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Abstract
We propose nested sequential Monte Carlo (NSMC), a methodology to sample from sequences

of probability distributions, even where the random variables are high-dimensional. NSMC gen-
eralises the SMC framework by requiring only approximate, properly weighted, samples from the
SMC proposal distribution, while still resulting in a correct SMC algorithm. Furthermore, NSMC
can in itself be used to produce such properly weighted samples. Consequently, one NSMC sam-
pler can be used to construct an efficient high-dimensional proposal distribution for another NSMC
sampler, and this nesting of the algorithm can be done to an arbitrary degree. This allows us to
consider complex and high-dimensional models using SMC. We show results that motivate the
efficacy of our approach on several filtering problems with dimensions in the order of 100 to 1 000.
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1. Introduction

Inference in complex and high-dimensional statistical models is a very challenging problem that is
ubiquitous in applications. Examples include, but are definitely not limited to, climate informatics
(Monteleoni et al., 2013), bioinformatics (Cohen, 2004) and machine learning (Wainwright and
Jordan, 2008). In particular, we are interested in sequential Bayesian inference, which involves
computing integrals of the form

π̄k(f) := Eπ̄k [f(X1:k)] =

∫
f(x1:k)π̄k(x1:k)dx1:k, (1)

for some sequence of probability densities

π̄k(x1:k) = Z−1
πk
πk(x1:k), k ≥ 1, (2)

with normalisation constants Zπk =
∫
πk(x1:k)dx1:k. Note that x1:k := (x1, . . . , xk) ∈ Xk. The

typical scenario that we consider is the well-known problem of inference in time series or state space
models (Shumway and Stoffer, 2011; Cappé et al., 2005). Here the index k corresponds to time and
we want to process some observations y1:k in a sequential manner to compute expectations with
respect to the filtering distribution π̄k(dxk) = P(Xk ∈ dxk | y1:k). To be specific, we are interested
in settings where

(i) Xk is high-dimensional, i.e. Xk ∈ Rd with d� 1, and

2



NESTED SEQUENTIAL MONTE CARLO METHODS

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

k − 1 k k + 1

Figure 1: Example of a spatio-temporal model where π̄k(x1:k) is described by a k×2×3 undirected
graphical model and xk ∈ R2×3.

(ii) there are local dependencies among the latent variables X1:k, both w.r.t. time k and between
the individual components of the (high-dimensional) vectors Xk.

One example of the type of models we consider are the so-called spatio-temporal models (Wikle,
2015; Cressie and Wikle, 2011; Rue and Held, 2005). In Figure 1 we provide a probabilistic graph-
ical model representation of a spatio-temporal model that we will explore further in Section 6.

Sequential Monte Carlo (SMC) methods, reviewed in Section 2.1, comprise one of the most
successful methodologies for sequential Bayesian inference. However, SMC struggles in high-
dimensions and these methods are rarely used for dimensions, say, d ≥ 10 (Rebeschini and van
Handel, 2015). The purpose of the NSMC methodology is to push this limit well beyond d = 10.

The basic strategy, described in Section 2.2, is to mimic the behaviour of a so-called fully
adapted SMC algorithm. Full adaptation can drastically improve the efficiency of SMC in high di-
mensions. Unfortunately, it can rarely be implemented in practice since the fully adapted proposal
distributions are typically intractable. NSMC addresses this difficulty by requiring only approxi-
mate, properly weighted, samples from the proposal distribution. The proper weighting condition
ensures the validity of NSMC, thus providing a generalisation of the family of SMC methods. Fur-
thermore, NSMC will itself produce properly weighted samples. Consequently, it is possible to
use one NSMC procedure within another to construct efficient high-dimensional proposal distribu-
tions. This nesting of the algorithm can be done to an arbitrary degree. For instance, for the model
depicted in Figure 1 we could use three nested samplers, one for each dimension of the “volume”.

The main methodological development is concentrated to Sections 3–4. We introduce the con-
cept of proper weighting, approximations of the proposal distribution, and nesting of Monte Carlo
algorithms. Throughout Section 3 we consider simple importance sampling and in Section 4 we
extend the development to the sequential setting.

We deliberately defer the discussion of the existing body of related work until Section 5, to open
up for a better understanding of the relationships to the new developments presented in Sections 3–
4. We also discuss various attractive features of NSMC that are of interest in high-dimensional
settings, e.g. the fact that it is easy to distribute the computation, which results in improved memory
efficiency and lower communication costs. Section 6 profiles our method extensively with a state-of-
the-art competing algorithm on several high-dimensional data sets. We also show the performance
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of inference and the modularity of the method on a d = 1 056 dimensional climatological spatio-
temporal model (Fu et al., 2012) structured according to Figure 1. Finally, in Section 7 we conclude
the paper with some final remarks.

2. Background and Inference Strategy

2.1 Sequential Monte Carlo

Evaluating π̄k(f) as well as the normalisation constant Zπk in (2) is typically intractable and we
need to resort to approximations. SMC methods, or particle filters (PF), constitute a popular class
of numerical approximations for sequential inference problems. Here we give a high-level intro-
duction to the concepts underlying SMC methods, and postpone the details to Section 4. For a more
extensive treatment we refer to Doucet and Johansen (2011); Cappé et al. (2005); Doucet et al.
(2001). In particular, we will use the auxiliary SMC method as proposed by Pitt and Shephard
(1999).

At iteration k−1, the SMC sampler approximates the target distribution π̄k−1 by a collection of
weighted particles (samples) {(Xi

1:k−1,W
i
k−1)}Ni=1. These samples define an empirical point-mass

approximation of the target distribution

π̄Nk−1(dx1:k−1) :=
N∑
i=1

W i
k−1∑

`W
`
k−1

δXi
1:k−1

(dx1:k−1), (3)

where δX(dx) denotes a Dirac measure at X . Each iteration of the SMC algorithm can then con-
ceptually be described by three steps, resampling, propagation, and weighting.

The resampling step puts emphasis on the most promising particles by discarding the unlikely
ones and duplicating the likely ones. The propagation and weighting steps essentially correspond to
using importance sampling when changing the target distribution from π̄k−1 to π̄k, i.e. simulating
new particles from a proposal distribution and then computing corresponding importance weights.

2.2 Adapting the Proposal Distribution

The first working SMC algorithm was the bootstrap PF by Gordon et al. (1993), which propagates
particles by sampling from the system dynamics and computes importance weights according to the
observation likelihood (in the state space setting). However, it is well known that the bootstrap PF
suffers from weight collapse in high-dimensional settings (Bickel et al., 2008), i.e. the estimate is
dominated by a single particle with weight close to one. This is an effect of the mismatch between
the importance sampling proposal and the target distribution, which typically gets more pronounced
in high dimensions.

More efficient proposals, partially alleviating the degeneracy issue for some models, can be de-
signed by adapting the proposal distribution to the target distribution (see Section 4.2). In Naesseth
et al. (2014a) we make use of the fully adapted SMC method (Pitt and Shephard, 1999) for doing
inference in a (fairly) high-dimensional discrete model where xk is a 60-dimensional discrete vec-
tor. We can then make use of forward filtering and backward simulation, operating on the individual
components of each xk, in order to sample from the fully adapted SMC proposals. However, this
method is limited to models where the latent space is either discrete or Gaussian and the optimal
proposal can be identified with a tree-structured graphical model. Our development here can be
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seen as a non-trivial extension of this technique. Instead of coupling one SMC sampler with an
exact forward filter/backward simulator (which in fact reduces to an instance of standard SMC),
we derive a way of coupling multiple SMC samplers and SMC-based backward simulators. This
allows us to construct procedures for mimicking the efficient fully adapted proposals for arbitrary
latent spaces and structures in high-dimensional models.

3. Proper Weighting and Nested Importance Sampling

In this section we will lay the groundwork for the derivation of the class of NSMC algorithms.
We start by considering the simpler case of importance sampling (IS), which is a fundamental
component of SMC, and introduce the key concepts that we make use of. In particular, we will use
a (slightly nonstandard) presentation of an algorithm as an instance of a class, in the object-oriented
sense, and show that these classes can be nested to an arbitrary degree.

