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1 Introduction

These notes are inspired (when not copied) from various sources. For what concerns the theory of
biochemical reactions in mass-action formalism, the original lecture notes of Martin Feinberg

M. Feinberg, “Lectures on Chemical Reaction Networks”, 1979, available at
http://www.chbmeng.ohio-state.edu/∼FEINBERG/LecturesOnReactionNetworks/
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give a complete and rigorous presentation. More recent tutorials written be control theoreticians
include

David Angeli “A tutorial on chemical reaction network dynamics” Eur. J. Control,
2009, 3-4:398-406

Chellaboina, V., Bhat, S. , Haddad, M.M., Bernstein, D.S. “Modeling and analysis of
mass-action kinetics”. IEEE Control Systems Mag., 29(4):60 - 78, 2009

The standard reference for Flux Balance Analysis is

B. O. Palsson, ”Systems Biology”, Cambridge Univ. Press, 2006

Basic gene circuits are probably described in many places, although I did not follow any specific
reference. General references for dynamical models in biology, containing much more material, are

L. Edelstein-Keshet. ”Mathematical Models in Biology”, SIAM Classics, 2005

E. Sontag, ”Lecture Notes in Mathematical Biology”, available at the URL:
http://www.math.rutgers.edu/∼sontag/613.html

B. Ingalls, ”Mathematical Modeling in Systems Biology: an Introduction”, available at
the URL: http://www.math.uwaterloo.ca/∼bingalls/MMSB/

2 Reaction kinetics

We are interested in dynamical models of complex biochemical reactions. Reactions happen because
molecules collide with each other, forming and destroying chemical bonds. If we are interested only
in macroscopic effects over a large number of molecules, then we can use the law of mass-action

Law of mass-action: when 2 or more reactants are involved in a reaction step, the
reaction rates are proportional to the product of their concentrations

The law of mass-action is a semi-empirical law, and find its phenomenological justification as a
macroscopic version of collision theory. Constraints to its validity are:

• constant temperature

• compartment in which the reactions happen must be well-mixed

• # of molecules must be high (∼ 1023 = n. of Avogadro).
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2.1 Models of elementary reactions

The simplest possible reaction one can model is a degradation rate of a molecular species X (mean-
ing: X leaves the compartment of interest, or degrades into products which we are not interested
to model). It is represented as

X
k−−→ ∅

The corresponding ODE is:
dx

dt
= −kx

where x = concentration of X (sometimes written as x = [X]), k = rate constant ≥ 0.
Next example is a bimolecular reaction of association: X3 is the “complex” formed by the

binding of X1 and X2 (sometimes written as X3 = [X1X2]). The binding happens with a reaction
rate constant k

X1 + X2
k−−→ X3 (1)

The mass-action ODEs are:

dx1

dt
= −k x1x2

dx2

dt
= −k x1x2

dx3

dt
= k x1x2

(2)

The ODEs are nonlinear (multilinear in this case, polynomial in general) and to have a nonambigu-
ous representation one uses a SR-graph (Species-Reaction graph), i.e., a bipartite graph with two
classes of nodes: molecular species and reactions, see Fig. 1. Notice in (2) that only the molecular
species “upstream” of the reaction (i.e., the substrates) enter into the right hand side of the ODE.
They enter with a minus sign in the equations for the substrates themselves (their concentration
decreases) and with a plus sign for that of the product.

REACTION SPECIESSPECIES

substrates products

X

1X

2

3X

Figure 1: Species-Reactions graph for a single reaction.

The reaction opposite to (2) is a dissociation, and describes the breaking of the complex X3

into its constituent components:

X3
k−−→ X1 + X2 (3)
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The ODEs are :

dx1

dt
= k x3

dx2

dt
= k x3

dx3

dt
= −k x3

(4)

When both binding/unbinding (2) and (4) can happen simultaneously then we have the reversible
association/dissociation

X1 + X2

k1−−−→←−−−
k2

X3 (5)

of ODEs:

dx1

dt
= −k1 x1x2 + k2 x3

dx2

dt
= −k1 x1x2 + k2 x3

dx3

dt
= k1 x1x2 − k2 x3

(6)

When a complex X3 is formed by several copies of the same substrate (for example p copies of X1,
see Fig. 2) then mass-action law implies that xp

1 enters into the ODEs, and also the rate constant
in front of x1 is modified accordingly. The reaction scheme is

pX1 + X2

k1−−−→←−−−
k2

X3 (7)

and the ODEs:

dx1

dt
= −p k1 xp

1x2 + pk2 x3

dx2

dt
= −k1 xp

1x2 + k2 x3

dx3

dt
= k1 xp

1x2 − k2 x3

(8)

p is called a stoichiometric coefficient. Most (but not necessarily all) stoichiometric coefficients are
1. All of them are integers.

The reactions happen in a “compartment” (which for us could be anything from a tank reactor
to an in vivo organism). The compartment is “open” when there is inflow/outflow of a specie and
closed otherwise. A system can be open w.r.t. one specie and closed w.r.t. other species.

