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1. Introduction

MCMC methods are a fundamental tool for generating samples from a posterior density in Bayesian
data analysis (see e.g., Robert and Casella (2013)). Particle Markov chain Monte Carlo (PMCMC)
methods, introduced by Andrieu et al. (2010), make use of sequential Monte Carlo (SMC) algorithms
(Gordon et al., 1993; Doucet et al., 2001) to construct efficient proposals for the MCMC sampler.

One particularly widely used PMCMC algorithm is particle Gibbs (PG). The PG algorithm
modifies the SMC step in the PMCMC algorithm to sample the latent variables conditioned on an
existing particle trajectory, resulting in what is called a conditional sequential Monte Carlo (CSMC)
step. The PG method was first introduced as an efficient Gibbs sampler for latent variable models
with static parameters (Andrieu et al., 2010). Since then, the PG algorithm and the extension by
Lindsten et al. (2014) have found numerous applications in e.g. Bayesian non-parametrics (Valera
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et al., 2015; Tripuraneni et al., 2015), probabilistic programming (Wood et al., 2014; van de Meent
et al., 2015) and graphical models (Everitt, 2012; Naesseth et al., 2014, 2015).

A drawback of PG is that it can be particularly adversely affected by path degeneracy in the
CSMC step. Conditioning on an existing trajectory means that whenever resampling of the trajectories
results in a common ancestor, this ancestor must correspond to this trajectory. Consequently, the
mixing of the Markov chain for the early steps in the state sequence can become very slow when the
particle set typically coalesces to a single ancestor during the CSMC sweep.

In this paper we propose the interacting particle Markov chain Monte Carlo (iPMCMC) sampler.
In iPMCMC we run a pool of CSMC and unconditional SMC algorithms as parallel processes that
we refer to as nodes. After each run of this pool, we apply successive Gibbs updates to the indexes of
the CSMC nodes, such that the indices of the CSMC nodes changes. Hence, the nodes from which
retained particles are sampled can change from one MCMC iteration to the next. This lets us trade
off exploration (SMC) and exploitation (CSMC) to achieve improved mixing of the Markov chains.
Crucially, the pool provides numerous candidate indices at each Gibbs update, giving a significantly
higher probability that an entirely new retained particle will be “switched in” than in non-interacting
alternatives.

This interaction requires only minimal communication; each node must report an estimate of the
marginal likelihood and receive a new role (SMC or CSMC) for the next sweep. This means that
iPMCMC is embarrassingly parallel and can be run in a distributed manner on multiple computers.

We prove that iPMCMC is a partially collapsed Gibbs sampler on the extended space containing
the particle sets for all nodes. In the special case where iPMCMC uses only one CSMC node, it can
in fact be seen as a non-trivial and unstudied instance of the α-SMC-based (Whiteley et al., 2016)
PMCMC method introduced by Huggins and Roy (2015). However, with iPMCMC we extend this
further to allow for an arbitrary number of CSMC and standard SMC algorithms with interaction. Our
experimental evaluation shows that iPMCMC outperforms both independent PG samplers as well as
a single PG sampler with the same number of particles run longer to give a matching computational
budget.

An implementation of iPMCMC is provided in the probabilistic programming system Anglican1

(Wood et al., 2014), whilst illustrative MATLAB code, similar to that used for the experiments, is
also provided2.

2. Background

We start by briefly reviewing sequential Monte Carlo (Gordon et al., 1993; Doucet et al., 2001) and
the particle Gibbs algorithm (Andrieu et al., 2010). Let us consider a non-Markovian latent variable
model of the following form

xt|x1:t−1 ∼ ft(xt|x1:t−1), (1a)

yt|x1:t ∼ gt(yt|x1:t), (1b)

where xt ∈ X is the latent variable and yt ∈ Y the observation at time step t, respectively, with
transition densities ft and observation densities gt; x1 is drawn from some initial distribution µ(·).
The method we propose is not restricted to the above model, it can in fact be applied to an arbitrary
sequence of targets.

1. http://www.robots.ox.ac.uk/ fwood/anglican

2. https://bitbucket.org/twgr/ipmcmc
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Algorithm 1 Sequential Monte Carlo (all for i = 1, . . . , N )

1: Input: data y1:T , number of particles N , proposals qt
2: xi1 ∼ q1(x1)
3: wi1 =

g1(y1|xi1)µ(xi1)
q1(xi1)

4: for t = 2 to T do
5: ait−1 ∼ Discrete

({
w̄`t−1

}N
`=1

)
6: xit ∼ qt(xt|x

ait−1

1:t−1)

7: Set xi1:t = (x
ait−1

1:t−1, x
i
t)

8: wit =
gt(yt|xi1:t)ft(xit|x

ait−1
1:t−1)

qt(xit|x
ait−1
1:t−1)

9: end for

We are interested in calculating expectations with respect to the posterior distribution p(x1:T |y1:T )
on latent variables x1:T := (x1, . . . , xT ) conditioned on observations y1:T := (y1, . . . , yT ), which is
proportional to the joint distribution p(x1:T , y1:T ),

p(x1:T |y1:T ) ∝ µ(x1)
T∏
t=2

ft(xt|x1:t−1)
T∏
t=1

gt(yt|x1:t).

