
Towards Automated Sequential Monte Carlo for
Probabilistic Graphical Models

Christian A. Naesseth
Div. of Automatic Control

Linköping University
Linköping, Sweden

chran60@isy.liu.se

Fredrik Lindsten
Dept. of Engineering

The University of Cambridge
Cambridge, UK

fsml2@cam.ac.uk

Thomas B. Schön
Dept. of Information Technology

Uppsala University
Uppsala, Sweden

thomas.schon@it.uu.se

Abstract

We revisit the idea of using sequential Monte Carlo (SMC) for inference in gen-
eral probabilistic graphical models. By constructing a sequence of auxiliary target
distributions (also known as a sequential decomposition) based on the graph struc-
ture we can run a standard SMC sampler on the graph. In this paper we study the
impact of the sequential decomposition on the accuracy of the SMC method by
computing the asymptotic variance of the estimator as a function of the decompo-
sition. In general the variance will be intractable, so we propose to use a proxy
Gaussian Markov random field with a structure that is identical to that of the orig-
inal problem. Furthermore, based on these results we propose and evaluate some
heuristics for automated SMC inference on any given graph structure.

1 Introduction

Bayesian inference in statistical models involving a large number of latent random variables is in
general a difficult problem requiring approximate inference. This renders methods that are capable
of efficiently utilizing structure important tools when performing statistical inference. Probabilistic
Graphical Models (PGMs) are an intuitive and useful way to represent and make use of underlying
structure in probability distributions with many interesting areas of applications [Jordan, 2004].

Our main contribution is a way of efficiently evaluating heuristics for picking the sequence of target
distributions in an sequential Monte Carlo (SMC) method without running the actual algorithm. We
study the asymptotic variance of the normalization constant estimate as a function of the sequence
of distributions. We also propose a class of heuristics for automated SMC inference in PGMs and
evaluate these numerically.

In the paper by Ritchie et al. [2015], the authors consider randomizing the order of execution in
SMC for probabilistic programs. The method considers all nodes that can be added at any time step,
e.g. children with all parents already added in a Bayesian network, and then proceeds to uniformly
at random choose the next random variable to add/sample. Thus it bears some resemblance to our
random neighbour heuristic proposed in [Naesseth et al., 2014], studied further in this paper.

1.1 Graphical Models and SMC

We will consider probabilistic graphical models with pair-wise interaction

π̄(x1:n) =
1

Zπ
π(x1:n) =

1

Zπ

∏
i∈V

φ(xi)
∏

(i,j)∈E

ψ(xi, xj), (1)

where the graph, G = {V, E}, is described by its edge set E and vertex set V = {1, . . . , n} and
Zπ =

∫
π(x1:n)dx1:n is the normalization constant. The goal is then to perform inference with

1

respect to π̄(x1:n). Normally this is intractable and we must resort to approximation methods.
We will in this paper specifically study the sequential Monte Carlo approach that we proposed in
Naesseth et al. [2014].

Our method, hereafter referred to as SMC4PGM, is a standard SMC method for an auxiliary se-
quence of (unnormalized) target measures πk, k = 1, . . . , n, and their normalized counterparts π̄k,
with the constraint that πn = π. The design of this sequence, or equivalently the graph’s sequential
decomposition [Naesseth et al., 2014], is based on a permutation of the indices 1, . . . , n denoted by
σn = (σ(1), . . . , σ(n)), i.e. σ(i) 6= σ(j), i 6= j and σ(i) ∈ V . We also write σk = (σ(1), . . . , σ(k))
for the list comprising the first k indices of the permutation. In what follows we will sometimes also
make use of the sequence σk as a (unordered) set. Now, given this permutation we can define the
unnormalized target distributions of the SMC sampler as follows:

πk(xσk
) =

∏
i∈σk

φ(xi)
∏

(i,j)∈Ek

ψ(xi, xj), (2)

where xσk
= (xσ(1), . . . , xσ(k))

>, Ek = {(i, j) : i, j ∈ σk and (i, j) ∈ E}, and as required
πn(xσn) = π(x1:n). We make the assumption that these sequences are all normalizable, i.e.∫
πk(xσk

)dxσk
< ∞. There are ways of getting around this restriction, see e.g. Naesseth et al.

