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Nonlinear filtering

The filtering problem for a nonlinear state space model,

xt+1 |xt ∼ f(xt+1 |xt),
yt |xt ∼ g(yt |xt),

amounts to computing

p(xt | y1:t) =
g(yt |xt)

∫
f(xt |xt−1)p(xt−1 | y1:t−1)dxt−1

p(yt | y1:t−1)

for t = 1, 2, . . .
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The bootstrap filter

The bootstrap particle filter approximates p(xt | y1:t) by

p̂N (xt | y1:t) :=

N∑
i=1

W i
t∑

`W
`
t

δXi
t
(xt).

• Resampling: {(Xi
t−1,W

i
t−1)}Ni=1 → {(X̃i

t−1, 1/N)}Ni=1.

• Propagation: Xi
t ∼ f(xt | X̃i

t−1).

• Weighting: W i
t = g(yt |Xi

t).

⇒ {(Xi
t ,W

i
t )}Ni=1

Weighting Resampling Propagation Weighting Resampling
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Particle filters in high dimension
• Known to perform poorly in high (say, d & 10) dimensions.
• ex) Spatio-temporal model: g(yt |xt) =

∏d
k=1 g(yt,k |xt,k).

X1 X2 X3 X4 X5 X6

· · ·

• f(xt |xt−1) is typically an extremely bad proposal
distribution in HD.

Does a better proposal distribution improve our re-
sult?
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Preview of the idea

• Optimal proposals and resampling weights — known
conceptually but intractable to compute.

• Deterministic (e.g., Gaussian) approximations available,
but often inadequate in high dimensions.

Idea behind Nested SMC:
• Use SMC to approximate the optimal proposals and
resampling weights.

• Sampling distribution not available on closed form — still
possible to obtain a valid algorithm!

• Nested SMC satisfies the conditions on the proposal
approximation ⇒ possible to use within itself (nesting to
arbitrary degree).
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Fully adapted auxiliary SMC sampler

Let π̄t(x1:t) = Z−1t πt(x1:t) for t = 1, 2, . . . be a sequence of
target distributions.
• Optimal proposal:
q̄t(xt |x1:t−1) = Z−1t (x1:t−1)qt(xt |x1:t−1), where

qt(xt |x1:t−1) :=
πt(x1:t)

πt−1(x1:t−1)
[= g(yt |xt)f(xt |xt−1)]

• Optimal resampling weights:

W̃ i
t−1 := Zt(X

i
1:t−1) [= p(yt |Xi

t−1)]

Results in an unweighted set of particles {Xi
1:t}Ni=1,

such that π̄Nt (x1:t) = 1
N

∑N
i=1 δXi

1:t
(x1:t) approxi-

mates π̄t.
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Nested SMC (I/II)

Some definitions. . .

Definition (Properly weighted sample). Let π̄(x) = Z−1π(x)
be a PDF. A (random) pair (X,W ) ∈ X× R+ is properly
weighted for π if E[f(X)W ] = π̄(f)Z for all nonnegative
measurable functions f .

(A1) Let Q be a class and let q = Q(q,M). Assume that:
1. At construction of q a (random) member variable is

generated, accessible as Ẑ = q.GetZ().
2. Q has a member function Simulate which returns a

(random) variable X = q.Simulate() such that (X, Ẑ) is
properly weighted for q.
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Fully adapted and nested SMC

Given {Xi
1:t−1}Ni=1 targeting π̄t−1(x1:t−1):

• Initialisation:

• Resampling weights:

• Propagation:

Fully adapted SMC

—

Zt(X
i
1:t−1)

Xi
t ∼ q̄t(xt |XAi

t
1:t−1)

Nested SMC

qi = Q(qt(· |Xi
1:t−1),M)

Ẑi
t = qi.GetZ()

Xi
t = qAi

t .Simulate()

⇒ {Xi
1:t}Ni=1 targeting π̄t(x1:t).
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Nesting of NSMC

How can we construct the class Q with the desired
properties?

One way is to use SMC or NSMC for this as well.
(Hence the word “Nested” in “Nested SMC”.)