Example The “network” of reactions

X1 + X2

k1−−−→←−−−
k2

X3

X1

k3−−−→←−−−
k4

∅
(9)

4



REACTION SPECIESSPECIES

substrates products

X

1X

2

3X1
1

p

Figure 2: Species-Reactions graph with stoichiometric coefficients.

is similar to (6) and in addition the system is open w.r.t. x1 (x1 is produced and degraded), but
not w.r.t. x2 and x3. The ODEs become (compare with (6)):

dx1

dt
= −k1 x1x2 + k2 x3 − k3 x1 + k4

dx2

dt
= −k1 x1x2 + k2 x3

dx3

dt
= k1 x1x2 − k2 x3

(10)

Notice in (10) that the inflow is a constant (independent of the concentration of x1) while the
outflow is a first order degradation term.

2.2 Representing biochemical networks through their stoichiometry

Consider a biochemical network involving n molecular species through r reactions. Call

x =







x1
...

xn






∈ R

n
+

the vector of concentrations of the molecular species. Then x ∈ R
n
+ because concentrations cannot

be negative! Assume that for the r reactions the substrates and products of each reaction (with
their stoichiometric coefficients) are known. These data can be though of as the entries of a
stoichiometric matrix

S ∈ R
n×r.

Each row of S corresponds to a molecular species and each column corresponds to a reaction. If
we look at S column-wise, there is a minus sign in front of the stoichiometric coefficients of the
substrates (species forming the substrates of a reaction are depleted by the reaction, hence the
reaction must contribute a negative term in the ODEs). The products instead have a plus sign.
Row-wise, instead, the nonzero entries of the i-th row of S correspond to the reactions in which xi

is involved either as substrate (with a − sign) or as a product (with a + sign). For example for
(7)-(8)

S =





−p p
−1 1
1 −1




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while for (9)-(10):

S =





−1 1 −1 1
−1 1 0 0
1 −1 0 0



 . (11)

Reversible reactions means linearly dependent columns in S (equal up to the sign).
To each reaction we can associate a flux vi(x, k), i.e., a compact expression of the kinetics action

(for us mass-action) involving the species “upstream” of the reaction (and therefore which enter
into the corresponding term of the ODE). Denote

v(x, k) =







v1(x, k)
...

vr(x, k)







the vector of such reaction fluxes. k is a vector of parameters, representing the reaction rate
constants. There is normally one rate constant per reaction, and these are nonnegative:

k =







k1
...
kr






∈ R

r
+.

Then the ODEs for the biochemical network can be compactly expressed as

dx

dt
= S v(x, k) (12)

i.e., as a system of polynomial ODEs. For example, for (7)-(8), v1(x, k) = k1 xp
1x2 and v2(x, k) =

k2 x3 so that (8) can be written as

dx

dt
=





−p p
−1 1
1 −1





[

k1 xp
1x2

k2 x3

]

Notice that in (12) S contains the whole information about the topology of the network. Under the
mass-action assumption, an arbitrarily complex network of biochemical reactions can be expressed
in this way once S is given.

If in S reversible reactions are all broken down into irreversible forward and backward reactions
as e.g. in (11) then v(x, k) ≥ 0.

To unveil completely the structure of the system of ODEs (12), it is convenient to introduce
a further vector z(x) of “complexes”, intending with that all compounds of species appearing
upstream and downstream of an arrow in a reaction diagram, represented as mass-action terms.
For example, in (7) the complexes are pX1 + X2 and X3 and

z(x) =

[

xp
1x2

x3

]

.

In other words, z(x) contains all basic multinomial terms appearing in v(x, k), plus the “zero
complex” (represented by a 1) to capture the inflow-outflow from the compartment. Assume m is
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the dimension of z(x), m ≤ 2r. Each reaction flux of v(x, k) is obtained multiplying one of the
multinomials by the corresponding reaction rate in k: vi(x, k) = kizj(x). To select from the vector
z(x) the term zj(x) entering into vi(x, k), we need an “index matrix” I : R

m → R
r to map the

complexes z(x) into the fluxes v(x, k). The entire system of ODEs is then given by the composite
map

species complexes
indexed

compexes
fluxes ODEs

R
n → R

m → R
r → R

r → R
n

x 7→ z(x) 7→ I z(x) 7→ v(x, k) = diag(k)I z(x) 7→ ẋ = S diag(k)I z(x)

The only nonlinear step is the first, all others are linear maps.

Example Let us look at the example (9)-(10). In this case n = 3 and r = 4. The complexes are
the following 4 compounds appearing in the reaction diagram (9): {X1 + X2, X1, X3, ∅}. Written
in mass-action form, then,

z(x) =









x1x2

x1

x3

1









are all multinomial terms in the ODEs (10). If we list the 4 reactions according to the indices of
the rate constants ki given in (9), then the stoichiometric matrix is given in (11), and the index
matrix is

I =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









Computing explicitly ẋ = S diag(k)I z(x) leads to (10). In particular the stoichiometric map is a
linear map S : R

r → R
n and contains all the information on the topology of the system and on its

dynamics.