In general, computing the posterior p(x1:T |y1:T ) is intractable and we have to resort to approxima-
tions. We will in this paper focus on, and extend, the family of particle Markov chain Monte Carlo
algorithms originally proposed by Andrieu et al. (2010). The key idea in PMCMC is to use SMC to
construct efficient proposals of the latent variables x1:T for an MCMC sampler.

2.1 Sequential Monte Carlo

The SMC method is a widely used technique for approximating a sequence of target distributions:
in our case p(x1:t|y1:t) = p(y1:t)

−1p(x1:t, y1:t), t = 1, . . . , T . At each time step t we generate a
particle system {(xi1:t, wit)}Ni=1 which provides a weighted approximation to p(x1:t|y1:t). Given such
a weighted particle system at time t− 1, this is propagated forward in time to t by first drawing an
ancestor variable ait−1 for each particle from its corresponding distribution:

P(ait−1 = `) = w̄`t−1. ` = 1, . . . , N, (2)

where w̄`t−1 = w`t−1/
∑

iw
i
t−1. This is commonly known as the resampling step in the literature.

We introduce the ancestor variables {ait−1}Ni=1 explicitly to simplify the exposition of the theoretical
justification given in Section 3.1.

We continue by simulating from some given proposal density xit ∼ qt(xt|x
ait−1

1:t−1) and re-weight
the system of particles as follows:

wit =
gt(yt|xi1:t)ft(xit|x

ait−1

1:t−1)

qt(xit|x
ait−1

1:t−1)
, (3)
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Algorithm 2 Conditional sequential Monte Carlo

1: Input: data y1:T , number of particles N , proposals qt, conditional trajectory x′1:T
2: xi1 ∼ q1(x1), i = 1, . . . , N − 1 and set xN1 = x′1
3: wi1 =

g1(y1|xi1)µ(xi1)
q1(xi1)

, i = 1, . . . , N

4: for t = 2 to T do
5: ait−1 ∼ Discrete

({
w̄`t−1

}N
`=1

)
, i = 1, . . . , N − 1

6: xit ∼ qt(xt|x
ait−1

1:t−1), i = 1, . . . , N − 1

7: Set aNt−1 = N and xNt = x′t

8: Set xi1:t = (x
ait−1

1:t−1, x
i
t), i = 1, . . . , N

9: wit =
gt(yt|xi1:t)ft(xit|x

ait−1
1:t−1)

qt(xit|x
ait−1
1:t−1)

, i = 1, . . . , N

10: end for

where xi1:t = (x
ait−1

1:t−1, x
i
t). This results in a new particle system {(xi1:t, wit)}Ni=1 that approximates

p(x1:t|y1:t). A summary is given in Algorithm 1.

2.2 Particle Gibbs

The PG algorithm (Andrieu et al., 2010) is a Gibbs sampler on the extended space composed of
all random variables generated at one iteration, which still retains the original target distribution
as a marginal. Though PG allows for inference over both latent variables and static parameters,
we will in this paper focus on sampling of the former. The core idea of PG is to iteratively run
conditional sequential Monte Carlo (CSMC) sweeps as shown in Algorithm 2, whereby each
conditional trajectory is sampled from the surviving trajectories of the previous sweep. This retained
particle index, b, is sampled with probability proportional to the final particle weights w̄iT .

3. Interacting Particle Markov Chain Monte Carlo

The main goal of iPMCMC is to increase the efficiency of PMCMC, in particular particle Gibbs.
The basic PG algorithm is especially susceptible to the path degeneracy effect of SMC samplers,
i.e. sample impoverishment due to frequent resampling. Whenever the ancestral lineage collapses
at the early stages of the state sequence, the common ancestor is, by construction, guaranteed to be
equal to the retained particle. This results in high correlation between the samples, and poor mixing
of the Markov chain. To counteract this we might need a very high number of particles to get good
mixing for all latent variables x1:T , which can be infeasible due to e.g. limited available memory.
iPMCMC can alleviate this issue by, from time to time, switching out a CSMC particle system with a
completely independent SMC one, resulting in improved mixing.

iPMCMC, summarized in Algorithm 3, consists of M interacting separate CSMC and SMC
algorithms, exchanging only very limited information at each iteration to draw new MCMC sam-
ples. We will refer to these internal CSMC and SMC algorithms as nodes, and assign an index
m = 1, . . . ,M . At every iteration, we have P nodes running local CSMC algorithms, with the
remaining M − P nodes running independent SMC. The CSMC nodes are given an identifier
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Algorithm 3 iPMCMC sampler

1: Input: number of nodes M , conditional nodes P and MCMC steps R, initial x′1:P [0]

2: for r = 1 to R do
3: Workers 1 : M\c1:P run Algorithm 1 (SMC)
4: Workers c1:P run Algorithm 2 (CSMC), conditional on x′1:P [r − 1] respectively.
5: for j = 1 to P do
6: Select a new conditional node by simulating cj according to (5).
7: Set new MCMC sample x′j [r] = x

bj
cj by simulating bj according to (7)

8: end for
9: end for

cj ∈ {1, . . . ,M}, j = 1, . . . , P with cj 6= ck, k 6= j and we write c1:P = {c1, . . . , cP }. Let
xim = xi1:T,m be the internal particle trajectories of node m.

