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3 Oscillations [Limit Cycles and Hopf bifurcation]

If you consider a linear 2D system with purely imaginary eigenvalues

i = [_Oﬂ g] z (1)
(=>A12 = £if), then the equilibrium point z* = 0 is a center (see Fig. 2 of previous notes),
i.e., the trajectories are concentric ellipses (or circles), meaning that the system oscillates forever.
However, this is not a “strong” notion of oscillation, in the sense that if a trajectory is perturbed
infinitesimally (for instance adding a very small quantity to the right hand side of (1)), then the
system moves away from the current ellipse and never goes back to it.

What we would like to have is an equivalent for periodic trajectories of the concept of asymptotic
stability. For that we need to define first the notion of limit cycle.

A limit cycle is an isolated periodic trajectory (i.e., such that in a neighbourhood around it there
is no other periodic trajectory). When periodic trajectories are isolated then they can attract/repel
nearby trajectories. We say that a limit cycle is stable if it attracts all nearby trajectories. It is
unstable if it repels nearby trajectories, see Fig. 1. Notice that unstable limit cycles can be half-
stable i.e., stable e.g. on the outside and unstable in the inside (in 2D of course).

Stable limit cycles provide a stronger notion of “sustained oscillation” than centers of linear
systems, because they are robust to small perturbations. A limit cycle is however an intrinsically
nonlinear concept: a linear system cannot have a limit cycle.



Figure 1: Left: stable limit cycle (solid line) in 2D. Right: unstable limit cycle (solid line) in 2D.

3.1 Conditions for existence of periodic orbits in 2D [Poincaré-Bendixson the-
orem]

In 2D it is possible to give testable conditions for the existence of periodic trajectories. The most
important is the Poincaré-Bendixson theorem.

Theorem 3.1 (Poincaré-Bendizson theorem) Consider the system i = f(z), * € R?. Assume
there exists a bounded region D C R? such that D is forward-invariant for the system (i.e., x(0) € D
=x(t) € DVt >0, see Fig. 2). Assume also that the system either does not have any equilibrium
point in D or it has at most a single equilibrium point which is a repeller (i.e., the linearization has
two eigenvalues with positive real part). Then there must be a periodic orbit in D. If D contains
only one periodic orbit then this must be a stable limit cycle.

The verification that the periodic orbit is indeed a limit cycle may not be immediate (often one
looks at simulations). Notice that if instead D contains two limit cycles then necessarily one must
be half stable. Notice further that D can have holes, see Fig. 2.

A necessary but not sufficient condition for existence of periodic orbits is given by the Bendixson
criterion.

Theorem 3.2 (Bendizson criterion) Consider the system @ = f(x), x € R?, and a bounded simply
connected (i.e., “without holes”) region D C RZ%. If tr (%@) >0VaeDortr (%@) <0
Y x € D, then D cannot contain periodic orbits for the system.

As a consequence, we have that the only periodic orbits that a linear system can have are the
marginally stable trajectories of a center. In fact, for a linear system & = Az, 6](;—5) = A, and
tr(A) = ay1 + age = const V x, hence only when tr(A) = 0 the Bendixson criterion is not valid (the
Bendixson criterion is a sufficient condition for non-existence of periodic orbits, hence if we want
periodic orbits it must be violated). But tr(A) = 0 ==\ 2 = £/ —det(A), which leads to periodic
trajectories only when det(A) > 0 (i.e., A1 2 = i3, or * = 0 is a center).



Figure 2: Poincaré-Bendixson theorem. Left: D has a single equilibrium which is a repeller. Right:
D has no equilibria, and it has a “hole”.

3.2 Example: Glycolytic oscillator

Glycolysis is the metabolic pathway for the assimilation of sugar in the central metabolism of most
living being (both procaryotes and eukaryotes). The upstream part of this pathway is shown in
Fig. 3.

Figure 3: Scheme of the upper glycolysis pathway.

One of the reactions is catalyzed by the enzyme phosphofructokinase (PFK). PFK converts
fructose-6-phosphate (F6P) into fructose-1-6-diphosphate, using ATP as co-factor and producing

ADP as by-product.

F6P + ATP Y, ¥DP 4+ ADP

PFK has two activity states: a low activity state (basal) and a high activity state (stimulated by
ADP —allosteric effect). In Fig. 3, the dashed line represents this allosteric effect, but not on the
enzyme, rather on the substrate fructose-6-phosphate (F6P) of the reaction. The argument is as
follows: when PFK is in the high activity state more ADP is produced. The more ADP there is,
the more F6P is consumed.