[2014], but we will for simplicity consider only the normalizable case here. Then given resampling
weights νk(xσk−1

) and proposals qk(xσ(k) | xσk−1
) we run a standard auxiliary SMC method tar-

geting π1, . . . , πn. For a more thorough introduction to SMC4PGM see Naesseth et al. [2014] and
for more indepth information on SMC samplers in general we refer to the book edited by Doucet
et al. [2001] or the tutorial by Doucet and Johansen [2011].

The problem with this algorithm is that it relies on the selection of the ordering or the permutation
of the vertices, i.e. the σk’s. The accuracy of our estimates is highly dependent on this permutation.
We will in the rest of this paper study the impact of the permutation and suggest some (greedy)
heuristics that can be of interest when trying to perform approximate inference in PGMs.

2 On Sequential Decomposition and Asymptotic Variance

A difficulty in studying the impact of the permutation of the vertices used in the sequential decom-
position is that the asymptotic variance of the SMC sampler will depend (intractably) on several
parameters; the specific model under study, the implementation choices of the sampler, and the
estimand of interest. In order to obtain practical and interpretable results, we will make use of a
sequence of simplifications, as detailed below.

2.1 Fully Adapted SMC and Normalizing Constant Estimates

The choice of proposal distributions affect the efficiency of SMC. We assume that a so-called fully
adapted auxiliary SMC sampler [Pitt and Shephard, 1999] is used. This implementation is known
to be locally optimal (it minimizes the variance of the incremental importance weights), so practical
SMC implementations should ideally be close to the fully adapted sampler, making it a suitable
choice for this study. The fully adapted sampler uses a proposal density and adjustment weights,

qk(xσ(k) | xσk−1
) =

πk(xσk
)

πk−1(xσk−1
)
, νk(xσk−1

) =

∫
qk(xσ(k) | xσk−1

)dxσ(k), (3)

respectively.

Furthermore, the asymptotic variance of an SMC estimator of some estimand E[ϕ(x1:n)] will depend
on the test function ϕ. To obtain a function-free criterion for analysing the impact of the permutation
we will instead study the SMC estimator of the normalising constant Zπ ,

ZNπ :=

n−1∏
k=1

{
1

N

N∑
i=1

νk+1(xiσk
)

}
,

where {xiσk
}Ni=1 are the particles generated at iteration k. The normalizing constant estimate is of

significant interest on its own and, indeed, it is also commonly used as an indicator of the overall
efficiency of the SMC implementation.

2

The estimator ZNπ is known to be unbiased. Furthermore, due to the construction by Johansen
and Doucet [2008], we can use standard theoretical results from the SMC literature [Chopin, 2004,
Del Moral, 2004] to give expressions for the asymptotic variance of ZNπ :

Var

(
ZNπ
Zπ

)
=

n−1∑
k=1

∫
π̄(xσk

)2

π̄k(xσk
)

dxσk
− 1. (4)

2.2 Gaussian MRF

The variance (4) will in general be intractable to compute. In order to derive exact, computable,
expressions for the asymptotic variance of SMC inference on a graphical model with an arbitrary
permutation, we therefore replace our actual model of interest with a proxy Gaussian MRF with
identical structure. Assume that the graph G = {V, E} is known. Then we propose to use the
following Gaussian MRF as a proxy to evaluate a sequential decomposition:

π̄(x1:n) ∝
∏
i∈V

e−
1
2 τix

2
i

∏
(i,j)∈E

e−
1
2λij(xi−xj)

2

, (5)

where τi, λij = λji are fixed (known) parameters. Typically, for simplicity, we will let τi = τ,∀i,
and λij = λ,∀(i, j). Based on the proxy model we can state the following result.
Proposition 1. Assume a Gaussian MRF, defined by (5), and a permutation σn. The asymptotic
variance of the the fully adapted auxiliary SMC sampler (3) applied to this problem is given by

Var

(
ZNπ
Zπ

)
=

n−1∑
k=1

|Λn,σk
|√

|Λσk
||2Λn,σk

− Λσk
|
− 1, (6)

with π̄(xσk
) = N (0,Λ−1n,σk

), π̄k(xσk
) = N (0,Λ−1σk

), and | · | denoting the determinant.

