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1. INTRODUCTION

Iterative learning control (ilc) is a method to improve the
control of processes that perform the same task repeatedly
[Arimoto et al., 1984]. A good example of such a process is
an industrial robot performing arc welding or laser cutting
in a general production situation. The system used for
ilc can be both an open loop system as well as a closed
loop system. Usually, the ilc control signal uk(t) ∈ Rnu is
updated according to

uk+1(t) = F
(
{uk(i)}N−1

i=0 , {ek(i)}N−1
i=0

)
, t = 0, . . . , N − 1,

where ek(t) = r(t)− yk(t) is the control error, r(t) ∈ Rny

the reference signal, yk(t) ∈ Rny the measurement signal,
k the iteration index, t the time index and F( · ) is an
update function. The main task is to find an update
function that is able to drive the error to zero as the
number of iterations tends to infinity, i.e.,

‖ek(t)‖ → 0, k →∞, ∀t. (1)

For the convergence proof it is usually suitable to use a
batch description of the system given by

yk = Suuk + Srr. (2)

In Lee and Lee [1998, 2000], Lee et al. [2000] it is proven
that (1) holds under the assumption that Su has full row
rank. Moreover, in Amann et al. [1996] it is assumed that
ker ST

u = ∅ which is equivalent to Su having full row rank.
An important implication from this assumption is that it
is necessary to have at least as many control signals as
measurement signals. Even if the number of measurement
signals and control signals are the same it can not be
guaranteed that the full rank requirement is fulfilled.

The assumption that Su has full row rank will be investi-
gated here, based on a state space model in the iteration
domain for which output controllability is considered. The
result shows that the requirement of full row rank of Su

is equivalent to the proposed state space model being
output controllable. The aspects of controllability are then
extended to target path controllability (tpc) [Engwerda,
1988] which is shown to be a more suitable requirement
for ilc. Tpc naturally leads to the concept of “lead-in”,
which is about extending the trajectory with a part in
the beginning, where it is not important to have perfect
trajectory tracking.

2. PROPOSED STATE SPACE MODEL

Given the linear time-invariant state space model
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Technology, ELLIIT.

x(t+ 1) = Ax(t) + Buu(t) + Brr(t), (3a)

y(t) = Cx(t), (3b)

then the following batch formulation of the system can be
obtained

x =Φx(0) + Sxuu + Sxrr, (4a)

y =Cx. (4b)

where x =
(
x(1)T . . . x(N)T

)T
and similar for u, r, and

y. At ilc iteration k and k + 1 it holds that

xk = Φx(0) + Sxuuk + Sxrr, (5)

xk+1 = Φx(0) + Sxuuk+1 + Sxrr. (6)

Subtracting (5) from (6) gives

xk+1 = xk + Sxu(uk+1 − uk) = xk + Sxu∆uk
, (7)

where ∆uk

M
= uk+1 − uk is considered as a new control

signal. The state space model in the iteration domain is
therefore given by (7) and (4b).

3. CONTROLLABILITY

An important property for state space models are control-
lability, which considers the ability to control the system
to a predefined state or output. The controllability matrix
C for the system in the iteration domain is given by
Sxu repeated N times. Theorem 1 states a condition for
controllability.

Theorem 1. The system in the iteration domain is control-
lable if and only if

rank C = rank (Sxu · · · Sxu) = rank Sxu = Nnx.

It follows from Theorem 1 that a necessary condition for
the system to be controllable is that nu ≥ nx. Often, it is
not of interest in ilc to control all the states but only the
output. Therefore, it is more relevant to consider output
controllability of the system. The requirement for output
controllability is that the output controllability matrix
C o = CC has full rank [Ogata, 2002]. A condition for
output controllability is stated in Theorem 2.

Theorem 2. The system in the iteration domain is output
controllable if and only if

rank C o = rank (CSxu · · · CSxu) = rankCSxu = Nny.

It can now be shown that a necessary condition for the
system to be output controllable is that rank Bu ≥ ny. In
Section 1 it was mentioned that in Lee and Lee [1998,
2000], Lee et al. [2000], Amann et al. [1996] Su was
assumed to have full row rank. In this work, Su = CSxu,
hence the property (1) holds if the state space model in
the iteration domain is output controllable.



