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These notes are inspired (when not copied) from various sources.
Basic gene circuits are probably described in many places, although I did not follow any specific
reference. General references for dynamical models in biology, containing much more material, are

L. Edelstein-Keshet. ”Mathematical Models in Biology”, SIAM Classics, 2005
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E. Sontag, ”Lecture Notes in Mathematical Biology”, available at the URL:
http://www.math.rutgers.edu/∼sontag/613.html

B. Ingalls, ”Mathematical Modeling in Systems Biology: an Introduction”, available at
the URL: http://www.math.uwaterloo.ca/∼bingalls/MMSB/

For what concerns the theory of biochemical reactions in mass-action formalism, the original
lecture notes of Martin Feinberg

M. Feinberg, “Lectures on Chemical Reaction Networks”, 1979, available at
http://www.chbmeng.ohio-state.edu/∼FEINBERG/LecturesOnReactionNetworks/

give a complete and rigorous presentation. More recent tutorials written by control theoreticians
include

David Angeli “A tutorial on chemical reaction network dynamics” Eur. J. Control,
2009, 3-4:398-406

Chellaboina, V., Bhat, S. , Haddad, M.M., Bernstein, D.S. “Modeling and analysis of
mass-action kinetics”. IEEE Control Systems Mag., 29(4):60 - 78, 2009

The standard reference for Flux Balance Analysis is

B. O. Palsson, ”Systems Biology”, Cambridge Univ. Press, 2006

1 Reaction kinetics [Mass-action, Michealis-Menten, Hill]

We are interested in dynamical models of complex biochemical reactions. Reactions happen because
molecules collide with each other, forming and destroying chemical bonds. If we are interested only
in macroscopic effects over a large number of molecules, then we can use the law of mass-action

Law of mass-action: when 2 or more reactants are involved in a reaction step, the
reaction rates are proportional to the product of their concentrations

The law of mass-action is a semi-empirical law, and find its phenomenological justification as a
macroscopic version of collision theory. Constraints to its validity are:

• constant temperature

• compartment in which the reactions happen must be well-mixed

• # of molecules must be high (∼ 1023 = n. of Avogadro).
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1.1 Models of elementary reactions

The simplest possible reaction one can model is a degradation rate of a molecular species X (mean-
ing: X leaves the compartment of interest, or degrades into products which we are not interested
to model). It is represented as

X
k−−→ ∅

The corresponding ODE is:
dx

dt
= −kx

where x = concentration of X (sometimes written as x = [X]), k = rate constant ≥ 0.
Next example is a bimolecular reaction of association: X3 is the “complex” formed by the

binding of X1 and X2 (sometimes written as X3 = [X1X2]). The binding happens with a reaction
rate constant k

X1 + X2
k−−→ X3 (1)

The mass-action ODEs are:

dx1
dt

= −k x1x2
dx2
dt

= −k x1x2
dx3
dt

= k x1x2

(2)

The reaction opposite to (2) is a dissociation, and describes the breaking of the complex X3

into its constituent components:

X3
k−−→ X1 + X2 (3)

The ODEs are :

dx1
dt

= k x3

dx2
dt

= k x3

dx3
dt

= −k x3

(4)

When both binding/unbinding (2) and (4) can happen simultaneously then we have the reversible
association/dissociation

X1 + X2

k1−−−→←−−−
k2

X3 (5)

of ODEs:

dx1
dt

= −k1 x1x2 + k2 x3

dx2
dt

= −k1 x1x2 + k2 x3

dx3
dt

= k1 x1x2 − k2 x3

(6)
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1.2 Conservation laws

Often in the equations representing reaction kinetics there are conservation laws, representing e.g.
conservation of mass. In (6), for instance,

d(x1 + x3)

dt
= 0 =⇒ x1(t) + x3(t) = c1 = const ∀ t ≥ 0

d(x2 + x3)

dt
= 0 =⇒ x2(t) + x3(t) = c2 = const ∀ t ≥ 0

Hence the system (6) reduces to the differential algebraic system

dx3
dt

= k1 (c1 − x3)(c2 − x3)− k2 x3

x1(t) = c1 − x3(t)
x2(t) = c2 − x3(t)