Suppose we have access to P trajectories x′1:P [0] = (x′1[0], . . . ,x′P [0]) corresponding to the
initial retained particles, where the index [·] denotes MCMC iteration. At each iteration r, the nodes
c1:P run CSMC (Algorithm 2) with the previous MCMC sample x′j [r − 1] as the retained particle.
The remaining M − P nodes run standard (unconditional) SMC, i.e. Algorithm 1. Each node m
returns an estimate of the marginal likelihood for the internal particle system defined as

Ẑm =
T∏
t=1

1

N

N∑
i=1

wit,m. (4)

The new conditional nodes are then set using a single loop j = 1 : P of Gibbs updates, sampling
new indices cj where

P(cj = m|c1:P\j) = ζ̂jm (5)

and ζ̂jm =
Ẑm1m/∈c1:P\j∑M
n=1 Ẑn1n/∈c1:P\j

, (6)

defining c1:P\j = {c1, . . . , cj−1, cj+1, . . . , cP }. We thus loop once through the conditional node
indices and resample them from the union of the current node index and the unconditional node
indices3, in proportion to their marginal likelihood estimates. This is the key step that lets us switch
completely the nodes from which the retained particles are drawn.

One MCMC iteration r is concluded by setting the new samples x′1:P [r] by simulating from the
corresponding conditional node’s, cj , internal particle system

P(bj = i|cj) = w̄iT,cj ,

x′j [r] = x
bj
cj . (7)

The potential to pick from updated nodes cj , having run independent SMC algorithms, decreases
correlation and improves mixing of the MCMC sampler. Furthermore, as each Gibbs update

3. Unconditional node indices here refers to all m /∈ c1:P at that point in the loop. It may thus include nodes who just
ran a CSMC sweep, but have been “switched out” earlier in the loop.
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corresponds to a one-to-many comparison for maintaining the same conditional index, the probability
of switching is much higher than in an analogous non-interacting system.

The theoretical justification for iPMCMC is independent of how the initial trajectories x′1:P [0]
are generated. One simple and effective method (that we use in our experiments) is to run standard
SMC sweeps for the “conditional” nodes at the first iteration.

The iPMCMC samples x′1:P [r] can be used to estimate expectations for test functions f : XT 7→ R
in the standard Monte Carlo sense, with

E[f(x)] ≈ 1

RP

R∑
r=1

P∑
j=1

f(x′j [r]). (8)

However, we can improve upon this if we have access to all particles generated by the algorithm, see
Section 3.2.

We note that iPMCMC is suited to distributed and multi-core architectures. In practise, the
particle to be retained, should the node be a conditional node at the next iteration, can be sampled
upfront and discarded if unused. Therefore, at each iteration, only a single particle trajectory and
normalisation constant estimate need be communicated between the nodes, whilst the time taken
for calculation of the updates of c1:P is negligible. Further, iPMCMC should be amenable to an
asynchronous adaptation under the assumption of a random execution time, independent of x′j [r− 1]
in Algorithm 3. We leave this asynchronous variant to future work.

3.1 Theoretical Justification

In this section we will give some crucial results to justify the proposed iPMCMC sampler. This section
is due to space constraints fairly brief and it is helpful to be familiar with the proof of PG in Andrieu
et al. (2010). We start by defining some additional notation. Let ξ := {xit}i=1:N

t=1:T

⋃
{ait} i=1:N

t=1:T−1
denote all generated particles and ancestor variables of a (C)SMC sampler. We write ξm when
referring to the variables of the sampler local to node m. Let the conditional particle trajectory and
corresponding ancestor variables for node cj be denoted by {xbjcj ,bcj}, with bcj = (β1,cj , . . . , βT,cj ),

βT,cj = bj and βt,cj = a
βt+1,cj

t,cj
. Let the posterior distribution of the latent variables be denoted by

πT (x) := p(x1:T |y1:T ) with normalisation constant Z := p(y1:T ). Finally we note that the SMC
and CSMC algorithms induce the respective distributions over the random variables generated by the
procedures:

qSMC(ξ) =

N∏
i=1

q1(x
i
1) ·

T∏
t=2

N∏
i=1

[
w̄
ait−1

t−1 qt(x
i
t|x

ait−1

1:t−1)

]
,

qCSMC
(
ξ\{x′,b} | x′,b

)
=

N∏
i=1
i 6=b1

q1(x
i
1) ·

T∏
t=2

N∏
i=1
i 6=bt

[
w̄
ait−1

t−1 qt(x
i
t|x

ait−1

1:t−1)

]
.