2.3 Dynamical properties

Consider the biochemical reaction network

dx

dt
= S v(x, k) = S diag(k)I z(x) (13)

Notice in the composition map above that all parameters of the models (i.e., k) are concentrated in
a single step of the cascade. We want to study the dynamical behavior of the system independently
from the numerical value of these parameters. In the composition map above it can be observed
that all parameters are concentrated in the map diag(k) : R

r → R
r. Since k > 0, this map is always

a bijection, hence from a “structural” point of view it is irrelevant (trivial).
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2.3.1 Invariance in R
n
+

The vector x represents concentrations of molecular species and as such it must be and remain
nonnegative.

Theorem 2.1 If x(0) ∈ R
n
+ then the solution of (13) is such that x(t) ∈ R

n
+ ∀ t ≥ 0 and ∀ k ≥ 0.

To “prove” this theorem, it is enough to observe that all negative terms in the ODEs for xi

vanish when xi crosses the zero axis (i.e., the negative terms of the ODEs are homogeneous in
x) hence ẋi can never become negative if x(0) ≥ 0. The positive terms are not required to be
homogeneous in xi. For example the inflow terms by definition are positive constants.

2.3.2 Conservation laws and left kernel of S

Consider the example (6). The ODEs are clearly redundant. If we sum the first and third, or first
and second equations

d(x1 + x3)

dt
= 0 =⇒ x1(t) + x3(t) = const ∀ t ≥ 0

d(x2 + x3)

dt
= 0 =⇒ x2(t) + x3(t) = const ∀ t ≥ 0

(14)

which implies that x1(t) + x3(t) and x2(t) + x3(t) are constants of motion of the dynamical system
(6). These constants express conservation of the total amount of a specie: x1, by itself or bound
with x2 (in the form of the complex x3), is conserved throughout the evolution, and similarly for
x2. Calling ξ1 and ξ2 the two constants in (14), by writing x1 = ξ1 − x3 and x2 = ξ2 − x3, the
system (6) can be reduced to

dx3

dt
= k1 (ξ1 − x3)(ξ2 − x3)− k2 x3

x1 = ξ1 − x3

x2 = ξ2 − x3

i.e., each conservation law allows to replace an ODE with an algebraic equation (to be solved off-
line). Notice that assigning the initial condition xo to the system ξ1 and ξ2 are uniquely identified.
Changing the initial conditions also the ξi change.

Let us look at conservation laws for the general formulation (12). the left null space of S,
ker(ST ) = {c ∈ R

n s. t. ST c = 0} is a vector subspace representing all conservation laws of the
biochemical network. Assume rank(S) = q ≤ min(n, r). Then dim(ker(ST )) = n − q, i.e., the
system (12) has n − q constants of motion. If c1, . . . , cn−q are vectors forming a basis of ker(ST ),

then Nℓ =
[

c1 . . . cn−q

]T
is such that NℓS = 0. But then Nℓẋ = 0 and therefore, integrating,

Nℓx(t) = const = ξ ∈ R
n−q is a systematic expression of the constants of motion of the system.

This can be used to reduce the dimension of (12) to q ODEs and n − q algebraic equations of
x(t). In fact, if Nℓ =

[

Nℓ,1 Nℓ,2

]

with (Nℓ,2) ∈ R
n−q,n−q invertible, from the block splitting

[

Nℓ,1 Nℓ,2

]

[

x1

x2

]

= ξ one has x2 = N−1
ℓ,2 (ξ − Nℓ,1x1), and the ODEs for x2 can be dropped.

Alternatively, one can say that the presence of conservation laws foliates R
n into stoichiometric
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classes invariant for the dynamics. Each stoichiometric class is uniquely identified by the initial
condition xo and is expressed as the affine space

SC(xo) = {xo + Im(S)} ∩ R
n
+

Given xo, the evolution of (12) is necessarily living in SC(xo) for all times: x(t) ∈ SC(xo) ∀ t ≥ 0.

Im
(S

 )
Im

(S
)

R
nrR

SC
( 
)x o

T
ker(S)

steady states

ker(S )T

S

ST

ox

x(t)

conservation laws

Figure 3: Stoichiometric map, with its subspaces and translated subspaces.

2.3.3 Steady states and right kernel of S

In terms of the fluxes v(x, k) ∈ R
r
+, the steady states of the system lies in the vector space

ker(S) = {v ∈ R
r s. t. Sv = 0}. From rank(S) = q, dim(ker(S)) = r − q. Since we have

broken reversible reactions into pairs of irreversible reactions, we have imposed v(x, k) ≥ 0 and our
S has “twin” columns (differing only in sign, as in (11)) in correspondence of each pair of arrows

“
−−→←−−”. If all reactions are reversible, it is not complicated to show that this representation can

be translated instead into an S with half columns and v(x, k) that can assume any sign (i.e., the
reversibility is “swapped” from the stoichiometry to the fluxes). If not all reactions are reversible,
however, ker(S) should be restricted accordingly as ker(S)∩R

r, leading in general to a convex cone
in the space of fluxes. More details on this in Section 3.