Example: enzyme-catalyzed reaction Most reactions need to be catalyzed by an enzyme to
take place at interesting rates. Enzymes are proteins that convert specific substrates into products
while remaining basically unchanged. Consider the single substrate - single product reaction shown

substrate

product

enzyme

Figure 1: Sketch of an enzyme-catalyzed reaction

in Fig. 1, whose reaction diagram is

X1 +X2

k1−−−→←−−−
k2

X3
k3−−−→ X2 +X4 (7)

The meaning of the molecular species in this case is:

• X1 = substrate

• X2 = enzyme

• X3 = complex “substrate + enzyme” (“ = [X1X2]”)

• X4 = product
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Overall the process describes the transformation of the substrate X1 into the product X4. The first
step is binding/unbinding of the substrate to the enzyme, and it is followed by the catalytic step
which is irreversible. According to mass-action, the ODEs are

dx1
dt

= −k1x1x2 + k2x3

dx2
dt

= −k1x1x2 + (k2 + k3)x3

dx3
dt

= k1x1x2 − (k2 + k3)x3

dx4
dt

= k3x3

(8)

or making use of the conservation law (its meaning: the total concentration of enzyme, free or
bound, is constant)

d(x2 + x3)

dt
= 0 =⇒ x2(t) + x3(t) = c2 = const ∀ t

dx1
dt

= −k1x1(c2 − x3) + k2x3

dx3
dt

= k1x1(c2 − x3)− (k2 + k3)x3

dx4
dt

= k3x3

x2 = c2 − x3

(9)

1.3 Quasi steady-state approximation

In the previous example, the concentration of the enzyme X2 is (much) less abundant than that
of the substrate X1. Hence, after a transient, all molecules of enzyme are used, i.e., substrate
is bound to them, and as soon as a reaction is completed the enzyme is re-occupied again by
another substrate. In the quasi steady-state approximation we make the approximation that the
concentration of complex x3 is constant

dx3
dt

= 0

from which we obtain in (9)

k1x1(c2 − x3)− (k2 + k3)x3 = 0 =⇒ x3 =
c2x1
θ + x1

(10)

where θ = k1+k2
k1

> 0. The functional φ(x) = x
θ+x is called a Michaelis-Menten function, and it will

be analyzed more in detail below. Technically the quasi steady-state approximation corresponds
to apply singular perturbation theory to mass-action kinetics.
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1.4 Cooperativity

When a complex X3 is formed by several copies of the same substrate (for example h copies of X1)
then mass-action law implies that xh1 enters into the ODEs, and also the rate constant in front of
x1 is modified accordingly. The reaction scheme is

hX1 + X2

k1−−−→←−−−
k2

X3 (11)

and the mass-action ODEs:

dx1
dt

= −p k1 xh1x2 + hk2 x3

dx2
dt

= −k1 xh1x2 + k2 x3

dx3
dt

= k1 x
h
1x2 − k2 x3

(12)

h is a stoichiometric coefficient. Most (but not necessarily all) stoichiometric coefficients are 1. All
of them are integers.

Example: cooperative enzyme-catalyzed reaction If, as in Fig. 2, the substrate - product

substrates

enzyme

product

Figure 2: Sketch of a cooperative enzyme-catalyzed reaction, with cooperativity index p = 4.

reaction requires h molecules of substrate to be carried out, then we have the reaction diagram

hX1 +X2

k1−−−→←−−−
k2

X3
k3−−−→ X2 +X4 (13)

and the ODEs

dx1
dt

= −hk1xh1x2 + hk2x3

dx2
dt

= −k1xh1x2 + (k2 + k3)x3

dx3
dt

= k1x
h
1x2 − (k2 + k3)x3

dx4
dt

= k3x3

(14)
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After the elimination of the conservation laws, the quasi steady-state approximation in this case
leads to

x3 = c
xh1

θh + xh1
(15)

where the functional φ(x) = xh

θh+xh
is called a Hill function. The exponent p is called the Hill

coefficient or the cooperativity index. More on Hill functions below.

