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Abstract: Stochastic dynamical systems are fundamental in state estimation, system identifi-
cation and control. System models are often provided in continuous time, while a major part
of the applied theory is developed for discrete-time systems. Discretization of continuous-time
models is hence fundamental. We present a novel algorithm using a combination of Lyapunov
equations and analytical solutions, enabling efficient implementation in software. The proposed
method circumvents numerical problems exhibited by standard algorithms in the literature.
Both theoretical and simulation results are provided.

1. INTRODUCTION

Dynamical processes in engineering and physics have for a
long time successfully been modeled with continuous-time
differential equations. In order to account for uncertain-
ties, these equations are usually driven by an unknown
stochastic process called process noise. This noise is ideally
modeled as completely “white” in order to obtain the
Markov property, which is required in recursive Bayesian
inference, such as Kalman filtering. However, in order to
implement such filtering, the continuous-time model has
to be discretized. Such discretization includes solving an
integral involving the matrix exponential on the form

Qr, = / eA7Set Tdr, (1)
0

where A is the system matrix and S the process noise

covariance matrix for the time-continuous system ! , and

where where @7, is the process noise covariance for the

the discrete-time system

&(t) = Az(t) + w(t),
Tp11 = Fryx, + wg,

E[w(t)w(T)T] =S56(t—71) (2a)
E['wkwﬂ = QTk6kl~ (2b)
Here, T}, = tj+1 — tr denotes the sampling time.

We propose an algorithm for solving (1) by decompos-
ing the problem into subproblems and then solve these
subproblems either analytically or using a combination of
Lyapunov and Sylvester equations.

In many practical applications the discrete-time process
noise covariance is modeled and tuned directly, rather than
discretized from its continuous-time counterpart. However,
in certain scenarios the dependency between the discrete-
time process noise covariance and the sampling time is
important. If the filtering should work on different de-
vices with different sampling frequencies, this dependency
should be properly modeled to guarantee the same dy-
namical behavior of the filter. Further, in data with non-
equidistant sampling the process noise covariance has to
be rescaled at each time instant.
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1 Since w(t) is not square Riemann integrable, the model (2a) does
not have any mathematical meaning (Jazwinski, 1970). However, we
can still intuitively think of it as a stochastic differential equation
driven by white noise.

In the literature there exist different algorithms for com-
puting the integral (1). The probably most well-cited one
was presented by Van Loan (1978), which involves com-
puting the matrix exponential for an augmented 2n x 2n
matrix followed by a matrix multiplication of two resulting
submatrices. This method does not require any assumption
on the model, however the resulting matrix becomes ill-
conditioned if the sampling time is large or if the poles of
the system are fast.

In this work we present an alternative method for solving
(1). This method is based on a Lyapunov equation which
characterizes the solution of (1). However, since Lyapunov
equations cannot be solved if the system contains inte-
grators (Antoulas, 2005), the problem is decomposed into
subproblems where the integrators are treated separately.
As will be explained, one set of subproblems cannot be
solved using Lyapunov equations, but they do have an
analytical solution of (1). Conversely, the remaining set
of subproblems do not have a closed form solution of (1),
but then the method with Lyapunov equations works fine.
The algorithm involves computing the matrix exponential
of the n x n system matrix rather than an augmented
2n X 2n matrix as required by the solution by Van Loan.
Furthermore, the proposed algorithm circumvents some
numerical problems in the method proposed by Van Loan.

An extended version of this work has been accepted for
IFAC world congress 2014 and is also available online
(Wahlstrom et al., 2014)

2. DISCRETIZATION BY LYAPUNOV EQUATIONS

It is trivial to realize that the discrete-time system matrix
Fr, equals the matrix exponential expression

Fr, = AT (3a)
which is achieved by integrating (2a) from ¢ to tx11. How-
ever, it is not as trivial to find the discrete-time process
noise covariance Qr,, which requires to find a solution to

the integral (1), (Jazwinski, 1970). We propose a solution
based on solving the following Lyapunov equation

AQr, + Qr AT = —Vp, Vi, =S — Fr,SF] (3b)

This solution is similar to the one presented by Axelsson
and Gustafsson (2012) derived from a continuous-time
differential Lyapunov equation. It can indeed be proven
that (1) satisfies the Lyapunov equation (3b), for proof
and more details see Wahlstrom et al. (2014).



