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Abstract

The particle filter was introduced in 1993 as a numerical exipration to the nonlinear Bayesian filtering
problem, and there is today a rather mature theory as well msngber of successful applications described in
literature. This tutorial serves two purposes: to surveyghrt of the theory that is most important for applications,
and to survey a number of illustrative positioning applimas from which conclusions relevant for the theory can
be drawn.

The theory part first surveys the nonlinear filtering problamd then describes the general particle filter
algorithm in relation to classical solutions based on theermded Kalman filter and the point mass filter. Tuning
options, design alternatives and user guidelines are idesicrand potential computational bottlenecks are ideiwtifi
and remedies suggested. Finally, the marginalized (or Btackwellized) particle filter is overviewed as a general
framework for applying the particle filter to complex system

The application part is more or less a stand-alone tutoiithlout equations that does not require any background
knowledge in statistics or nonlinear filtering. It desceb& number of related positioning applications, where
geographical information systems provide a nonlinear omessent, where it should be obvious that classical
approaches based on Kalman filters would have poor perfarenall applications are based on real data and
several of them come from real-time implementations. Tlaig plso provides complete code examples.

I. INTRODUCTION

A dynamic systeroan in general terms be characterized by a state space mitkdel lndden state from
which partial information is obtained by observations. Bwr applications in mind, the state vector may
include position, velocity and acceleration of a movingtfielan, and the observations may come from
either internal on-board sensors (thavigation probleqymeasuring inertial motion or absolute position
relative some landmarks, or from external sensors {(taeking problem) measuring for instance range
and bearing to the target.

The nonlinear filteringproblem is to make inference on the state from the obsenatio the Bayesian
framework, this is done by computing or approximating thetpoor distribution for the state vector given
all available observations at that time. For the applicetion mind, this means that the position of the
platform is represented with a conditional probability siénfunction given the observations.

Classical approaches to Bayesian nonlinear filtering dm=ttrin literature include the following algo-
rithms:

. The Kalman filter (KF) [1, 2] that computes the posterior wittion exactly for linear Gaussian

systems by updating finite dimensional statistics recabgiv

« For nonlinear non-Gaussian models, the KF algorithm candpdieal to a linearized model with
Gaussian noise with the same first and second order momdngsapproach is commonly referred
to as the extended Kalman filter (EKF) [3,4]. This may work lweut without any guarantees,
for mildly nonlinear systems where the true posterior ismuodal (just one peak) and essentially
symmetric.

« The unscented Kalman filter (UKF) [5, 6] that propagates almemof points in the state space from
which a Gaussian distribution is fit at each time step. UKFievkn to accomodate also the quadratic
term in nonlinear models, and is often more accurate than. HKE divided difference filter (DFF)
[7] and the quadrature Kalman filter (QKF) [8] are two otheriamts of this principle. Again, the
applicability of these filters is limited to unimodal posterdistributions.



« Gaussian sum Kalman filters (GS-KF) [9] represents the posteith a Gaussian mixture distribu-
tion, and filters in this class can handle multimodal postsriThe idea can be extended to Kalman
filter approximations as the GS-QKF in [8].

« The point mass filter (PMF) [9, 10] grids the state space amdpces the posterior over this grid
recursively. PMF applies to any nonlinear and non-Gauseiadel and is able to represent any
posterior distribution. The main limiting factor is the sarof dimensionality of the grid size in
higher state dimensions, and that the algorithm itself iguddratic complexity in the grid size.

It should be stressed that both EKF and UKF approximate theeehrand propagates Gaussian distributions
as the posterior, while the PMF uses the original model anqulcegimates the posterior over a grid. The
particle filter (PF) also provides a numerical approximation to the nonlindtariing problem similar to
the PMF, but uses an adaptive stochastic grid that autoatigtiselects relevant grid points in the state
space, and in contrast to the PMF the standard PF has linegslexity in the number of grid points.

The first traces of the PF dates back to the fifties [11, 12], #dwedcontrol community made some

attempts in the seventies [13, 14]. However, the PF eraestasith the seminal paper [15], and the
independent developments in [16,17]. Here, an importasdmpling step was introduced. The timing
for proposing a general solution to the nonlinear filteringhtem was perfect, in that the computer
development enabled the use of computational complexigigas to quite realistic problems. The research
has since the paper [15] steadily intensified, see the artiollection [18], the surveys [19-22], and the
monograph [23]. Figure 1 illustrates how the number of pspecreases exponentially for each year
and the same appears to be true for applied papers. Thel@diiters may be a serious alternative for
real-time applications classically approached by theef@¢d) Kalman filter. The more nonlinear model,
or the more non-Gaussian noise, the more potential paftitdes have, especially in applications where
computational power is rather cheap and the sampling rateoterate.
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Positioning of moving platforms has beertexhnical driverfor real-time applications of the particle
filter (PF) in both the signal processing and the robotics momties. For this reason, we will spend
some time to explain several such applications in detad, tansummarize the experiences of using the
PF in practice. The applications concern positioning ofamater (UW) vessels, surface ships, cars,
and aircraft using geographical information systems (Gi&)taining a database with features of the
surrounding. These applications provide conclusions fppattice supporting the theoretical survey part.



In the robotics community, the PF has been developed intabtiee main algorithms (fastSLAM) [24]
for solving the simultaneous localization and mapping (8)Aroblem [25-27]. This can be seen as an
extension to the aforementioned applications, where tarifes in the GIS are dynamically detected and
updated on the fly. Visual tracking has turned out to be amathgortant application for the particle filter.
Multiple targets are here tracked from a video stream al@8e-30], or by fusion with other information,
for instance acoustic sensors [31].