1.5 Other basic mechanisms

Competitive inhibition The mechanism of competitive inhibition corresponds to a second sub-
strate that can bind to the enzyme, thus preventing the primary substrate from binding and in-
hibiting the formation of the product. See Fig. 3. The reaction diagram is

X1 +X2

k1−−−→←−−−
k2

X3
k3−−−→ X2 +X4

X5 +X2

k4−−−→←−−−
k4

X6

(16)

where

• X5 = competitive inhibitor

• X6 = alternative complex formed (“ = [X5X2]”)

enzyme

substrate

competitive inhibitor

Figure 3: Sketch of an enzyme-catalyzed reaction, with competitive inhibition.

Write down the corresponding ODEs and reduce them using conservation laws and quasi steady-
state approximation. What is the difference in terms of product ODE w.r.t. the non-competitive
enzyme-catalyzed reaction in (7)?

Example: allosteric inhibition We have an allosteric interaction when the enzyme has a second
pocket to which a molecule can bind. If this allosteric binding prevents the primary substrate from
binding in its own pocket then we have an allosteric inhibition. See Fig. 4. In this case the reaction
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diagram is the same as before

X1 +X2

k1−−−→←−−−
k2

X3
k3−−−→ X2 +X4

X5 +X2

k4−−−→←−−−
k4

X6

(17)

Write down the corresponding ODEs and reduce them.

substrate 

allosteric 
inhibitor 

Figure 4: Sketch of an allosterically inhibited enzyme-catalyzed reaction.

1.6 Michaelis-Menten and Hill functional forms

A Michaelis-Menten functional is given by

φ(x) =
x

θ + x
(18)

and is shown in Fig. 5. The parameter θ is called the “half-saturation” value. For low x indeed
the behavior of φ(x) is nearly linear (“first order kinetics”) while for x� θ the behavior is nearly

constant (“zero-order kinetics”), i.e. the response saturates for large x. As dφ(x)
dx > 0 the form of

xθ

1

2

1

Figure 5: Michaelis-Menten functional.

φ(x) represents an activatory mechanism, although a saturated one. If instead we want to have a
saturated inhibitory mechanism then we can consider

φ−(x) = 1− φ(x) =
θ

θ + x
(19)

This functional is shown in Fig. 6. It saturates at 0 for large x. The slope is negative, hence its
inhibitory role. Both (5) and (6) have constant convexity and are called also hyperbolic functionals.
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xθ

1

2

1

Figure 6: Michaelis-Menten functional, inhibitor version.

Example: enzyme-catalyzed reaction in the quasi steady-state approximation. From
(9) and (10) we have that the ODE for the product is

ẋ4 = k3c2︸︷︷︸
const

x1
θ + x1

meaning that when the concentration of substrate X1 is low the reaction rate for the product X4 is
(almost) a linear function of x1, but it saturates to a max value of k3c2 when x1 is big (c2 = x2+x3 =
total concentration of enzyme molecules).

Sometimes instead if Michaelis-Menten curves is useful to have functionals whose diagrams
exhibit both a convex and a concave part (i.e., sigmoidal curves). In this case the curves commonly
used are the Hill curves given by the following functionals

φ(x) =
xh

θh + xh
, h > 1, h ∈ N (20)

for activatory and

φ−(x) = 1− φ(x) =
θh

θh + xh
, h > 1, h ∈ N (21)

for inhibitory. The exponent h is called the Hill coefficient. The corresponding curves are shown
in Fig. 7. Hyperbolic and sigmoidal curves are compared in Fig 8. In Fig. 9 instead it is shown
how a higher h corresponds to a sharper sigmoidal shape. Hill curves are typically associated
to (saturated) cooperativity effects, with h representing the “stoichiometry” (i.e., the number of
identical molecules entering into a reaction).