However, (3) has not a unique solution if and only if A
and —A have any common eigenvalues, (Antoulas, 2005).
This is especially the case if the system has integrators,
which indeed is common in models intended for Kalman
filtering. We will therefore extended the proposed solution
to handle such systems as well by. This wil be done by first
transforming the system matrix into a block triangular
form
Ay Ar

A= { 0 A22] ’ )
where A has been partitioned such that all zero eigenvalues
have been placed in Ay and all remaining non-zero eigen-
values in A1;. Many systems do have such block triangular
structure, for example if an observer canonical form has
been used. If the system does not have that form, an
orthogonal transformation can be applied. The Lyapunov
equation corresponding (3b) for this partitioned system
will then be

{Au A12] Qu Q12 n Qu Qu2|[A], 0 ]_ [Vi1 Va2
0 Axnl|Qf, Qx| |Qly Qu||Al, A], Vi Vaol’

where @7, and Vp, have been partitioned in a similar
manner as A. This generates as set of in total four
Lyapunov and Sylvester equations. The sub-matrices Q11
and ()12 can now be solved uniquely by solving their
corresponding Lyapunv and Sylvester equations, whereas
the Lyapunov equation including (22 does not have a
unique solution. However, Q22 can be solved analytically
using the integral (1). By making us of the nilpotent
property of As; the matrix exponential in (1) can be
expanded with finite number of terms. The resulting
expression can be integrated analytically resulting in the
following expression

p—1p—1 Ti+j+1 T
= —k AL S5 AL, . 5
Q22 ;;i!j!(i—i—j—&-l) 29022499 ( )

3. NUMERICAL EVALUATION

In this section the numerical properties of the proposed
solution will be compared with a standard solution pre-
sented by Van Loan (1978). The method is based on a
matrix exponential of an augmented 2n x 2n matrix

ar, _ [Mi Mo _1A s
e k_[ Mﬂ}, H_{O U (6a)
where Fr, and Qr, are given as
Fr, =My,  Qn, = MM, (6b)

3.1 Simulation results

In total 100 systems of order n = 6 with m = 4 stable poles
and p = 2 additional integrators are randomly generated.
Each system is normalized such that the fastest pole is at
distance 1 from the imaginary axis, i.e. max(|Re(\;)|) = 1.

An estimate QTk is computed using both the proposed

method and van Loan’s with single precision for different
values of the sampling time T}. Finally, the error

e =@z, — Qnll2/l1Qm. |2
is evaluated, where @7, is computed using numerical
integration of (1) with double precision, here considered
as the true value. The result is presented in Figure 1.

According to the result the proposed method outperforms
the standard method for large Tj. The reason will become
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Fig. 1. The performance of the proposed method and Van
Loan’s method.

clear if we investigate the two methods further. In van
Loan’s method (6), both ATy, and —ATT} are present
in the augmented matrix HT} and the task to compute
its matrix exponential (6a) will become ill-conditioned if
T}, or max(|Re();)]) is large. In fact, the error will grow
exponentially with T, or the magnitude of work will grow
linearly with Ty to keep a certain tolerance (Van Loan,
1978). This issue is not present in the proposed method.

However, for short sampling times the proposed method
performers slightly worse. This is especially the case if the
system has integrators as well as non-zero poles close to the
origin leading to that the Sylvester equation corresponding
to Q12 will become ill-conditioned. Future work shall
focus on techniques to circumvent this problem. The
proposed method has also advantages when it comes to
computational complexity since it only needs to compute
the matrix exponential of an n X n matrix rather than of
an augmented 2n x 2n matrix as required by van Loan’s
method.

4. CONCLUSIONS AND FUTURE WORK

An algorithm for computing an integral involving the
matrix exponential common in optimal sampling was pro-
posed. The algorithm is based on a Lyapunov equation
and is justified with a novel lemma. An extension to
systems with integrators was presented. Numerical eval-
uations showed that the proposed algorithm has advan-
tageous numerical properties for large sampling times in
comparison with a standard method in the literature.

Further work includes extending the algorithm further to
handle arbitrary matrices, i.e. also matrices with non-
zero eigenvalues mirrored in the imaginary axis. Also
the numerical properties should be analyzed further and
strategies for improving the numerical properties for slow
poles should be investigated.
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