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Abstract— A framework for positioning, navigation and
tracking problems using particle filters (sequential Monte
Carlo methods) is developed. It consists of a class of mo-
tion models and a general non-linear measurement equa-
tion in position. A general algorithm is presented, which
is parsimonious with the particle dimension. It is based
on marginalization, enabling a Kalman filter to estimate
all position derivatives, and the particle filter becomes
low-dimensional. This is of utmost importance for high-
performance real-time applications.

Automotive and airborne applications illustrate numeri-
cally the advantage over classical Kalman filter based algo-
rithms. Here the use of non-linear models and non-Gaussian
noise is the main explanation for the improvement in accu-
racy.

More specifically, we describe how the technique of map
matching is used to match an aircraft’s elevation profile to a
digital elevation map, and a car’s horizontal driven path to
a street map. In both cases, real-time implementations are
available, and tests have shown that the accuracy in both
cases is comparable to satellite navigation (as GPS), but
with higher integrity. Based on simulations, we also argue
how the particle filter can be used for positioning based on
cellular phone measurements, for integrated navigation in
aircraft, and for target tracking in aircraft and cars. Fi-
nally, the particle filter enables a promising solution to the
combined task of navigation and tracking, with possible ap-
plication to airborne hunting and collision avoidance systems
in cars.

I. Introduction

Recursive implementations of Monte Carlo based statis-
tical signal processing [19] are known as particle filters, see
[13], [14]. The research has since the paper [21] steadily
intensified, see the recent first article collection [13]. The
particle filters may be a serious alternative for real-time ap-
plications classically approached by model-based Kalman
filter techniques [29], [24]. The more non-linear model, or
the more non-Gaussian noise, the more potential particle
filters have, especially in applications where computational
power is rather cheap and the sampling rate is moderate.
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The paper describes a general framework for a number
of applications, where we have implemented the particle
filter. The problem areas are
• Positioning, where one’s own position is to be estimated.
This is a filtering problem rather than a static estimation
problem, when an inertial navigation system is used to pro-
vide measurements of movement.
• Navigation, where besides the position also velocity, at-
titude and heading, acceleration and angular rates are in-
cluded in the filtering problem.
• Target tracking, where another object’s position is to be
estimated based on measurements of relative range and an-
gles to one’s own position.
Another related application fitting this framework, not ex-
plicitly included here, is robot localization, see for instance
[43], [44]. The problems listed above are related in that
they can be described by quite similar state space models,
where the state vector contains the position and deriva-
tives of the position. Traditional methods are based on
linearized models and Gaussian noise approximations so
that the Kalman filter can be applied [1]. Research is fo-
cused on how different state coordinates or multiple mod-
els can be used to limit the approximations. In contrast
to this, the particle filter approximates the optimal solu-
tion numerically based on a physical model, rather than
applying an optimal filter to an approximate model. A
well-known problem with the particle filter is that its per-
formance degrades quickly when the dimension of the state
dimension increases. A key theoretical contribution here is
to apply marginalization techniques [36], adopted and ex-
tended from [12], leading to that the Kalman filter can be
used to estimate (or eliminate) all position derivatives, and
the particle filter is applied to the part of the state vector
containing only the position. Thus, the particle filter di-
mension is only 2 or 3, depending on the application, and
this is the main step to get real-time high-performance al-
gorithms.

The applications we will describe are:
• Car positioning by map matching. A digital road map
is used to constrain the possible positions, where a dead-
reckoning of wheel speeds is the main external input to the
algorithm. By matching the driven path to a road map, a
vague initial position (order of km’s) can be improved to
a meter accuracy. This principle can be used as a supple-
ment to, or even replacement to, GPS (global positioning
system).
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• Car positioning by Radio Frequency (RF) measurements.
The digital road map above can be replaced by, or supple-
mented by, measurements from a terrestrial wireless com-
munications system. For hand-over (to transfer a connec-
tion from one base station to another) operation, the mo-
bile stations (MS) monitor the received signal powers from
a multitude of base stations, and report regularly to the
network. These measurements provide a power map which
can be used in a similar manner as above. Mobile stations
in a near future will moreover provide the possibility of
monitoring the traveled distance of the radio signals from
a number of base stations [16]. Such measurements can also
be utilized in the same manner as with the power measure-
ments.
• Aircraft positioning by map matching or terrain nav-
igation. A Geographical information system contains,
among other information, terrain elevation. The aircraft
is equipped with sensors such that the terrain elevation
can be measured. By map matching, the position can be
deducted [5].
• Integrated navigation. The aircraft’s Inertial Navigation
System (INS) uses dead-reckoning to compute navigation
and flight data, i.e. position, velocity, attitude and head-
ing. The INS is regarded as the main sensor for navigation
and flight data due to being autonomous and having high
reliability [10]. However, small offsets cause drift and its
output has to be stabilized. Here, terrain navigation is
used today.
• Target tracking. A classical problem in signal processing
literature is target tracking, where an IR sensor measures
relative angle, or a radar measures relative angle, range and
possibly range rate, to the object [4]. For the case of bear-
ings only measuring IR sensor, either the state dynamics
or measurement equation is very non-linear depending on
the choice of state coordinates, so here the particle filter is
particularly promising.
• Combined navigation and tracking. Because the target
tracking measurements are relative to one’s own platform,
positioning is an important sub-problem. Since the sensor
introduces a cross-coupling between the problems, a unified
treatment is tempting.
• Car collision avoidance is very similar to the target track-
ing problem, here we are interested in predicting the own
car’s and other objects’ future position, see [40]. Based on
the prediction, collision avoidance actions such as warn-
ing, braking and steering are undertaken when a collision
is likely to happen. In order to have enough time to warn
the driver the prediction horizon needs to be quite long.
Therefore, utilizing knowledge about road geometry and
infrastructure becomes important. One way to improve
the prediction of possible maneuvers, is to use information
in a digital map. Thus, this is a specific project including
all aspects of the problems listed above.