1

2

xθ

1

(a) positive Hill

1

2

xθ

1

(b) negative Hill

Figure 7: Hill curves.
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xθ

hyperbolic

sigmoidal

1

1
2

Figure 8: Comparison of hyperbolic and sigmoidal curves.

xθ

1
2

1

growing  h

Figure 9: Hill curves for growing exponent h.

Example: cooperative enzyme-catalyzed reaction in the quasi steady-state approxi-
mation. Consider the system (14) with the quasi steady-state approximation (15). The ODE for
the product is

ẋ4 = k3c︸︷︷︸
const

xh1
θh + xh1

meaning that now at low concentrations x1 the rate of x4 is polynomial, not linear. It becomes
saturated at high x1.
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2 Gene circuits [Equilibria, Stability and Phase Plane Analysis in
2D]

Consider the simplest possible gene circuit: an autoregulatory feedback loop in which a gene
synthesizes a protein that acts as a transcription factor influencing the rate of transcription of the
gene itself, see Fig. 10.

mRNA

protein

gene

k 1

k 2

(a) positive autoregulation

mRNA

protein

gene

k 1

k 2

(b) negative autoregulation

Figure 10: Autoregulatory gene circuit.

Let us call x1 = concentration of the gene (i.e., of its mRNA) and x2 = concentration of
the corresponding protein. The transcription factor x2 binds to a particular region of the DNA,
upstream of the region that codes for the gene x1. This upstream region is called a promoter region.
The presence or less of transcription factors attached to this region influences the rate at which
the mRNA corresponding to the gene is copied by the cell (i.e., the rate of production of x1). The
influence can be of activator type (in that case we consider the feedback as positive, see Fig. 10
(a)) or of inhibitor type (in this case we consider the feedback as negative, see Fig. 10 (b)).

Let us consider the following basic ODEs to describe this process of autoregulation:

dx1
dt

= k1 φ(x2)− δ1 x1
dx2
dt

= k2 x1 − δ2 x2
(22)

where

• k1, k2 = production rates constants (of gene and protein respectively)

• δ1, δ2 = degradation rates constants.

Clearly x1, x2 ≥ 0 because they represent concentrations. The functional φ(x2) expresses the action
of the transcription factor x2 on the production of x1. For low concentrations of x2 it is reasonable
to assume that this action is linear (low x2 means most binding sites in the promoter region are
empty, hence doubling the free x2 the effect is roughly double; biologists call this a “first order
kinetics”). However, when the concentration of x2 is high, it is likely that most binding sites on the
promoter region are already occupied, hence linearity no longer holds and the term representing
the production of x1 saturates. To represent this saturation behavior it is customary to consider
functional forms of Michaelis-Menten or Hill type.

We now proceed as follows:

• show that the ODEs (22) are well-posed (i.e., represent concentrations);
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• compute the equilibria;

• compute the local stability of the equilibria;

• reconstruct the entire phase portrait of the system.

2.1 Invariance of R2
+

The system (22) with any of (18), (19), (20) or (21) is invariant in R2
+. To see it, it is enough to

observe that the “off-diagonal” terms of the ODEs (22) are nonnegative. In particular, φ(x) ≥ 0,
∀ x ≥ 0 (this is one of the reasons why these functionals are used in the first place, because they
guarantee x(t) ≥ 0 ∀ t). The only negative terms in the ODEs are on the diagonal, and vanish
when xi → 0. With an abuse of terminology, one could call the nonlinear system (22) “essentially
nonnegative” extending a terminology used for the linear case.

2.2 Local stability

2.2.1 Stability of a linear system (recap)

Consider a linear system
ẋ = Ax (23)

and call λ1, . . . , λn its eigenvalues. We have that the equilibrium point x∗ = 0 is

• asymptotically stable iff Re(λi) < 0 ∀ i

• marginally stable iff Re(λi) ≤ 0 and the eigenvalues λi for which Re(λi) = 0 correspond to
Jordan blocks of dimension 1;

• unstable otherwise.