Note that running Algorithm 2 corresponds to simulating from qCSMC using a fixed choice for the
index variables b = (N . . . ,N). While these indices are used to facilitate the proof of validity of
the proposed method, they have no practical relevance and can thus be set to arbitrary values, as is
done in Algorithm 2, in a practical implementation.

Now we are ready to state the main theoretical result.
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Theorem 1 The interacting particle Markov chain Monte Carlo sampler of Algorithm 3 is a partially
collapsed Gibbs sampler (Van Dyk and Park, 2008) for the target distribution

π̃(ξ1:M , c1:P , b1:P ) =

1

NPT
(
M
P

) M∏
m=1
m/∈c1:P

qSMC (ξm) ·
P∏
j=1

[
πT

(
x
bj
cj

)
1cj /∈c1:j−1

qCSMC

(
ξcj\{x

bj
cj ,bcj} | x

bj
cj ,bcj

)]
. (9)

Proof See Appendix A at the end of the paper.

Remark 1 The marginal distribution of (xb1:Pc1:P
, c1:P , b1:P ), with xb1:Pc1:P

= (xb1c1 , . . . ,x
bP
cP

), under (9)
is given by

π̃
(
xb1:Pc1:P

, c1:P , b1:P

)
=

∏P
j=1 πT

(
x
bj
cj

)
1cj /∈c1:j−1

NPT
(
M
P

) . (10)

This means that each trajectory xbjcj is marginally distributed according to the posterior distribution of
interest, πT . Indeed, the P retained trajectories of iPMCMC will in the limit R→∞ be independent
draws from πT .

Note that adding a backward or ancestor simulation step can drastically increase mixing when
sampling the conditional trajectories x′j [r] (Lindsten and Schön, 2013). In the iPMCMC sampler
we can replace simulating from the final weights on line 7 by a backward simulation step. Another
option for the CSMC nodes is to replace this step by internal ancestor sampling (Lindsten et al.,
2014) steps and simulate from the final weights as normal.

3.2 Using All Particles

At each MCMC iteration r, we generate MN full particle trajectories. Using only P of these as in
(8) might seem a bit wasteful. We can however make use of all particles to estimate expectations of
interest by, for each Gibbs update j, averaging over the possible new values for the conditional node
index cj and corresponding particle index bj . We can do this by replacing f(x′j [r]) in (8) by

Ecj |c1:P\j
[
Ebj |cj

[
f(x′j [r])

]]
=

M∑
m=1

ζ̂jm

N∑
i=1

w̄iT,mf(xim).

This procedure is referred to as a Rao-Blackwellization of a statistical estimator and is (in terms of
variance) never worse than the original one. We highlight that each ζ̂jm, as defined in (6), depends
on which indices are sampled earlier in the index reassignment loop. Further details, along with a
derivation, are provided in Appendix B.

3.3 Choosing P

Before jumping into the full details of our experimentation, we quickly consider the choice of P .
Intuitively we can think of the independent SMC’s as particularly useful if they are selected as the

7
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Figure 1: a) Estimation of switching probability for different choices of P and M assuming the
log-Normal limiting distribution for Ẑm with σ = 3. b) Median error in mean estimate for
different choices of P and M over 10 different synthetic datasets of the linear Gaussian
state space model given in (12) after 1000 MCMC iterations. Here errors are normalized
by the error of a multi-start PG sampler which is a special case of iPMCMC for which
P = M (see Section 4).

next conditional node. The probability of the event that at least one conditional node switches with
an unconditional, is given by

P({switch}) = 1− E
[ P∏
j=1

Ẑcj

Ẑcj +
∑M

m/∈c1:P Ẑm

]
. (11)

There exist theoretical and experimental results (Pitt et al., 2012; Bérard et al., 2014; Doucet et al.,
2015) that show that the distributions of the normalisation constants are well-approximated by their
log-Normal limiting distributions. Now, with σ2 (∝ 1

N ) being the variance of the (C)SMC estimate,

it means we have log
(
Z−1Ẑcj

)
∼ N (σ

2

2 , σ
2) and log

(
Z−1Ẑm

)
∼ N (−σ2

2 , σ
2), m /∈ c1:P at

stationarity, where Z is the true normalization constant. Under this assumption, we can accurately
estimate the probability (11) for different choices of P an example of which is shown in Figure 1a
along with additional analysis in Appendix C. These provide strong empirical evidence that the
switching probability is maximised for P = M/2.

