed coordinate system. Once the accelerometer position and
orientation are identi�ed it is possible to use the sensor in robot model
parameter identi�cation and in advanced control solutions.

Keywords: Robotics, Accelerometer, Estimation



Estimation of Orientation and Position of an Accelerometer Mounted to an
Industrial Manipulator

Patrik Axelsson, Mikael Norrlöf

Abstract— A method to find the orientation and position
of a three degree-of-freedom (DOF) accelerometer mounted
on a six DOF industrial robot is proposed and evaluated on
experimental data. The method consists of two consecutive
steps, where the first is to estimate the orientation of the sensor
using data from static experiments. In the second step the
sensor position relative to the robot base is identified using
sensor readings when the sensor moves in a circular path
and where the sensor orientation is kept constant in a path
fixed coordinate system. Once the accelerometer position and
orientation are identified it is possible to use the sensor in
robot model parameter identification and in advanced control
solutions.

I. INTRODUCTION

Current industrial robot development is focused on in-
creasing the robot performance, reducing the robot cost,
improving safety, and introducing new functionalities as
described in [1]. The need for cost reduction results in
the use of cost optimised robot components with increased
elasticity and larger individual variations, such as variation of
gearbox stiffness or in the kinematic parameters describing
the mechanical arm. Cost reduction also implies weight-
optimised robots and thus lower mechanical stiffness and
more complicated vibration modes. To maintain or improve
the robot performance, the motion control must be improved
for this new generation of robots. For robots with traditional
measurement systems, where only the motor angular position
is measured, this can be obtained by improving the model-
based control as described in [2]. Another option is to use
inertial sensors and observers to improve the estimation of
the robot tool position and velocity. To be able to use ac-
celerometers, and get good and reliable results, it is essential
that the mounting position as well as the orientation of the
sensor are known.

A method to estimate the orientation based on a maneuver
in roll, pitch and yaw for the sensor can be found in [3].
Here we propose a method based on six static experiments
to find the orientation. We also propose a method to find
the mounting position of the accelerometer on the robot,
by performing three predefined paths and solving a linear
system of equations. The two methods are evaluated on
experimental data. It is assumed that the sensor is calibrated
by the manufacturer, i.e., each pair of the coordinate axes
are orthogonal to each other. If not, a calibration algorithm
has to be performed first, see e.g. [4].

All authors are with the Department of Electrical Engineering,
Linköping University, SE-58183 Linköping, Sweden {axelsson,
mino}@isy.liu.se.

The estimation problem is formulated in Section II. In
Section III, the method to find the orientation of the sensor is
described, and the method to estimate the mounting position
is described in Section IV. The orientation and position
estimation is evaluated on experimental data in Section V
and Section VI concludes the results.

II. PROBLEM FORMULATION

Assume that the accelerometer is mounted on the robot ac-
cording to Figure 1(a), where the yellow rectangle represents
a tool or a weight, and the black square is the accelerometer.
The accelerometer measures the acceleration in a coordinate
system {a} with unknown orientation where the units are not
necessarily m/s2. It is desirable to transform the acceleration
measure from coordinate system {a} to another coordinate
system {s} with known orientation where the two origins
coincide. The units in {s} are chosen to be m/s2. The
orientation of the desired coordinate system can be seen in
Figure 1(b). Let ρa be a vector in the actual coordinate
system {a} of the accelerometer and ρs a vector in the
desired coordinate system {s}, describing the acceleration
in m/s2. This means the rotation matrix R from {a} to {s},
the scaling κ between {a} and {s} and the translation offset
ρ0,

ρs = κRρa + ρ0, (1)

should be computed. When the transformation in (1) has
been found the mounting position, i.e., the position of the
accelerometer expressed in a body fixed coordinate system
attached to the robot, is identified. The basic idea is to
move the accelerometer with constant speed in a circular
path, perpendicular to the gravity field. The orientation of
the accelerometer is kept fixed with respect to the path
coordinates during the motion. This means that the accel-
eration originating from the movement can be isolated from
the gravity component, since the acceleration caused by the
movement is directed into the center of the circular path. If
the desired coordinate system of the accelerometer is rotated
such that the gravity is measured along one coordinate
axis only, then it is straightforward to obtain the motion
acceleration. The measured acceleration is then used together
with the theoretical expression of the acceleration to estimate
the position.