2.2.2 Local stability from linearization

For a nonlinear system
ẋ = f(x) (24)

at an equilibrium point x∗ such that f(x∗) = 0 we can use the Jacobian linearization to investigate

local stability. If A = ∂f(x∗)
∂x , of eigenvalues λ1, . . . , λn, is the Jacobian linearization at x∗, then

• x∗ is locally asymptotically stable for the nonlinear system (24) if Re(λi) < 0 ∀ i;

• x∗ is unstable for the nonlinear system (24) if Re(λi) > 0 for some i;

• if instead Re(λi) ≤ 0 and Re(λi) = 0 for some i, then the stability character of the nonlinear
system is undecidable by looking at the linearization.
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2.2.3 A special case: linear phase plane analysis for 2D system

Once the equilibria of (22) have been computed, to investigate their stability properties we can
look at the linearization of (22) around an equilibrium. For that we need the Jacobian matrix:

A =
∂f

∂x
=

[
−δ1 k1

∂φ(x2)
∂x2

1 −δ2

]
.

In R2, the eigenvalues of a matrix A are given by the formula (tr(·) = trace)

λ1,2 =
tr(A)

2
±
√

tr2(A)− 4 det(A)

4
(25)

Figure 11: Phase plane analysis in 2D.

The following cases can appear:

• case of λ1,2 real, non-zero, λ1 6= λ2

1. λ1 < 0, λ2 < 0 =⇒ sink (stable node)

2. λ1 > 0, λ2 > 0 =⇒ source (unstable node, repeller)

3. λ1 < 0, λ2 > 0 =⇒ saddle point (unstable)

• case of λ1 = 0 and λ2 6= 0

1. if λ2 < 0 then the linear system is marginally stable (but nothing can be said of the
original nonlinear system)
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2. if λ2 > 0 then the linear system is unstable (but, again, nothing can be said of the
original nonlinear system)

• case of λ1,2 complex conjugate λ1,2 = α± iβ

1. α = 0 =⇒ center (ellipses or circles) =⇒sustained oscillations

2. α < 0 =⇒ spiral sink (stable) =⇒damped oscillations

3. α > 0 =⇒ spiral source (unstable) =⇒increasing oscillations

The values of tr(A) and det(A) allows to determine completely the local phase portrait of a linear
system having A as its state matrix. The possibilities are shown in Fig. 11. In the tr(A)− det(A)
plane, stability corresponds to the top-left quadrant, while the other 3 are unstable.

2.3 Positive autoregulation with Michaelis-Menten [Single attractor]

Let us consider the system (22) with the positive functional (18)

dx1
dt

=
x2

θ + x2
− δ1 x1

dx2
dt

= x1 − δ2 x2
(26)

where for the sake of simplicity k1 = k2 = 1.
The system (26) has at most two equilibria:

x∗0 =

[
0
0

]
, x∗1 =

[
x∗1,1
x∗1,2

]
=

[
1−δ1δ2θ

δ1
1−δ1δ2θ
δ1δ2

]

x∗0 corresponds to the situation in which both gene and protein disappear. In order to be biologically
consistent, x∗1 must be ≥ 0. That happens when

δ1δ2θ ≤ 1, (27)

condition which we assume to hold here. To investigate the stability properties, let us look at the
Jacobian linearization of the system (26). The formal Jacobian

A =
∂f

∂x
=

[
−δ1 θ

(θ+x2)2

1 −δ2

]

computed at x∗0 yields

A0 =
∂f

∂x

∣∣∣∣
x∗0

=

[
−δ1 1

θ
1 −δ2

]
In R2, the eigenvalues of a matrix A are given by the formula (tr(·) = trace)

λ12 =
tr(A)

2
±
√

tr2(A)− 4 det(A)

4
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For A0

tr(A0) = −(δ1 + δ2) < 0

det(A0) =
δ1δ2θ − 1

θ
< 0

hence using (25) we have that x∗0 is unstable. From the classification of Section 2.2.3 and Fig. 11,
we can say that x∗0 is actually a saddle point: eigenvalues are real, one positive the other negative.
Notice that as soon as x∗1 becomes non-biologically consistent, i.e., when (27) is violated, then x∗0
becomes asymptotically stable.

