Sequential Monte Carlo methods for
probabilistic graphical models
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Background — graphical models (I/ll)

A probabilistic graphical model (PGM) is a probabilistic model
where a graph G = (V, £) represents the conditional independency
structure between random variables,
1. a set of vertices V (nodes) represents the random variables
2. a set of edges & containing elements (i,j) € £ connecting a
pair of nodes (i,j) € V x V
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Background — graphical models (ll/ll)

For an undirected graphical model (Markov random field), the joint
PDF over all the involved random variables is

p(Xy) = % I]wc(Xc),

ceC

where C is the set of cliques in G, and Z = [ TTcec P (Xc)dXy.

Example of a factor graph making
Undirected graph interactions explicit,

plris) = 711 i)
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Background — sequential Monte Carlo (I/1l)

Approximate a sequence of probability distributions on a sequence
of probability spaces of increasing dimension.

Let {vk(x1.4) }x>1 be a sequence of unnormalised densities and

Ti(xr) = %}jk)
Approximates
Te(x1) ~ % 150—;(5 i (x1x)-
= L w
Ex. (SSM)
Ye(rie) = plxk [ yax),  me(xax) = p(xiw yix),
Zy = p(y1x)-
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Background — sequential Monte Carlo (Il/ll)

> Resampling | Propagation | Weighting |—

SMC = resampling + sequential importance sampling
Given, {xt, |, wi }Y, repeatfori=1,..., N:
1. Resampling: P(¥}, , = x}, ;) = wﬁcfl/ Y wfc_l.
2. Propagation: xi ~ r(x | ¥, ,)andxi, = {¥ xi}.

"Yk(xihk)‘ i
’Yk_l(xllzkfl)rk(xmxll:kfl) ’

3. Weighting: wi = W (x},) =
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(a hopefully) intuitive preview

SMC samplers are used to approximate a sequence of probability
distributions on a sequence of probability spaces.

Using an artificial sequence of intermediate target distributions for an
SMC sampler is a powerful (and quite possibly underutilised) idea.

Key idea: Perform and make use of various decompositions of
graphical models to design SMC inference methods.
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Outline

1. Example — from information theory
2. Sequential decomposition — “standard” SMC
a) Sequential decomposition and SMC for PGMs
b) Examples — Estimating partition functions
3. Tree decomposition — Divide-and-Conquer with SMC
a) Tree decomposition and D&C-SMC for PGMs
b) Example — Hierarchical Bayesian Model

4. Conclusions
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Information theory — 2D channel capacity

Example borrowed from:

M. Molkaraie and H.-A. Loeliger, Monte Carlo algorithms for the partition function and information rates of
two-dimensional channels, |EEE Transactions on Information Theory, 59(1): 495-503, 2013.

2D binary-input channel with the constraint that no two horizontally
or vertically adjacent variables may be both be equal to 1.

0 1 0
0 0 1
0 1 0

Of interest in emerging magnetic and optical storage solutions.

The channel can be described by a square lattice undirected
graphical model.
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2D channel capacity — graphical model

The variables are binary
x; € {0,1} and the interactions
are pair-wise between adjacent
variables. Factors:

|0 Xpj = Xmn = 1
1p(xg,],xm,n) - { 1,  otherwise
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2D channel capacity — graphical model

The resulting joint PDF is given by

NI =

p(Xy) = H 1/7(3%]'/ Ximn),
(¢j,mn)e&

For a channel of dimension M x M we can write the finite-size
noiseless capacity as

1
CM = W 10g2 Z.

Unfortunately calculating Z exactly for these types of models is
computationally prohibitive, since the complexity is exponential in the
number of variables M?.
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2D channel capacity — undirected chain

A

X Rewrite the PGM as a
high-dimensional undirected
chain by introducing a new set of
variables xj.

C—)—C)—)——9

M-1
d(xe) = [T v (xjep xjx),
=1
M
P (xexe-1) = [ [0 xj0-1)-
=1
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2D channel capacity — SMC algorithm

C—)—C—)—C—9

The undirected chain results in the following joint PDF

M

M
d(xic) [ T o (xe—1,%x)-
=1 k=2

1
Zj
Provides a natural sequence of target distributions for SMC!

Sequential decomposition:
11(x1) = ¢(x1),
Ye(Xtx) = Te—1(xx—1) D () (-1, %)
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2D channel capacity — 60 x 60 example

- } , o Our SMC sampler
e samplor, M compared to the tree
o sampler by

F. Hamze and N. de Freitas, From fields to trees,
In Proceedings of the conference on Uncertainty
in Artificial Intelligence (UAI), Banff, Canada, July,
2004.

implemented according to

M. Molkaraie and H.-A. Loeliger, Monte Carlo
algorithms for the partition function and
information rates of two-dimensional
channels, /[EEE Transactions on Information
Theory, 59(1): 495-503, 2013.