2.3.4 Equilibria and stability

We are interested in investigating the existence of (positive) equilibria, counting them, and under-
standing their stability properties. In particular, we want to study these properties independently
of the numerical values of the parameters k. To analyze these properties, we need to introduce an-
other class of graphs associated to the reaction network (13): the C-graph (Complex graph), whose
nodes are the complexes and whose edges are the reactions. We must assume that the C-graphs
are in “normal form” i.e., each complex label appears only once. Compare (a) and (b) of Fig. 4.

A reaction network is said weakly reversible ∃ a directed path of reactions connecting any two
nodes of the C-graph (i.e., if the C-graph is strongly connected). For example the C-graph of
Fig. 4 (b) is strongly connected, while that of (16) is not, hence the reaction network is not weakly
reversible. Call ℓ (= linkage classes) the number of connected components of the C-graph.
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1X X 2 3X

1X

3X
X 2

0
0

0

+

(a)

1X X 2 3X

0 X 21X

+

(b)

Figure 4: C graph. (a): not in normal form; (b): in normal form.

If q = rank(S), then q = dim(Im(S)), i.e., the dimension of the so-called stoichiometric space
Im(S).

We will need an integer index, associated to the structure of a reaction network, called the
deficiency index δ:

δ := m− ℓ− q

(recall that m = number of complexes).

Examples

• In the example of Fig. 4

S =





−1 1 −1 1 0 0 0 0
−1 1 0 0 −1 1 0 0
1 −1 0 0 0 0 −1 1





and hence q = 3, ℓ = 1 and m = 5, hence δ = m− ℓ− q = 1.

• In the example of (16)

S =









−1 1 0
−1 1 1
1 −1 −1
0 0 1









(15)

i.e., q = 2, ℓ = 2 while m = 3. Hence δ = m− ℓ− q = 0.

• In the example of (9)-(10), instead, m = 4, ℓ = 2 and q = 2, hence δ = m− ℓ− q = 0.

The case δ = 0 (zero deficiency) is special, because very sharp stability results are available for
it. For zero deficiency networks the following theorem in fact holds.

Theorem 2.2 For any reaction network of zero deficiency we have:

1. if the network is not weakly reversible then for arbitrary kinetics (i.e., mass-action, Michaelis-
Menten, etc.) the system cannot have an equilibrium point in int(Rn

+) and cannot have
sustained oscillations.

2. if the network is weakly reversible, then for mass-action kinetics the network has a single posi-
tive equilibrium point x∗ in each stoichiometric class SC(xo) and x∗ is locally (but conjectured
to be “globally”) asymptotically stable in SC(xo).
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Meaning of 1.: lack of weak reversibility implies that one or more species will disappear asymp-
totically, hence x∗ cannot be positive (i.e., x∗ /∈ int(Rn

+)), but it must touch one or more of the
axes of R

n
+ (remember that by construction, x(t) nonnegative ∀ t ≥ 0).

Meaning of 2.: in each leaf SC(xo) in which R
n
+ is foliated, the system has a single equilibrium

point in int(Rn
+) ∩ SC(xo) and within SC(xo) this equilibrium point is globally asymptotically

stable. Notice that since there is a continuum of stoichiometric classes (as we change xo) there
is also a continuum of equilibria, hence, as soon as conservation laws are present, we loose the
usual notion of asymptotic stability, because every neighborhood of x∗ contains infinitely many
other equilibrium points. This notion is sometimes called “semistability”, for example in the paper
by Chellaboina et. al. mentioned at the begin. (Question: do you see any similarity with the
“consensus” problem nowadays very popular??). Only when there are no conservation laws we
have the “usual” asymptotic stability concept (Rn

+ lies all in one stoichiometric class in this case).
A simple way to avoid conservation laws is to have inflow/outflow for all reactions.

Example: enzyme-catalyzed reaction Most reactions need to be catalyzed by an enzyme to
take place at interesting rates. Enzymes are proteins that convert specific substrates into products
while remaining basically unchanged. Consider the single substrate - single product reaction shown

substrate

product

enzyme

Figure 5: Sketch of an enzyme-catalyzed reaction

in Fig. 5, whose reaction diagram is

X1 + X2

k1−−−→←−−−
k2

X3
k3−−−→ X2 + X4 (16)

The meaning of the molecular species in this case is:

• X1 = substrate

• X2 = enzyme

• X3 = complex “substrate + enzyme” (“ = [X1 X2]”)