The common denominator of these applications of the PF isisleeof a low-dimensional state vector
consisting of horizontal position and course (three dinerad pose). The PF performs quite well in a
three dimensional state-space. In higher dimensions thee cof dimensionality quite soon makes the
particle representation too sparse to be a meaningful septation of the posterior distribution. That is,
the PF isnot practically useful when extending the models to more realsases with

« motion in three dimensions (six-dimensional pose),
« more dynamic states (accelerations, unmeasured vego#ie),
« Or sensor biases and drifts.

A technical enablefor such applications is the marginalized particle filterRN), also referred to as the
Rao-Blackwellized patrticle filter (RBPF). It allows for thuse of high-dimensional state-space models as
long as the (severe) nonlinearities only affect a small sub$ the states. In this way, the structure of
the model is utilized, so that the particle filter is used ttvsahe most difficult tasks, and the (extended)
Kalman filter is used for the (almost) linear Gaussian stafthe fastSLAM algorithm is in fact a version
of the MPF, where hundreds or thousands of feature pointhienstate vector are updated using the
(extended) Kalman filter. The need for the MPF in the list gblagations will be motivated by examples
and experience from practice.

This tutorial uses notation and terminology that should @ifiar to the AES community, and it
deliberately avoids excessive use of concepts from préibathieory, where the main tools here are Bayes’
theorem and the marginalization formula (or law of totallability). There are explicit comparisons and
references to the Kalman filter, and the applications arenendrea of target tracking and navigation.
For instance, a particle represents a (target) state toajecthe (target) motion dynamics and sensor
observation model are assumed to be on state space form arflFtlalgorithm is split into time and
measurement updates.

The particle filter should be the nonlinear filtering alglomit that appeals to engineers the most, since it
intimately addresses the system model. The filtering cotteusvery similar to the simulation code that the
engineer working with the application should already beeytamiliar with. For that reason, one can have
a code first approach, starting with Section IX to get a cotepdémulation code for a concrete example.
This section also provides some other examples using actaljented programming framework, where
models and signals are represented with objects, can betaspdckly compare different filters, tunings
and models. Section X provides an overview of a number ofiegjubns of the PF, which can also be
read standalone. Section Xl extends the applications toelaauf high state dimensions where the MPF
has been applied. The practical experiences are summanizeeiction XIlI.

However, the natural structure is to start with an overvidwihe PF theory as found in Section II,
and a summary of the MPF theory is provided in Section VIl evehthe selection of topics is strongly
influenced by the practical experiences in Section XII.

[I. NONLINEAR FILTERING
A. Models and Notation

Applied nonlinear filtering is based on discrete time nosdin state space models relating a hidden
statex;, to the observationg,

Tk4+1 = f(xka Uk)a Vi ~ Puy, Ty~ Payy (la)
Yr = h(rg) + ey, €k ~ Dey,- (1b)



Here, k denotes the sample numbey, is a stochastic noise process specified by its known prababil
density function (PDF)p,,, which is compactly expressed as ~ p,, . Similarly, e, is an additive
measurement noise also with known PDRE. The first observation is denoted, and thus the first
unknown state isc; where the PDF of the initial state is denotgd. The model can also depend on
a known (control) inputuy, so f(xz, ug, vx) and h(zy, ug), but this dependence is omitted to simplify
notation. The notation;., denotes the sequenae, s-, ..., s, (s is one of the signals, v, y,e), andn,
denotes the dimension of that signal.

In the statistical literature, a general Markov model andestation model in terms of conditional
PDF’'s are often used

Tr1 ~ P(Trt1|Tk), (2a)
Y ~ p(Yk|Tr). (2b)

This is in a sense a more general model. For instance, (2ysltaplicit measurement relations$yy, xx, ex) =
0 in (1b), and differential algebraic equations that add ioipktate constraints to (1a).

The Bayesian approach tmnlinear filteringis to compute or approximate the posterior distribution for
the state given the observations. The posterior is dengtedyy, ... ) for filtering, p(xx1..|y1.x) for prediction
andp(x,_m|y1.1) for smoothing, respectively, where > 0 denotes the prediction or smoothing lag. The
theoretical derivations are based on the general modelvf#lle algorithms and discussions will be based
on (1). Note that the Markov property of the model (2) impties formula(xy 1|21, Y1.6) = P(Trt1|Tk)
and p(yk|T1k, y1:k—1) = p(yk|xr), which will be used frequently.

A linearized model will turn up on several occasions, whigblbtained by a first order Taylor expansion
of (1) aroundz, = 7, andv, = 0:

Try1 = f(ZTr, 0) + F(Tp) (v — Tn) + G(ZTr)vr, (3a)
Yr = M(Tx) + H(Zx) (21 — T1) + ex, (3b)
where
a Tp, U _ a T,V _ 8h x
Pz = 2dut) Gy = o) )= I g
Lk T =Tk ,v=0 Uk Tp=2T},v=0 Lk Tp=Tk

and the noise is represented by their second order moments

Cov(er) = Ry, CoV(vg) = Qk, Cov(zy) = F. (3d)

For instance, the extended Kalman filter (EKF) recursioesodtained by linearizing around the previous
estimate and apply the Kalman filter equations, which gives
1