Time

For the 2D channel: fully adapted SMC sampler. To sample exactly
the x;’s we use a forward/backward algorithm.

This was just a special case, the important question is, can we do
this for a general graphical model?! Yes!
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Using “standard” SMC for PGMs — the idea

Key idea:
e Perform a sequential decomposition of the graphical model.
e Each subgraph induces an artificial target distribution.
o Apply SMC to the sequence of artificial target distributions.

Using an artificial sequence of intermediate target distributions for an
SMC sampler is a powerful (and quite possibly underutilised) idea.
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Sequential decomposition of PGMs — pictures 15(1)

The joint PDF of the set of random
variables indexed by V),

XV = {xl, ey X|V|}

p(Xy) = H Pc(Xc)-

CeC

Example of a sequential decomposition of the above factor graph (the
target distributions are built up by adding factors at each iteration),

T (Xﬁl Xﬁz 3 (Xﬁs) & p(XV)

el@l
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Sequential decomposition of PGMs — equations

Let {¢x}X_, be a sequence of factors,

Pe(Xz) = ] ve(Xe),

CeCy

where Z; C {1, ..., |V|} is the set of indices in the domain of .

The sequential decomposition is based on these factors,
L
n(Xe) = [we(Xz,),
(=1

where £; £ Uf_, Z,.
By construction, Lx = V and the joint PDF p(X,, ) o< vk (X, )-
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SMC sampler for graphical models

Algorithm SMC sampler for graphical models

1. Initialize (k = 1): Draw X}. ~ r1(-) and setw} = Wy(X7, ).
2. Fork=2toKdo:

() Drawaj ~ Cat({w} ,}Y,).

(b) Draw &l ~ rk(-|Xu£;‘k71) and set X' = Xﬁ‘kil ugt.

() Setw, = Wi(X} ).

Also provides an unbiased estimate of the partition function!
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Example — Evaluation of topic models

Evaluating Latent Dirichlet Allocation models on heldout documents
corresponds to estimating the partition function of a PGM.

L ]

s
—s7ag|

~154
—e764|

T - RST tAsz  swe1  swoz

(a) Synthetic (b) PMC (c) 20 newsgroups

@ @ Estimates of the log-likelihood of heldout documents for

various datasets.
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Divide-and-Conquer with SMC - the idea

The sequential decomposition is basically a chain-oriented
decomposition of the PGM. This naturally leads to a sequence of
distributions suitable for standard SMC samplers.

Divide-and-Conquer SMC:

rKey idea:
e Consider graph decompositions organised on trees.

e Starting from the leaves, define auxiliary target distributions for
all nodes of the tree in a bottom-up fashion.

e Inference using a new class of SMC algorithms.

\ S
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Tree decomposition of PGMs (I/ll)

Hierarchical Bayesian network

@ Level 0: @
(Xs) Level 1:

() ()
&) &) ©  Llewlz @@ &) ® ©
W ®» ® B ©» ® B ©» ® B & ®
We initialise the D&C-SMC with independent particle populations

for each leaf in the tree decomposition. These are then merged,
resampled and propagated as we move up the tree.

Iter 1: Initialise (X;, wi)N, fork =1, 2, 3.
lter 2: Merge populations 1 and 2 and propagate = (X , ,, w'))¥
lter 3: Merge populations 3 and 4 and propagate = (X} 55 45, W5)N |
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Tree decomposition of PGMs (Il/ll)

Tree decomposition follows naturally when the graphical model is a
tree. However, the idea is more generally applicable.