The outline is as follows. We will start with a general
framework of models covering all of our applications in Sec-
tion II. Then, a general algorithm is presented covering all
applications, where special attention is paid on practical
problems as divergence test, initialization and real-time re-

quirements. Each application in the list above is devoted
its own section, and conclusions and open questions of gen-
eral interest are discussed in VIII.

II. Models

Central for all navigation and tracking applications is the
motion model to which various kind of model based filters
can be applied. Models which are linear in the state dy-
namics and non-linear in the measurements are considered:

xt+1 = Axt +Buut +Bfft, (1a)
yt = h(xt) + et. (1b)

Here xt is the state vector, ut measured inputs, ft unmea-
sured forces or faults, yt the measurements and et mea-
surement error. We assume independent distributions for
ft, et and x0, with known probability densities pet , pft and
px0 , respectively, not necessarily Gaussian. Motion mod-
els (1a) are further discussed in Section II-A. These are
to a large extent similar in all applications, and standard
in the literature. The model (1) takes only movements
into account, and we do not attempt to model for instance
mechanical dynamics in the platform. That is, (1) have
no model parameters. The difference between the applica-
tions mainly lies in the availability of measurements. Sec-
tion II-B provides an extensive list of possible measurement
equations (1b).

A. Motion Models

The signals of primary interest in navigation and track-
ing applications are related to position, velocity and ac-
celeration as summarized in Table I. Newton’s law relates

Object Position Velocity Acceleration
Own p(1) v(1) a(1), δa(1) acc. bias
Other p(2) v(2) -

TABLE I

Interesting signals in navigation and tracking applications.

Index (1) and (2) indicates signals related to one’s own and

another platform respectively. All quantities can belong

to either one, two or three-dimensional spaces, depending on

the application.

known and unknown external forces on the platforms to
acceleration. From the differential equations ṗt = vt and
v̇t = at, we obtain relations like pt = p0 + v0t if velocity is
assumed constant and pt = p0 +v0t+a0t

2/2 if acceleration
is assumed constant. If we here plug in the sample period
Ts, we get a discrete time model for motion between two
consecutive measurements as will be frequently used in the
sequel.

Depending on whether the signals are measurable or not,
they may be components of either the state vector xt or
the input signal ut. The ambition here is to discuss mod-
els through which the applications are naturally related.
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In specific applications, however, other parameterizations
might provide better understanding of design variables and
algorithm tuning.

In positioning and navigation applications the signals re-
lated to the own platform are of interest. If the velocity v(1)

t

is assumed measurable (and thus part of the input signal),
the state dynamics can be modeled as

p
(1)
t+1 = p

(1)
t︸︷︷︸
xt

+Tsv
(1)
t︸ ︷︷ ︸

Buut

+Tsf
(1)
t︸ ︷︷ ︸

Bfft

. (2a)

In several navigation applications, such as airborne, mea-
surements of the acceleration are used instead of velocity.
These are typically biased, and the true acceleration can
be expressed as

a
(1)
true,t = a

(1)
t + δa

(1)
t ,

where a
(1)
t is the measured acceleration and δa

(1)
t is the

bias. The position is extracted by dead-reckoning of the
measured acceleration, and therefore the presence of accel-
eration bias is critical. The natural thing to do is to include
the bias in the state vector, and the measured acceleration
in the input signal. The resulting motion model is

 p
(1)
t+1

v
(1)
t+1

δa
(1)
t+1

 =

I Ts · I T 2
s /2 · I

0 I Ts · I
0 0 I


︸ ︷︷ ︸

A(1)

 p
(1)
t

v
(1)
t

δa
(1)
t



+

T 2
s /2 · I
Ts · I

0


︸ ︷︷ ︸

B
(1)
u

a
(1)
t +

T 3
s /6 · I
T 2
s /2 · I
Ts · I


︸ ︷︷ ︸

B
(1)
f

f
(1)
t . (2b)

Analogously, a bias in any other measured signal (e.g. a
bias in the velocity in Equation (2a)) can be considered by
incorporating it in the state equation.

So far, the focus has been on the own platform. In a
simple model of the movements of the other platform, the
assumption is that its velocity v(2) is subject to an unknown
acceleration. This yields

(
p

(2)
t+1

v
(2)
t+1

)
=
(
I Ts · I
0 I

)
︸ ︷︷ ︸

A(2)

(
p

(2)
t

v
(2)
t

)
+
(
T 2
s /2 · I
Ts · I

)
︸ ︷︷ ︸

B
(2)
f

f
(2)
t . (2c)

In the target tracking literature, a popular choice of motion
model is given by the “coordinated turn”-model [4].

When considering tracking of another platform, while
moving the own platform, joint navigation and target
tracking can be employed. Essentially, the total motion

model comprises the motion models (2b) and (2c):
p

(1)
t+1

v
(1)
t+1

δa
(1)
t+1

p
(2)
t+1

v
(2)
t+1

 =
(
A(1) 0

0 A(2)

)

p

(1)
t

v
(1)
t

δa
(1)
t

p
(2)
t

v
(2)
t


+
(
B

(1)
u

0

)
a

(1)
t +

(
B

(1)
f 0
0 B

(2)
f

)(
f

(1)
t

f
(2)
t

)
. (2d)

B. Measurement Equations

The main difference between the considered applications
is the measurements available. Basically, the measure-
ments are related to the positions of one’s own platform
p(1) and to the other object p(2). Therefore, the measure-
ment equations can be categorized as depending on p(1)

only, or depending on both p(1) and p(2):

y
(1)
t = h(1)(p(1)

t ) + e
(1)
t (3a)

y
(2)
t = h(2)(p(1)

t , p
(2)
t ) + e

(2)
t , (3b)

where the measurement noise contributions e(1)
t and e

(2)
t

are characterized by their distributions. If not explicitly
mentioned, a Gaussian distribution is used.