Ky, = Pk|k71HT(fi"k\kfl) (H(fi"k\kfl)Pk\kleT(i'k|k71) + Rk)i ) (4a)
Trpe = Tk + Kie(ye — hie(Trjr-1)), (4b)
Py = Prjp—1 — K H (Zgj—1) Prji—1, (4c)

Tire = f(Tr, 0), (4d)
Peiir = F(@rp) P F" (Zxgr) + G(E1p) QGT (Zkyr)- (4e)

The recursion is initialized wittt,, = 2o and Py = P, assuming the priop(z1) ~ N (xo, ). The
EKF approximation of the posterior filtering distributios then

P(aklyir) = N (Zxjk, Pajr), (5)

where N (m, P) denotes the Gaussian density function with meaand covariance®. The special case
of a linear model is covered by (3) in which cas&z,) = Fy, G(Zx) = Gy, H(Zx) = Hg, and using
these and the equalitie§z,, 0) = Fiz, and h(zy) = HyZy in (4) gives the standard KF recursion.



The neglected higher order terms in the Taylor expansiori@mphat the EKF can be biased and it
tends to underestimate the covariance of the state estiiitadee is a variant of the EKF that also takes the
second order term in the Taylor expansion into account [BRis is done by adding the expected value of
the second order term to the state updates and its covatiative state covariance updates. The unscented
Kalman filter (UKF) [5, 6] does a similar correction by usingppagation of systematically chosen state
points (called sigma points) through the model. Related@gghes include the divided difference filter
(DFF) [7] that uses Sterling’s formula to find the sigma psiahd the quadrature Kalman filter (QKF)
[8] that uses the quadrature rule in numerical integratosdlect the sigma points. The common theme
in EKF, UKF, DDF and QKF is that the nonlinear model is evaduhin the current state estimate and
for the latter ones some extra points that depend on thertustate covariance.

UKF is closely related to the second order EKF [33]. Both aats improve over the EKF in certain
problems and can work well as long as the posterior disiobus unimodal. Further, the algorithms are
prone to diverge, and this problem is hard to mitigate ordeeeby analytical methods. The choice of
state coordinates is for instance crucial in EKF and UKF, Geapter 8.9.3 in [34] for one example,
while this choice does not affect the performance of the Pérénthan potential numerical problems).

B. Bayesian Filtering

The Bayesian solution to compute the posterior distribbytidz,|y;.,), of the state vector, given past
observations, is given by the general Bayesian update siecur

_ P(yklzr)p(@k|y1:6-1)

Tplyre) = , 6a

Peilyi) P(Yr|Yre—1) (6a)

P(Yk|Y1:k-1) =/ P(yk|r)p(2k|y1.6—1) do, (6b)
Rz

P(Tht1|y1k) =/ P(@g1|Te)p(@k|Yr.k) dog. (6¢c)
Rz

This classical result [35, 36] is the cornerstone in no@mi@ayesian filtering. The first equation follows
directly from Bayes’ law, and the other two ones follow fronetlaw of total probability, using the model
(2). The first equation corresponds to a measurement uptiatsecond one is a normalization constant,
and the third one corresponds to a time update.

The posterior distribution is the primary output from a noeér filter, from which standard measures as
the minimum mean square (MMS) estimaf¢*'> and its covariancé,};" can be extracted and compared
to EKF and UKF outputs:

Zn :/Jfkp(ﬂfk|y1;k)d9€k, (7a)

P = / (x5, — 23™M8) (g — 2™ p(y |yrk) . (7b)

For a linear Gaussian model, the KF recursions in (4) alseigedhe solution (7) to this Bayesian problem.
However, for nonlinear or non-Gaussian models there is megd no finite dimensional representation of
the posterior distributions similar t@%kM‘,EAS, P,i\koS). That is why numerical approximations are needed.

C. The Point-Mass Filter

Suppose now we have a deterministic gfic }? , of the state spacR" over N points, and that we
at time k£ based on observationg.,_; have computed the relative probabilites (assuming distynicl
points)

wli|k71 o Py = 2'|y1e1), (8)



satlsfylngzl lwk‘ﬁC , = 1 (note that this is a relative normalization with respecthte grid points). The

notationz}, is introduced here to unify notation with the PF, and it meiduas the state;;, at timek visits
the grid pointz?. The prediction density and the first two moments can thenpipeoximated by

P(Tr|yre—1) Zwk\k 1 — ), (9a)
Tk = E(zy) = Zwlic\k—lx;w (9b)
=1
N
Pyp1 = CoV(zy) = > wipp (@ — Eappe) (@), — Fapr)” (9¢c)
=1

Here,o(x) denotes the Dirac impulse function. The Bayesian recurpmow gives

1 A
p(xrlyie) Z C_ yk:|ffk wk|k 1 0(k — x,), (10a)
wi\k

N
= p(urlah)wiy s, (10b)

i=1

N
Planialyin) = > wipp(zelag). (10¢)

=1
Note that the recursion starts with a discrete approximata) and ends in a continuous distribution

(10c). Now, to close the recursion, the standard approath sasmple (10c) at the grid pointg, which
computationally can be seen as a multidimensional coneoiut

N . .