Example: Lattice Markov random field

0002 2038 Ty T2
O000 0000

O000 0000 @
0O000 0000 ﬁﬁ

The subgraphs can be organised on a tree!
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Divide-and-Conquer SMC

Algorithm D&C-SMC (for node t € T)

1. Forc e C(1):
1. (i, wi)N, « decsmc(c).

2. Resample (xi, w’)Y, to obtain the equally weighted particle system (X, 1) ;.

2. Forparticlei=1,..., N:

1. Simulate X ~ g:(- [ X.,,...,X..) from some proposal kernel on X;, and where

(Cl,Cz,. . .,Cc) = C(t)
2. Setxi=(x,,...,X_,x)
i
; 1
3. Compute w} = 7:(xi) e —,
[Meecn 1e(X) qi(X | Xy, %)

3. Return (xi, whX,.
e Generalises the SMC framework (std SMC recovered if T is a chain).
e Consistent and gives an unbiased estimate of the partition function.
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Example — NY maths test (model)

Data Table of test results (278 399 instances), with school code,
year, number of students tested in that year and school, and
the number students that passed.

Structure We organise the data into a tree with the following form:
NYC (root), borough of the school district, school district,
school, year.

Parameters e Observations at the leaf (binomial p; = logistic(6;)).
e Internal nodes 0y = 6; + A, with A, ~ N(0,2).
e Hyperparameters 0 ~ Exp(1).

After marginalization of interior nodes, the dimensionality of the remaining
parameters in the model is 3 555.
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Example — NY maths test (results, I/ll)

10 Particles 100 Particles 1000 Particles 10k Particles
x
C
o
oq ] L S L
B e L ) oo ° 7 00 02 04 ° o7 00 02 04
-0.03(0.06) -0.05(0.04) -0.04(0.05) -0.04(0.05)
[2]
c
[
()
)
g B B B
© 07 00 02 04 ° 07 00 02 04 L 4 00 02 04 ° -04 00 02 04
0.07(0.07) 0.03(0.04) 0.04(0.05) 0.04(0.04)

Posterior distribution of J, ="difference in logistic(6) along edge e” for two boroughs (rows)
and four computational regimes (columns), with mean and std dev below each histogram.
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Example — NY maths test (results, IlI/1l)

We compare our D&C-SMC (implemented in Java) to Hamiltonian
Monte Carlo (Stan, implemented in C++).

Similar posterior approximation accuracy.

Method | lterations/Particles |  Runtime
D&C-SMC 1000 39s
HMC (Stan) | 2000 (50% burn-in) | 3860 s (64 min)
Node Stan | D&C-SMC | Speedup
NY_Manhattan | 0.17 15.96 93.89
NY _Bronx 0.05 8.12 165.69
NY_Kings 0.18 6.52 36.22
NY_Queens 0.07 14.01 209.05
NY_Richmond | 0.05 25.50 481.17

The effective samples per second and speedup.
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Conclusions

e We have derived SMC-based inference methods for graphical
models of arbitrary topologies with discrete and/or continuous
random variables.

e Key insight: We exploit various decompositions of the
graphical model to design efficient SMC samplers.
e Examples involving:

1. estimating the partition function
2. inferring the latent variables
3. learning parameters.

e If you have interesting and challenging problems involving
graphical models, let us know!
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Some references

SMC (and PMCMC) methods for graphical models

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schén, Sequential Monte
Carlo for Graphical Models. Advances in Neural Information Processing Systems
(NIPS) 27, December, 2014.

F. Lindsten, A. M. Johansen, C. A. Naesseth, B. Kirkpatrick, T. B. Schén, J. Aston and A.
Bouchard-C6té, Divide-and-Conquer with Sequential Monte Carlo. Preprint
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Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schon, Capacity estimation of
two-dimensional channels using Sequential Monte Carlo. Proceedings of the 2014
IEEE Information Theory Workshop (ITW), November, 2014.

Thank you!!
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D&C-SMC extensions (I/lll)

D&C “Sampling Importance Resampling”

il

Teec(r) TN (xc) — Resampling — (XL, ..., X, )N, — Weighting — (xj, wj)N,
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D&C-SMC extensions (Il/lll)

D&C-SMC: Auxiliary mixture sampling

[eecq FN(x.) — (Auxiliary) Weighting — Resampling
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D&C-SMC extensions (lll/llI)

D&C-SMC: Auxiliary mixture sampling + Tempering

[eecq FN (x.) — (Auxiliary) Weighting — Tempering
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Example — Classical XY model (I/ll)

In statistical mechanics, computing the free energy of a lattice with
periodic boundary conditions relates to estimating the partition
function of a PGM.

16 x 16,5 = 1.1

MSE

——AIS
—— SMC RND-N
| — SMC SPIRAL
07— SMC DIAG
——SMCL-R
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Example — Classical XY model (l1I/1)

Scaling up to 64 x 64.