In the studied applications, measurements from at least
one of the categories above are available. It is important to
note, that any combination of the sensors is possible. The
presented applications are just a few examples.

B.1 Measurements of Relative Distance

As always, any position has to be related to a coordinate
system and a reference position. Several types of sensors
(e.g. GPS, RF) basically measure the distance relative to
that reference point. One possibility is distance measure-
ments of the own position relative to points of known po-
sitions pi, i = 1, . . . ,M , which yields M measurement
equations with

h
(1)
a,i(p

(1)
t ) =

∣∣∣pi − p(1)
t

∣∣∣ , i = 1, . . . ,M. (3c)

This is also applicable when the position of another object
is related to one’s own position (e.g. radar, sonar, ultra-
sound):

h
(2)
b (p(1)

t , p
(2)
t ) =

∣∣∣p(2)
t − p

(1)
t

∣∣∣ . (3d)

Some sensors do not measure the relative distance explic-
itly, but rather a quantity related to the same. One exam-
ple is sensors that measure the received radio signal power
transmitted from a known position pi. This received power
typically decays as ∼ K1/|pi − p(1)

t |α, α ∈ [2, 5], where K1

and α depend on the radio environment, antenna character-
istics, terrain etc. In a logarithmic scale, the measurements
are given by

h
(1)
c,i (p

(1)
t ) = K − α log10

∣∣∣pi − p(1)
t

∣∣∣ , i = 1, . . . ,M, (3e)
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Altitude Ground clearance

Mean sea-level

Terrain elevation

Fig. 1. Aircraft measures absolute altitude and height over ground
from which terrain height y is computed.

where K = log10K1 [26]. Analogously, we can consider the
situation when we focus on the power or intensity trans-
mitted or reflected from an object and received at one’s
own position. The measurement is thus modeled by

h
(2)
d (p(1)

t , p
(2)
t ) = K − α log10

∣∣∣p(1)
t − p

(2)
t

∣∣∣ . (3f)

B.2 Measurements of Relative Angle

Similarly, the sensors can measure the relative angle be-
tween two positions (e.g. radar, IR, sonar, ultrasound).
Given points of known positions pi, i = 1, . . . ,M , the rel-
ative angle measurements can be described by

h
(1)
e,i (p

(1)
t ) = angle

{
pi, p

(1)
t

}
, i = 1, . . . ,M. (3g)

When relating the angle of an object to one’s own position,
we have

h
(2)
f (p(1)

t , p
(2)
t ) = angle

{
p

(1)
t , p

(2)
t

}
. (3h)

B.3 Measurements of Relative Velocity

Some sensors (e.g. radar) typically measure the Doppler
shift of signal frequencies to estimate the magnitude of the
relative velocity. This is essentially only applicable when
relating the velocity of an object to one’s own velocity. The
measurements are categorized by

h
(2)
g,i (v

(1)
t , v

(2)
t ) =

∣∣∣v(2)
t − v

(1)
t

∣∣∣ . (3i)

B.4 Map Related Measurements

Fig. 1 illustrates how ground altitude is computed from
radar measurements of height over ground and barometric
measurements from which altitude is computed. The mea-
sured terrain height together with relative movement from
the INS build up a height profile as illustrated in Fig. 2,
and the task is to find the current position and orientation
of this profile on the map.

Fig. 2. Measured terrain elevation y together with measured velocity
can be seen as the profile above the terrain elevation map h(p(1)).

The measurement in terrain navigation is the measured
ground height, and hh(p(1)) is the height at point p(1) ac-
cording to the Geographical Information System (GIS).
Much effort has been spent on modeling the measurement
error e(1)

t in a realistic way. It has turned out that a Gaus-
sian mixture with two modes works well. One mode has
zero mean, and the other a positive mean which corre-
sponds to radar echos from the tree tops. The ground type
in GIS can be used to switch the mean and variances in
the Gaussian mixture. For instance, over sea there is only
one mode with a small variance.

For map matching in the car positioning case, there is no
real measurement. Instead, h(1)

j (p(1)
t ) denotes the distance

to the nearest road, and the measurement

y
(1)
t = h

(1)
j (p(1)

t ) + e
(1)
t ,

should therefore be equal to zero. A simple and relevant
noise model is white and zero mean Gaussian noise.

C. Applications

The applications discussed briefly in Section I are ex-
plored in further detail in the sequel. Typical state vectors,
input signals and available (non-linear) sensor information
are summarized in Table II. Motivations and more elabora-
tive discussions regarding the applications and appropriate
models are found in Sections IV, V, VI and VII.

III. The Particle Filter

A. Recursive Bayesian Estimation

Consider systems that are described by the generic state
space model (1). The optimal Bayesian filter in this case
is given below. For further details, consult [5].

Denote the set of available observations at time t by

Yt = {y0, . . . , yt}.

The Bayesian solution to compute the posterior distribu-
tion, p(xt|Yt), of the state vector, given past observations,
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Application State vector Input Measurement equations
Car positioning p

(1)
t v

(1)
t Road map hj(p

(1)
t ), possibly GPS or base station

distances h(1)
a,i(p

(1)
t ), base station powers h(1)

c,i (p
(1)
t )

Aircraft positioning p
(1)
t a

(1)
t Altitude map hj(p

(1)
t ), GPS or other reference

beacons h(1)
a,i(p

(1)
t )

Navigation in aircraft p(1), v(1), δa
(1)
t a

(1)
t Altitude map hj(p

(1)
t ), GPS or other reference

beacons h(1)
a,i(p

(1)
t )

Tracking p
(2)
t , v

(2)
t distance h(2)

b (p(1)
t , p

(2)
t ), bearing h(2)

f (p(1)
t , p

(2)
t ),

Doppler h(2)
g (p(1)

t , p
(2)
t ), intensity h(2)

d (p(1)
t , p

(2)
t )