3.1 Exact Approximation of the Proposal Distribution

Let π̄(x) = Z−1
π π(x) be a target distribution of interest. IS can be used to estimate an expectation

π̄(f) := Eπ̄[f(X)] by sampling from a proposal distribution q̄(x) = Z−1
q q(x) and computing the

estimator (
∑N

i=1W
i)−1

∑N
i=1W

if(Xi), with W i =
Zqπ(Xi)
q(Xi)

, and where {(Xi,W i)}Ni=1 are the
weighted samples. It is possible to replace the IS weight by a nonnegative unbiased estimate, and
still obtain a valid (consistent, etc.) algorithm (Liu, 2001, p. 37). One way to motivate this approach
is by considering the random weight to be an auxiliary variable and to extend the target distribution
accordingly. Our development is in the same flavour, but we will use a more explicit condition on
the relationship between the random weights and the simulated particles. Specifically, we will make
use of the following key property to formally justify the proposed algorithms.

Definition 1 (Properly weighted sample). A (random) pair (X,W ) is properly weighted for an
unnormalised distribution p ifW ≥ 0 and E[f(X)W ] = p(f) :=

∫
f(x)p(x)dx for all measurable

functions f .

Note that proper weighting of {(Xi,W i)}Ni=1 implies unbiasedness of the estimate of the nor-

malising constant of p. Indeed, taking f(x) ≡ 1 gives E
[

1
N

∑N
i=1W

i
]

=
∫
p(x)dx =: Zp.

Interestingly, to construct a valid IS algorithm for our target π̄ it is sufficient to generate samples
that are properly weighted w.r.t. the proposal distribution q. To formalise this claim, assume that we
are not able to simulate exactly from q̄, but that it is possible to evaluate the unnormalised density
q point-wise. Furthermore, assume we have access to a class Q, which works as follows. The
constructor of Q requires the specification of an unnormalised density function, say, q, which will
be approximated by the procedures of Q. Furthermore, to highlight the fact that we will typically use
IS (and SMC) to construct Q, the constructor also takes as an argument a precision parameter M ,
corresponding to the number of samples used by the “internal” Monte Carlo procedure. An object
is then instantiated as q = Q(q,M). The class Q is assumed to have the following properties:

(A1) Let q = Q(q,M). Assume that:
1. The construction of q results in the generation of a (possibly random) member variable, ac-

cessible as Ẑq = q.GetZ(). The variable Ẑq is a nonnegative, unbiased estimate of the nor-
malising constant Zq =

∫
q(x)dx.
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2. Q has a member function Simulate which returns a (possibly random) variableX = q.Simulate(),
such that (X, Ẑq) is properly weighted for q.

With the definition of Q in place, it is possible to generalise1 the basic importance sampler as in
Algorithm 1, which generates weighted samples {(Xi,W i)}Ni=1 targeting π̄. Note that Algorithm 1
is different from a random weight IS, since it approximates the proposal distribution (and not just
the importance weights).

Algorithm 1 Nested IS (steps 1–3 for i = 1, . . . , N )

1. Initialise qi = Q(q,M).

2. Set Ẑiq = qi.GetZ() and Xi = qi.Simulate().

3. Set W i =
Ẑiqπ(Xi)

q(Xi)
.

4. Compute Ẑπ = 1
N

∑N
i=1W

i.

To see the validity of Algorithm 1 we can interpret the sampler as a standard IS algorithm for
an extended target distribution, defined as Π̄(x, u) := u Q̄(x, u)π̄(x)q−1(x), where Q̄(x, u) is the
joint PDF of the random pair (q.Simulate(), q.GetZ()). Note that Π̄ is indeed a PDF that admits π̄
as a marginal; for any measurable subset A ⊆ X,

Π̄(A× R+) =

∫
1A(x)

u π̄(x)

q(x)
Q̄(x, u)dxdu = E

[
Ẑq

1A(X)π̄(X)

q(X)

]
= q̄

(
1A

π̄

q

)
Zq = π̄(A),

where the penultimate equality follows from the fact that (X, Ẑq) is properly weighted for q. Fur-
thermore, the standard unnormalised IS weight for a sampler with target Π̄ and proposal Q̄ is given
by uπ/q, in agreement with Algorithm 1.

Algorithm 1 is an example of what is referred to as an exact approximation; see e.g., Andrieu and
Roberts (2009); Andrieu et al. (2010). Algorithmically, the method appears to be an approximation
of an IS, but samples generated by the algorithm nevertheless target the correct distribution π̄.

3.2 Modularity of Nested IS

To be able to implement Algorithm 1 we need to define a class Q with the required properties
(A1). The modularity of the procedure (as well as its name) comes from the fact that we can use
Algorithm 1 also in this respect. Indeed, let us now view π̄—the target distribution of Algorithm 1—
as the proposal distribution for another Nested IS procedure and consider the following definition
of Q:

1. Algorithm 1 is executed at the construction of the object p = Q(π,N), and p.GetZ() returns
the normalising constant estimate Ẑπ.

2. p.Simulate() simulates a categorical random variable B with P(B = i) = W i/
∑N

`=1W
`

and returns XB .

1. With q.GetZ() 7→ Z and q.Simulate() returning a sample from q̄ we obtain the standard IS method.
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Now, for any measurable f we have,

E[f(XB)Ẑπ] =
N∑
i=1

E
[
f(Xi)Ẑπ

W i

NẐπ

]
=

1

N

N∑
i=1

E

[
f(Xi)

Ẑiqπ(Xi)

q(Xi)

]

= q̄

(
fπ

q

)
Zq = π̄(f)Zπ,

where, again, we use the fact that (Xi, Ẑiq) is properly weighted for q. This implies that (XB, Ẑπ)
is properly weighted for π and that our definition of Q(π,N) indeed satisfies condition (A1).

The Nested IS algorithm in itself is unlikely to be of direct practical interest. However, in the
next section we will, essentially, repeat the preceding derivation in the context of SMC to develop
the NSMC method.

4. Nested Sequential Monte Carlo

4.1 Fully Adapted SMC Samplers

Let us return to the sequential inference problem. As before, let π̄k(x1:k) = Z−1
πk
πk(x1:k) denote

the target distribution at “time” k. The unnormalised density πk can be evaluated point-wise, but
the normalising constant Zπk is typically unknown. We will use SMC to simulate sequentially
from the distributions {π̄k}nk=1. In particular, we consider the fully adapted SMC sampler (Pitt
and Shephard, 1999), which corresponds to a specific choice of resampling weights and proposal
distribution, chosen in such a way that the importance weights are all equal to 1/N . Specifically,
the proposal distribution (often referred to as the optimal proposal) is given by q̄k(xk |x1:k−1) =
Zqk(x1:k−1)−1qk(xk |x1:k−1), where

qk(xk |x1:k−1) :=
πk(x1:k)

πk−1(x1:k−1)
.

In addition, the normalising “constant”Zqk(x1:k−1) =
∫
qk(xk |x1:k−1)dxk is further used to define

the resampling weights, i.e. the particles at time k − 1 are resampled according to Zqk(x1:k−1)
before they are propagated to time k. For notational simplicity, we use the convention x1:0 = ∅,
q1(x1 |x1:0) = π1(x1) and Zq1(x1:0) = Zπ1 . The fully adapted auxiliary SMC sampler is given in
Algorithm 2.

As mentioned above, at each iteration k = 1, . . . , n, the method produces unweighted samples
{Xi

k}Ni=1 approximating π̄k. It also produces an unbiased estimate Ẑπk of Zπk (Del Moral, 2004,
Proposition 7.4.1). The algorithm is expressed in a slightly non-standard form; at iteration k we
loop over the ancestor particles, i.e. the particles after resampling at iteration k − 1, and let each
ancestor particle j generate mj

k offsprings. (The variable L is just for bookkeeping.) This is done
to clarify the connection with the NSMC procedure below. Furthermore, we have included a (com-
pletely superfluous) resampling step at iteration k = 1, where the “dummy variables” {Xi

1:0}Ni=1

are resampled according to the (all equal) weights {Zq1(Xi
1:0)}Ni=1 = {Zπ1}Ni=1. The analogue of

this step is, however, used in the NSMC algorithm, where the initial normalising constant Zπ1 is
estimated. We thus have to resample the corresponding initial particle systems accordingly.
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Algorithm 2 SMC (fully adapted)

1. Set Ẑπ0 = 1.

2. for k = 1 to n

(a) Compute Ẑπk = Ẑπk−1
× 1

N

∑N
j=1 Zqk(Xj

1:k−1).