Wi = P(Thp1lyrn) = Z wi|kp(l";€+l|x?g)7 i=12,...,N. (11)

j=1
This is the principle in theoint mass filter[9, 10], whose advantage is its simple implementation and
tuning (the engineer basically only has to consider the aize resolution of the grid). The curse of
dimensionality limits the application of PMF to small mosiét, less than two or three) for two reasons:
the first one is that a grid is an inefficiently sparse repredgam in higher dimensions, and the second
one is that the multidimensional convolution becomes a be#tleneck with quadratic complexity irv.
Another practically important but difficult problem is toatrslate and change the resolution of the grid
adaptively.

[1l. THE PARTICLE FILTER
A. Relation to the point mass filter

The particle filter (PF) has much in common with the point méker (PMF). Both algorithms
approximate the posterior distribution with a discrete signof the form (9a), and they are both based
on a direct application of (6) leading to the numerical re@m in (10). However, there are some major
differences:

« The deterministic grid:’ in the PMF is replaced with a dynamic stochastic grjdin the PF that

changes over time. The stochastic grid is a much more eftiocggmesentation of the state space than
a fixed or adaptive deterministic grid in most cases.



« The PF aims at estimating the whole trajectary, rather than the current statg. That is, the PF
generates and evaluates a &et, }¥, of N different trajectories. This affects (6¢) as follows:

P |yin) = ?(9‘?2+1 |21 yl:kl?(xllzk‘ylzkl (12)
p()q]}) wi\k
= WikP (T 1| 7h). (13)

Comparing this to (10c) and (11), we note that the double sadihg to a quadratic complexity is
avoided by this trick. However, this quadratic complexippaars if one wants to recover the marginal
distributionp(zx|y1.,) from p(z1.x|y1.£), More on this in Section I1I-C.

« The new grid is in the PF obtained by sampling from (10c) nathan reusing the old grid as done in
the PMF. The original version of the PF [15] samples from Jl&xit stands by drawing one sample
each fromp(xy4|2%) for i = 1,2,..., N. More generally, the concept @hportance sampling37]
can be used. The idea is to introduceraposal density;(xy 1|zx, yx+1) Which is easy to sample
from, and rewrite (6¢c) as

P(Trs1|Y1:5) :/ P(@g1|ze)p(@k|yrk) dog
Rna

p<xk+l‘xk)
q(Tht1|Th, Ykt

The trick now is to generate a sample at random fogm, ~ q(zy+1|x}, yx+1) for each particle, and
then adjust the posterior probability for each particlehvilie importance weight

= / q(Tra1|Tr, Yra1) )P($k|y1:k) dxy. (14)
Rnz

(Thial2}) W i
p(xl:k+l|y1k Z xk+1|;k,yk+1) k|k (5(331;k+1 — xl:k-{-l)' (15)

~~

k+1\k

As indicated, the proposal distributiop(z}_, |z}, yx+1) depends on the last state in the particle
trajectory zi.,, but also the next measurememnt,,;. The simplest choice of proposal is to use
the dynamic model itselfg(zj |2}, yrs1) = p(2j44l27), leading tow; ., = wj,. The choice
of proposal and its actual form are discussed more thorgugh$ection V.

« Resampling is a crucial step in the PF. Without resamplihg, RF would break down to a set of
independent simulations yielding trajectorie’s, with relative probabilitiesw;. Since there would
then be no feedback mechanism from the observations toatdhe simulations, they would quite
soon diverge. As a result, all relative weights would tendzéoo except for one that tends to one.
This is calledsample depletioror sample degeneracyr sample impoverishmenlote that a relative
weight of one wélk ~ 1 is not at all an indicator of how close a trajectory is to thetone since
this is only a relative weight. It merely says that one segaein the set{z%,}~, is much more
likely than all of the other ones. Resampling introducesrdwiired information feedback from the
observations, so trajectories that perform well will suevihe resampling. There are some degrees
of freedom in the choice aoesampling strateggliscussed in Section IV-A.

B. Algorithm

The PF algorithm is summarized in Algorithm 1. It can be segra@a algorithmic framework from
which particular versions of the PF can be defined later oshttuld be noted that the most common
form of the algorithm combines the weight updates (16a,t) one equation. Here, we want to stress
the relations to the fundamental Bayesian recursion byikgehe structure of a measurement update
(6a)—(10a)—(16a), normalization (6b)—(10b)—(16b), antetupdate (6¢)—(10c)—(16c,d).



Algorithm 1 Particle Filter

Choose a proposal distributieizy1|z1.1, yx+1), resampling strategy and the number of partidlés
Initialization: Generater; ~ p,,,i=1,..., N and letwj, = 1/N.
Iteration: Fork =1,2,....

1) Measurement updatdiori=1,2,..., N,

i L i
Wik = C_kwk\kqp(ykmk)a (16a)

where the normalization weight is given by

=Y Wiy 1p(ylrh). (16b)
=1

2) Estimation:The filtering density is approximated byx,..|y1.x) = Zf;l wf;|k5(ff1:k: — x4 ,) and the
mean (7a) is approximated ., ~ S~ w,;‘kxi "

3) ResamplingOptionally at each time, tak& samples with replacement from the get., }~ , where
the probability to take sampleis wj,, and Ietwk|k 1/N.