Navigation and tracking p
(1)
t , v

(1)
t , δa

(1)
t , p

(2)
t , v

(2)
t a

(1)
t Altitude map hj(p

(1)
t ), GPS or other reference

in aircraft beacons h(1)
a,i(p

(1)
t )

distance h(2)
b (p(1)

t , p
(2)
t ), bearing h(2)

f (p(1)
t , p

(2)
t ),

Doppler h(2)
g (p(1)

t , p
(2)
t ), intensity h(2)

d (p(1)
t , p

(2)
t )

Navigation and tracking p
(1)
t , v

(1)
t , δa

(1)
t , p

(2)
t , v

(2)
t a

(1)
t Road map hj(p

(1)
t ), possibly GPS or base station

in cars distances h(1)
a,i(p

(1)
t ), base station powers h(1)

c,i (p
(1)
t )

distance h(2)
b (p(1)

t , p
(2)
t ), bearing h(2)

f (p(1)
t , p

(2)
t ),

Doppler h(2)
g (p(1)

t , p
(2)
t ), intensity h(2)

d (p(1)
t , p

(2)
t )

TABLE II

List of considered applications with the corresponding state vector (cf. Table I), input signal and sensor information.

is given by [5]

p(xt+1|Yt) =
∫
p(xt+1|xt)p(xt|Yt) dxt

=
∫
pft(B

†
f (xt+1 −Axt −Buut))p(xt|Yt) dxt

(4a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)

=
pet(yt − h(xt))p(xt|Yt−1)

ct
(4b)

x̂MMS
t =

∫
xtp(xt|Yt)dxt (4c)

PMMS
t =

∫
(xt − x̂MMS

t )(xt − x̂MMS
t )T p(xt|Yt)dxt,

(4d)

where † denotes the Moore-Penrose pseudo-inverse, ct a
normalization constant, and x̂MMS

t the minimum mean
square (MMS) estimate.

If the noise distributions are independent, white and
zero mean Gaussian with E(eteTt ) = R, E(ftfTt ) = Q
and the measurement equation is linear in the state, i.e.
h(xt) = Cxt, the optimal solution is given by the Kalman
estimator [29]. Table III summarizes the time and mea-
surement update equations for the Kalman estimator.

B. Particle Filter Implementation

A numerical approximation to (4) is given in the follow-
ing algorithm.

Algorithm 1: Particle Filter

1. Initialization: Generate xi0 ∼ px0 , i = 1, . . . , N . Each
sample of the state vector is referred to as a particle.
2. Measurement update: Update the weights by the likeli-
hood (more generally, any importance function, see [13]):

wit = wit−1p(yt|xit) = wit−1pet(yt − h(xit)), i = 1, 2, . . . , N

and normalize to wit := wit/
∑
i w

i
t. As an approximation

to (4c), take

x̂t ≈
N∑
i=1

witx
i
t.

3. Re-sampling:
(a) Bayesian bootstrap. Take N samples with replace-

ment from the set {xit}Ni=1 where the probability to take
sample i is wit. Let wit = 1/N . This step is also called
Sampling Importance Re-sampling (SIR).
(b) Importance sampling. Only res-ample as above when

the effective number of samples is less than a threshold
Nth,

Neff =
1∑

i(w
i
t)2

< Nth,

see [5], [14], [34], [35]. Here 1 ≤ Neff ≤ N , where the upper
bound is attained when all particles have the same weight,
and the lower bound when all probability mass is at one
particle. The threshold can be chosen as Nth = 2N/3.
4. Prediction: Take a f it ∼ pft and simulate

xit+1 = Axit +Buut +Bff
i
t , i = 1, 2, . . . , N.

5. Let t := t+ 1 and iterate to item 2.
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The key point with re-sampling is to prevent high concen-
tration of probability mass at a few particles. Without
this step, some wit will converge to 1 and the filter would
brake down to a pure simulation. The re-sampling can be
efficiently implemented using a classical algorithm for sam-
pling N ordered independent identically distributed vari-
ables [5], [39].

It can be shown analytically [11], that under some con-
ditions the estimation error is bounded by gt/N . The func-
tion gt grows with time, but does not depend on the dimen-
sion of the state space. That is, in theory we can expect
the same good performance for high order state vectors.
This is one of the key reasons for the success of the particle
filter compared to other numerical approaches such as the
point mass filter (a numerical integration technique which
can be seen as a deterministic particle filter) [5] and filter
banks [24]. The computational steps are compared to the
Kalman filter in Table III. Note that the most time con-
suming step in the Kalman filter is the Riccati recursion of
the matrix P , which is not needed in the particle filter. The
time update of the state is the same. Let nx denote the
dimension of the state vector, and similar definitions for ny
and nf . As a first order approximation for large nx, the
Kalman filter is O(2n3

x) from the matrix times matrix mul-
tiplication AP , while the particle filter is O(Nn2

x) from the
matrix times vector multiplication Ax. This indicates that
the particle filter is about 100 times slower in an applica-
tion with nx ≈ 5 and N ≈ 103. The difference becomes less
when ny increases, in which case the measurement update
becomes more complex. The non-linear function evalua-
tion (preferably implemented as a table lookup) of h(x)
in the particle filter, has a counterpart of computing the
gradient C = dh(x)/dx in the Kalman filter, or any other
linearization that is needed. In a multi-sensor application,
the matrix inversion (CPCT +R)−1 may no longer be neg-
ligible. All in all, a precise comparison is hard to make,
though it is worth pointing that the particle filter runs in
real-time even in Matlab in several of the applications pre-
sented here.

C. Sample Impoverishment

When the particle filter is used in practice, we often wish
to minimize the number of particles to reduce the com-
putational burden. For many applications using recursive
Monte Carlo methods, depletion or sample impoverishment
may occur, i.e. the effective number of samples is reduced.
This means that the particle cloud will not reflect the true
density. Several different methods are proposed in the lit-
erature to reduce this problem.