(b) Drawm1:N
k from a multinomial distribution with probabilities

Zqk (Xj
1:k−1)∑N

`=1 Zqk (X`
1:k−1)

, for j =

1, . . . , N .

(c) Set L← 0

(d) for j = 1 to N
i. DrawXi

k ∼ q̄k(· |X
j
1:k−1) and letXi

1:k = (Xj
1:k−1, X

i
k) for i = L+1, . . . , L+mj

k.

ii. Set L← L+mj
k.

4.2 Fully Adapted Nested SMC Samplers

In analogue with Section 3, assume now that we are not able to simulate exactly from q̄k, nor
compute Zqk . Instead, we have access to a class Q which satisfies condition (A1). The proposed
NSMC method is then given by Algorithm 3.

Algorithm 3 Nested SMC (fully adapted)

1. Set Ẑπ0 = 1.

2. for k = 1 to n

(a) Initialise qj = Q(qk(· |Xj
1:k−1),M) for j = 1, . . . , N .

(b) Set Ẑjqk = qj .GetZ() for j = 1, . . . , N .

(c) Compute Ẑπk = Ẑπk−1
×
{

1
N

∑N
j=1 Ẑ

j
qk

}
.

(d) Draw m1:N
k from a multinomial distribution with probabilities

Ẑjqk∑N
`=1 Ẑ

`
qk

for j =

1, . . . , N .

(e) Set L← 0

(f) for j = 1 to N
i. ComputeXi

k = qj .Simulate() and letXi
1:k = (Xj

1:k−1, X
i
k) for i = L+1, . . . , L+

mj
k.

ii. delete qj .
iii. Set L← L+mj

k.
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Algorithm 3 can be seen as an exact approximation of the fully adapted SMC sampler in Al-
gorithm 2. (In Appendix A.1 we provide a formulation of NSMC with arbitrary proposals and
resampling weights.) We replace the exact computation of Zqk and exact simulation from q̄k, by the
approximate procedures available through Q. Despite this approximation, however, Algorithm 3 is
a valid SMC method. This is formalised by the following theorem.

Theorem 2. Assume that Q satisfies condition (A1). Then, under certain regularity conditions on
the function f : Xk 7→ Rd and for an asymptotic variance ΣM

k (f), both specified in Appendix A.1.2,
we have

N1/2

(
1

N

N∑
i=1

f(Xi
1:k)− π̄k(f)

)
D−→ N (0,ΣM

k (f)),

where {Xi
1:k}Mi=1 are generated by Algorithm 3 and D−→ denotes convergence in distribution.

Proof See Appendix A.1.2.

Remark 3. The key point with Theorem 2 is that, under certain regularity conditions, the NSMC
method converges at rate

√
N even for a fixed (and finite) value of the precision parameter M . The

asymptotic variance ΣM
k (f), however, will depend on the accuracy and properties of the approxi-

mative procedures of Q. We leave it as future work to establish more informative results, relating
the asymptotic variance of NSMC to that of the ideal, fully adapted SMC sampler.

4.3 Backward Simulation and Modularity of NSMC

As previously mentioned, the NSMC procedure is modular in the sense that we can make use of
Algorithm 3 also to define the class Q. Thus, we now view π̄n as the proposal distribution that we
wish to approximately sample from using NSMC. Algorithm 3 directly generates an estimate Ẑπn
of the normalising constant of πn (which indeed is unbiased, see Theorem 6). However, we also
need to generate a sample X̃1:n such that (X̃1:n, Ẑπn) is properly weighted for πn.

The simplest approach, akin to the Nested IS procedure described in Section 3.2, is to draw Bn
uniformly on {1, . . . , N} and return X̃1:n = XBn

1:n . This will indeed result in a valid definition
of the Simulate procedure. However, this approach will suffer from the well known path degen-
eracy of SMC samplers. In particular, since we call qj .Simulate() multiple times in Step 2(f)i of
Algorithm 3, we risk to obtain (very) strongly correlated samples by this simple approach.

It is possible to improve the performance of the above procedure by instead making use of
a backward simulator (Godsill et al., 2004; Lindsten and Schön, 2013) to simulate X̃1:n. The
backward simulator, given in Algorithm 4, is a type of smoothing algorithm; it makes use of the
particles generated by a forward pass of Algorithm 3 to simulate backward in “time” a trajectory
X̃1:n approximately distributed according to π̄n.

Remark 4. Algorithm 4 assumes unweighted particles and can thus be used in conjunction with the
fully adapted NSMC procedure of Algorithm 2. If, however, the forward filter is not fully adapted
the weights need to be accounted for in the backward simulation; see Appendix A.1.3.

The modularity of NSMC is established by the following result.
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Algorithm 4 Backward simulator (fully adapted)

1. Draw Bn uniformly on {1, . . . , N}.

2. Set X̃n = XBn
n .

3. for k = n− 1 to 1

(a) Compute W̃ j
k =

πn((Xj
1:k, X̃k+1:n))

πk(X
j
1:k)

for j = 1, . . . , N .

(b) DrawBk from a categorical distribution with probabilities
W̃ j
k∑N

`=1 W̃
`
k

for j = 1, . . . , N .

(c) Set X̃k:n = (XBk
k , X̃k+1:n).

Definition 5. Let p = Q(πn, N) be defined as follows:
1. The constructor executes Algorithm 3 with target distribution πn and with N particles, and

p.GetZ() returns the estimate of the normalising constant Ẑπn .
2. p.Simulate() executes Algorithm 4 and returns X̃1:n.

Theorem 6. The class Q defined as in Definition 5 satisfies condition (A1).

Proof See Appendix A.1.3.

A direct, and important, consequence of Theorem 6 is that NSMC can be used as a component of
powerful learning algorithms, such as the particle Markov chain Monte Carlo (PMCMC) method
(Andrieu et al., 2010) and many of the other methods discussed in Section 5. Since standard SMC
is a special case of NSMC, Theorem 6 implies proper weighting also of SMC.

5. Practicalities and Related Work

There has been much recent interest in using SMC within SMC in various ways. The SMC2 by
Chopin et al. (2013) and the recent method by Crisan and Mı́guez (2013) are sequential learning
algorithms for state space models, where one SMC sampler for the parameters is coupled with an-
other SMC sampler for the latent states. Johansen et al. (2012) and Chen et al. (2011) address the
state inference problem by splitting the state variable into different components and run coupled
SMC samplers for these components. These methods differ substantially from NSMC; they solve
different problems and the “internal” SMC sampler(s) is constructed in a different way (for approxi-
mate marginalisation instead of for approximate simulation). Another related method is the random
weights PF of Fearnhead et al. (2010a), requiring exact samples from q̄ and where the importance
weights are estimated using a nested Monte Carlo algorithm.

The method most closely related to NSMC is the space-time particle filter (ST-PF) (Beskos
et al., 2014a), which has been developed independently and in parallel with our work. The ST-PF
is also designed for solving inference problems in high-dimensional models. It can be seen as a
island PF (Vergé et al., 2015) implementation of the method presented by Naesseth et al. (2014b).
Specifically, for a spatio-temporal models they run an island PF over both spatial and temporal
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dimensions. However, the ST-PF does not generate an approximation of the fully adapted SMC
sampler.

Another key distinction between NSMC and ST-PF is that in the latter each particle in the
“outer” SMC sampler comprises a complete particle system from the “inner” SMC sampler. For
NSMC, on the other hand, the particles will simply correspond to different hypotheses about the
latent variables (as in standard SMC), regardless of how many samplers that are nested. This is
a key feature of NSMC, since it implies that it is easily distributed over the particles. The main
computational effort of Algorithm 3 is the construction of {qj}Nj=1 and the calls to the Simulate
procedure, which can be done independently for each particle. This leads to improved memory
efficiency and lower communication costs. Furthermore, we have found (see Section 6) that NSMC
can outperform ST-PF even when run on a single machine with matched computational costs.

Another strength of NSMC methods are their relative ease of implementation, which we show
in Section 6.3. We use the framework to sample from what is essentially a cubic grid Markov ran-
dom field (MRF) model just by implementing three nested samplers, each with a target distribution
defined on a simple chain.