In practice we also see that best results are achieved when P makes up roughly half of the
nodes, see Figure 1b for performance on the state space model introduced in (12). Note also that the
accuracy seems to be fairly robust with respect to the choice of P . Based on these results, we set the
value of P = M

2 for the rest of our experiments.

4. Experiments

To demonstrate the empirical performance of iPMCMC we report experiments on two state space
models. Although both the models considered are Markovian, we emphasise that iPMCMC goes
far beyond this and can be applied to arbitrary graphical models. We will focus our comparison
on the trivially distributed alternatives, whereby M independent PMCMC samplers are run in

8
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parallel–these are PG, particle independent Metropolis-Hastings (PIMH) Andrieu et al. (2010)
and the alternate move PG sampler (APG) Holenstein (2009). Comparisons to other alternatives,
including independent SMC, serialized implementations of PG and PIMH, and running a mixture of
independent PG and PIMH samplers, are provided in Appendix D. None outperformed the methods
considered here, with the exception of running a serialized PG implementation with an increased
number of particles, requiring significant additional memory (O(MN) as opposed to O(M +N)).

In PIMH a new particle set is proposed at each MCMC step using an independent SMC sweep,
which is then either accepted or rejected using the standard Metropolis-Hastings acceptance ratio.
APG interleaves PG steps with PIMH steps in an attempt to overcome the issues caused by path
degeneracy in PG. We refer to the trivially distributed versions of these algorithms as multi-start PG,
PIMH and APG respectively (mPG, mPIMH and mAPG). We use Rao-Blackwellization, as described
in 3.2, to average over all the generated particles for all methods, weighting the independent Markov
chains equally for mPG, mPIMH and mAPG. We note that mPG is a special case of iPMCMC for
which P = M . For simplicity, multinomial resampling was used in the experiments, with the prior
transition distribution of the latent variables taken for the proposal. M = 32 nodes and N = 100
particles were used unless otherwise stated. Initialization of the retained particles for iPMCMC and
mPG was done by using standard SMC sweeps.

4.1 Linear Gaussian State Space Model

We first consider a linear Gaussian state space model (LGSSM) with 3 dimensional latent states x1:T ,
20 dimensional observations y1:T and dynamics given by

x1 ∼ N (µ, V ) (12a)

xt = αxt−1 + δt−1 δt−1 ∼ N (0,Ω) (12b)

yt = βxt + εt εt ∼ N (0,Σ) . (12c)

We set µ = [0, 1, 1]T , V = 0.1 I, Ω = I and Σ = 0.1 I where I represents the identity matrix. The
constant transition matrix, α, corresponds to successively applying rotations of 7π

10 , 3π
10 and π

20 about
the first, second and third dimensions of xt−1 respectively followed by a scaling of 0.99 to ensure
that the dynamics remain stable. A total of 10 different synthetic datasets of length T = 50 were
generated by simulating from (12a)–(12c), each with a different emission matrix β generated by
sampling each column independently from a symmetric Dirichlet distribution with concentration
parameter 0.2.

Figure 2a shows convergence in the estimate of the latent variable means to the ground-truth
solution for iPMCMC and the benchmark algorithms as a function of MCMC iterations. It shows
that iPMCMC comfortably outperforms the alternatives from around 200 iterations onwards, with
only iPMCMC and mAPG demonstrating behaviour consistent with the Monte Carlo convergence
rate, suggesting that mPG and mPIMH are still far from the ergodic regime. Figure 2b shows the
same errors after 104 MCMC iterations as a function of position in state sequence. This demonstrates
that iPMCMC outperformed all the other algorithms for the early stages of the state sequence, for
which mPG performed particularly poorly. Toward the end of state sequence, iPMCMC, mPG and
mAPG all gave similar performance, whilst that of mPIMH was significantly worse.

9
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Figure 2: Mean squared error averaged over all dimensions and steps in the state sequence as a
function of MCMC iterations (left) and mean squared error after 104 iterations averaged
over dimensions as function of position in the state sequence (right) for (12) with 50 time
sequences. The solid line shows the median error across the 10 tested synthetic datasets,
while the shading shows the upper and lower quartiles. Ground truth was calculated using
the Rauch–Tung–Striebel smoother algorithm Rauch et al. (1965).
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Figure 3: Normalized effective sample size (NESS) for LGSSM (left) and NLSSM (right).

4.2 Nonlinear State Space Model

We next consider the one dimensional nonlinear state space model (NLSSM) considered by, among
others, Gordon et al. (1993); Andrieu et al. (2010)

x1 ∼ N
(
µ, v2

)
(13a)

xt =
xt−1

2
+ 25

xt−1
1 + x2t−1

+ 8 cos (1.2t) δt−1 (13b)

yt =
xt

2

20
+ εt (13c)
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Figure 4: Histograms of generated samples at t = 1, 100, and 200 for a single dataset generated
from (13) with T = 200. Dashed red line shows an approximate estimate of the ground
truth, found by running a kernel density estimator on the combined samples from a small
number of independent SMC sweeps, each with 107 particles.

where δt−1 ∼ N
(
0, ω2

)
and εt ∼ N

(
0, σ2

)
. We set the parameters as µ = 0, v =

√
5, ω =

√
10

and σ =
√

10. Unlike the LGSSM, this model does not have an analytic solution and therefore one
must resort to approximate inference methods. Further, the multi-modal nature of the latent space
makes full posterior inference over x1:T challenging for long state sequences.