4) Time updateGenerate predictions according to the proposal distobuti

$2+1 ~ q(Th41 |, Yrta) (16¢)
and compensate for the importance weight

W W p($2+1|$2)
k+1|k k‘kQ(x2+1|x§€7yk+1)’

(16d)

C. Prediction, Smoothing and Marginals

Algorithm 1 outputs an approximation of the trajectory @oitr densityp(zi.|y1.x). For a filtering
problem, the simplest engineering solution is to just ettthe last state} from the trajectoryz}., and
use the particle approximation

P(@ely1:r) Z wk\k(s 17)

Technically, this is incorrect and one may overlook the e&ph problem by using this approximation.
The problem is that in general all path§, | can lead to the state,. Note that the marginal distribution
is functionally of the same form as (6c). The correct solutiaking all paths leading to; into account
leads similar to (11) to an importance weight

Zj‘vﬂ wi‘kp($2+1|xi)
Q($2+1|$27 Yrt1)
that replaces the one in (16d). That is, the marginal parfitter can be implemented just as Algorithm

1 by replacing the time update of the weights with (18). Ndi&t the complexity increases fro(V)
in the PF toO(N?) in the marginal PF, due to the new importance weight. A methitd O(N log(N))
complexity is suggested in [38].

The marginal particle filter has found very interesting agilons in system identification, where a

gradient search for unknown parameters in the model is egp9, 40]. The same parametric approach
has been suggested for SLAM in [41] and optimal trajectognping in [42].

(18)

i _
W1k =



Though the PF appears to solve the smoothing problem foy thheeinherent depletion problem of the
history complicates the task, since the number of survitragectories with a time lag will quickly be
depleted. For fixed-lag smoothipgzs_,..x|y1.x), One can compute the same kind of marginal distributions
as for the marginal particle filter leading to another congag¢ion factor of the importance weight.
However, the complexity will then b&(N™!). Similar to the Kalman filter smoothing problem, the
suggested solution [43] is based on first running the partitfer in the usual way, and then apply a
backward sweep of a modified particle filter.

Prediction to gep(z1.x+m|y1.6) Can be implemented by repeating the time update in Algorithm
times.

D. Reading Advice

The reader may at this stage continue to Section IX to segLWB ™ code for some illustrative toy
examples, or Section X to read about the result and experiensome applications, or proceed to the
subsequent sections that discuss the following issues:

« The tuning possibilities and different versions of the bdF are discussed in Section IV.

« The choice of proposal distribution is crucial for performma, just as in any classical sampling
algorithm [37], and this is discussed in Section V.

. Performance in terms of convergence of the approximatian.|yi.x) — p(z1.x|v1x) @SN — 0
and relation to fundamental performance bounds are diedussSection VI.

« The particle filter is computationally quite complex, andnsopotential bottlenecks and possible
remedies are discussed in Section VII.

IV. TUNING

The number of particlesV is the most immediate design parameter in the PF. There agev ather
degrees of freedom discussed below. The overall goal isdml@ample depletion, which means that only
a few particles, or even only one, contribute to the statenas¢. The choice of proposal distribution is
the most intricate one, and it is discussed separately iid®e¥. How the resampling strategy affects
sample depletion is discussed in Section IV-A. The effectamber of samples in Section IV-B is an
indicator of sample depletion in that it measures how efiiityethe PF is utilizing its particles. It can
be used to design proposal distributions, depletion ntibgatricks, resampling algorithms and also to
choose the number of particles. It can also be used as am@rmdintrol variable for when to resample.
Some dedicated tricks are discussed in Section IV-C.

A. Resampling

Without the resampling step, the basic particle filter wosdidfer from sample depletion. This means
that after a while all particles but a few ones will have ngiglie weights. Resampling solves this problem,
but creates another one in that resampling inevitably dgstinformation and thus increases uncertainty
by the random sampling. It is therefore of interest to staget tesampling process only when it is really
needed. The following options for when to resample are ptessi

« The standard version of Algorithm 1 is term8ampling Importance Resampli{§IR), or bootstrap
PF, and is obtained by resampling each time.

« The alternative is to useamportance samplingin which case resampling is performed only when
needed. This is calleGampling Importance Samplin&!9S. Usually, resampling is done when the
effective number of samples, as will be defined in the nextiaecbecomes too small.

As an alternative, the resampling step can be replaced wgangpling step from a distribution that is
fitted to the particles after both the time and measuremedatep The Gaussian particle filter (GPF) in
[44] fits a Gaussian distribution to the particle cloud, aftdnich a new set of particles is generated from
this distribution. The Gaussian sum patrticle filter (GSRF)5] uses a Gaussian sum instead.



10

B. Effective Number of Samples

An indicator of the degree of depletion is teéfective number of samplegiefined in terms of the
coefficient of variatior, [19, 46,47] as

N N N
Neg = — = — = —. (19a)
L+ ci(wy,) + (Var("”kk)g 1+ N? Var(wy,, )
E(w;ﬂk,)

The effective number of samples is thus at its maximiiga = N when all weights are equal;’dk =1/N,
and the lowest value it can attain . = 1, which occurs wherw;lk = 1 with probability 1/N and
wj, = 0 with probability (N — 1)/N.
A logical computable approximation d¥.¢ is provided by
- 1
Neg = =753
Zi(wk\k)z

This approximation shares the propetty N.g < N with the definition (19a). The upper bounds = N
is attained when all particles have the same weight, andbtierlboundN.s = 1 when all the probability
mass is devoted to a single patrticle. R

The resampling condition in the PF can now be definedvas< Ny,. The threshold can for instance
be chosen advy, = 2N/3.

(19b)

C. Tricks to Mitigate Sample Depletion

The choice of proposal distribution and resampling strateg the two available instruments in theory
to avoid sample depletion problems. There are also somelesiam@ more practicahd-hoctricks that
can be tried as will be discussed below.