By introducing an additional noise to the samples the
depletion problem can be reduced. This technique is called
jittering in [17], but a similar approach was introduced
in [21] under the name roughening. In [15], the depletion
problem is handled by introducing an additional Markov
Chain Monte Carlo (MCMC) step to separate the samples
.

In [21], the so-called prior editing method is discussed.
The estimation problem is delayed one time-step, so that

the likelihood can be evaluated at the next time step. The
idea is to reject particles with sufficiently small likelihood
values, since they are not likely to be re-sampled. The
update step is repeated until a feasible likelihood value is
received. The roughening method could also be applied
before the update step is invoked. The auxiliary particle
filter [37] is constructed in such a way that we will simulate
from particles associated with large predictive likelihoods
directly. A two stage re-sampling may be used by this
method.

D. Rao-Blackwellization

Despite the theoretical independence of accuracy on the
particle dimension, it is well-known that the number of par-
ticles needs to be quite high for high-dimensional systems,
see for instance Section VI for an illustration. To be able to
use a small N , and also to reduce the risk of divergence, a
procedure known as Rao-Blackwellization can be applied.
The idea is to use the Kalman filter for the part of the
state space model that is linear, and the particle filter for
the other part. As a motivation, the state vector in iner-
tial navigation can have as many as 27 states, and here the
Kalman filter can be used for the 24 states while the par-
ticle filter applies on the three-dimensional position state.
The extra work load is here minor.

The motion models given in Section II can actually be
re-written in the form

(
xpf
t+1

xkf
t+1

)
=
(
I Apf

0 Akf

)(
xpf
t

xkf
t

)
+
(
Bpf
u

Bkf
u

)
ut +

(
Bpf
f

Bkf
f

)
ft

(5a)

yt =h(xpf
t ) + et, (5b)

where xpf
t (pf short for particle filter) and xkf

t (kf short
for Kalman filter) is a partition of the state vector with
ft assumed Gaussian. The et and xpf

0 can have arbitrarily
given distributions. As the indices indicate, the Kalman
filter will be applied to one part and the particle filter for
the other part of the state vector.

For a derivation of the algorithm, see the Appendix or
[36]. A similar result is presented in [12] for the general
case, where the state space equation is linear and Gaus-
sian, but one observes a zt instead of yt, where the relation
p(zt|yt) is known. An algorithmically similar approach is
given in [5], as an approximate solution to an altitude off-
set in terrain navigation. The result is a particle filter with
N particles estimating xpf

t . The difference to the standard
particle filter algorithm (Algorithm 1) here is that the pre-
diction step is done using

xpf,i
t+1 ∼ N(xpf,i

t +Apf x̂kf,i
t|t−1 +Bpf

u ut,

ApfP kf
t|t−1(Apf)T +Bpf

f Qt(B
pf
f )T ).

Moreover, for each particle, one Kalman filter estimates



7

Algorithm Kalman filter Particle filter
Time update x := Ax+Buu f i ∼ pf

P := APAT +BftQB
T
ft

xi := Axi +Buu+Bff
i

Measurement update K = PCT (CPCT +R)−1 wi := wipe(y − h(xi))
x := x+K(y − Cx)
P := P −KCP

TABLE III

Comparison of KF and PF: Main computational steps.

{xkf,i
t+1|t; i = 1, .., N} using

Kt =P kf
t|t−1(Apf)T (ApfP kf

t|t−1(Apf)T +Bpf
f Qt(B

pf
f )T )−1

x̂kf,i
t+1|t =A

kf
(x̂kf,i
t|t−1 +Kt(zit −Apf x̂kf,i

t|t−1)) +

Bkf
u ut +Bkf

f (Bpf
f )†zit

P kf
t+1|t =A

kf
(P kf
t|t−1 −KtA

pfP kf
t|t−1)(A

kf
)T ,

where A
kf

= Akf − Bkf
f (Bpf

f )†Apf († denotes the Moore-
Penrose pseudo-inverse) and zit = x̂pf,i

t+1 − x̂
pf,i
t .

Remark 1. The covariance P kf
t|t−1 and the Kalman gain Kt

are the same for all particles, implying a very efficient im-
plementation of the N parallel Kalman filters, where the
P and K updates in Table III are done only once per time
step.
Remark 2. The distribution for xkf

0 does not necessarily
have to be Gaussian. We can approximate p(xkf

0 ) arbi-
trarily well by {N(x̂kf,i

0|−1, P
kf
0|−1); i = 1, .., N}.

Remark 3. The derivation still holds if an additional non-
linear term g(xpf

t ) enters the state dynamics for xpf
t .

Remark 4. The Kalman filter here applies to a state vec-
tor of dimension nx − ny, which is an improvement com-
pared to dimension dimx as the derivation in [12] leads to.
For large nx, the reduction in complexity is approximately
O
(

(nx−ny)3

n3
x

)
.

The estimate of the particle filter part is computed in the
normal way, and for the Kalman filter part we can take the
MMS estimate (4c)

x̂kf
t ≈

N∑
i=1

witx̂
kf,i
t|t−1,

with covariance (4d)

P kf
t ≈ P kf

t|t−1 +
N∑
i=1

wit(x̂
kf,i
t|t−1 − x̂

kf
t|t−1)(x̂kf,i

t|t−1 − x̂
kf
t|t−1)T .

IV. Car Positioning

Wheel speed sensors in ABS are available as standard
components in the test car (Volvo V40). From this, yaw
rate and speed information are computed as described in
[22]. Therefore, the velocity vector v(1)

t is considered avail-
able as an input signal, and the motion model in (2a) with
measurement equation given by (3a) is thus appropriate.

The initial position is either marked by the driver or given
from a different system, e.g. a terrestrial wireless com-
munications system, where crude position information is
available today [16], or GPS. The initial area should cover
an area not extending more than a couple of kilometers to
limit the number of particles to a realizable number. With
infinite memory and computation time, no initialization
would be necessary.