III. TRANSFORMATION BETWEEN TWO COORDINATE
SYSTEMS

A method is proposed to calculate R, κ and ρ0 in (1).
First, a general solution to the problem is derived. Second,
the solution will be applied in practice to experimental data.
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(a) The accelerometer and its actual
coordinate system {a}.
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(b) The accelerometer and the de-
sired coordinate system {s}.

Fig. 1. The accelerometer mounted on the robot. The yellow rectangle
represents the tool or a weight and the black square on the yellow rectangle
is the accelerometer. The base coordinate system {b} of the robot is also
shown.

The measurements are always affected by noise, therefore
define the residual

ek = ρs,k − κRρa,k − ρ0, (2)

where k indicates the sample number, and minimise the sum
of the squared norm of the residuals. In other words,

minimize
∑N

k=1 ||ek||2
subject to det(R) = 1

RT = R−1

(3)

where the constrains guarantee that R is an orthonormal
matrix. From [5] we have a closed-form solution to this
optimisation problem according to

κ =

√√√√ N∑
k=1

||ρ′s,k||2
/

N∑
k=1

||ρ′a,k||2, (4a)

R = M
(
MTM

)−1/2
, (4b)

ρ0 = ρ̄s − κRρ̄a, (4c)

where

ρ̄s =
1
N

N∑
k=1

ρs,k, (5a)

ρ̄a =
1
N

N∑
k=1

ρa,k, (5b)

are the centroids for the measurements in {a} and {s}.

ρ′s,i = ρs,i − ρ̄s, (6a)

ρ′a,i = ρa,i − ρ̄a, (6b)

denote new coordinates and

M =
N∑

k=1

ρ′s,k(ρ′a,k)T . (7)

N is the total number of measurements. It is assumed that
N ≥ 3 and that all the measurements are non-colinear, i.e.,
they do not lie on the same line. It is also possible to find
a closed-form solution to (1) using unit quaternions, instead
of orthonormal matrices, see [6].

To find the transformation from {a} to {s} the robot
moves the accelerometer, i.e., the tool, into NC different
configurations. The gravity vector is measured by the ac-
celerometer in each of the NC configurations, which gives
NM,j , j = 1, . . . , NC measurements for each configuration.
Let

{ρa} =
{
{ρ1

a,i}
NM,1
i=1 , . . . , {ρNC

a,i }
NM,NC
i=1

}
(8)

denote the set of all the N =
∑NC

j=1NM,j measurements in
all NC configurations, and let

{ρs} =
{
{ρ1

s}
NM,1
i=1 , . . . , {ρNC

s }
NM,NC
i=1

}
(9)

be the theoretical values for the acceleration in the desired
coordinate system {s} for each configuration, where ρj

s, j =
1, . . . , NC is a constant. The measured accelerations in (8)
and the theoretical values in (9) are then used in (4) to (7)
to obtain the transformation parameters.

The NC different configurations can be chosen arbitrary
but clever choices make it straightforward to obtain the
theoretical values ρj

s, j = 1, . . . , NC . Here we suggest six
different configurations according to Figure 2, which give

ρ1
s =

(
0 0 g

)T
, (10a)

ρ2
s =

(
0 g 0

)T
, (10b)

ρ3
s =

(
0 0 −g

)T
, (10c)

ρ4
s =

(
0 −g 0

)T
, (10d)

ρ5
s =

(
−g 0 0

)T
, (10e)

ρ6
s =

(
g 0 0

)T
, (10f)

where g = 9.81 m/s2. The sign of g in (10) is opposite the
gravity vector in Figure 2. The explanation for this is that an
accelerometer measures the normal force which is opposite
the gravity vector.