Proof. The result follows by noting that (5) is multivariate Gaussian, i.e. N (0,Λ−1n,σn
), and using

standard properties of multivariate normals when calculating (4).

Remark 1. Λn,σn
and Λσk

are given by the graph, the model parameters, and the permutation. Then,
Λn,σk

can be computed by first inverting Λn,σn , then extracting and inverting the correct covariance
matrix of the marginal distribution.

For large graphs, this result in itself does not allow us to pick an optimal ordering, since optimizing
(6) with respect to σn is a combinatorial problem. However, the result enables us to compare two
different permutations without actually running the computationally demanding algorithm. Further-
more, we can see from (4) that we should try to keep π̄k(xσk

) as close to the exact marginal, π̄(xσk
),

as possible. Next we will detail some heuristics to automate the choice of a good permutation for
general probabilistic graphical models.

2.3 Heuristics

Picking the best sequential decomposition, or permutation, would in general require us to evaluate
all n! possible cases of (6). This is obviously computationally prohibitive for any reasonable size n.
Due to this we will consider and compare some heuristics for deciding on the permutation.

We define a class of heuristics, to decide the permutation by considering a sequence of weights
Wk = (wk(1), . . . , wk(n)), k = 1, . . . , n − 1 and greedily picking the index of the maximizing
entry of Wk at each iteration k. This means that our permutation is constructed as follows:

σ(k) = argmax
i∈{1:n}\σk−1

wk(i), (7)

where the sequence Wk is defined by the user and could depend on, amongst other things, previous
choices and structure of the graph. We will here consider a class of heuristics defined as follows:

H(a,b, c): For all i ∈ σk−1 we set wk(i) = −∞ and for the rest we set

wk(i) = a · wk−1(i) + b · card{j ∈ σk−1 : (i, j) ∈ E} − c · card{j ∈ V\(σk−1 ∪ {i}) : (i, j) ∈ E}

3

Furthermore, we also consider a simple “random neighbour” heuristic Naesseth et al. [2014]:

RND-Ne: Simulate i∗ ∼ U {i ∈ Γ(σk−1)\σk−1} and set wk(i∗) = 1, wk(i) = 0, i 6= i∗.

Note that a, b, and c are positive tuning variables, card denotes set cardinality, and Γ(·)
gives all unique neighbors of its argument in the graph G. Furthermore, for all heuristics we
initially pick the node with the lowest degree as σ(1), i.e. we let w1(i) = card{Γ(i)}−1.

Size L-R H(0, 10, 1)
10× 10 29.4 32.7
15× 15 95.6 104.5

Table 1: Asymptotic variance re-
sults for a square grid with τ =
λ = 1 with the L-R heuristic.

The more informed heuristics H(a, b, c) depend on the in-
tuition that the similarity between π̄(xσk

) and π̄k(xσk
) is

strongly related to how many connections there are between
σk−1 and σ(k) (controlled by b) and how few there are be-
tween σ(k) and V \ σk (controlled by c). The a parameter,
which aggregates previous weights, comes from SMC intuition
that long-ranging connections are undesirable because of path
degeneracy issues.

3 Numerical Results

We begin by evaluating the heuristics, as well as a completely random order (RND), on random
graphs of various moderate sizes. Given a size n, and thus V = {1, . . . , n}, we add an edge between
vertices i and j with a probability p. In Tables 2 and 3 we report results for sparse (p = 0.08) and
dense (p = 0.6) graphs, respectively. We have also tried other settings of λ, τ , p and n with similar
qualitative results (not reported here). Note that lower is better, thus the clear winner overall is the
combination b = 10 and c = 1. For each setting we generated 100 independent random graphs and
calculated minimum, median and maximum variance for each heuristic.