4. INTERPRETATION OF CONTROLLABILITY

A single input system with state dimension nx can require
nx time steps to be able to reach the desired state xf or the
desired output yf . It means that it can take up to nx time
steps before the state space model (3) reaches the reference
trajectory. This practically means that the first part of x,
and the corresponding part of y, cannot be defined by an
arbitrary reference.

Another reason for the model not being controllable is the
construction of the vectors x and y. It will be physically
impossible to achieve any given xf or yf . A simple example
with nx = 2, where the states are position and velocity,
and the input is the acceleration, will be used to illustrate
this.

Let p(t) be the position, v(t) the velocity, and let the

state vector be x(t) = (p(t) v(t))
T

, then the discrete-time
model, using zero order hold sampling, becomes

x(t+ 1) =

(
1 Ts
0 1

)
x(t) +

(
T 2
s /2
Ts

)
u(t) (8)

where Ts is the sample time, and the batch vector

x = (p(1) v(1) p(2) v(2) · · · p(N) v(N))
T
. (9)

The system is not controllable since nu < nx. To explain
this, consider the dynamics and assume that at time t
the position p(t) = a and the velocity v(t) = b for some
constants a and b. It should be possible to choose the
position and velocity at the next time step t+1 arbitrary to
have controllability for the system in the iteration domain.
It can be noticed from (8) that it is impossible to go from
p(t) = a and v(t) = b to an arbitrary point at time t + 1,
hence x cannot be chosen arbitrary.

If the position or the velocity is considered as output,
then the necessary condition for output controllability is
satisfied. It turns out that the system is output controllable
in both cases by examining the rank of the matrix CSxu.

If instead Euler sampling is used, then the discrete-time
model becomes

x(t+ 1) =

(
1 Ts
0 1

)
x(t) +

(
0
Ts

)
u(t). (10)

By considering the position as output gives that the first
row in CSxu is equal to zero because of the zero element in
Bu, hence the rank condition for CSxu is not satisfied. It
means that the control signal does not affect the position
directly and it follows that system (3) can require up to
nx time steps before it can reach the reference trajectory.

5. TARGET PATH CONTROLLABILITY

Output controllability concerns the possibility to reach a
desired output at a specific time. For ilc it is of interest
to reach a desired trajectory, in as few steps as possible,
and then be able to follow that trajectory, hence it is more
interesting to use the concept of target path controllability
(tpc) [Engwerda, 1988]. Target path controllability with
lead p and lag q will be abbreviated as tpc(p, q).

In Engwerda [1988] several results are presented to guar-
antee a system to be tpc. Theorem 3 states a requirement
for the system in (3) to be tpc(p, q).

Theorem 3. A linear time-invariant system is tpc(p, q) if
and only if rank Syu(p, q) = qny, where

τ

y0

t

r(t)

r̃(t)

y(t)

Fig. 1. Augmentation of the reference trajectory to include
lead-in.

Syu(p, q) =




CAp−1Bu · · · CBu · · · 0
...

. . .
. . .

...
CAp+q−2Bu · · · CBu


 .

The connection between tpc and output controllability is
presented in Theorem 4

Theorem 4. Output controllability of the system in the
iteration domain is equivalent to the system in (3) being
tpc(1, N).

Return to the example in Section 4 for the case where Euler
sampling has been used and the position is the output.
Removing the first row with only zeros in CSxu gives the
matrix Syu(2, N−1). The condition in Theorem 3 are now
satisfied, hence the system is tpc with lead 2.

6. CONCEPT OF LEAD-IN

Target path controllability can now be used to investi-
gate after how many samples it is possible to track the
reference, and during how many samples the reference
can be tracked. It comes now naturally to define the
concept of lead-in. Lead-in means that the starting point of
the original reference trajectory r(t) is moved τ samples
forward in time by appending the reference with a new
initial part r̃(t), see Figure 1. The output now follows
the new reference signal. The assumption of the system
being tpc with lead p ≤ τ means that the system should
be able to follow the original reference r(t). The error in
the beginning, i.e., r̃(t) − y(t) for t ≤ τ , does not matter
since the aim is to follow r(t). Note that lead-in may not
always be possible to use in practice. If the application and
the trajectory do not permit to append r̃(t), then lead-in
cannot be used.
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