One important trick is to modify the noise models so the staise and/or the measurement noise
appear larger in the filter than they really are in the dataeg@img process. This technique is called
jittering in [48], but a similar approach was introduced in [15] undexr hameaoughening Increasing the
noise level in the state model (1a) increases the suppotteosampled particles which partly mitigates
the depletion problem. Further, increasing the noise lavéhe observation model (1b) implies that the
likelihood decays slower for particles that do not fit the ervation, and the chance to resample these
increases. In [49], the depletion problem is handled byothicing an additional Markov Chain Monte
Carlo (MCMC) step to separate the samples.

In [15], the so-calledprior editing method is discussed. The estimation problem is delayedioree t
step, so that the likelihood can be evaluated at the next step. The idea is to reject particles with
sufficiently small likelihood values, since they are noklikto be resampled. The update step is repeated
until a feasible likelihood value is received. The rougingnimethod could also be applied before the
update step is invoked. Thauxiliary particle filter [50] is a more formal way to sample in such a way
that only particles associated with large predictive itkebds are considered, see Section V-F.

Another technique isegularization The basic idea to is convolve each particle with a diffusgtemel
with a certain bandwidth before resampling. This will pnetvenultiple copies of a few particles. One
may for instance use a Gaussian kernel where the variansasc¢he bandwidth. One problem in theory
with this approach is that this kernel will increase the aace of the posterior distribution.

INote that the literature often defines the effective numijesamples asHmeVﬁ, which is incorrect.
k|k
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V. CHOICE OFPROPOSALDISTRIBUTION

In this section, we focus on the choice of proposal distrdmytwhich influences the depletion problem
a lot, and we will here outline available options with somenoeents on when they are suitable.

First, note that the most general proposal distributionthasormg(xy.,|y1.x). This means that the whole
trajectory should be sampled at each iteration, which is clearly noactive in real-time applications.
Now, the general proposal can be factorized as

q(@rklyix) = ¢(@r]Tre—1, yir) @11 |Y1:0)- (20)
The most common approximation in applications is to reuseptithz.,_; and only sample the new state
xy, SO the proposaj(xy..|yi.x) is replaced by;(zy|z1..-1, y1.1). The approximate proposal suggests good
values ofx;, only, not of the trajectoryt,.,. For filtering problems this is not an issue, but for smogghin
problems the second factor becomes important. Here, tleeaflblock sampling [51] is quite interesting.
Now, the proposal(zk|z1.x—1,y1.x) can due to the Markov property of the model be written as

q(@r|Tre—1, yix) = q(vx|Tr-1, yr). (21)
The following sections discuss various approximationsdf proposal, and in particular how the choice of
proposal depends on tlsggnal to noise ratiqSNR. For linear Gaussian models, the SNR is in loose term

defined as|Q||/||R||- That is, the SNR is high if the measurement noise is smallpaoed to the signal
noise. Here, we define SNR as the ratio of the maximal valudeiikelihood and prior, respectively,

MaXy, P(Ye|r)

SNR . (22)
max,, p(Tk|rr_1)
For a linear Gaussian model, this givVeSR o +/det(Q)/ det(R).
We will in this section use the weight update
iy iy Pkl 3

q(xk| 7)1, ve)
combining (16ad). The SNR thus indicates which factor in nnenerator that most likely changes the
weights the most.

Besides the options below that all relate to (21), there aamynother more ad-hoc based options
described in literature. For instance one idea is to run air BKUKF in parallel, and use the posterior
Gaussian distribution from this filter as a proposal.

A. Optimal Sampling

The conditional distribution includes all information dfet previous state and the current observation,
and should thus be the best proposal to sample from. Thisitcwmal PDF can be written as
. p(yk|zr)p(wrl) )

ql‘kl‘i_7yk :pl‘kl‘i_7yk - i : (24a)
( | k—1 ) ( | k—1 ) p(yk‘xkfl)

This choice gives the proposal weight update
wllc\k X w;cfl|k71p(yk|x;cfl)' (24b)

The point is that the weight will be the same whatever sampleiois generated. Put in another way,
the variance of the weights is unaffected by the samplingotker alternatives will add variance to the
weights and thus decrease the effective number of samptesdieg to (19a). In the interpretation of
keeping the effective number of samples as large as pos§ida) is theoptimal sampling

The drawbacks are as follows:

« It is generally hard to sample from this proposal distribnti

« Itis generally hard to compute the weight update needechferproposal distribution, since it would

require to integrate over the whole state space.|z;_,) = [ p(yx|zr)p(xx|x;_;) day.

One important special case when these steps actually beeapiit is for a linear and Gaussian
measurement relation, which is the subject of Section V-E.
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B. Prior Sampling
The standard choice in Algorithm 1 is to use the conditiorm@rpof the state vector as proposal

distribution,
q(rlzh_1, yr) = p(orly_y), (253)
wherep(x;|zt ;) will be referred to as the prior of,, for each trajectory. This yields

Wiy = Wik PWkl2h) = )10 (yel ). (25b)

This leads to the by far most common version of the PF (SIR) wees originally proposed in [15]. It
performs well when the SNR is small, which means that thee qtatdiction provides more information
about the next state value than the likelihood function. lR@dium or high SNR, it is more natural to
sample from the likelihood.