• X4 = product

Overall the process describes the transformation of the substrate X1 into the product X4. The first
step is binding/unbinding of the substrate to the enzyme, and it is followed by the catalytic step
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which is irreversible. The ODEs are

dx1

dt
= −k1x1x2 + k2x3

dx2

dt
= −k1x1x2 + (k2 + k3)x3

dx3

dt
= k1x1x2 − (k2 + k3)x3

dx4

dt
= k3x3

Let us compute the equilibria explicitly. From ẋ4 = 0 =⇒x3 = 0. Consequently, from ẋ1 = 0
=⇒x1x2 = 0. Hence x∗ /∈ int(R4

+). The meaning is the following: since the substrate x1 is
transformed into product x4 and not resupplied, x1 → 0 and consequently also x2 → 0 as t →∞.
Indeed the reaction network is not weakly reversible and hence, from Theorem 2.2, it does not admit
a positive equilibrium. Notice that there are two conservation laws in the system: x2 +x3 = ξ1 and
x1 + x3 + x4 = ξ2.

Example (9)-(10) The network is reversible, δ = 0, hence Theorem 2.2 applies and predicts
that, in each stoichiometric class, the system has a unique positive equilibrium point which is
asymptotically stable for all points in SC(xo). Let us compute explicitly the equilibrium/a. From
(10)

dx3

dt
= 0 =⇒ x3 =

k1

k2
x1x2

Plugging into dx1

dt
= 0, we get x1 = k4

k3
, hence

x3 =
k1k4

k2k3
x2 (17)

Eq. (17) apparently says that there is an entire ray of equilibria in the (x2, x3) plane, see Fig. 6.
However, q = rank(S) = 2 =⇒n− q = 3− 2 = 1 =⇒∃ a conservation law. ker(ST ) is generated for
example by

c =





0
1
1





meaning that the constant of motion is determined by x2 + x3 = ξ or

x3 = ξ − x2 (18)

In the plane (x2, x3) this constant of motion intersects (17) in a single point, see Fig. 6, meaning
that on SC(xo) the system has indeed a unique equilibrium point. Changing xo means changing the
value of the constant ξ, hence “sliding” the constraint (18) (i.e., passing to another stoichiometric
class).

For networks of higher deficiency (δ > 0) other conditions exist, although they are mostly
focused on studying the “capacity for multistationarity” i.e., the possibility that for some choice of
the parameters k the system may exhibit multiple equilibria in R

n
+. As they are usually formulated

as necessary but not sufficient conditions for multistationarity, they are not directly constructive,
although algorithms exist to test them.
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x2

k k

k k
1

2 3

4 x2=3x

x3

conservation law

ξ

x*

Figure 6: Steady states and conservation laws: 2D-slice of the phase plane for example (9)-(10)

3 Flux Balance Analysis

In the context of metabolic networks (i.e., of networks of biochemical reactions constituting the
metabolism of an organism), the idea of flux balance analysis is to disregard the dependence from
x (and k) in v(x, k). In this way dx

dt
= Sv is not really a system of ODEs (x no longer appears on

the r.h.s.), but one can still concentrate on the properties of the stoichiometric map

S : R
r
+ → R

n

v 7→ dx

dt

and in particular study the steady state flux distributions. The rationale behind the choice of
steady states is that the time constants of the metabolic reactions are very short (∼ 10−1 sec)
when compared to most other time constants of an organism (for example transcriptional processes
have time constants ∼ 102− 104 sec, and protein synthesis/degradation even longer), hence we can
assume that the concentration of the metabolites equilibrates fast, i.e. dx

dt
= 0. We can therefore

limit ourselves to study the configurations of fluxes compatible with this assumption. Sv = 0
implies v ∈ ker(S).

3.1 The cone of steady state fluxes

The fact that v ≥ 0 implies that steady state fluxes must in reality obey to the set of constraints:

Sv = 0

v ≥ 0
(19)

Combining the two constraints, we have v ∈ ker(S) ∩ R
r
+, that is, the steady state fluxes must

belong to a polyhedral convex cone. A polyhedral convex cone in R
r−q
+ is described as a nonnegative

combination

C = {v ∈ R
r−q s. t. v =

p
∑

i=1

αiwi, αi ≥ 0}

where wi, i = 1, . . . , p, are the generating vectors (or extreme rays). Even if dim(ker(S)) = r − q
with q = rank(S), the cone C is often described by a number of generating vectors p much larger
than r − q. The extreme rays are called extreme pathways, as they represent pathways on the
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reaction graph of the network. Their calculation is a hard computational problem: for networks in
which n, r ∼ 103 the number of extreme pathways can be p ∼ 106 or higher.