The car positioning with map matching has been imple-
mented in a car and the particle filter runs in real-time
with sampling frequency 2 Hz on a modern laptop with a
commercial digital road map. This corresponds to a mea-
surement equation specified by h(1)

j (p(1)
t ) in Section II-B.4.

Fig. 3 shows a sequence of images of the particle cloud
on a flight image of the local area. The driven path consists
of a number of 90 degrees turns. Initially, the particles are
spread uniformly over all admissible positions, that is, on
the roads, covering an area of about one square kilometer.
After the first turns, a few clouds are left. After 4–5 turns,
the filter essentially has converged. One can note that the
state evolution on the straight path extends the cloud along
the road to take into account unprecise velocity informa-
tion. Details of the implementation are found in [23], [25],
while some comments on the divergence problem are given
in the conclusions.

GPS is used as a reference positioning system. It pro-
vides reliable position estimates in rural areas, but is ham-
pered in non line-of-sight situations and when the signals
are attenuated by foliage etc. After convergence, the map
matching particle filter is seen equal to, or even slightly
better than, GPS in terms of performance, see Fig. 4. How-
ever, in test drives along forests, close to high buildings and
tunnels, the GPS performance deteriorates quickly. Fur-
thermore, the GPS has a convergence time of about 45
seconds when turned on, not shown in Fig. 4.

For comparison, the particle filter using map matching
and filters based on measurements from a fictive terrestrial
wireless communications system are applied to data from a
simulation setup mimicking the real case above. The area
is essentially covered by one macro cell, but yet another
base station is assumed within measurable distance.

The base stations in a terrestrial wireless communica-
tions system act as beacons by transmitting pilot signals of
known power. The mobile station monitors the M (in GSM
(Global System for Mobile Communications), M = 5)
strongest signals, and reports regularly (or event-driven)



8

Fig. 3. Car positioning: Sequence of illustrations of particle clouds (white dots) plotted on a flight image for visualization. The center point
’+’ shows the true position and ’x’ the estimate.
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Fig. 4. Car positioning: RMSE for particle filter and GPS, respec-
tively.

the list to the network. Based on these lists, the net-
work centrally transfers connections from one base station
to another (hand-over) when the mobile is moving during
the service session. According to the empirical model by
Okumura-Hata [26], this provides M measurement equa-
tions as in (3e), one for each available base station (in this
simulation, M = 2), and pe(e) ∈ N(0, σ2

e), where σe = 6
dB. Similar measurements, but with a different motion
model (the velocity is unknown) are used in [28]. Point-
mass implementation of estimators based on RF measure-
ments is also discussed in [9].

To provide more accurate positioning via RF measure-
ments, future mobile stations will be able to estimate the
traveled distance of radio signals from a multitude of base
stations. In the ideal case, the signals have traveled with-
out reflections to the mobile station (line-of-sight situa-
tion), and the estimates describe the distance to the base
stations. The M (M is typically 1-3) measurement equa-
tions can thus be modeled by (3c), and they represent a
rather ideal situation. Moreover, the noise is modeled as
pe(e) ∈ N(0, σ2

e), where σe = 3 dB. The received power
measurements discussed above are available today, but are
of worse accuracy due to unmodeled power variations.

A third alternative is to simply integrate the relative

movements provided by the ABS (dead-reckoning). Monte-
Carlo simulations based on these different approaches are
summarized in Figure 5. It is interesting to note that map
matching provides a position accuracy of roughly the same
accuracy as with accurate distance measurements (which
would almost never be the case in a real situation), without
relying on external signals. Furthermore, integrating the
ABS signals directly yields an increasing error over time.

0 20 40 60 80 100 120 140 160
10
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10
3

t [s]

R
M

S
E

 [m
]

Fig. 5. RF positioning: Monte-Carlo performance over time in
the simulated scenario. The map matching (solid) needs some
25 seconds to converge, but after this burn-in time, the al-
gorithm provides RMSE=8.7 m. This is almost as good as
with ideal distance measurements to two base stations (dashed)
with RMSE=7.0 m. For comparison, power measurements
(dash-dotted) yield RMSE=36 m, and dead-reckoning (dotted)
a steadily increasing error with RMSE=50 m.

V. Terrain Elevation Matching

The air fighter JAS 39 Gripen is equipped with an accu-
rate radar altimeter and a digital map. This corresponds to
the measurement equation characterized by hh(p(1)) in Sec-
tion II-B.4. The velocity vector is obtained by integrating
the acceleration provided by the inertial navigation system.
Since v(1)

t is available as an input signal, the motion model
in (2a) is appropriate.

The particle filter has been applied to a number of flight
tests on the fighter JAS 39 Gripen, and Fig. 6 shows the



9

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

start

km

km

Fig. 6. Terrain navigation: Test track over a part of south-eastern
Sweden.
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Fig. 7. Terrain navigation: Estimation error relative a GPS reference,
as a function of sample number. Note the growth in error over
open water.

path in one of them. In these tests, differential GPS
(DGPS) is taken as the true position, and the resulting
position error is shown in Fig. 7. The accuracy beats the
first generation system, and comes down to the value of
the point mass filter described in [8]. Since the point mass
filter satisfies the Cramer-Rao lower bound, see [6], there
is no better filter. The advantage of the particle filter over
the point mass filter is firstly a much less complex algo-
rithm occupying only some 30 lines of code (Ada), and
secondly the possibility to extend the functionality by in-
cluding other parameters such as barometric height offset
in the state vector (that is, increasing the particle dimen-
sion). Saab has evaluated the deterministic particle filter
in Gripen in parallel with the first generation system with
superior results, while the particle filter described here-in
so far is run off-line.