C. Likelihood Sampling

Consider first the factorization
p(ax] 7)) p(aklo_y)
P(Yrl),_1) P(yklz_y)
If the likelihood p(yx|xx) is much more peaky than the prior and if it is integrablerjn[52], then

Pz 1, yk) = p(Yelvh_y, 21 = p(ylzr) (26a)

p(@li_y, ) o< p(yelar). (26b)
That is, a suitable proposal for the high SNR case is basedsmalad likelihood function

q(p|z)_y, yr) o< p(yrlzr), (26¢)
which yields

w?;m = wlic—l\k—lp(xﬂxi;—l)' (26d)

Sampling from the likelihood requires that the likelihoath€tion p(yx|zy) is integrable with respect to
xy, [52]. This is not the case whem, > n,. The interpretation in this case is that for each valug,of
there is a infinite-dimensional manifold of possiblgto sample from, each one equally likely.

D. lllustrations

A simple linear Gaussian model is used to illustrate theadof proposal as a function of SNR. Figure
2 illustrates a high SNR case for a scalar model, where tloerrdtion in the prior is negligible compared
to the peaky likelihood. This means that the optimal propesaentially becomes (a scaled version of)
the likelihood.

Figure 3 illustrates a high SNR case for a two-dimensioretestwhere the observation dimension is
smaller than the state space. The optimal proposal can leeir@drpreted as the intersection of the prior
and likelihood.
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PORIXiC-1) = N(1, 1)
_12f
Eosl
208]

0.4 [ m
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p(y(k)Ix(k)) = N(0.7,0.1)
1.2}
X081
[=1
0.4
0
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p(x(k)Ixi(k-1),y(k)) = N(0.727,0.0909)
1.2}
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X

Fig. 2. lllustration of (24a) for a scalar state and obséomamodel. The state dynamics moves the particle;fo= 1 and adds uncertainty
with variance 1, after which an observatigh = 0.7 = xx + ex is taken. The posterior in this high SNR example is here d¢isdignequal

to the likelihood.

2.5}

157

X2
-

0.5r

p(x(K)[xi(k-1)) = N([1;1],[1,0.5;0.5,1])

-0.51

p(x(K)|Xi(k-1),y(k)) f= N([0.727;0.857],[0.0909,0.0451;0.0

-1 -0.5 0 0.5 1 1.5 2
x1

Fig. 3.

2.5 3

lllustration of (24a) for a two-state and scalar obaion model. The state dynamics moves the particlego= (1,1)” and

adds correlated noise, after which an observagipr= 0.7 = (1, 0)xj + ey, is taken. The posterior in this high SNR example corresponds

roughly to the likelihood in one dimensiorn:{) and the prior in the other dimensiomsf).

E. Optimal Sampling with Linearized Likelihood

The principles illustrated in Figures 2 and 3 can be used fonearized model [43], similar to the
measurement update in the EKF (4ef). To simplify the notaBomewhat, the process noise in (1a) is
assumed additive, . ; = f(zx) + vx. Assuming that the measurement relation (1b) is linearaed3b)
when evaluating (24a), the optimal proposal can be appraadwith

dlanleh o) = A () + Kion = . (R + QL))

(27a)
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where ' denotes pseudo-inverse. The Kalman gain, linearized measmt model and measurement
prediction, respectively, are given by

. . . . -1
K= Quoaly” (HiQuaH)" + Re) (27b)
Hj, = ag(xk) : (27¢)
Lk mk:f(x};fl)
Ui = h (f(zi)- (27d)
The weights should thus be multiplied by the following likelod in the measurement update,
Pkli 1) = N (yx — Ui H;iQkle;i’T + Ry). (27e)

The modifications of (27) can be motivated intuitively addwals. At timek — 1, each particle corresponds
to a state estimate with no uncertainty. The EKF recursidjisuging this initial value gives

Tp_qjp—1 ~ N(2_1,0) = (28a)
Erjp—1 = [ (ko) (28D)
Pyjp—1 = Qr—1, (28c)

Ky = Qe HY (HyQr—1 H + Rk)A, (28d)
T = Tpjp—1 + Ki(yr — R(Tpp—1)), (28e)
Py = Qr—1 — K HpQp 1. (28f)

We denote this sampling strategy OPT-EKF. To compare it ® standard SIR algorithm, one can
interpret the difference in terms of the time update. Theificadion in Algorithm 1 assuming a Gaussian
distribution for both process and measurement noise, isdkenthe following substitution in the time
update

Thar = [ (@) + 0, (29a)
SIR : vl ~ N(0,Qp), (29b)
OPT —EKF: vl eN (K,iﬂ (yep1 — 2 (f(2}))) (H,iflR,LHH,QH + QL)T) . (29c¢)
and measurement update
SIR :  wyy, = Wiy N (e — h(x}), Ri), (29d)
OPT — EKF:  wjy, = wi_y N (yk —h (i), HiQu o HT + Rk> , (29€)

respectively. For OPT-SIR, the SNR definition can be moreipety stated as

1HiQer Hy' |
[
We make the following observations and interpretationsaneslimiting cases of these algebraic expres-
sons:
. For small SNR,K? ~ 0 in (27b) and( H." RI H + Q! _, "~ Qx_1 in (29¢), which shows that the
resampling (29c) in OPT-EKF proposal approaches (29b) ik & the SNR goes to zero. That is,

for low SNR the approximation approaches prior sampling ectten V-B.
« Conversely, for large SNR and assumifig invertible (implicitly implying n,, > n,), then

(H,Z’TR,EH,Q + Q,TH> ~ Hy 'Ri,H;~" in (29c). Here, all information about the state is taken from

SNR o (30)
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the measurement, and the model is not used. That is, for HNfR the approximation approaches
likelihood sampling in Section V-C.
« The pseudo-inverseis used consequently in the notation for the proposal camas

| | £ _ .
(H,QTRLH; + Q,Tg_l) instead of inverse to accomodate the following cases:

— Singular process nois@;_;, which is the case in most dynamic models including intexgtat
noise.