There are also other SMC-based methods designed for high-dimensional problems, e.g., the
block PF studied by Rebeschini and van Handel (2015), the location particle smoother by Briggs
et al. (2013) and the PF-based methods reviewed in Djuric and Bugallo (2013). However, these
methods are all inconsistent, as they are based on various approximations that result in systematic
errors.

The previously mentioned PMCMC (Andrieu et al., 2010) is a related method, where SMC
is used as a component of an MCMC algorithm. We make use of a very similar extended space
approach to motivate the validity of our algorithm. Note that our proposed algorithm can be used as
a component in PMCMC and most of the other algorithms mentioned above, which further increases
the scope of models it can handle.

6. Experimental Results

We illustrate NSMC on three high-dimensional examples, both with real and synthetic data. We
compare NSMC with standard (bootstrap) PF and the ST-PF of Beskos et al. (2014a) with equal
computational budgets on a single machine (i.e., neglecting the fact that NSMC is more easily dis-
tributed). These methods are, to the best of our knowledge, the only other available consistent online
methods for full Bayesian inference in general sequential models. For more detailed explanations
of the models and additional results, see Appendix A.32.

6.1 Gaussian State Space Model

We start by considering a high-dimensional Gaussian state space model, where we have access to
the true solution through belief propagation. The latent variables and measurements {X1:k, Y1:k},
with {Xk, Yk} = {Xk,l, Yk,l}dl=1, are modeled by a d × k lattice Gaussian MRF. The true data is
simulated from a nearly identical state space model (see Appendix A.3.1). We run a 2-level NSMC
sampler. The outer level is fully adapted, i.e. the proposal distribution is qk = p(xk |xk−1, yk),
which thus constitute the target distribution for the inner level. To generate properly weighted
samples from qk, we use a bootstrap PF operating on the d components of the vector xk. Note that

2. Code available at https://github.com/can-cs/nestedsmc
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Figure 2: Top: Median (over dimension) ESS (4) and 15–85% percentiles (shaded region). Bottom:
The ERS (5) based on the resampling weights in the (outermost) particle filter. The results
are based on 100 independent runs for the Gaussian MRF with dimension d.

we only use bootstrap proposals where the actual sampling takes place, and that the conditional
distribution p(xk |xk−1, yk) is not explicitly used.

We simulate data from this model for k = 1, . . . , 100 for different values of d = dim(xk) ∈
{50, 100, 200}. The exact filtering marginals are computed using belief propagation.We compare
with both the ST-PF and standard (bootstrap) PF.

The results are evaluated based on the effective sample size (ESS, see e.g. Fearnhead et al.
(2010b)) defined as,

ESS(xk,l) =

(
E
[

(x̂k,l−µk,l)2
σ2
k,l

])−1

, (4)

where x̂k,l denote the mean estimates and µk,l and σ2
k,l denote the true mean and variance of

xk,l | y1:k obtained from belief propagation. The expectation in (4) is approximated by averag-
ing over 100 independent runs of the involved algorithms. The ESS reflects the estimator accuracy,
obvious by the definition which is tightly related to the mean-squared-error. Intuitively the ESS
corresponds to the equivalent number of i.i.d. samples needed for the same accuracy.

We also consider the effective resample size (ERS, Kong et al. (1994)), which is based on the
resampling weights at the top levels in the respective SMC algorithms,

ERS =

(∑N
i=1 Ẑ

i
qk

)2
∑N
i=1

(
Ẑiqk

)2 . (5)

The ERS is an estimate of the effective number of unique particles (or particle systems in the case
of ST-PF) available at each resampling step.

We use N = 500 and M = 2 · d for NSMC and match the computational time for ST-PF
and bootstrap PF. We report the results in Figure 2. The bootstrap PF is omitted from d = 100,

12
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200 due to its poor performance already for d = 50 (which is to be expected). Each dimension
l = 1, . . . , d provides us with a value of the ESS, so we present the median (lines) and 15–85%
percentiles (shaded regions) in the first row of Figure 2. The ERS is displayed in the second row of
Figure 2. Note that ESS gives a better reflection of estimation accuracy than ERS.

We have conducted additional experiments with different model parameters and different choices
for N and M (some additional results are given in Appendix A.3.1). Overall the results seem to be
in agreement with the ones presented here, however ST-PF seems to be more robust to the trade-off
between N and M . A rule-of-thumb for NSMC is to generally try to keep N as high as possible,
while still maintaining a reasonably large ERS.

6.2 Non-Gaussian State Space Model

Next, we consider an example with a non-Gaussian SSM, borrowed from Beskos et al. (2014a)
where the full details of the model are given. The transition probability p(xk |xk−1) is a localised
Gaussian mixture and the measurement probability p(yk |xk) is t-distributed. The model dimension
is d = 1 024. Beskos et al. (2014a) report improvements for ST-PF over both the bootstrap PF
and the block PF by Rebeschini and van Handel (2015). We use N = M = 100 for both ST-PF
and NSMC (the special structure of this model implies that there is no significant computational
overhead from running backward sampling) and the bootstrap PF is given N = 10 000. In Figure 3
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Figure 3: Median ESS with 15− 85% percentiles (shaded region) for the non-Gaussian SSM.

we report the ESS (4), estimated according to Carpenter et al. (1999). The ESS for the bootstrap PF
is close to 0, for ST-PF around 1–2, and for NSMC slightly higher at 7–8. However, we note that all
methods perform quite poorly on this model, and to obtain satisfactory results it would be necessary
to use more particles.

6.3 Spatio-Temporal Model – Drought Detection

In this final example we study the problem of detecting droughts based on measured precipitation
data (Jones and Harris, 2013) for different locations on earth. We look at the situation in North
America during the years 1901–1950 and the Sahel region in Africa during the years 1950–2000.
These spatial regions and time frames were chosen since they include two of the most devastating
droughts during the last century, the so-called Dust Bowl in the US during the 1930s (Schubert

13
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et al., 2004) and the decades long drought in the Sahel region in Africa starting in the 1960s (Foley
et al., 2003; Hoerling et al., 2006). We consider the spatio-temporal model defined by Fu et al.

· · · Xk−1

N
→

Xk Xk+1 · · ·
M1
→

↓M2 ↓M2 ↓M2

Xk,1:2,1 Xk,1:2,2 Xk,1:2,3

Figure 4: Illustration of the three-level NSMC.

(2012) and compare with the results therein. Each location in a region is modelled to be in either
a normal state 0 or in an abnormal state 1 (drought). Measurements are given by precipitation (in
millimeters) for each location and year. At every time instance k our latent structure is described by
a rectangular 2D grid Xk = {Xk,i,j}I,Ji=1,j=1; in essence this is the model showcased in Figure 1. Fu
et al. (2012) considers the problem of finding the maximum aposteriori configuration, using a linear
programming relaxation. We will instead compute an approximation of the full posterior filtering
distribution π̄k(xk) = p(xk | y1:k). The rectangular structure is used to instantiate an NSMC method
that on the first level targets the full posterior filtering distribution. To sample from Xk we run, on
the second level, an NSMC procedure that operates on the “columns” Xk,1:I,j , j = 1, . . . , J .
Finally, to sample each column Xk,1:I,j we run a third level of SMC, that operates on the individual
components Xk,i,j , i = 1, . . . , I , using a bootstrap proposal. The structure of our NSMC method
applied to this particular problem is illustrated in Figure 4.

Figure 5 gives the results on the parts of North America that we consider. The first row shows the
number of locations where the estimate of p(xk,i,j = 1) exceeds {0.5, 0.7, 0.9}, for both regions.
These results seems to be in agreement with Fu et al. (2012, Figures 3, 6). However, we also
receive an approximation of the full posterior and can visualise uncertainty in our estimates, as
illustrated by the three different levels of posterior probability for drought. In general, we obtain
a rich sample diversity from the posterior distribution. However, for some problematic years the
sampler degenerates, with the result that the three credibility levels all coincide. This is also visible
in the second row of Figure 5, where we show the posterior estimates p(xk,i,j | y1:k) for the years
1939–1941, overlayed on the regions of interest. For year 1940 the sampler degenerates and only
reports 0-1 probabilities for all sites. Naturally, one way to improve the estimates is to run the
sampler with a larger number of particles, which has been kept very low in this proof-of-concept.