64 x 64, =05 64 x64,8=11 64x64,=17
x10° x10*
8064.15, . 1.082) 1.4395 _
H
H
8064.1 10515 1.4393
— H . = H - : v
(« 8064.05] ' IS a Q ' (& 14391 o
Taﬂ —_ ? 1.051 gy ' ?
2 = - = 4 N :
8064 = 1.4389 H
1.0505 H o
4
8063.95 - - 1.4387
- .
1.
Als ASR SMCL-R Als ASR  SMCL-R Als ASIR SMCL-R
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So what’s the catch?

Problems with SMC, it is not enough since:
1. It does not solve the parameter learning problem.
2. The quality of the marginals

p(Xe) = / Tx(Xe)dX g g,
deteriorates for k < K (particle degeneracy).

(One) solution: Use particle Markov chain Monte Carlo (PMCMC).
Allows us to construct high-dimensional MCMC kernels for graphical
models.

This allows us to:
1. Simulate, jointly, blocks of variables using an MCMC scheme.
2. Opens up for learning unknown parameters of the model.
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PMCMC - Particle Gibbs

Algorithm Particle Gibbs, forr = 1to R

1. Given reference trajectory X,_1, run conditional SMC
2. Sample new MCMC sample X, from particle trajectories

Conditional SMC is standard SMC, but we set particle nr N (last)
deterministically to the corresponding value in X, _1.

e Leads to a correct MCMC method.

e | earning enabled by blocked sampler
0 ~p(0|xy)
x~p(x]0,y)

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods. Journal of the
Royal Statistical Society: Series B, 72:269-342, 2010.
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Partial blocking (I/ll)

Two extremes of how to sample the variables:
1. Simulate all the latent variables X, jointly.
2. Simulate one variable x; at a time.

With PMCMC we can create algorithms that sits in between these
two extremes by simulating blocks of variables jointly (partial
blocking).

Simulate all the latent Partial blocking via Simulate one variable
variables X, jointly. PMCMC. xjata time.
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Partial blocking (lI/ll)

Let {V", m e {1, ..., M}} be a partition of ).

We could then (ideally) construct a Gibbs sampler simulating from
the conditional distributions

p(XV""XV\V”’) (e H ll)c(Xc), form = 1, ey M.
Cecm

where C" = {C e C:CNV" # Q}.

Problem: ltis (in general) impossible to sample from these
conditionals.

(One) solution: Use PMCMC.
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Example — Gaussian MRF

Consider a standard square lattice Gaussian MRF of size 10 x 10,

L Xi ,‘2 L (xl x')z
p(Xy,Yy) o[ Je* 7 ) I e

ey (ij)e€

with latent variables Xy = {x1, ..., X100} and measurements
Yy = {y1, ..., Y100} (simulated with o; = 1 and ¢;; = 0.1).
Goal: Compute the posterior distribution p(Xy | Yy).
We run four MCMC samplers:

1. Standard one-at-a-time Gibbs

2. Tree sampler (Hamze & de Freitas, 2004)

3. PGAS — fully blocked (N = 50)

4. PGAS - partially blocked (N = 50)
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Example — Gaussian MRF

The two block structures used by the
tree sampler and PMCMC with partial
blocking.

The arrows show the order in which
the factors are added.
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Example — Gaussian MRF

1k —— Gibbs sampler

0.8

0.61

ACF

0.2r

0 50 100 150 200 250 300
Lag

The one-step-at
-a-time Gibbs
sampler is strugg-
ling due to the
strong interactions.
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Example — Gaussian MRF

1t ——— Gibbs sampler
Tree sampler
0.8
0.6
TR
(©]
<<
0.4r
0.2r
0 L
0 50 100 150 200 250 300

Lag

The tree sampler
implements an
“ideal” partially
blocked Gibbs
sampler.
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Example — Gaussian MRF

1 ——— Gibbs sampler .
——— PGAS w. partial blocking
Tree sampler PMCMC with partial
08 blocking is an
approximation of the
w o8 tree sampler. Already
< 04l for relatively few
particles we obtain a
02l performance similar to
the “ideal” tree
ot sampler.
0 50 100 150 200 250 300

Lag
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Example — Gaussian MRF

] ——— Gibbs sampler The fully blocked
—— PGAS w. partial blocking
Tree sampler PMCMC. performs
0.8 ——— PGAS best, which is not

surprising, since it
samples all the
(dependent) latent
variables jointly.

ACF

The downside of
PMCMC is that it is
computationally
more expensive.

0 50 100 150 200 250 300
Lag
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