Theorem 1. For a (properly weighted) NSMC algorithm with
target πn(x1:n), let
• Ẑn :=

∏n
t=1

{
1
N

∑N
i=1 Ẑ

i
t

}
,

• X ′1:n be generated by e.g. (standard) SMC-based backward
simulation.

Then, the pair (X ′1:n, Ẑn) is properly weighted for πn.
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2D Markov Random Field – Nested SMC applied

1 spatial + 1 temporal dimension

x1,4

x1,3

x1,2

x1,1

x2,4

x2,3

x2,2

x2,1

x3,4

x3,3

x3,2

x3,1

x4,4
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x4,2

x4,1

x5,4

x5,3

x5,2

x5,1

x6,4

x6,3

x6,2

x6,1

x1 x2 x3 x4 x5 x6

π̄t(x1:t) =
1

Zt
φ1(x1)

t∏
s=2

{φs(xs)ψs(xs−1,xs)} .
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2D MRF – Nested SMC implementation (I/III)

x4,4

x4,3

x4,2

x4,1

x4x1 x2 x3 x5 x6

Optimal proposals given by:

qt(xt |xt−1) = φt(xt)ψt(xt−1,xt)

=

{ d∏
k=1

Gt,k(xt,k)

d∏
k=2

m(xt,k−1, xt,k)

}{ d∏
k=1

ψ(xt−1,k, xt,k)

}
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2D MRF – Nested SMC implementation (II/III)
Proposed algorithm:

Step 1: Initialisation
(Optimal weights W̃ i

t−1 = Zt(Xi
t−1) with Zt(xt−1) =∫

qt(xt |xt−1)dxt.)

• For each particle {Xi
t−1}Ni=1:

• Run PF with M particles for target qt(xt |Xi
t−1).

• Estimate normalising constant:
Ẑi

t =
∏d

k=1

{
1
N

∑M
j=1 W

i,j
k

}
.

Step 2: Resampling
Resample {Xi

t−1}Ni=1 and corresponding PFs based on

{Ẑit}Ni=1
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2D MRF – Nested SMC implementation (III/III)

Step 3: Propagation
• Assume particle Xi

t−1 resampled nit times.
• For i = 1, . . . , N , generate nit descendants of Xi

t−1 by
backward simulation:
• P(X ′t,d = Xi,j

t,d) = W i,j
t,d (j = 1, . . . , M).

• For k = d− 1 to 1,

P(X ′t,k = Xi,j
t,k) =

W i,j
t,km(Xi,j

t,k, X
′
t,k+1)∑M

`=1 W
i,`
t,km(Xi,`

t,k, X
′
t,k+1)

(j = 1, . . . , M).

⇒ X′t = X ′t,1:d
approx.∼ q̄t(· |Xi

t−1).

Results in N unweighted particles: {Xi
t}Ni=1
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Convergence of NSMC

Theorem 2. Assume that Q satisfies the proper weighting
condition (A1). Then,1

N1/2

(
1

N

N∑
i=1

f(Xi
1:t)− π̄t(f)

)
D−→ N (0,ΣMt (f)),

where {Xi
1:t}Ni=1 are generated by the NSMC algorithm.

• We obtain the standard
√
N Monte Carlo rate.

• The convergence holds for any value of the precision
parameter M .

• The asymptotic variance ΣMt (f) does depend on M .
1Under certain regularity conditions on the test function f .
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Related work

Monte Carlo approximation of SMC:
• Random-weight PF [2] – uses unbiased estimates of
weights

NSMC uses unbiased estimates of weights + “approx-
imate draws” from proposal (proper weighting condi-
tion)

SMC within SMC:
• SMC2 [3] – joint (θ, x1:t), internal SMC for marginalisation
• EA-RBPF [4] – split state xt = (x1t , x

2
t ), internal SMC for

marginalisation
• Island PF [5] – PF where each particle is a PF.
• Space-time PF [6] – island PF for spatio-temporal models.
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ex) Gaussian spatio-temporal model

X1 X2 X3 X4 X5 X6

· · ·

Gaussian spatio-temporal model in the form of a 2D MRF,
d× t, i.e. dimxt = d.