The six configurations in Figure 2 are straightforward to
obtain for a six degree of freedom industrial manipulator [7].
The procedure to estimate the transformation parameters is
summarised in Algorithm 1.

Algorithm 1 Estimation of the transformation parameters
1) Measure the acceleration for the different configura-

tions in Figure 2 to obtain {ρa} according to (8).
2) Construct {ρs} in (9) from (10).
3) Calculate R, κ and ρ0 from (4) to (7).

It is possible to use other configurations than the one in
Figure 2 in Algorithm 1 as long as MTM has full rank1.

IV. ESTIMATION OF THE POSITION OF THE
ACCELEROMETER

As a second step in the proposed orientation and position
estimation process a method is described which can estimate
the position rs of the accelerometer’s coordinate system {s},
expressed in a coordinate system {bf} fixed to the robot.

1The matrix MTM has always full rank if none of the two sets {ρa}
and {ρs} are coplanar.
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Fig. 2. Six different configurations of the robot tool used in Algorithm 1.
The orientation of the desired coordinate system {s} is shown for each
configuration. The base coordinate system {b} and the gravity vector are
also shown.

The position estimation uses the basic idea in Section II and
it is the position of the desired coordinate system {s} that
is estimated. It is therefore necessary to first transform the
measured acceleration from the actual coordinate system {a}
to {s} according to Algorithm 1.

Start with the derivation of the expression for the accelera-
tion, when the robot is in the configuration shown in Figure 3.
The figure shows the vector rs, the two coordinate systems
{bf} and {s}, a world fixed coordinate system {b} attached
to the base of the robot, a coordinate system {w} fixed to the
end of the robot arm, a vector as

∆= d2

dt2 (rs) describing the
acceleration of {s}, which we want to find an expression for.
The figure also shows a parameter θ describing the rotation
between {bf} and {b}, two known parameters L1 and L2

describing the arm lengths and three unknown parameters li,
i = 1, 2, 3 describing the vector rs/w in {w}.

All the calculations must be done in the base coordinate
system in order to obtain an expression for d2

dt2 (rs). It is
not possible to do the calculations in, e.g. the body fixed
coordinate system {bf}, because in {bf} d2

dt2 (rs) = 0. The
notation [rs]i is used to emphasize that rs is expressed in
coordinate system i.

In Figure (3) we see that rs can be written as a sum of
two vectors,

[rs]bf = [rw]bf + [rs/w]bf , (11)

where

[rs/w]bf =
(
l3 −l2 −l1

)T
, (12)

[rw]bf =
(
L1 0 L2

)T
. (13)

The transformation of rs from {bf} to {b} can be expressed
as

[rs]b = [Qbf/b]b
(
[rw]bf + [rs/w]bf

)
, (14)

where

[Qbf/b]b =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (15)

is the rotation matrix from {b} to {bf} expressed in {b} and
θ = θ(t) is the angle relating {b} and {bf} according to
Figure 3. Taking the derivative of [rs]b with respect to time
is

d

dt
([rs]b) =

d

dt

(
[Qbf/b]b

) (
[rw]bf + [rs/w]bf

)
. (16)
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Fig. 3. The first robot configuration for estimation of the mounting position.
The black cube on the yellow box indicates the sensor, i.e., the origin of
{s}. The yellow box is attached to the robot in the point

(
L1 0 L2

)T
expressed in {bf}.