Example Consider the network of Fig. 7. The stoichiometric matrix is

3X1X

X 2

v

v v

v v

v

1 5

3

6

2

4

Figure 7: A basic reaction network

S =





−1 1 0 1 0 0
1 0 1 0 −1 0
0 −1 −1 0 0 1





has rank(S) = 3 =⇒dim(ker(S)) = 6− 3 = 3. Consider the 3 vectors wi ∈ ker(S)

w1 =

















1
1
−1
0
0
0

















, w2 =

















0
0
1
0
1
1

















, w3 =

















1
0
0
1
1
0

















Clearly span(w1, w2, w3) = ker(S); however the 3 vectors are not all extreme rays of the cone C.
In fact if we look at the corresponding extreme pathways, shown in Fig. 8 (a), (b), (c), then it can
be observed that w1 is not feasible (look at the direction of the arrows), while w2 and w3 are.

In place of w1 one can use instead

w4 =

















1
1
0
0
1
1

















for which span(w4, w2, w3) = ker(S) but also

C =







v =
[

w4 w2 w3

]





α1

α2

α3



 , αi ≥ 0







.
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(d) w4

Figure 8: Nonadmissible (red) and admissible (blue) extremal pathways.

In this case the cone C is simplicial (i. e. its generators are linearly independent in ker(S)), meaning
p = r − q. Every steady state flux is then expressed as

w4 =

















α1 + α3

α1

α2

α3

α1 + α2 + α3

α1 + α2

















, αi ≥ 0

�

The convex cone C can be typically restricted to a convex bounded polyhedral set P, by adding
further constraints like upper bounds u on the fluxes:

P = C ∩ {0 ≤ v ≤ u}

3.2 Choosing a “preferred” steady state flux distribution

Any v ∈ P is an admissible flux distribution. How do we choose a “preferred” flux distribution
within P? In “Flux Balance Analysis”, one popular choice is to optimize some cost function, for
example growth rate i.e., the production of biomass of an organism (the idea is that organisms like
bacteria have evolved over millions of years to optimize their growth). This is typically written as
a linear cost functional g(v) =

∑r
i=1 βivi, where βi describe the (empirical) relative weights of all

reactions which are crucial for growth, such as biosynthesis of nucleotides, aminoacids, fatty acids,

15



cell-wall components, etc. The problem becomes therefore a Linear Programming problem:

max

r
∑

i=1

βivi

subject to Sv = 0

0 ≤ v ≤ u

(20)
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4 Gene circuits

Consider the simplest possible gene circuit: an autoregulatory feedback loop in which a gene
synthesizes for a protein that acts as a transcription factor influencing the rate of transcription of
the gene itself, see Fig. 9.

mRNA

protein

gene

k 1

k 2

(a) positive autoregulation

mRNA

protein

gene

k 1

k 2

(b) negative autoregulation

Figure 9: Autoregulatory gene circuit.

Let us call x1 = concentration of the gene (i.e., of its mRNA) and x2 = concentration of
the corresponding protein. The transcription factor x2 binds to a particular region of the DNA,
upstream of the region that codes for the gene x1. This upstream region is called a promoter region.
The presence or less of transcription factors attached to this region influences the rate at which
the mRNA corresponding to the gene is copied by the cell (i.e., the rate of production of x1). The
influence can be of activator type (in that case we consider the feedback as positive, see Fig. 9 (a))
or of inhibitor type (in this case we consider the feedback as negative, see Fig. 9 (b)).

Let us consider the following basic ODEs to describe this process of autoregulation:

dx1

dt
= k1 φ(x2)− δ1 x1

dx2

dt
= k2 x1 − δ2 x2

(21)

where

• k1, k2 = production rates constants (of gene and protein respectively)

• δ1, δ2 = degradation rates constants.

Clearly x1, x2 ≥ 0 because they represent concentrations. The functional φ(x2) expresses the action
of the transcription factor x2 on the production of x1. For low concentrations of x2 it is reasonable
to assume that this action is linear (low x2 means most binding sites in the promoter region are
empty, hence doubling the free x2 the effect is roughly double; biologists call this a “first order
kinetics”). However, when the concentration of x2 is high, it is likely that most binding sites on the
promoter region are already occupied, hence linearity no longer holds and the term representing
the production of x1 saturates. To represent this saturation behavior it is customary to consider
functional forms called Michaelis-Menten curves or Hill curves.

4.1 Michaelis-Menten and Hill functional forms

A Michaelis-Menten functional is given by

φ(x) =
x

θ + x
(22)
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and is shown in Fig. 10. The parameter θ is called the “half-saturation” value. For low x indeed
the behavior of φ(x) is nearly linear (“first order kinetics”) while for x≫ θ the behavior is nearly

constant (“zero-order kinetics”), i.e. the response saturates for large x. As dφ(x)
dx

> 0 the form of

xθ

1
2

1

Figure 10: Michaelis-Menten functional.