p(x1:t, y1:t) ∝
t∏

s=1

N (ys;xs, τ
−1I)︸ ︷︷ ︸

G

N (xs; axs−1, I)︸ ︷︷ ︸
ψ

N (xs; 0,Σ)︸ ︷︷ ︸
m

where Σ−1 is a banded matrix (reflecting local dependencies).
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ex) Gaussian spatio-temporal model

d = 50 d = 100 d = 200

E
SS

1 10 20 30 40 50 60 70 80 90 100
k

0

100

200

300

400

500

600

700

800

NSMC

ST-PF

Bootstrap
1 10 20 30 40 50 60 70 80 90 100

k

0

100

200

300

400

500

600

700

800

NSMC

ST-PF

1 10 20 30 40 50 60 70 80 90 100
k

0

100

200

300

400

500

600

700

800

NSMC

ST-PF

Figure: Median (over dimension) effective sample size (ESS) and
15–85% percentiles. N = 500 and M = 2d. (Results for 100
independent runs.)

ESSt,k :=

(
E

[
(x̂t,k − µt,k)2

σ2
t,k

])−1
Beskos, A., Crisan, D., Jasra, A., Kamatani, K. and Zhou, Y. A Stable Particle Filter in
High-Dimensions. arXiv:1412.3501, Dec. 2014.
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ex) Spatio-temporal model for drought prediction

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

t− 1 t t+ 1

• System state xt = {xt,k,`}K,Lk=1,`=1, i.e., dimension is
d = K × L.

• Binary variables: xt,k,` = 0 (normal state) or xt,k,` = 1
(drought).

• Yearly Gaussian observations of precipitation at each site.
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ex) Spatio-temporal model for drought prediction
· · · Xt−1

N
→

Xt Xt+1 · · ·

M1
→

↓M2 ↓M2 ↓M2

Xt,1:2,1 Xt,1:2,2 Xt,1:2,3

Exploit the rectangular structure in three levels:
Level 1: Instantiate a Nested SMC sampler targeting the full

posterior filtering distribution.

Level 2: To sample xt, we run a Nested SMC sampler, operating on
the “columns” xt,1:K,`, ` = 1, . . . , L.

Level 3: To sample each column xt,1:K,` we run a third level of
SMC, operating on the individual components xt,k,`,
k = 1, . . . , K.
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ex) Spatio-temporal model for drought prediction
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• Data from the Sahel region in
Africa for years 1950–2000.

• {K,L} = {24, 44}
(⇒ d = 1 056).

• {N,M1,M2} = {100, 40, 20}.
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Figure: Sahel region in 1989.
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Wrapping up
Summary:
• NSMC allows us to “exactly approximate” a fully adapted SMC

sampler.
• Forward-backward strategy for lattice models.
• Provably correct for any number(s) M of particles in the “internal”

filter(s).
• Modular to an arbitrary degree.
• Pushes the dimension-limit for SMC from “tens” to “hundreds” (?).

Worth to note:
• Can straightforwardly be used with, e.g., Particle MCMC for

learning.
• Computational complexity of the method is N ×M (for two layers).

However, much more efficient than a bootstrap PF with N ×M
particles!

• NSMC does not beat the curse of dimensionality!
• Can we push the limit even further with blocking and localisation

strategies?
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NSMC and SMC Samplers
So far: Spatio-temporal models, where each xt in itself has a
chain-like or grid-like structure.

What about “general” high-dimensional problems?

SMC samplers can be used also for fixed-dimensional problems!
• π̄(x) distribution of interest.
• Construct a bridging sequence from some easy-to-sample π̄0(x) to
π̄(x).

• Run SMC for this sequence — keep only the particles at the final
“time” step.

In our case:
• Want to sample from q̄t(xt |x1:t−1), the optimal proposal.
• Bridging sequence, e.g. from π̄0(xt) = f(xt |xt−1) to
π̄(xt) = p(xt |xt−1, yt).

• Run NSMC with “internal” SMC sampler for the bridging sequence.



Thank you!
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