Let us consider a model of this feedback mechanism which takes as variables

e x = [ADP]



e y = [F6P]
and as ODEs:

a':=—x+ay+x2y @)

§=b—ay—a’y
In (2), ay represents the basal functioning of the PFK reaction, while 22y represents the high activity
mode (—z represents a standard degradation/downstream utilization of ADP). The substrate of
the reaction, y, is consumed accordingly. b is a constant production of F6P, depending on the
upstream reactions, while —ay and —x?y represent basal and high consumptions respectively. The
equilibrium point for the system (2) is

and the nullclines are
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The nullclines, together with the qualitative picture of the phase flow in ]R?|r are shown in Fig. 4.
In order to compute the stability character of the equilibrium point, let us look at the Jacobian

Figure 4: Phase portrait of the system (2).
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for which

det(A) =a+b* >0
_b4 +(2a — Db? +a(a+1)

tr(d) = a+ b?

tr(A) changes sign according to the values of the parameters (a, b). For the values of the parameters
for which tr(A) < 0, the equilibrium point (z*, y*) is a repeller, hence the Poincaré-Bendixson
theorem can in principle be applied. To do that, we need to find a bounded region D C R?,_ which
is forward invariant for the system. Let us consider the region in Fig. 5. From the direction of the

Figure 5: Forward-invariant region of the system (2).

flow, in 4 out of 5 pieces of the boundary of D we already know that the flow points inside. We
only need to check it on the line segment of negative slope, whose equation is for example

y=-—-x+c

for some intercept ¢ > 0. To do it let us check what happens to the solution of the system (2) once
it is initialized on x + y = c. Differentiating:

i+y=-—a+ay+aiy+b—ar—a’y=—a+b

For z > b it is © + 9y < 0 =the flow is pointing inwards also on this part of the boundary. Hence
D is a forward-invariant region for the system (2) and indeed the Poincaré-Bendixson theorem can
be applied.

The region in the (a, b) parameter space in which the equilibrium point (z*, y*) is a repeller is
shown in red in Fig. 6. In the red region we can then conclude that D contains at least one periodic
trajectory. A numerical simulation is shown in Fig. 7. Notice that from the Poincaré-Bendixson
theorem we cannot conclude on the presence or less of a stable limit cycle. If we look at the
trajectories in the phase plane, however, in this case it is plausible that indeed a stable limit cycle
exists, see Fig. 8.
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Figure 6: Region in parameter space in which the equilibrium point is unstable (in red).
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Figure 7: One trajectory of the system (2) for a choice of parameters in the red region of Fig. 6.
After a transient the trajectory is periodic.

3.3 Hopf bifurcations

For the glycolytic example (2) let us consider what happens when we continuously vary one of the
parameters. For example let us change a as in Fig. 9. Moving from right to left in the 3 plots,
we pass from a region (in parameter space) in which the system (2) has an asymptotically stable
equilibrium point to one in which the equilibrium is a repeller. Fig. 10 shows how the eigenvalues
of the Jacobian linearization A move as we vary a. It can be observed that for the linearization
the equilibrium passes from being a stable spiral (Fig. 10, right plot, a > a*) to being an unstable
spiral (Fig. 10, left plot, a < a*). However, in the last case we know that the Poincaré-Bendixson
theorem holds, hence trajectories stay confined in D in spite of the instability. What happens is
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Figure 8: Phase plane trajectories of the system (2) for a choice of parameters in the red region of
Fig. 6. The limit cycle is shown in red. In black the unstable equilibrium point is shown.
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Figure 9: Bifurcation analysis: changing values of the parameter a. Left: a < a*; Middle: a = a*;
Right: a > a™.
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Figure 10: Bifurcation analysis: eigenvalues of the Jacobian linearization for the various values of
a. Left: a < a*; Middle: a = a*; Right: a > a*.



that the unstable equilibrium point becomes surrounded by a stable limit cycle (we do not have a
formal proof, but this is what the simulations suggest). The phase portrait in the 3 cases, Fig. 12,
confirms this picture.

Figure 11: Bifurcation analysis: a sample trajectory for the various values of a. Left: a < a;
Middle: a = a*; Right: a > a*.
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Figure 12: Bifurcation analysis: phase portrait for the various values of a. Left: a < o*; Middle:
a = a*; Right: a > a*.

The qualitative change just described is called a supercritical Hopf bifurcation. The peculiarity
of a Hopf bifurcation is that, as we vary the parameter a, two complex conjugate eigenvalues of the
linearization have real part that changes sign while the imaginary part never vanishes. The adjective
“supercritical” refers to what happens at the bifurcation point, i.e., when a = a* (middle plot in
Figs. 9-12). At a = a*, Re[A;] = 0 hence the linearization cannot be used to describe the equilibrium
of the original nonlinear system. When a stable limit cycle appears, then the Hopf bifurcation is
said supercritical. This is the case shown in Fig. 13. At ¢ = a* the equilibrium point becomes
“surrounded” by a stable limit cycle, hence the effect of the instability of the equilibrium point
(when a < a*) is mitigated by the attractivity of the stable limit cycle around it. The amplitude of
the oscillations at the bifurcation point is determined by the real part of the eigenvalues in Fig. 10,
and typically grows slowly from 0 as we pass the critical point.

When instead an unstable limit cycle appears at a = a*, then the Hopf bifurcation is said
subcritical, see Fig. 14. In this case, it is the stable equilibrium point to be surrounded by an
unstable limit cycle. This is a much more dramatic case, as big amplitude oscillations suddenly
appear in this case when the critical point is passed. The simulations of Fig. 12 (middle plot) show



that our example has a supercritical Hopf bifurcation. Supercriticality /Subcriticality of a Hopf
bifurcation is normally checked via simulations.

Figure 13: Supercritical Hopf bifurcation: a stable limit cycle appears at a = a*.



Figure 14: Subcritical Hopf bifurcation: an unstable limit cycle appears at a = a*.
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