Type a b c Min Median Max
H(a, b, c) 0 1 0 14.6 30.1 51.0
H(a, b, c) 0 1 1 27.0 52.2 174.0
H(a, b, c) 0 10 1 13.4 24.6 43.3
H(a, b, c) 0 0.1 1 51.2 100.9 265.7
H(a, b, c) 1 1 0 23.7 42.0 69.6
H(a, b, c) 1 10 0 24.5 40.2 69.6
H(a, b, c) 1 0.1 0 29.9 45.3 71.6
RND-Ne - - - 46.0 85.4 182.1

RND - - - 171.7 440.4 1622.0

Table 2: Asymptotic variance (min/median/max) for a
random graph with n = 50, p = 0.08 and τ = λ = 1.

Type a b c Min Median Max
H(a, b, c) 0 1 0 419.6 517.8 631.4
H(a, b, c) 0 1 1 542.7 737.9 1479.7
H(a, b, c) 0 10 1 393.0 487.3 600.9
H(a, b, c) 0 0.1 1 745.3 1173.9 2614.4
H(a, b, c) 1 1 0 430.7 542.7 646.9
H(a, b, c) 1 10 0 439.6 535.0 646.9
H(a, b, c) 1 0.1 0 444.6 548.3 710.6
RND-Ne - - - 1206.5 1877.7 4570.2

RND - - - 1116.2 1910.9 4353.9

Table 3: Asymptotic variance (min/median/max) for a
random graph with n = 50, p = 0.6 and τ = λ = 1.

1 10 20 30 40 50 60 70 80 90 100
Random graph number

0.0

0.25

0.5

0.75

1.0

1.25

V
a

r(
Z
N π
Z
−

1
π

)

Heuristic
Optimal

Figure 1: Asymptotic variance results for a ran-
dom graph with n = 6, p = 0.5 and τ = λ = 1.

Furthermore, for small enough n we can enu-
merate all possible orderings and find the opti-
mal value. Results in this case are given in Fig-
ure 1 for n = 6 and the heuristic with a = 0,
b = 10, c = 1. We can see that the best heuris-
tic from the previous experiment actually does
find the optimal ordering on many of the gen-
erated random graphs. However, we do not ex-
pect this to happen in general for graphs of re-
alistic sizes.

A graph often used in applications is the lattice
graph with nearest neighbour interaction, ex-
amples include images and Ising models. Here
we compare the efficient left-right (L-R) heuris-
tic of Naesseth et al. [2014], specifically de-
signed for this special case, to the general pur-
pose heuristic above. Results for this can be
seen in Table 1.

4

Acknowledgments

This work was supported by: Learning of complex dynamical systems (Contract number: 637-
2014-466) and Probabilistic modeling of dynamical systems (Contract number: 621-2013-5524),
both funded by the Swedish Research Council.

References
M. I. Jordan. Graphical models. Statistical Science, 19(1):140–155, 2004.
Daniel Ritchie, Ben Mildenhall, Noah D. Goodman, and Pat Hanrahan. Controlling procedural

modeling programs with stochastically-ordered sequential monte carlo. ACM Trans. Graph., 34
(4):105:1–105:11, July 2015. ISSN 0730-0301.

Christian A. Naesseth, Fredrik Lindsten, and Thomas B Schön. Sequential Monte Carlo for Graph-
ical Models. In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems (NIPS) 27, pages 1862–1870. Curran
Associates, Inc., 2014.

A. Doucet, N. De Freitas, and N. Gordon. Sequential Monte Carlo methods in practice. Springer,
New York, 2001.

A. Doucet and A. Johansen. A tutorial on particle filtering and smoothing: Fifteen years later.
In D. Crisan and B. Rozovskii, editors, The Oxford Handbook of Nonlinear Filtering. Oxford
University Press, 2011.

M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters. Journal of the
American Statistical Association, 94(446):590–599, 1999.

Adam M. Johansen and Arnaud Doucet. A note on auxiliary particle filters. Statistics & Probability
Letters, 78(12):1498–1504, 2008.

N. Chopin. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian
inference. The Annals of Statistics, 32(6):2385–2411, 2004.

P. Del Moral. Feynman-Kac Formulae - Genealogical and Interacting Particle Systems with Appli-
cations. Probability and its Applications. Springer, 2004.

5

	Introduction
	Graphical Models and SMC

	On Sequential Decomposition and Asymptotic Variance
	Fully Adapted SMC and Normalizing Constant Estimates
	Gaussian MRF
	Heuristics

	Numerical Results