7. Conclusions

We have shown that a straightforward NSMC implementation with fairly few particles can attain
reasonable approximations to the filtering problem for dimensions in the order of hundreds, or
even thousands. This means that NSMC methods takes the SMC framework an important step
closer to being viable for high-dimensional statistical inference problems. However, NSMC is not
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Figure 5: Top: Number of locations with estimated p(x = 1) > {0.5, 0.7, 0.9} for the two regions.
Bottom: Estimate of p(xt,i = 1) for all sites over a span of 3 years. All results for
N = 100, N1 = {30, 40}, N2 = 20.

a silver bullet for solving high-dimensional inference problems, and the approximation accuracy
will be highly model dependent. Hence, much work remains to be done, for instance on combining
NSMC with other techniques for high-dimensional inference such as localisation (Rebeschini and
van Handel, 2015) and annealing (Beskos et al., 2014b), in order to solve even more challenging
problems.
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Appendix A. Appendix

In this appendix we start out in Section A.1 by providing a more general formulation of the NSMC
method and proofs of the central limit and proper weighting theorems of the main manuscript.
We also detail (Section A.2) a straightforward extension of nested IS to a sequential version. We
show that a special case of this nested sequential IS turns out to be more or less equivalent to the
importance sampling squared algorithm by Tran et al. (2013). This relationship serves as evidence
that illustrates that the NSMC framework being more widely applicable than the scope of problems
considered in this article. Finally, in Section A.3 we give more details and results on the experiments
considered in the main manuscript.

A.1 Nested Sequential Monte Carlo

We start by presenting a general formulation of a nested auxiliary SMC sampler in Algorithm 5. In
this formulation, qk(xk |x1:k−1) is an arbitrary (unnormalised) proposal, normalised by

Zqk(x1:k−1) =

∫
qk(xk |x1:k−1)dxk.

Furthermore, the resampling weights are obtain by multiplying the importance weights with the
arbitrary adjustment multipliers νk−1(x1:k−1, Zqk), which may depend on both the state sequence
x1:k−1 and the normalising constant (estimate). The fully adapted NSMC sampler (Algorithm 3 in
the main document) is obtained as a special case if we choose

qk(xk |x1:k−1) =
πk(x1:k)

πk−1(x1:k−1)

and νk−1(x1:k−1, Zqk) = Zqk , in which case the importance weights are indeed given by W i
k ≡ 1.

A.1.1 NESTED SMC IS SMC

The validity of Algorithm 5 can be established by interpreting the algorithm as a standard SMC
procedure for a sequence of extended target distributions. If Ẑqk is computed deterministically,
proper weighting (i.e., unbiasedness) ensures that Ẑqk = Zqk and it is evident that the algorithm
reduces to a standard SMC sampler. Hence, we consider the case when the normalising constant
estimates Ẑqk are random.

For k = 1, . . . , n + 1, let us introduce the random variable Uk−1 which encodes the complete
internal state of the object q generated by q = Q(qk(· |x1:k−1),M). Let the distribution of Uk−1 be
denoted as ψ̄Mk−1(uk−1 |x1:k−1). To put Algorithm 5 into a standard (auxiliary) SMC framework,
we shall interpret steps 2a–2b of Algorithm 5 as being the last two steps carried out during iteration
k− 1, rather than the first two steps carried out during iteration k. This does not alter the algorithm
per se, but it results in that the resampling step is conducted first at each iteration, which is typically
the case for standard auxiliary SMC formulations.

The estimator of the normalising constant is computable from the internal state of q, so that we
can introduce a function τk such that Ẑqk = τk(Uk−1). Furthermore, note that the simulation of Xk

via Xk = q.Simulate() is based solely on the internal state Uk−1, and denote by γ̄Mk (xk |Uk−1) the
distribution of Xk.
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Algorithm 5 Nested SMC (auxiliary SMC formulation)

1. Set {Xi
0}Ni=1 to arbitrary dummy variables. Set W i

0 = 1 for i = 1, . . . , N . Set Ẑπ0 = 1.

2. for k = 1 to n

(a) Initialise qj = Q(qk(· |Xj
1:k−1),M) for j = 1, . . . , N .

(b) Compute Ẑjqk = qj .GetZ() for j = 1, . . . , N .

(c) Compute ν̂jk−1 = νk−1(Xj
1:k−1, Ẑ

j
qk) for j = 1, . . . , N .

(d) Draw m1:N
k from a multinomial distribution with probabilities

ν̂jk−1W
j
k−1∑N

`=1 ν̂
`
k−1W

`
k−1

for

j = 1, . . . , N .

(e) Set L← 0

(f) for j = 1 to N
i. ComputeXi

k = qj .Simulate() and letXi
1:k = (Xj

1:k−1, X
i
k) for i = L+1, . . . , L+

mj
k.

ii. Compute W i
k =

πk(X
i
1:k)

πk−1(Xj
1:k−1)

Ẑjqk

ν̂jk−1qk(X
i
k |X

j
1:k−1)

for i = L+ 1, . . . , L+mj
k.

iii. delete qj .
iv. Set L← L+mj

k.

(g) Compute Ẑπk = Ẑπk−1
×
{

1
N

∑N
j=1 ν̂

j
k−1W

j
k−1

}
×
{

(
∑N

j=1W
j
k )/(

∑N
j=1W

j
k−1)

}
.

Lemma 7. Assume that Q satisfies condition (A1) in the main manuscript. Then,∫
τk(uk−1)γ̄Mk (xk |uk−1)ψ̄Mk−1(uk−1 |x1:k−1)duk−1 = qk(xk |x1:k−1).

Proof The pair (Xk, τk(Uk−1)) are properly weighted for qk. Hence, for a measurable function f ,

E[f(Xk)τk(Uk−1) |x1:k−1] =

∫∫
f(xk)τk(uk−1)γ̄Mk (xk |uk−1)ψ̄Mk−1(uk−1 |x1:k−1)duk−1dxk

= Zk(x1:k−1)

∫
f(xk)q̄k(xk |x1:k−1)dxk =

∫
f(xk)qk(xk |x1:k−1)dxk.

Since f is arbitrary, the result follows.

We can now define the sequence of (unnormalised) extended target distributions for the Nested
SMC sampler as,

Πk(x1:k, u0:k) :=
τk(uk−1)ψ̄Mk (uk |x1:k)γ̄

M
k (xk |uk−1)

qk(xk |x1:k−1)

πk(x1:k)

πk−1(x1:k−1)
Πk−1(x1:k−1, u0:k−1),

and Π0(u0) = ψ̄M0 (u0). We write Θk = Xk × Uk for the domain of Πk.
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Lemma 8. Assume that Q satisfies condition (A1) in the main manuscript. Then,∫
τk(uk−1)γ̄Mk (xk |uk−1)Πk−1(x1:k−1, u0:k−1)du0:k−1 = πk−1(x1:k−1)qk(xk |x1:k−1).

Proof The proof follows by induction. At k = 1, we have
∫
τ1(u0)γ̄M1 (x1 |u0)ψ̄M0 (u0)du0 =

q1(x1) by Lemma 7. Hence, assume that the hypothesis holds for k ≥ 1 and consider∫
τk+1(uk)γ̄

M
k+1(xk+1 |uk)Πk(x1:k, u0:k)du0:k

=
πk(x1:k)

πk−1(x1:k−1)qk(xk |x1:k−1)

·
∫
τk+1(uk)γ̄

M
k+1(xk+1 |uk)τk(uk−1)ψ̄Mk (uk |x1:k)γ̄

M
k (xk |uk−1)Πk−1(x1:k−1, u0:k−1)du0:k

=
πk(x1:k)

(∫
τk+1(uk)γ̄

M
k+1(xk+1 |uk)ψ̄Mk (uk |x1:k)duk

)
πk−1(x1:k−1)qk(xk |x1:k−1)

·
∫
τk(uk−1)γ̄Mk (xk |uk−1)Πk−1(x1:k−1, u0:k−1)du0:k−1

=
πk(x1:k)qk+1(xk+1 |x1:k)πk−1(x1:k−1)qk(xk |x1:k−1)

πk−1(x1:k−1)qk(xk |x1:k−1)
= πk(x1:k)qk+1(xk+1 |x1:k),

where the penultimate equality follows by applying Lemma 7 and the induction hypothesis to the
two integrals, respectively.