Computing the Jacobian matrix at x∗1 (do the calculations...):

A1 =
∂f

∂x

∣∣∣∣
x∗1

=

[
−δ1 θδ21δ

2
2

1 −δ2

]
In this case

tr(A1) = −(δ1 + δ2) < 0

det(A1) = δ1δ2(1− θδ1δ2) > 0

which imply that x∗1 is asymptotically stable whenever it is admissible. Since tr2(A1)−4 det(A1) =
(δ1 − δ2)2 + 4θδ21δ

2
2 > 0, from Fig. 11, the equilibrium x∗1 is a sink.

2.3.1 Nullclines and complete phase portrait in 2D

The linearization gives us only a local picture of the flow of the system. In R2, the analysis of the
nullclines allows to reconstruct a complete phase portrait of the nonlinear system.

• x1-nullcline: {x ∈ R2
+ s. t. ẋ1 = 0}, i.e,

x1 =
x2

δ1(θ + x2)

• x2-nullcline: {x ∈ R2
+ s. t. ẋ2 = 0}, i.e,

x1 = δ2x2

• intersection of the nullclines: equilibria.

Computing the flow of the system on the nullclines:

dx2
dt

∣∣∣∣
x1-null

=
x2

δ1(θ + x2)
− δ2x2 =

x2
δ1(θ + x2)

(δ1δ2(x
∗
1,2 − x2))


> 0 if x2 < x∗1,2
= 0 if x2 = x∗1,2
< 0 if x2 > x∗1,2

and

dx1
dt

∣∣∣∣
x2-null

=
x2

θ + x2
− δ1δ2x2 =

x2
θ + x2

(δ1δ2(x
∗
1,2 − x2))


> 0 if x2 < x∗1,2
= 0 if x2 = x∗1,2
< 0 if x2 > x∗1,2
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Figure 12: Nonlinear phase plane analysis in 2D for positive autoregulation with Michaelis-Menten
kinetics.

The key observation is that the x1 and x2 components of the flow of the system can “change
direction” only on the nullclines, hence by knowing the sign of the derivatives on the nullclines
we know it (qualitatively) everywhere. The resulting picture is shown in Fig. 12. Notice that the
regions indicated “NE” and “SW” in Fig. 12 are trapping regions, i.e., invariant for the flow of the
system. Since the origin is a saddle point, this implies that its unstable manifold must be inside the
“NE” region. Its stable manifold instead is outside the positive orthant hence we do not consider
it. The presence of trapping regions excludes also the possibility of an equilibrium point which is
a spiral (and in fact x∗1 is a sink).

Such phase portrait can be verified in simulations. The trajectories and phase portrait of the
system (26) are shown in Fig. 13. All trajectories in R2

+ tend towards x∗1 (shown in green in Fig. 13
(b)), while x∗0 (red dot) is unstable for all trajectories of R2

+. In fact, its stable submanifold is outside
R2
+, hence uninteresting for us. Its unstable submanifold is instead along the curve connecting x∗0

to x∗1, hence trajectories starting near x∗0 are attracted towards x∗1. In conclusion, the entire orthant
R2
+ (except x∗0) is attracted towards x∗1.