VI. Integrated navigation systems

As a simplified study to illustrate the Rao-Blackwellization
procedure, a two-dimensional navigation model with six
states is used according to (2b) and the measurement of
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Fig. 8. RMSE based on 100 Monte Carlo simulations for the par-
ticle filter using 60000 particles (dashed lines) and the Rao-
Blackwellized filter using 4000 particles (solid lines).

position is taken from the terrain navigation algorithm ac-
cording to Section II-B.4. It should be noted that the two-
dimensional navigation model is valid only when the earth
is modeled as flat. As soon as one accounts for the curva-
ture of the earth the model becomes more complicated, see
[10]. In practice there also exists gyro sensor errors which
further complicate the problem.

In Fig. 8, the result is shown for the particle filter when
using N = 60000 particles (dashed lines). The performance
is pretty bad, and it quickly deteriorates even more when
the number of particles is decreased. In particular the tran-
sient requires many particles. The basic problem is high di-
mensionality and small process noise. On the other hand,
following the Rao-Blackwellization procedure we partition
the state vector and rewrite the motion model according
to (5), with

xpf
t = p

(1)
t , xkf

t =

(
v

(1)
t

δa
(1)
t

)
.

The result from applying this Rao-Blackwellized filter using
only N = 4000 particles is also shown in Fig. 8 (solid lines),
and the performance enhancement is significant.

VII. Target Tracking

The standard approach to target tracking is based on
(extended) Kalman filters [3], [42]. Bearings-only target
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tracking was introduced as the illustration of particle fil-
ters in [21]. Since then, bearings-only target tracking has
been used in many investigations, see for instance several
of the chapters in [13]. A more realistic scenario is investi-
gated in [31]. Here, the case of radar measurements where
also range is available is discussed, which occurs in different
applications, such as air traffic control (ATC) and collision
avoidance. Often linear models such as (1) can be used,
but nonlinear state equations are also used. For instance,
when the tracking object is moving in straight paths or on
circular segments, different variations of the so-called co-
ordinated turn model [4] can be utilized. For maneuvering
targets, multiple models are used to enhance tracking per-
formance. The Interacting Multiple Model (IMM) [4] is one
classical multiple model algorithm based on the interaction
of several extended Kalman filters [1]. Hard constraints on
system states, such as velocity and acceleration boundaries
or obstacles from the terrain may introduce nonlinearities
in many applications, which could degrade performance if
not handled by the tracking filter. Two different applica-
tions will be presented in more detail below. It is here im-
portant to note that realistic measurements (3g) can easily
be used, modeling the radar loob in the angle noise distri-
bution, and (3c), with uniform range noise distribution.

An important aspect of target tracking is association [3],
[42]; to which object should a certain measurement be asso-
ciated? This is a discrete problem, and attempts to include
this in a particle filter framework are described in [2], [41],
[20], [27], [18], [38], [7], [32].

A. Air Traffic Control (ATC)

In [30], a simple nearly coordinated turn model [4] was
used for an ATC radar application. In the simulation
study presented in Table VII-A, two different simulation
based methods are compared to the state-of-the-art IMM
method. The particle filter algorithms tested are the
Bayesian bootstrap method (3a) and APF [37]. The par-
ticle filters are here extended to the multiple model case,
where target maneuvers are according to a Markov chain.
Three different turn assumptions were made (right/left
turn or straight flying) in the simulations presented. The
true path projected in the horizontal plane is viewed in
Figure 9. It was generated with a true turn rate value
chosen as an intermediate value of the turn rate used in
the multiple model conditioning, thus allowing the IMM to
mix between models, and the particle filter process noise
to perform the turn interaction. The incorporation of hard
constraints on the velocity is also straightforward for the
particle filter case. The radar sensor used in the applica-
tion measures range, azimuth and elevation at a rather low
update rate, to emulate a track-while-scan (TWS) behav-
ior. In Table VII-A the IMM method is compared to the
particle filters and measurements only, viewing the position
RMSE for 100 Monte Carlo simulations. For the Bayesian
bootstrap case, two simulations diverged. Depending on
the choice of process noise, the slight difference between
the IMM and the Bayesian bootstrap may change. The
marginalized density is also shown in Figure 10 together
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Fig. 9. Target tracking: RMSE from 100 Monte Carlo simulations,
800 particles
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Fig. 10. Target tracking: Particle cloud and density

with the particle cloud.

B. Collision Avoidance

The coordinated turn model can be used for collision
avoidance to track the car position and predict future po-
sitions. The goal of the prediction in this case is not neces-
sarily to get an as good point estimate as possible. Instead,
we are interested in the whole distribution of possible ma-
neuvers. Figure 11 shows a simulation where the collision is
still avoidable. This would not be obvious from just looking
at the point estimate.

The main contributions to the process noise come from
the driver’s action via steering wheel, gas and brake. A
lot of effort has to be spent on how to choose the process
noise so that it corresponds to the driver’s behavior and
the physical limitations of the car. The vehicle and driver
behaviors change significantly for different speeds of the

APF Bootstrap IMM-3 Measurements
RMSE 34.03 40.84 42.20 63.96

TABLE IV

Target tracking: RMSE comparison for ATC Monte Carlo

simulations.
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Fig. 11. Collision avoidance: The left rectangle is the own car, which
is approaching rapidly the right rectangle. The trajectories indi-
cate 31-step ahead prediction using 100 particles. There are still
possible trajectories avoiding collision, of which the driver will
most probably choose one. Thus, no active control is needed at
this stage.

vehicle. Thus, in order to get a good prediction with this
model, it is necessary to let the process noise ft change with
different speeds. It is also important in this application to
incorporate knowledge about the environment to improve
the prediction. For example, it is likely that the car will
travel on the road and if there are some hard boundaries
like rails or other stationary objects these are hard con-
straints on the car’s movement.