As a corollary to Lemma 8, it follows that∫
Πk(x1:k, u0:k)du0:k = πk(x1:k). (6)

Consequently, Πk is normalised by the same constant Zπk as πk, and by defining Π̄k(x1:k, u0:k) :=
Z−1
πk

Πk(x1:k, u0:k) we obtain a probability distribution which admits π̄k as a marginal (note that
Π̄0 = Π0, which is normalised by construction). This implies that we can use Π̄k as a proxy
for π̄k in a Monte Carlo algorithm, i.e., samples drawn from Π̄k can be used to compute ex-
pectations w.r.t. π̄k. This is precisely what Algorithm 5 does; it is a standard auxiliary SMC
sampler for the (unnormalised) target sequence Πk, k = 0, . . . , n, with adjustment multiplier
weights νk−1(x1:k−1, τk(uk−1)) and proposal distribution γ̄Mk (xk |uk−1)ψ̄Mk (uk |x1:k). The (stan-
dard) weight function for this sampler is thus given by

Wk(x1:k, u0:k) ∝
πk(x1:k)

πk−1(x1:k−1)

τk(uk−1)

νk−1(x1:k−1, τk(uk−1))qk(xk |x1:k−1)
, (7)

which is the same as the expression on line 2(f)ii of Algorithm 5.

A.1.2 CENTRAL LIMIT THEOREM – PROOF OF THEOREM 2 IN THE MAIN MANUSCRIPT

Now that we have established that Nested SMC is in fact a standard auxiliary SMC sampler, albeit
on an extended state space, we can reuse existing convergence results from the SMC literature; see
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e.g., Johansen and Doucet (2008); Douc and Moulines (2008); Douc et al. (2009); Chopin (2004)
or the extensive textbook by Del Moral (2004).

Here, in order to prove Theorem 2 of the main manuscript, we make use of the result for the
auxiliary SMC sampler by Johansen and Doucet (2008), which in turn is based on the central limit
theorem by Chopin (2004). The technique used by Johansen and Doucet (2008) is to reinterpret (as
detailed below) the auxiliary SMC sampler as a sequential importance sampling and resampling
(SISR) particle filter, by introducing the modified (unnormalised) target distribution

Π′k(x1:k, u0:k) := νk(x1:k, τk+1(uk))Πk(x1:k, u0:k). (8)

The auxiliary SMC sampler described in the previous section can then be viewed as a SISR algo-
rithm for (8). Indeed, if we write Q̄Mk (xk, uk |x1:k−1, uk−1) := ψ̄Mk (uk |x1:k)γ̄

M
k (xk |uk−1) for

the joint proposal distribution of (xk, uk), then the weight function for this SISR sampler is given
by

W ′k(x1:k, u0:k) :=
Π̄′k(x1:k, u0:k)

Q̄Mk (xk, uk |x1:k−1, uk−1)Π̄′k−1(x1:k−1, u0:k−1)

∝ νk(x1:k, τk+1(uk))Wk(x1:k, u0:k), (9)

where Wk is defined in (7). This weight expression thus accounts for both the importance weights
and the adjustment multipliers of the auxiliary SMC sampler formulation.

Since this SISR algorithm does not target Π̄k (and thus not π̄k) directly, we use an additional IS
step to compute estimators of expectations w.r.t. to π̄. The proposal distribution for this IS procedure
is given by

Γ̄k(x1:k, u0:k) := Q̄Mk (xk, uk |x1:k−1, uk−1)Π̄′k−1(x1:k−1, u0:k−1). (10)

Note that we obtain an approximation of (10) after the propagation Step 2(f)i of Algorithm 5, but
before the weighting step. The resulting IS weights, for target distribution Π̄k(x1:k, u0:k) and with
proposal distribution (10), are given by

Π̄k(x1:k, u0:k)

Γ̄k(x1:k, u0:k)
=: ωk(x1:k, u0:k) ∝Wk(x1:k, u0:k).

Hence, with f : Xk 7→ Rd being a test function of interest we can estimate Eπ̄k [f ] = EΠ̄k
[f ] (with

obvious abuse of notation) by the estimator

N∑
i=1

W i
kf(Xi

1:k)∑N
`=1W

`
k

, (11)

which, again, is in agreement with Algorithm 5.
We have now reinterpreted the NSMC algorithm; first as a standard auxiliary SMC sampler,

and then further as a standard SISR method. Consequently, we are now in the position of directly
applying, e.g., the central limit theorem by Chopin (2004, Theorem 1). The conditions and the
statement of the theorem are reproduced here for clarity.
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For any measurable function f : Θ0 7→ Rd, let ṼM
0 (f) = Varψ̄M0

(f) and define, for any
measurable function f : Θk 7→ Rd,

ṼM
k (f) = V̂M

k−1(EQ̄Mk [f ]) + EΠ̄′k−1
[VarQ̄Mk

(f)], k > 0,

VM
k (f) = ṼM

k (W ′k(f − EΠ̄′k
[f ])), k ≥ 0,

V̂M
k (f) = VM

k (f) + VarΠ̄′k
(f), k ≥ 0.

Define recursively Φk to be the set of measurable functions f : Θk 7→ Rd such that there exists a
δ > 0 with EΓ̄k

[‖W ′kf‖2+δ] <∞ and such that the function (x1:k−1, u0:k−1) 7→ EQ̄Mk [W ′kf ] is in
Φk−1. Furthermore, assume that the identity function f ≡ 1 belongs to Φk for each k. Then, it
follows by Chopin (2004, Theorem 1 and Lemma A.1) that

N1/2

(
N∑
i=1

1

N
f(Xi

1:k, U
i
0:k)− EΓ̄k

[f ])

)
D−→ N (0, ṼM

k (f)), (12)

for any function f such that the function (x1:k−1, u0:k−1) 7→ EQ̄Mk [f −EΓ̄k
[f ]] is in Φk−1 and there

exists a δ > 0 such that EΓ̄k
[‖f‖2+δ] <∞. The convergence in (12) thus holds for the unweighted

samples obtained after the propagation Step 2(f)i of Algorithm 5, but before the weighting step.
To complete the proof, it remains to translate (12) into a similar result for the IS estimator (11).

To this end we make use of Chopin (2004, Lemma A.2) which is related to the IS correction step
of the SMC algorithm. Specifically, for a function f : Xk 7→ Rd, let fe : Θk 7→ Rd denote the
extension of f to Θk, defined by fe(x1:k, u0:k) = f(x1:k). Then, for any f : Xk 7→ Rd such
that the function (x1:k−1, u0:k−1) 7→ EQ̄Mk [ωkf

e] is in Φk−1 and there exists a δ > 0 such that
EΓ̄k

[‖ωkfe‖2+δ] <∞, we have

N1/2

(
N∑
i=1

W i
kf(Xi

1:k)∑N
`=1W

`
k

− π̄k(f)

)
D−→ N (0,ΣM

k (f)),

where {(Xi
1:k,W

i
k)}Mi=1 are generated by Algorithm 5 and ΣM

k (f) = ṼM
k (ωk(f

e − EΠ̄k
[fe])).

A.1.3 NESTED SMC GENERATES PROPERLY WEIGHTED SAMPLES – PROOF OF THEOREM 6
IN THE MAIN MANUSCRIPT

In the previous two sections we showed that the NSMC procedure is a valid inference algorithm
for π̄n. Next, we turn our attention to the modularity of the method and the validity of using the
algorithm as a component in another NSMC sampler. Let us start by stating a more general version
of the backward simulator in Algorithm 6. Clearly, if the forward NSMC procedure is fully adapted
W i
k ≡ 1, Algorithm 6 reduces to the backward simulator stated in the main manuscript.

We will now show that the pair (Ẑπn , X̃1:n) generated by Algorithms 5 and 6 is properly
weighted for πn(x1:n), and thereby prove Theorem 6 in the main manuscript.

The proof is based on the particle Markov chain Monte Carlo (PMCMC) construction (Andrieu
et al., 2010). The idea used by Andrieu et al. (2010) was to construct an extended target distribution,
incorporating all the random variables generated by an SMC sampler as auxiliary variables. This
opened up for using SMC approximations within MCMC in a provably correct way; these seem-
ingly approximate methods simply correspond to standard MCMC samplers for the (nonstandard)
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Algorithm 6 Backward simulator

1. Draw Bn from a categorical distribution with probabilities
W j
n∑N

`=1W
`
n

for j = 1, . . . , N .