2.4 Positive autoregulation with Hill function [Bistability]

If instead of the Michaelis-Menten functional we use an activator Hill functional, for example with
Hill coefficient h = 2, then the system becomes:

dx1
dt

=
x22

θ2 + x22
− δ1 x1

dx2
dt

= x1 − δ2 x2
(28)

This system has the following 3 equilibria:

x∗0 =

[
0
0

]
, x∗1 =

1−
√

1−4θ2δ21δ
2
2

2δ1δ2
1−
√

1−4θ2δ21δ
2
2

2δ1

 , x∗2 =

1+
√

1−4θ2δ21δ
2
2

2δ1δ2
1+
√

1−4θ2δ21δ
2
2

2δ1
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Figure 13: Positive autoregulation, Michaelis-Menten kinetics.

Depending on the values of the parameters, one or 3 of these are biologically admissible equilibria.
Assuming 4θ2δ21δ

2
2 < 1, we have all 3 in R2

+. The “formal” Jacobian is now

A =
∂f

∂x
=

[
−δ1 2x2θ2

(θ2+x22)
2

1 −δ2

]

For example, computed in x∗0

A0 =
∂f

∂x

∣∣∣∣
x∗0

=

[
−δ1 0

1 −δ2

]
and

tr(A0) = −(δ1 + δ2) < 0

det(A0) = δ1δ2 > 0

meaning that now x∗0 is asymptotically stable. Doing a similar calculation for the other two equi-
libria, we obtain that x∗1 is a saddle point and that x∗2 is another asymptotically stable equilibrium.
This time, however, the saddle point is strictly inside R2

+ hence also its stable submanifold (corre-
sponding to the stable eigenvalue) must be in R2

+.

2.4.1 Nullclines and complete phase portrait in 2D

Computing the nullclines for the system (28) we get:

• x1-nullcline:

x1 =
x22

δ1(θ2 + x22)
(29)

• x2-nullcline:
x1 = δ2x2 (30)
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• intersection of the nullclines: equilibria.

Computing the flow of the system on the nullclines:

dx2
dt

∣∣∣∣
x1-null

=
x22

δ1(θ2 + x22)
− δ2x2 = x2

x2 − δ1δ2(θ2 + x22)

δ1(θ2 + x22)


< 0 if x2 small

> 0 if x2 intermediate

< 0 if x2 big

and similarly for dx1
dt

∣∣∣
x2-null

. Hence for the flow in R2
+ we have the qualitative picture shown in

Fig. 14. From the direction of the flow on the nullclines, the 3 regions SW and NE are all trapping
regions. Of the 3 equilibrium points, the one in the middle is a saddle point and the other two
are locally asymptotically stable. Because of the trapping regions, the unstable manifold of the
saddle point has be inside the two trapping regions SW and NE, while the stable manifold of the
saddle point must be outside. This stable manifold give rises to a separatrix between the basins
of attraction of the two asymptotically stable equilibria: trajectories on the separatrix will stay on
the separatrix for all times (and converge to the saddle point), trajectories above the separatrix
will converge to x∗2 and trajectories below it will converge to x∗0. Also in this case, the presence
of trapping regions excludes the possibility of eigenvalues with complex conjugate part on the 3
equilibria.

Figure 14: Nonlinear phase plane analysis in 2D for positive autoregulation with Hill kinetics.

Numerical simulations of the trajectories and of the phase portrait of the system (28) are shown
in Fig. 15. The trajectories tend towards x∗0 or towards x∗2 (both shown in green in Fig. 15 (b)).
The basins of attraction of the two asymptotically stable equilibria are in red and blue. It is
clearly visible the existence of a separatrix of the two basins of attraction. This must necessarily
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correspond to the stable submanifold of the saddle point (the saddle point is shown in magenta in
Fig. 15 (b)). The unstable submanifold of the saddle point is also guessable, along the curve that
connects x∗0 with x∗2. The system (28) is a prototype for a bistable system, a widely popular topic
in systems biology.
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Figure 15: Positive autoregulation, Hill coefficient h = 2.

What we deduce from these examples is that positive feedbacks in biology are often not as
dangerous as in other domains, because they typically come with saturating effects.