φ(x) represents an activatory mechanism, although a saturated one. If instead we want to have a
saturated inhibitory mechanism then we can consider

φ−(x) = 1− φ(x) =
θ

θ + x
(23)

This functional is shown in Fig. 11. It saturates at 0 for large x. The slope is negative, hence
its inhibitory role. Both (10) and (11) have constant convexity and are called also hyperbolic

xθ

1
2

1

Figure 11: Michaelis-Menten functional, inhibitor version.

functionals. Sometimes instead it is useful to have functionals whose diagrams exhibit both a
convex and a concave part (i.e., sigmoidal curves). In this case the curves commonly used are
called Hill curves and are given by the following functionals

φ(x) =
xh

θh + xh
, h > 1, h ∈ N (24)

for activatory and

φ−(x) = 1− φ(x) =
θh

θh + xh
, h > 1, h ∈ N (25)

for inhibitory. The exponent h is called the Hill coefficient. The corresponding curves are shown
in Fig. 12. Hyperbolic and sigmoidal curves are compared in Fig 13. In Fig. 14 instead it is shown
how a higher h corresponds to a sharper sigmoidal shape. Hill curves are typically associated
to (saturated) cooperativity effects, with h representing the “stoichiometry” (i.e., the number of
identical molecules entering into a reaction).
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Figure 12: Hill curves.

xθ

hyperbolic

sigmoidal

1

1
2

Figure 13: Comparison of hyperbolic and sigmoidal curves.

xθ

1
2

1

growing  h

Figure 14: Hill curves for growing exponent h.

4.2 Invariance of R
2
+

The system (21) with any of (22), (23), (24) or (25) is invariant in R
2
+. To see it, it is enough to

observe that the “off-diagonal” terms of the ODEs (21) are nonnegative. In particular, φ(x) ≥ 0,
∀ x ≥ 0 (this is one of the reasons why these functionals are used in the first place, because they
guarantee x(t) ≥ 0 ∀ t). The only negative terms in the ODEs are on the diagonal, and vanish
when xi → 0. With an abuse of terminology, one could call the nonlinear system (21) “essentially
nonnegative” extending a terminology used for the linear case.

19



4.3 Positive autoregulation and bistability

Let us consider the system (21) with one of the positive functionals for example the Michaelis-
Menten kinetics (22):

dx1

dt
=

x2

θ + x2
− δ1 x1

dx2

dt
= x1 − δ2 x2

(26)

where for the sake of simplicity k1 = k2 = 1.
We now proceed as follows:

• compute the equilibria;

• compute the stability of the equilibria;

• reconstruct the phase portrait of the system.

The system (26) has at most two equilibria:

x∗

0 =

[

0
0

]

, x∗

1 =

[

1−δ1δ2θ
δ1

1−δ1δ2θ
δ1δ2

]

x∗
0 corresponds to the situation in which both gene and protein disappear. In order to be biologically

consistent, x∗
1 must be ≥ 0. That happens when

δ1δ2θ ≤ 1, (27)

condition which we assume to hold here. To investigate the stability properties, let us look at the
Jacobian linearization of the system (26). The formal Jacobian

A =
∂f

∂x
=

[

−δ1
θ

(θ+x2)2

1 −δ2

]

computed at x∗
0 yields

A0 =
∂f

∂x

∣

∣

∣

∣

x∗

0

=

[

−δ1
1
θ

1 −δ2

]

In R
2, the eigenvalues of a matrix A are given by the formula (tr(·) = trace)

λ12 =
tr(A)

2
±

√

tr2(A)− 4 det(A)

4

For A0

tr(A0) = −(δ1 + δ2) < 0

det(A0) =
δ1δ2θ − 1

θ
< 0
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meaning that x∗
0 is unstable (it actually is a saddle point: eigenvalues are real, one positive the

other negative). Notice that as soon as x∗
1 becomes non-biologically consistent, i.e., when (27) is

violated, then x∗
0 becomes asymptotically stable.

Computing the Jacobian matrix at x∗
1 (do the calculations...):

A1 =
∂f

∂x

∣

∣

∣

∣

x∗

1

=

[

−δ1 θδ2
1δ

2
2

1 −δ2

]

In this case

tr(A1) = −(δ1 + δ2) < 0

det(A1) = δ1δ2(1− θδ1δ2) > 0

which imply that x∗
1 is asymptotically stable whenever it is admissible.

The trajectories and phase portrait of the system (26) are shown in Fig. 15. All trajectories
in R

2
+ tend towards x∗

1 (shown in green in Fig. 15 (b)), while x∗
0 (red dot) is unstable for all

trajectories of R
2
+. In fact, its stable submanifold is outside R

2
+, hence uninteresting for us. Its

unstable submanifold is instead along the curve connecting x∗
0 to x∗

1, hence trajectories starting
near x∗

0 are attracted towards x∗
1.
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Figure 15: Positive autoregulation, Michaelis-Menten kinetics.