To examine the relative mixing of iPMCMC we calculate an effective sample size (ESS) for
different steps in the state sequence. In order to calculate the ESS, we condensed identical samples
as done in for example van de Meent et al. (2015). Let

ukt ∈ {xit,m[r]}i=1:N,r=1:R
m=1:M , ∀k ∈ 1 . . .K, t ∈ 1 . . . T

denote the unique samples of xt generated by all the nodes and sweeps of particular algorithm after
R iterations, where K is the total number of unique samples generated. The weight assigned to these
unique samples, vkt , is given by the combined weights of all particles for which xt takes the value ukt :

vkt =
R∑
r=1

M∑
m=1

N∑
i=1

w̄i,rt,mη
r
mδxit,m[r](u

k
t ) (14)

where δxit,m[r](u
k
t ) is the Kronecker delta function and ηrm is a node weight. For iPMCMC the node

weight is given by as per the Rao-Blackwellized estimator described in Section 3.2. For mPG and
mPIMH, ηrm is simply 1

RM , as samples from the different nodes are weighted equally in the absence

of interaction. Finally we define the effective sample size as ESSt =
(∑K

k=1

(
vkt
)2)−1.
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Figure 3 shows the ESS for the LGSSM and NLSSM as a function of position in the state
sequence. For this, we omit the samples generated by the initialization step as this SMC sweep
is common to all the tested algorithms. We further normalize by the number of MCMC iterations
so as to give an idea of the rate at which unique samples are generated. These show that for both
models the ESS of iPMCMC, mPG and mAPG is similar towards the end of the space sequence,
but that iPMCMC outperforms all the other methods at the early stages. The ESS of mPG was
particularly poor at early iterations. PIMH performed poorly throughout, reflecting the very low
observed acceptance ratio of around 7.3% on average.

It should be noted that the ESS is not a direct measure of performance for these models. For
example, the equal weighting of nodes is likely to make the ESS artificially high for mPG, mPIMH
and mAPG, when compared with methods such as iPMCMC that assign a weighting to the nodes
at each iteration. To acknowledge this, we also plot histograms for the marginal distributions of a
number of different position in the state sequence as shown in Figure 4. These confirm that iPMCMC
and mPG have similar performance at the latter state sequence steps, whilst iPMCMC is superior at
the earlier stages, with mPG producing almost no more new samples than those from the initialization
sweep due to the degeneracy. The performance of PIMH was consistently worse than iPMCMC
throughout the state sequence, with even the final step exhibiting noticeable noise.

5. Discussion and Future Work

The iPMCMC sampler overcomes degeneracy issues in PG by allowing the newly sampled particles
from SMC nodes to replace the retained particles in CSMC nodes. Our experimental results
demonstrate that, for the models considered, this switching in rate is far higher than the rate at which
PG generates fully independent samples. Moreover, the results in Figure 1b suggest that the degree
of improvement over an mPG sampler with the same total number of nodes increases with the total
number of nodes in the pool.

The mAPG sampler performs an accept reject step that compares the marginal likelihood estimate
of a single CSMC sweep to that of a single SMC sweep. In the iPMCMC sampler the CSMC estimate
of the marginal likelihood is compared to a population sample of SMC estimates, resulting in a
higher probability that at least one of the SMC nodes will become a CSMC node.

Since the original PMCMC paper in 2010 there have been several papers studying (Chopin and
Singh, 2015; Lindsten et al., 2015) and improving upon the basic PG algorithm. Key contributions
to combat the path degeneracy effect are backward simulation (Whiteley et al., 2010; Lindsten and
Schön, 2013) and ancestor sampling (Lindsten et al., 2014). These can also be used to improve the
iPMCMC method ever further.
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Appendix A. Proof of Theorem 1

The proof follows similar ideas as Andrieu et al. (2010). We prove that the interacting particle
Markov chain Monte Carlo sampler is in fact a standard partially collapsed Gibbs sampler (Van Dyk
and Park, 2008) on an extended space Υ := X⊗MTN × [N ]⊗M(T−1)N × [M ]⊗P × [N ]⊗P .