2.4.2 Saddle-node bifurcation

Assume we continuously change one of the parameters of the sysem (28), for instance δ2. As we
increase δ2, the x2-nullcline (30) changes as shown in Fig. 16, i.e., the number of intersections
between the x1-nullcline and the x2-nullcline (and hence the number of equilibria of (28)) changes:
one observes that the saddle point and one of the stable nodes get close, then collapse into each
other and then disappear altogether. This is called a saddle-node bifurcation, meaning a qualita-
tive/quantitative change in the number of equilibria of the system. The bifurcation diagram on the
right of Fig. 16 shows what happens along the x1coordinate (vertical axis) as we vary the parameter
δ2 (horizontal axis): two of the equilibria (one stable, solid line, and one one unstable, dashed line)
approach each other and then disappear.

2.5 Negative autoregulation [Single attractor]

Let us consider now a case of negative feedback, corresponding for example to the Michaelis-Menten
functional (19). The ODES are

dx1
dt

=
θ

θ + x2
− δ1 x1

dx2
dt

= x1 − δ2 x2
(31)
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Figure 16: Saddle-node bifurcation for positive autoregulation with Hill kinetics.

The equilibria are given by

x∗ =

−θδ1δ2±
√
θ2δ21δ

2
2+4θδ1δ2

2δ1
−θδ1δ2±

√
θ2δ21δ

2
2+4θδ1δ2

2δ1δ2

 ,
one of which is always positive, call it x∗1, the other always negative, hence there is always just one
biologically admissible equilibrium point. Computing the linearization around this equilibrium,
and the eigenvalues of this linearization, then two possibilities emerge, depending on the values of
the parameters:

1. the eigenvalues are real negative =⇒ x∗1 is a sink, see first row of Fig. 18;

2. the eigenvalues are complex conjugate with negative real part =⇒ x∗1 is a stable spiral, see
second row of Fig. 18.

The nullclines and the phase portrait are shown in Fig. 17. In this case there are no trapping
regions around the locally asymptotically stable equilibrium point, which is compatible with the
possibility of spiralling trajectories.

When we replace Michaelis-Menten with a Hill functional

dx1
dt

=
θ2

θ2 + x22
− δ1 x1

dx2
dt

= x1 − δ2 x2
(32)

the situation is similar: a single asymptotically stable equilibrium emerges. As an exercise you can
try to compute the linearization explicitly and see if the two possibilities mentioned above (sink
and stable spiral) are still possible. An example of trajectory/phase portrait is shown in Fig. 19.

20



Figure 17: Nonlinear phase plane analysis in 2D for negative autoregulation with Michaelis-Menten
kinetics.

2.6 Other regulatory elements

Many variants of the toy gene circuit shown above are possible. Clearly, the more complex a gene
circuit is, the more parameters it can have. Very soon the number of possible (admissible) dynamical
features tend to explode. Some basic extra mechanisms are now shown, with the corresponding
ODEs. Feel free to study them in detail....

Delayed autoregulation The ODEs for Fig. 20 are

dx1
dt

= k1 φ(xτ2)− δ1 x1
dx2
dt

= k2 x
τ
1 − δ2 x2

where

• xτ1 = x1(t− τ1)

• xτ2 = x2(t− τ2)

Multiple regulation In Fig. 20, two transcription factors act simultaneously, leading to the
ODE

dxg
dt

= kg φ1(xpA) + kg φ
−
2 (xpB)− δg xg
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Figure 18: Negative autoregulation, Michaelis-Menten kinetics. In the first row the asymptotically
stable equilibrium x∗1 is a sink; in the second row it is a stable spiral.

Indirect regulation Fig. 22 shows a case in which transcriptional regulation is mediated by
signaling intermediates. Possible ODE are

dxg
dt

= kg φ(xM )− δg xg
dxE
dt

= kE xg − δE xE
dxM
dt

= kM xE − δM xM
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Figure 19: Negative autoregulation, Hill coefficient h = 2. The asymptotically stable equilibrium
is a spiral.
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Figure 20: Delayed autoregulation.
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Figure 22: Indirect regulation.
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