2. Set X̃n = XBn
n .

3. for k = n− 1 to 1

(a) Compute W̃ j
k = W j

k

πn((Xj
1:k, X̃k+1:n))

πk(X
j
1:k)

for j = 1, . . . , N .

(b) DrawBk from a categorical distribution with probabilities
W̃ j
k∑N

`=1 W̃
`
k

for j = 1, . . . , N .

(c) Set X̃k:n = (XBk
k , X̃k+1:n).

4. return X̃1:n

extended target distribution. Here we will use the same technique to prove the proper weighing
property of the NSMC procedure.

We start by introducing some additional notation for the auxiliary variables of the extended
target construction. While Algorithm 5 is expressed using multinomial random variables m1:N

k

in the resampling step, it is more convenient for the sake of the proof to explicitly introduce the
ancestor indices {Aik}Ni=1; see e.g., Andrieu et al. (2010). That is, Aik is a categorical random

variable on {1, . . . , N}, such that XAik
1:k−1 is ancestor particle at iteration k − 1 of particle Xi

k. The
resampling Step 2d of Algorithm 5 can then equivalently be expressed as: simulate independently
{Aik}Ni=1 from the categorical distribution with probabilities

ν̂jk−1W
j
k−1∑N

`=1 ν̂
`
k−1W

`
k−1

.

Let Xk = {X1
k , . . . , X

N
k }, Uk = {U1

k , . . . , U
N
k }, and Ak = {A1

k, . . . , A
N
k }, denote all the

particles, internal states of the proposals, and ancestor indices, respectively, generated at iteration k
of the NSMC algorithm. We can then write down the joint distribution of all the random variables
generated in executing Algorithm 5 (up to an irrelevant permutation of the particle indices) as,

Ψ̄NSMC(x1:n,u0:n,a1:n) =

{
N∏
i=1

ψ̄M0 (ui0)

}
n∏
k=1


N∏
i=1

ν̂
aik
k−1W

aik
k−1∑N

`=1 ν̂
`
k−1W

`
k−1

Q̄Mk (xik, u
i
k |x

aik
1:k−1, u

aik
k−1)

 ,

(13)

where we interpret ν̂ik and W i
k as deterministic functions of (xi1:k, u

i
0:k).
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Let Bn denote a random variable defined on {1, . . . , N}. The extended target distribution for
PMCMC samplers corresponding to (13) is then given by

Φ̄(x1:n,u0:n,a1:n, bn) :=
Ẑπn
Zπn

W bn
n∑N

`=1W
`
n

Ψ̄NSMC(x1:n,u0:n,a1:n), (14)

where Ẑπn is a deterministic function of (x1:n,u0:n,a1:n). We know from Andrieu et al. (2010)
that Φ̄ is a probability distribution which admits Π̄n as its marginal distribution for (Xbn

1:n, U
bn
0:n).

Consequently, by (6) it follows that the marginal distribution of Xbn
1:n is π̄n. For later reference we

define recursively bk−1 := abkk for k = 1, . . . , n, the particle indices for the trajectory obtained by
tracing backward the genealogy of the bn’th particle at iteration n.

We now turn our attention to the backward simulator in Algorithm 6. Backward simulation
has indeed been used in the context of PMCMC, see e.g. Whiteley (2010); Lindsten and Schön
(2013); Lindsten et al. (2014). The strategy used for combining PMCMC with backward simulation
is to show that each step of the backward sampler corresponds to a partially collapsed Gibbs sam-
pling step for the extended target distribution Φ̄. This implies that the backward sampler leaves Φ̄
invariant.

We use the same approach here, but we need to be careful in how we apply the existing results,
since the PMCMC distribution Φ̄ is defined w.r.t. to Π̄n, whereas the backward simulator of Algo-
rithm 6 works with the original target distribution π̄n. Nevertheless, from the proof of Lemma 1 by
Lindsten et al. (2014) it follows that we can write the following collapsed conditional distribution
of Φ̄ as:

Φ̄(bk, u
bk:n
k:n |x1:k,u0:k−1,a1:k, x

bk+1:n

k+1:n , bk+1:n)

∝W bk
k

Πn({xbk1:k, x
bk+1:n

k+1:n }, {u
a
bk
k

0:k−1, u
bk:n
k:n })

Πk(x
bk
1:k, {u

a
bk
k

0:k−1, u
bk
k })

ψ̄Mk (ubkk |x
bk
1:k). (15)

To simplify this expression, consider,

Πn(x1:n, u0:n)

Πk(x1:k, u0:k)
=

n∏
s=k+1

{
τs(us−1)ψ̄Ms (us |x1:s)γ̄

M
s (xs |us−1)

qs(xs |x1:s−1)

πs(x1:s)

πs−1(x1:s−1)

}

=
ψ̄Mn (un |x1:n)

ψ̄Mk (uk |x1:k)

{
n∏

s=k+1

τs(us−1)ψ̄Ms−1(us−1 |x1:s−1)γ̄Ms (xs |us−1)

qs(xs |x1:s−1)

}
πn(x1:n)

πk(x1:k)
.

(16)

By Lemma 7 we know that each factor of the product (in brackets) on the second line integrates to
1 over us−1. Hence, plugging (16) into (15) and integrating over ubk:nk:n yields

Φ̄(bk |x1:k,u0:k−1,a1:k, x
bk+1:n

k+1:n , bk+1:n) ∝W bk
k

πn({xbk1:k, x
bk+1:n

k+1:n })
πk(x

bk
1:k)

,

which coincides with the expression used to simulate the index Bk in Algorithm 6. Hence, sim-
ulation of Bk indeed corresponds to a partially collapsed Gibbs sampling step for Φ̄ and it will
thus leave Φ̄ invariant. (Note that, in comparison with the PMCMC sampler derived by Lindsten
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et al. (2014) we further marginalise over the variables ubk:nk:n which, however, still results in a valid
partially collapsed Gibbs step.)

We now have all the components needed to prove proper weighting of the combined NSMC/backward
simulation procedure. For notational simplicity, we write

Ψ̄BS,k(bk) = Φ̄(bk |x1:k,u0:k−1,a1:k, x
bk+1:n

k+1:n , bk+1:n),

for the distribution of Bk in Algorithm 6. Let (Ẑπn , X̃1:n) be generated by Algorithms 5 and 6. Let
f be a measurable function and consider

E[Ẑπnf(X̃1:n)] =

∫
Ẑπnf(X

b′1:n
1:n )

{
n∏
k=1

Ψ̄BS,k(db′k)

}
Ψ̄NSMC(d(x1:n,u0:n,a1:n))

= Zπn

∫
f(X

b′1:n
1:n )

{
n−1∏
k=1

Ψ̄BS,k(db′k)

}
Φ̄(d(x1:n,u0:n,a1:n, b

′
n)),

where, for the second equality, we have used the definition (14) and noted that Ψ̄BS,n(bn) =
W bn
n∑N

`=1W
`
n

. However, by the invariance of Ψ̄BS,k w.r.t. Φ̄, it follows that

E[Ẑπnf(X̃1:n)] = Zπn

∫
f(Xb1:n

1:n )Φ̄(d(x1:n,u0:n,a1:n, bn)) = Zπn π̄n(f),

which completes the proof.

A.2 Nested Sequential Importance Sampling

Here we give the definition of the nested sequential importance sampler and we show that a special
case of this is the importance sampling squared (IS2) method by Tran et al. (2013).

A.2.1 NESTED SEQUENTIAL IMPORTANCE SAMPLING

We present a straightforward extension of the Nested IS class to a sequential IS version. Consider
the following definition of the Nested SIS Q:

1. Algorithm 7 is executed at the construction of the object p = Q(πn, N), and p.GetZ() returns
the normalising constant estimate Ẑπn .

2. p.Simulate() simulates a categorical random variable B with P(B = i) = W i
n/
∑N

`=1W
`
n

and returns XB
1:n.

Note that we do not require that the procedure Q is identical for each individual proposal qk,
thus we have a flexibility in designing our algorithm as can be seen in the example in Section A.2.2.
We can motivate the algorithm in the same way as for Nested IS and similar theoretical results hold,
i.e. Nested SIS is properly weighted for πn and it admits π̄n as a marginal.