Proof Assume the setup of Section 3. With π̃(·) with as per (9), we will show that the Gibbs sampler
on the extended space, Υ, defined as follows

ξ1:M\{xb1:Pc1:P
,bc1:P } ∼ π̃( · |xb1:Pc1:P

,bc1:P , c1:P , b1:P ), (15a)

cj ∼ π̃( · |ξ1:M , c1:P\j), j = 1, . . . , P, (15b)

bj ∼ π̃( · |ξ1:M , c1:P ), j = 1, . . . , P, (15c)

is equivalent to the iPMCMC method in Algorithm 3.
First, the initial step (15a) corresponds to sampling from

π̃(ξ1:M\{xb1:Pc1:P
,bc1:P }|x

b1:P
c1:P

,bc1:P , c1:P , b1:P ) =

M∏
m=1
m/∈c1:P

qSMC (ξm)
P∏
j=1

qCSMC

(
ξcj\{x

bj
cj ,bcj} | x

bj
cj ,bcj , cj , bj

)
.

This, excluding the conditional trajectories, just corresponds to steps 3–4 in Algorithm 3, i.e. running
P CSMC and M − P SMC algorithms independently.

We continue with a reformulation of (9) which will be useful to prove correctness for the other
two steps

π̃(ξ1:M , c1:P , b1:P )

=
1(
M
P

) M∏
m=1

qSMC (ξm) ·
P∏
j=1

1cj /∈c1:j−1
w̄
bj
T,cj

πT

(
x
bj
cj

) qCSMC

(
ξcj\{x

bj
cj ,bcj} | x

bj
cj ,bcj , cj , bj

)
NT w̄

bj
T,cj

qSMC
(
ξcj
)


=

1(
M
P

) M∏
m=1

qSMC (ξm) ·
P∏
j=1

Ẑcj
Z
1cj /∈c1:j−1

w̄
bj
T,cj

. (16)

Furthermore, we note that by marginalising (collapsing) the above reformulation, i.e. (16), over
b1:P we get

π̃(ξ1:M , c1:P ) =
1(
M
P

) M∏
m=1

qSMC (ξm)
P∏
j=1

Ẑcj
Z
1cj /∈c1:j−1

.

From this it is easy to see that π̃(cj |ξ1:M , c1:P\j) = ζ̂jcj , which corresponds to sampling the condi-
tional node indices, i.e. step 6 in Algorithm 3. Finally, from (16) we can see that simulating b1:P can
be done independently as follows

π̃(b1:P |ξ1:M , c1:P ) =
π̃(b1:P , ξ1:M , c1:P )

π̃(ξ1:M , c1:P )
=

P∏
j=1

w̄
bj
T,cj

.
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This corresponds to step 7 in the iPMCMC sampler, Algorithm 3. So the procedure defined by (15)
is a partially collapsed Gibbs sampler, derived from (9), and we have shown that it is exactly equal to
the iPMCMC sampler described in Algorithm 3.

Appendix B. Using All Particles

The Monte Carlo estimator is given by

E[f(x)] ≈ 1

RP

R∑
r=1

P∑
j=1

f(x′j [r])

=
1

R

R∑
r=1

1

P

P∑
j=1

f(x′j [r]), (17)

where we can note that x′j [r] = x
bj
cj from the internal particle system at iteration r. We can

however make use of all particles to estimate expectations of interest by, for each MCMC iteration r,
averaging over the sampled conditional node indices c1:P and corresponding particle indices b1:P .
This procedure is referred to as a Rao-Blackwellization of a statistical estimator and is (in terms
of variance) never worse than the original one, and often much better. For iteration r we need to
calculate the following

1

P

P∑
j=1

f(x′j [r]) =
1

P

P∑
j=1

f(x
bj
cj ),

where we can Rao-Blackwellize the selection of the retained particle along with each individual
Gibbs update as following

1

P

P∑
j=1

Ecj ,bj |ξ1:M ,c1:P\j

[
f(x

bj
cj )
]

=
1

P

P∑
j=1

Ecj |ξ1:M ,c1:P\j

[
N∑
i=1

w̄iT,cjf(xicj )

]

=
1

P

P∑
j=1

N∑
i=1

Ecj |ξ1:M ,c1:P\j

[
w̄iT,cjf(xicj )

]

=
1

P

P∑
j=1

N∑
i=1

M∑
m=1

ζ̂jmw̄
i
T,mf(xim)

=
1

P

P∑
j=1

M∑
m=1

ζ̂jm

N∑
i=1

w̄iT,mf(xim)

=
1

P

M∑
m=1

 P∑
j=1

ζ̂jm

 ·( N∑
i=1

w̄iT,mf(xim)

)
where we have made use of the knowledge that the internal particle system {(xim, w̄iT,m)} does
not change between Gibbs updates of the cj’s, whereas the ζ̂jm do. We emphasise that this is a
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separate Rao-Blackwellization of each Gibbs update of the conditional node indices, such that each is
conditioned upon the actual update made at j − 1, rather than a simultaneous Rao-Blackwellization
of the full batch of P updates. Though the latter also has analytic form and should theoretically be
lower variance, it suffers from inherent numerical instability and so is difficult to calculate in practise.
We found that empirically there was not a noticeable difference between the performance of the two
procedures. Furthermore, one can always run additional Gibbs updates on the cj’s and obtain an
improve estimate on the relative sample weightings if desired.