VIII. Conclusions and Discussion

We have given a general framework for positioning and
navigation applications based on a flexible state space
model and a particle filter. Five applications illustrate its
use in practice. Evaluations in real-time, off-line on real
data and in simulation environments show a clear improve-
ment in performance compared to existing Kalman filter
based solutions, where the new challenge is to find non-
linear relations, state constraints and non-Gaussian sensor
models that provide the most information about the po-
sition. Thus, modeling is the most essential step in this
approach, compared to the various implementations of the
Kalman filter found in this context (linearization issues,
choice of state co-ordinates, filter banks, Gaussian sum fil-
ters, etc.).

General conclusions from the implementations are as fol-
lows: A choice of state coordinates making the state equa-
tion linear is beneficial for computation time and opens
up the possibility for Rao-Blackwellization. This proce-
dure enables a significant decrease in the particle state di-
mension. The evaluation of the likelihood one step ahead
before re-sampling (APF, prior editing) is, together with
adding extra state noise (jittering, roughening), crucial for
avoiding divergence, and implies that the number of par-
ticles can be decreased further. Our implementations run
in real-time (2Hz), even in Matlab, and have some 2000
particles.

Open questions for further research and development are

listed below:
• Divergence tests. It is essential to have a reliable way to
detect divergence and to restart the filter (for the latter, see
the transient below). For car positioning, the number of re-
samplings in the prior editing step turned out to be a very
good indicator of divergence. Another idea, used in the
terrain navigation implementation where the sampling rate
is higher than necessary, is to split up the measurements to
a filter bank, so that particle filter number i, i = 1, 2, . . . , n
gets every n’th sample. The result of these n particle filters
are approximately independent and voting can be used to
restart each filter. This has turned out to be an efficient
way to remove the outliers in data.
• Transient improvement. The time it takes until the es-
timate accuracy comes down to the stationary value (the
Cramer-Rao bound) depends on the number of particles.
Given limited computational time, it may be advantageous
to increase the number of particles N after a restart and
discard samples in such a way that N/Ts is constant.
• Since the particle filter has shown good improvement over
linearization approaches, it is tempting to try even more ac-
curate non-linear models. In particular, the flight dynamics
of one’s own vehicle is known and indeed used in model-
based control, but is very rare in navigation applications,
see [33] for one attempt in this direction. In that study,
it seems that the computational burden and linearization
errors imply no gain in total performance. As a possible
improvement, the particle filter may take full advantage
of a more accurate model, where parts of the non-linear
dynamics from driver/pilot inputs are incorporated.
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Appendix

For the derivation of the Rao-Blackwellized algorithm
given in Section III-D, suppose first that the particle filter
part of the state vector is known. That is, the sequence
Xpf
t = {xpf

0 , . . . , x
pf
t } is known. We can, temporally, con-

sider zt = xpf
t+1− x

pf
t as the measurement. The state space

model is here

xkf
t+1 = Akfxkf

t +Bkf
u ut +Bkf

f ft

zt = Apfxkf
t +Bpf

u ut +Bpf
f ft.

Since this model is linear and Gaussian, the optimal solu-
tion is provided by the Kalman filter. We then know that
p(xkf

t |X
pf
t ) is Gaussian, so

xkf
t |X

pf
t = xkf

t |Zt−1 ∼ N(x̂kf
t|t−1, P

kf
t|t−1),
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where x̂kft|t−1 and P kft|t−1 are given by the Kalman filter equa-
tions adjusted for correlated noise [24],

Kt =P kf
t|t−1(Apf)T (ApfP kf

t|t−1(Apf)T +Bpf
f Qt(B

pf
f )T )−1

x̂kf
t+1|t =A

kf
(x̂kf
t|t−1 +Kt(zt −Apf x̂kf

t|t−1)) +

Bkf
u ut +Bkf

f (Bpf
f )†zt

P kf
t+1|t =A

kf
(P kf
t|t−1 −KtA

pfP kf
t|t−1)(A

kf
)T ,

where A
kf

= Akf − Bkf
f (Bpf

f )†Apf († denotes the Moore-
Penrose pseudo-inverse).

Now, to compute p(xt|Yt) = p(xpf
t , x

kf
t |Yt), note that

p(Xpf
t , x

kf
t |Yt) = p(xkf

t |X
pf
t )p(Xpf

t |Yt).

We only have to compute p(Xpf
t |Yt). Repeated use of

Bayes’ rule gives

p(Xpf
t |Yt) =

p(yt|xpf
t )p(xpf

t |X
pf
t−1)

p(yt|Yt−1)
p(Xpf

t−1|Yt−1).

We have a nonlinear and non-Gaussian measurement equa-
tion, so to solve the measurement update, the particle filter
will be used to approximate this distribution. The particle
predictions p(xpf

t+1|X
pf
t ) are given by

xpf
t+1|X

pf
t = xpf

t +Apfxkf
t |X

pf
t +Bpf

u ut +Bpf
f ft,

so p(xpf
t+1|X

pf
t ) is given by

N(xpf
t +Apf x̂kf

t|t−1 + Bpf
u ut,

ApfP kf
t|t−1(Apf)T +Bpf

f Qt(B
pf
f )T ).

Finally, note that the derivation does not change if we use
the fictitious measurement zt = xpf

t+1 − g(xpf
t ) for an arbi-

trary non-linear function, which is Remark 3.
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both from Linköping University, Sweden. He is
currently working with research and develop-
ment in the areas of target tracking and navi-
gation, and responsible for the coordination of
data fusion activities within the Saab group.

Urban Forssell Urban Forssell is president
and CEO of NIRA Dynamics AB. The com-
pany focuses on advanced signal processing and
control in vehicles. He received his M.Sc. de-
gree in applied physics and electrical engineer-
ing in 1995 and the Ph.D. degree in automatic
control in 1999, both from Linköping Univer-
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University, S-581 83 Linköping, Sweden, 2001. In Swedish.

[26] M. Hata. Empirical formula for propagation loss in land mo-
bile radio services. IEEE Transactions on Vehicular Technology,
29(3), 1980.

[27] C. Hue, J.P. Le Cadre, and P. Pérez. Tracking multiple objects
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