If instead of the Michaelis-Menten functional we use an activator Hill functional, for example
with Hill coefficient h = 2, then the system becomes:

dx1

dt
=

x2
2

θ2 + x2
2

− δ1 x1

dx2

dt
= x1 − δ2 x2

(28)

This system has the following 3 equilibria:

x∗

0 =

[

0
0

]

, x∗

1 =





1−
√

1−4θ2δ2

1
δ2

2

2δ1δ2
1−
√

1−4θ2δ2

1
δ2

2

2δ1



 , x∗

2 =





1+
√

1−4θ2δ2

1
δ2

2

2δ1δ2
1+
√

1−4θ2δ2

1
δ2

2

2δ1




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Depending on the values of the parameters, one or 3 of these are biologically admissible equilibria.
Assuming 4θ2δ2

1δ
2
2 < 1, we have all 3 in R

2
+. The “formal” Jacobian is now

A =
∂f

∂x
=

[

−δ1
2x2θ2

(θ2+x2

2
)2

1 −δ2

]

For example, computed in x∗
0

A0 =
∂f

∂x

∣

∣

∣

∣

x∗

0

=

[

−δ1 0
1 −δ2

]

meaning that now x∗
0 is asymptotically stable. Doing a similar calculation for the other two equi-

libria, we obtain that x∗
1 is a saddle point and that x∗

2 is another asymptotically stable equilibrium.
This time, however, the saddle point is strictly inside R

2
+ hence also its stable submanifold (cor-

responding to the stable eigenvalue) must be in R
2
+. The trajectories and phase portrait of the

system (28) are shown in Fig. 16. The trajectories tend towards x∗
0 or towards x∗

2 (both shown
in green in Fig. 16 (b)). The basins of attraction of the two asymptotically stable equilibria are
in red and blue. It is clearly visible the existence of a separatrix of the two basins of attraction.
This must necessarily correspond to the stable submanifold of the saddle point (the saddle point is
shown in magenta in Fig. 16 (b)). The unstable submanifold of the saddle point is also guessable,
along the curve that connects x∗

0 with x∗
2. The system (28) is a prototype for a bistable system, a

widely popular topic in systems biology.
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Figure 16: Positive autoregulation, Hill coefficient h = 2.

What we deduce from these examples is that postive feedbacks in biology are often not as
dangerous as in other domains, because they typically come with saturating effects.
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4.4 Negative autoregulation and homeostasis

Let us consider now a case of negative feedback, corresponding for example to the Michaelis-Menten
functional (23). The ODES are

dx1

dt
=

θ

θ + x2
− δ1 x1

dx2

dt
= x1 − δ2 x2

(29)

The equilibria are given by
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Figure 17: Negative autoregulation, Michaelis-Menten kinetics. In the first row the asymptotically
stable equilibrium x∗

1 is a sink; in the second row it is a stable spiral.

x∗ =





−θδ1δ2±
√

θ2δ2

1
δ2

2
+4θδ1δ2

2δ1
−θδ1δ2±

√
θ2δ2

1
δ2

2
+4θδ1δ2

2δ1δ2



 ,
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one of which is always positive, call it x∗
1, the other always negative, hence there is always just one

biologically admissible equilibrium point. Computing the linearization around this equilibrium,
and the eigenvalues of this linearization, then two possibilities emerge, depending on the values of
the parameters:

1. the eigenvalues are real negative =⇒ x∗
1 is a sink, see first row of Fig. 17;

2. the eigenvalues are complex conjugate with negative real part =⇒ x∗
1 is a stable spiral, see

second row of Fig. 17.

When we replace Michaelis-Menten with a Hill functional

dx1

dt
=

θ2

θ2 + x2
2

− δ1 x1

dx2

dt
= x1 − δ2 x2

(30)

the situation is similar: a single asymptotically stable equilibrium emerges. As an exercise you can
try to compute the linearization explicitly and see if the two possibilities mentioned above (sink
and stable spiral) are still possible. An example of trajectory/phase portrait is shown in Fig. 18.
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Figure 18: Negative autoregulation, Hill coefficient h = 2. The asymptotically stable equilibrium
is a spiral.

4.5 Other regulatory elements

Many variants of the toy gene circuit shown above are possible. Clearly, the more complex a gene
circuit is, the more parameters it can have. Very soon the number of possible (admissible) dynamical
features tend to explode. Some basic extra mechanisms are now shown, with the corresponding
ODEs. Feel free to study them in detail....
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Delayed autoregulation The ODEs for Fig. 19 are

dx1

dt
= k1 φ(xτ

2)− δ1 x1

dx2

dt
= k2 xτ

1 − δ2 x2

where

• xτ
1 = x1(t− τ1)

• xτ
2 = x2(t− τ2)

τ 1

τ 2

mRNA

protein

gene

Figure 19: Delayed autoregulation.

Multiple regulation In Fig. 19, two transcription factors act simultaneously, leading to the
ODE

dxg

dt
= kg φ1(xpA) + kg φ−

2 (xpB)− δg xg

proteinA

gene

promoter

protein B

Figure 20: Multiple regulation.

Indirect regulation Fig. 21 shows a case in which transcriptional regulation is mediated by
signaling intermediates. Possible ODE are

dxg

dt
= kg φ(xM )− δg xg

dxE

dt
= kE xg − δE xE

dxM

dt
= kM xE − δM xM
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Figure 21: Indirect regulation.
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