From [8] we have that

d

dt

(
[Qbf/b]b

)
= S(ω)[Qbf/b]b, (17)

where ω =
(
0 0 θ̇

)T
and

S(ω) =

0 −θ̇ 0
θ̇ 0 0
0 0 0

 (18)

is a skew symmetric matrix. Hence, the time derivative of
[rs]b can be written

d

dt
([rs]b) = S(ω)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
. (19)

The second time derivative of [rs]b becomes

[as]b =
d2

dt2
([rs]b) =

d

dt
(S(ω)) [Qbf/b]b

(
[rw]bf + [rs/w]bf

)
+ S(ω)

d

dt

(
[Qbf/b]b

) (
[rw]bf + [rs/w]bf

)
=S(ω̇)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
+ S(ω)S(ω)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
=S(ω)S(ω)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
, (20)

where ω̇ =
(
0 0 0

)T
has been used due to the assumption

of constant angular velocity.
It now remains to transform the measured acceleration aM

s

from {s} to {b}. From Figure 3 we see directly that

[aM
s ]bf =

(
aM

s,x aM
s,y 0

)T
, (21)

hence
[aM

s ]b = [Qbf/b]b[aM
s ]bf . (22)
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Fig. 4. The second robot configuration for estimation of the mounting
position. The black cube on the yellow box indicates the sensor, i.e.,
the origin of {s}. The yellow box is attached to the robot in the point(
L3 0 L4

)T expressed in {bf}.

Equations (20) and (22) give

[Qbf/b]b[aM
s ]bf = S(ω)S(ω)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
⇔

[aM
s ]bf = [Qbf/b]Tb S(ω)S(ω)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
(23)

since [Qbf/b]Tb = [Qbf/b]−1
b . Carrying out the matrix multi-

plication in the right hand side expression of (23) gives

[aM
s ]bf =

−θ̇2(L1 + l3)
θ̇2l2

0

 , (24)

where (12), (13), (15) and (18) have been used. Equa-
tions (21) and (24) can now be written as a system of
equations where l2 and l3 are unknown,(

0 −θ̇2

θ̇2 0

)(
l2
l3

)
=
(
aM

s,x + θ̇2L1

aM
s,y

)
(25)

It is thus possible to find l2 and l3 from (25) but unfortunately
not l1. To find l1, rotate the sensor according to Figure 4
and do the same kind of movement. The same calculations
as before with

[rs/w]bf =
(
−l1 −l2 −l3

)T
, (26)

[rw]bf =
(
L3 0 L4

)T
, (27)

[aM
s ]bf =

(
aM

s,z aM
s,y 0

)T
, (28)

see Figure 4, give(
θ̇2 0
0 θ̇2

)(
l1
l2

)
=
(
aM

s,z + θ̇2L3

aM
s,y

)
. (29)
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Fig. 5. The third robot configuration for estimation of the mounting
position. The black cube on the yellow box indicates the sensor, i.e.,
the origin of {s}. The yellow box is attached to the robot in the point(
L1 0 L2

)T expressed in {bf}.

Equations (25) and (29) can now be used to estimate the
unknown parameters. The estimation of li, i = 1, 2, 3
will be more accurate if more data are used with different
configurations. Therefore, one more robot configuration is
used according to Figure 5, which gives

[rs/w]bf =
(
l3 −l1 l2

)T
, (30)

[rw]bf =
(
L1 0 L2

)T
, (31)

[aM
s ]bf =

(
aM

s,x aM
s,z 0

)T
. (32)

From (23) we now get(
0 −θ̇2

θ̇2 0

)(
l1
l3

)
=
(
aM

s,x + θ̇2L1

aM
s,z

)
. (33)

Equations (25), (29) and (33) can now be written as one
system of equations according to

0 0 −θ̇2
c1

0 θ̇2
c1 0

θ̇2
c2 0 0
0 θ̇2

c2 0
0 0 −θ̇2

c3

θ̇2
c3 0 0


︸ ︷︷ ︸

A

l1l2
l3


︸ ︷︷ ︸

l

=



aM
s,x,c1 + θ̇2

c1L1

aM
s,y,c1

aM
s,z,c2 + θ̇2

c2L3

aM
s,y,c2

aM
s,x,c3 + θ̇2

c3L1

aM
s,z,c3


︸ ︷︷ ︸

b

, (34)

where index ci, i = 1, 2, 3 indicates from which robot
configuration the measurements come from. Equation (34)
has more rows than unknowns, hence the solution to (34) is

l =
(
ATA

)−1
AT b. (35)

There exist better numerical solutions to (34) than (35), e.g.
l=A\b in MATLAB. The procedure to estimate the position
of the accelerometer is summarised in Algorithm 2.