A.2.2 RELATION TO IS2

Here we will show how IS2, proposed by Tran et al. (2013), can be viewed as a special case of
Nested SIS. We are interested in approximating the posterior distribution of parameters θ given
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Algorithm 7 Nested SIS (all i for 1, . . . , N )

1. Initialise qi = Q(q1(·),M).

2. Set Ẑiq1 = qi.GetZ(), Xi
1 = qi.Simulate().

3. Set W i
1 =

Ẑiq1π1(Xi
1)

q1(Xi
1)

.

4. delete qi.

5. for k = 2 to n:

(a) Initialise qi = Q(qk(· |Xi
1:k−1),M).

(b) Set Ẑiqk = qi.GetZ(), Xi
k = qi.Simulate().

(c) Set W i
k = W i

k−1

Ẑiqkπk(X
i
k |Xi

1:k−1)

qk(X
i
k |Xi

1:k−1)
.

(d) delete qi.

(e) Set Xi
1:k ← (Xi

1:k−1, X
i
k)

6. Compute Ẑπn = 1
N

∑N
i=1W

i
n.

some observed values y

π̄(θ | y) ∝ p(y | θ)p(θ).

We assume that the data likelihood p(y | θ) can, by introducing a latent variable x, be computed as
an integral

p(y | θ) =

∫
p(y |x, θ)p(x | θ) dx.

Now, let our target distribution in Nested SIS be π̄2(θ, x) = π̄2(x | θ)π̄1(θ) = p(y |x,θ)p(x | θ)
p(y | θ) p(θ).

We set our proposal distributions to be

q̄1(θ) = gIS(θ),

q̄2(x | θ) =
p(y |x, θ)p(x | θ)

p(y | θ) .

First, Q(q1(·), 1) runs an exact sampler from the proposal gIS. Then at iteration k = 2 we let the
nested procedure Q(q2(· | θi),M) be a standard IS algorithm with proposal h(x | y, θ), giving us
properly weighted samples for q2. Putting all this together gives us samples θi distributed according
to gIS(θ) and weighted by

W i
2 ∝

p(θi)

gIS(θi)
·
p(y |xi, θi)p(xi | θi) 1

M

∑M
`=1

p(y |x`,θi)p(x` | θi)
h(x` | y,θi)

p(y |xi, θi)p(xi | θi) =
p̂M (y | θi)p(θi)

gIS(θi)
, (17)
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where p̂M (y | θi) = M−1
∑M

`=1
p(y |x`,θi)p(x` | θi)

h(x` | y,θi) . Thus we obtain a Nested SIS method that is

identical to the IS2 algorithm proposed by Tran et al. (2013).

A.3 Further Details on the Experiments

We provide some further details and results for the experiments presented in the main manuscript.

A.3.1 GAUSSIAN STATE SPACE MODEL

We generate data from a synthetic d-dimensional (dim(xk) = d) dynamical/spatio-temporal3 model
defined by

xk |xk−1 ∼ N (xk;µk(xk−1),Σ),

yk |xk ∼ N (yk;xk, τ
−1
φ I),

where Σ and µk are given as follows

Σ =



τρ + τψ −τψ 0 · · · · · · 0 0
−τψ τρ + 2τψ −τψ 0 · · · 0 0

0
. . . . . . . . . . . . 0 0

...
. . . . . . . . . . . . 0 0

...
...

. . . . . . . . . −τψ 0
0 0 0 0 −τψ τρ + 2τψ −τψ
0 0 0 0 0 −τψ τρ + τψ



−1

,

µk(xk−1) = aτρΣxk−1.

Alternatively, in a more standard state space model notation, we have

xk = Axk−1 + vk, vk ∼ N (0, Q),

yk = xk + ek, ek ∼ N (0, R),

where A = aτρΣ, Q = Σ and R = τ−1
φ I . We assume that the parameters θ = (τψ, a, τρ, τφ) =

(1, 0.5, 1, 10) are known.
To do inference with this generated data-set {yk} we propose to target the following slightly

different model

p(x1:k, y1:k) ∝
k∏
j=1

φ(xj , yj)ρ(xj)ψ(xj , xj−1),

3. Note that in a previous version this was erraneously stated as equivivalent to the Gaussian MRF we use for sequential
inference. Thus this example actually illustrates a problem where we have a misspecified model. However, this
misspecification does not lead to any discernible difference in the MSE results. This because the exact filtering
marginals for the two different models (LGSS, GMRF) with the parameters chosen differs with orders of magnitudes
much lower than the Monte Carlo errors.
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where the observation potential φ and interaction potentials ρ and ψ are given by

φ(xk, yk) =
d∏
l=1

φl(xk,l, yk,l) =
d∏
l=1

e−
τφ
2

(xk,l−yk,l)2 ,

ψ(xk) =

d∏
l=2

ψl(xk,l, xk,l−1) =

d∏
l=2

e−
τψ
2

(xk,l−xk,l−1)2 ,

ρ(xk, xk−1) =

d∏
l=1

ρl(xk,l, xk−1,l) =

d∏
l=1

e−
τρ
2

(xk,l−axk−1,l)
2
.

This can be visualised as a Gaussian rectangular (d×k) lattice MRF, i.e. it grows with “time” k. The
goal is to estimate the filtering distribution p(xk | y1:k). Note that this model has almost identical
filtering marginals as the data generating distribution and leads to a simpler implementation of
NSMC and ST-PF.

Results (mean-squared-error, MSE) comparing NSMC and ST-PF for different settings of N
and M can be found in the first row of Figure 6 and the second row displays the results when
comparing ST-PF to the SMC method by Naesseth et al. (2014b) for equal computational budgets.
We show median (over dimensions d) MSE for posterior marginal mean and variance estimates
of the respective algorithms. True values are obtained using belief propagation. Note that setting
N = 1 in ST-PF can be viewed as a special case of the SMC method by Naesseth et al. (2014b).

A.3.2 SPATIO-TEMPORAL MODEL – DROUGHT DETECTION

We present the full model for drought detection in our notation, this is essentially the model by Fu
et al. (2012) adapted for estimating the filtering distribution. The latent variables for each location
on a finite world grid, xk,i,j , are binary, i.e. 0 being normal state and 1 being the abnormal (drought)
state. Measurements, yk,i,j , are available as real valued precipitation values in millimeters. The
probabilistic model for filtering is given as,

p(x1:k, y1:k) ∝
k∏

n=1

φ(xn, yn)ρ(xn)ψ(xn, xn−1), (18a)

where

φ(xk, yk) =
I∏
i=1

J∏
j=1

exp

{
− 1

2σ2
i,j

(yk,i,j − µab,i,jxk,i,j − µnorm,i,j(1− xk,i,j))2

}
, (18b)

ρ(xk) =

I∏
i=1

J∏
j=1

exp
{
C1

(
1xk,i,j=xk,i,j−1

+ 1xk,i,j=xk,i−1,j

)}
, (18c)

ψ(xk, xk−1) =

I∏
i=1

J∏
j=1

exp
{
C21xk,i,j=xk−1,i,j

}
. (18d)

Here, 1 is the indicator function, and with the convention that all expressions in (18c) that end up
with index 0 evalute to 0. The parameters C1, C2 are set to 0.5, 3 as in (Fu et al., 2012). Location
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Figure 6: Top: Comparisons for different settings of N and M on the 50-dimensional SSM. Bot-
tom: Illustrating the connection between ST-PF and the SMC method by Naesseth et al.
(2014b).

based parameters σi,j , µab,i,j , µnorm,i,j are estimated based on data from the CRU dataset with world
precipitation data from years 1901 − 2012. For the North America region we consider a 20 × 30
region with latitude 35 − 55◦N and longitude 90 − 120◦W . For the Sahel region we consider a
24×44 region with latitude 6−30◦N and longitude 10◦W −35◦E. Note that for a few locations in
Africa (Sahel region) the average yearly precipitation was constant. For these locations we simply
set µnorm,i,j to be this value, µab,i,j = 0 and σ2

i,j to be the mean variance of all locations, thus this
might have introduced some artifacts. Some representative results for the Sahel region are displayed
in Figure 7.
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