Appendix C. Choosing P

For the purposes of this study we assume, without loss of generality, that the indices for the conditional
nodes are always c1:P = {1, . . . , P}. Then we can show that the probability of the event that at least
one conditional nodes switches with an unconditional is given by

P({switch}) = 1− E

 P∏
j=1

Ẑj

Ẑj +
∑M

m=P+1 Ẑm

 . (18)

Now, there are some asymptotic (and experimental) results (Pitt et al., 2012; Bérard et al., 2014;
Doucet et al., 2015) that indicate that a decent approximation for the distribution of the log of the
normalisation constant estimates is Gaussian. This would mean the distributions of the conditional
and unconditional normalisation constant estimates with variance σ2 can be well-approximated as
follows

log

(
Ẑj
Z

)
∼ N (

σ2

2
, σ2), j = 1, . . . , P, (19)

log

(
Ẑm
Z

)
∼ N (−σ

2

2
, σ2), m = P + 1, . . . ,M. (20)

A straight-forward Monte Carlo estimation of the switching probability, i.e. P({switch}), can be seen
in Figure 5 for various settings of σ and M . These results seem to indicate that letting P ≈ M/2
maximises the probability of switching.
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(c) σ = 3
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(d) σ = 4
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(e) σ = 5
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(f) σ = 6

Figure 5: Estimation of switching probability for various settings of σ and M .
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Appendix D. Additional Results Figures
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(d) Kurtosis

Figure 6: Median error in marginal moment estimates with different choices of P and M over 10
different synthetic datasets of the linear Gaussian state space model given in (10) after
1000 MCMC iterations. Errors are normalized by the error of a multi-start PG sampler
which is a special case of iPMCMC for which P = M (see Section 4). Error bars show
the lower and upper quartiles for the errors. It can be seen that for all the moments then
P/M ≈ 1/2 give the best performance. For the mean and standard deviation estimates,
the accuracy relative to the non-interacting distribution case P = M shows a clear increase
with M . This effect is also seen for the skewness and excess kurtosis estimates except for
the distinction between the M = 32 and M = 64 cases. This may be because these metric
are the same for the prior and the posterior such that good results for these metric might
be achievable even when the samples give a poor match to the true posterior.
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(c) Convergence in standard deviation
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(d) Final error in standard deviation

Figure 7: Mean squared error in latent variable mean and standard deviation averaged over all
dimensions of the LGSSM as a function of MCMC iteration (left) and position in the state
sequence (right) for a selection of paraellelizable SMC and PMCMC methods. See figure
3 in main paper for more details.
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(c) Convergence in kurtosis
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Figure 8: Mean squared error in latent variable skewness and kurtosis averaged over all dimensions
of the LGSSM as a function of MCMC iteration (left) and position in the state sequence
(right) for a selection of paraellelizable SMC and PMCMC methods. See figure 3 in main
paper for more details.
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(a) Convergence in mean
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(b) Final error in mean
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(c) Convergence in standard deviation
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(d) Final error in standard deviation

Figure 9: Mean squared error in latent variable mean and standard deviation averaged of all di-
mensions of the LGSSM as a function of MCMC iteration (left) and position in the state
sequence (right) for iPMCMC, mPG, mPIMH and a number of serialized variants. Key for
legends: sPG = single PG chain, sPIMH = single PIMH chain, iPG = single PG chain run
32 times longer, iPIMH = single PIMH chain run 32 times longer and pPG = single PG
with 32 times more particles. For visualization purposes, the chains with extra iterations
have had the number of MCMC iterations normalized by 32 so that the different methods
represent equivalent total computational budget.
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(c) Convergence in kurtosis
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(d) Final error in kurtosis

Figure 10: Mean squared error in latent variable skewness and kurtosis averaged of all dimensions
of the LGSSM as a function of MCMC iteration (left) and position in the state sequence
(right) for iPMCMC, mPG, mPIMH and a number of serialized variants. Key for legends:
sPG = single PG chain, sPIMH = single PIMH chain, iPG = single PG chain run 32 times
longer, iPIMH = single PIMH chain run 32 times longer and pPG = single PG with 32
times more particles. For visualization purposes, the chains with extra iterations have had
the number of MCMC iterations normalized by 32 so that the different methods represent
equivalent total computational budget.
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(a) ESS of distributed methods for LGSSM
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(b) ESS of distributed methods for NLSSM
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(c) ESS comparison to series equivalents for LGSSM
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(d) ESS comparison to series equivalents for NLSSM

Figure 11: Normalized effective sample size for LGSSM (left) and NLSSM (right) for a number of
distributed and series models. Key for legends: sPG = single PG chain, sPIMH = single
PIMH chain, iPG = single PG chain run 32 times longer, iPIMH = single PIMH chain
run 32 times longer and pPG = single PG with 32 times more particles.
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