Algorithm 2 Estimation of the mounting position

1) Measure the acceleration of the tool [aM
s ]s and the

angular velocity θ̇ for the three different configurations
in Figures 3, 4 and 5 when θ varies from θmin to θmax

with constant angular velocity.
2) Construct A and b in (34).
3) Solve (34) with respect to l, for example according

to (35).

V. EXPERIMENTAL RESULTS

In this section the proposed orientation and position es-
timation method described in the two algorithms in Sec-
tions III and IV is evaluated using experimental data. For
Algorithm 1, the data, i.e., the acceleration values, are
collected during 4 s for each one of the six configurations
in Figure 2 using a sample rate of 2 kHz. For Algorithm 2,
the arm angular velocity θ̇ for joint 1 and the acceleration
measurements are collected when the robot is in the three
different configurations according to Figures 3, 4 and 5. The
arm angular velocity for joint 1 cannot be measured, instead,
the motor angular velocity θ̇m for joint 1 is measured. The
arm angular velocity can then be obtained from

θ̇m = τ θ̇, (36)

where τ is the gear ratio. In the position estimation experi-
ments data are collected during 4 s in each one of the three
configurations, but it is only the constant angular velocity
part of the data that is used. The same sample rate as before is
used, i.e., 2 kHz. The accelerometer used in the experiments
is a 3-axis accelerometer from Crossbow Technology, with a
range of ±2 g, and a sensitivity of 1 V/g. The accelerometer
is connected to the measurement system of the robot, and
hence the acceleration and motor angular velocity can be
synchronised and measured with the same sampling rate.

Five tests with different mounting positions and different
orientations of the accelerometer have been used for eval-
uation of Algorithms 1 and 2. The true physical position
and orientation of the sensor, see Table I, was measured
using a tape measure and a protractor, see Figure 6 where
the orientation of the desired coordinate system also is
shown. The position was always measured to the center
of the accelerometer, since the position of the origin of
the accelerometer’s coordinate system inside the sensor is
unspecified. Note the minus sign for l2 in test 5 which comes
from the fact that the sensor is placed on the other side of
the weight than was used in the derivation in Section IV.

Algorithm 1 was applied to the five test cases presented
above and the result can be seen in Table II. From Figure 6

TABLE I
MEASURED POSITIONS OF THE ACCELEROMETER IN THE COORDINATE

SYSTEM {w}, I.E., MEASUREMENTS OF l, FOR FIVE DIFFERENT

MOUNTING POSITIONS.

Test Measured position (l) [cm]

1
(
35 4 16.5

)T
2

(
14.5 7 15

)T
3

(
38 4 23

)T
4

(
27 0 5.5

)T
5

(
35.5 −4 15.5

)T
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Fig. 6. Orientation for the five mounting positions that were used to
evaluate the two algorithms. The orientation of the base coordinate system
and the desired coordinate system are also shown.

we have that the rotation matrix R in (1) should look like

R1 =

 0 −1 0
0 0 1
−1 0 0

 , R2 =

1 0 0
0 0 1
0 −1 0


R3 =

−a3 −b3 0
0 0 1
−c3 d3 0

 , R4 =

 0 0 1
−1 0 0
0 −1 0


R5 =

−a5 b5 0
0 0 1
−c5 −d5 0

 ,

where a, b, c and d are positive numbers that should be
close to cos(45◦) ≈ 0.7071. The superscript indicates the
test number. A comparison between theses matrices and
the rightmost column in Table II confirm that Algorithm 1
performs well. It is more difficult to obtain true values
for the parameters κ and r0. Figure 7 shows the measured
acceleration before and after the transformation for test 1 in
configuration 1 (see Figure 2). We see that the transformed
signal is 0 in x and y direction and close to 9.81 in the
z direction which is expected. All the other test cases and
configurations show the same behavior.

Algorithm 2 was also applied for the five test cases in
Figure 6 and Table I. Figure 8 shows how the measured data,
i.e., the acceleration in {s} and the arm angular velocity, can
look like when the robot is in the configuration according
to Figure 3. Note that it is only the sequence where the
angular velocity is constant, in this case around 3 rad/s, that
is used. From Figure 3 we see that the acceleration in the
z-direction only originate from the gravity which is verified
by Figure 8(a). We also see that the acceleration due to the
circular motion should be in the negative x-direction and
in the positive y-direction which is the case in Figure 8(a).
Hence, the transformation from {a} to {s} is correct here as
well.



TABLE II
ESTIMATED PARAMETERS IN (1) USING ALGORITHM 1 FOR FIVE

DIFFERENT TEST CASES.

Test κ ρ0 R

1 9.91

 25.05
−23.75
24.26

 −0.0138 −0.9998 −0.0170
−0.0094 −0.0169 0.9998
−0.9999 0.0140 −0.0092


2 9.91

−23.89
−24.03
25.11

  0.9999 −0.0070 −0.0131
0.0129 −0.276 0.9995
−0.0073 −0.9996 −0.0275


3 9.91

 34.80
−23.73
3.07

 −0.6348 −0.7724 −0.0208
−0.0027 −0.0247 0.9997
−0.7727 0.6347 0.0135


4 9.91

−24.46
24.86
23.74

  0.0169 −0.0139 0.9998
−0.9992 −0.0355 0.0164
0.0353 −0.9993 −0.0145


5 9.92

−3.91
24.95
33.81

 −0.6314 0.7751 0.0209
−0.0269 0.0050 −0.9996
−0.7750 −0.6318 0.0177


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Fig. 7. Measured and transformed acceleration for test case 1 and
configuration 1 in Figure 2.

The estimated positions for the five test cases can be seen
in Table III. A comparison between the values in Tables I
and III gives that the parameters differ at most 2–3 cm for the
five experiments. This is considered as acceptable since the
estimated position result in a point inside the accelerometer.
The actual requirement of the result, in terms of position
and orientation accuracy, will depend on the application
where the accelerometer is used, for example in estimation
as described in [9]. The formulation of the requirement for
the accuracy is left as future work.

VI. CONCLUSIONS

A method to find the position and orientation of an
accelerometer mounted on a six DOF robot is presented. The

TABLE III
ESTIMATED POSITIONS OF THE ACCELEROMETER IN THE COORDINATE

SYSTEM {w}, I.E., ESTIMATIONS OF l, FOR FIVE DIFFERENT MOUNTING

POSITIONS.

Test Estimated position (l) [cm]

1
(
35.20 6.27 15.50

)T
2

(
14.20 5.82 16.85

)T
3

(
36.33 6.29 21.38

)T
4

(
29.19 1.60 5.86

)T
5

(
34.75 −3.91 16.50

)T
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Fig. 8. Measured data, to be used to estimate the position l, for test 1
when the robot is in the configuration according to Figure 3.

method is divided into two main steps, where in the first step,
the orientation is estimated by finding the transformation
from the actual coordinate system of the accelerometer, with
unknown orientation, to a new coordinate system with known
orientation. It is also possible to find the scaling parameter
from, for example volt, to the acceleration expressed in
m/s2. The estimation of the orientation is based on static
measurements of the gravity vector when the accelerometer
is placed in different configurations using the six DOF robot
arm. In the second step of the method, the mounting position
of the accelerometer in a robot fixed coordinate system
is computed using several experiments where the robot is
moving with constant speed. Finally, the method is evaluated
on experimental data.
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