— Singular measurement noige,, to allow ficticious measurements that model state comggai
For instance, a known state constraint corresponds to tefinformation in a subspace of the
state space, and the correspondlng eigenvector of the neeasot mformatlonHkRTHZT will
overwrite the prior mformatlorQ

F. Auxiliary Sampling
The auxiliary sampling proposal resampling filt¢s0] uses an auxiliary index in the proposal distribu-

tion ¢(xx, i|y1.). This leads to an algorithm that first generates a large numbétypically A/ = 10N)
of pairs{z;,#’}}Z,. From Bayes’ rule, we have

P(wr, i y1n) ~ p(WrlTe)p(@r, t|y1e—1) (31a)
= p(yrl@r)p(@rlt, yra—1)p(ilyre—1) (31b)
= p(yk|$k)p($k|$2—1)w;¢—1|k—1- (31c)

This density is implicit inz;, and thus not useful as an proposal density, since it requjrés be known.
The general idea is to find an approximationpfy|«;_,) = [ p(yx|zk)p(zk|z;_;)dxy. A simple though
useful approximation is to replace, with its estimate and thus lef(y,|z, ;) = p(yx|2:) above. This
leads to the proposal

q(@k, i|y1x) = p(yklfﬁ;)p(xkIxﬁ;_l)w;i_uk_l- (31d)

Here, #i = E(xx|xi_,) can be the conditional mean, 6f ~ p(z|z;_,) a sample from the prior. The
new samples are drawn from the marginalized density

|~ p(@lyie) = ZP (ks t|y1:1)- (31e)

To evalute the proposal weight, first Bayes rule gives

q(zr, i|y1e) = q(ilyir)a(weli, yrr)- (31f)
Here, another choice is needed. The latter proposal fabtmrld be defined as
(@i, yrx) = plarlai_y)- (319)
Then, this factor cancels out when forming
q(ilyrr) o p(yk@@wz—uk—r (31h)
The new weights are thus given by
(@, 7| y1k)
Note that this proposal distribution is a product of the paad the likelihood. The likelihood has the
ability to punish samples: that gives a poor match to the most current observationken8iR and SIS

where such samples are drawn and then immediately rejeChente is a link between the auxiliary PF
and the standard SIR as pointed out in [53], which is usefuufalerstanding its theoretical properties.

i
Wiy = Wr—1|k—1
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VI. THEORETICAL PERFORMANCE

The key questions here are how well the PF filtering dengity..|y:.,) approximates the true posterior
p(z1.x|y11), @nd what the fundamental mean square error bounds forukeptysterior are.

A. Convergence Issues

The convergence properties of the PF are well understood theaetical level, see the survey [54]
and the book [55]. The key question is how well a functignm,) of the state can be approximatég:; )
by the PF compared to the conditional expectatidn(k;)), where

E(glon)) = [ go0plernln doua, (32)
N
g(wg) = /g(ﬂfk)ﬁ(ﬂfhk\yl;k) dryg = Zwlzc\k:g<x;c)' (33)
=1
In short, the following key results exist:
« Almost sure weak convergence

Nliinooﬁ(mﬂyl:k) = p(z1k|yrr), (34)

in the sense thdimy .. §(zx) = E(g(xk)).
« Mean square error asymptotic convergence

E (3() — Elg()))? < 2L e, (3)
where the supremum norm 9fx;,) is used. As shown in [55] using the Feynman-Kac formula, unde
certain regularity and mixing conditions, the constgpt= p < oo does not increase in time. The
main condition [54, 55] for this result is that the unnormatl weight function is bounded. Further,
most convergence results as surveyed in [56] are restrictdmbunded functions of the statéx)
such thatg(x)| < C for someC. The convergence result presented in [57] extends thistowmded
functions, for instance estimation of the state itgglf) = =, where the proof requires the additional
assumption that the likelihood function is bounded fromolaeby a constant.

In general, the constapi, grows polynomially in time, but does not necessarily depemdhe dimension

of the state space, at least not explicitly. That is, in thieee can expect the same good performance for
high order state vectors. In practice, the performanceadksg quickly with the state dimension due to

the curse of dimensionality. However, it scales much betiér state dimension than the PMF, which is

one of the key reasons for the success of the particle filter.

B. Nonlinear Filtering Performance Bound

Besides the performance bound of a specific algorithm asusksd in the previous section, there are
more fundamental estimation bounds for nonlinear filtetimeg depend only on the model and not on the
applied algorithm. The Cramér-Rao Lower Bound (CRLB), provides such a performance bound for
any unbiased estimatat,

Cov (i) > P, (36)

The most useful version of CRLB is computed recursively byiec&i equation which has the same
functional form as the Kalman filter in (4) evaluated at theettrajectoryz9,,,

Pt = Py’ — Pt H (o) (H (2) PP HY () + Re) ™ H (a3) Py, (372)

Pl = Fa) PP FT (27) + G(a3) QG (7). (37b)
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The following remarks summarize the CRLB theory with resgeche PF:
« For a linear Gaussian model

Tp1 = Fror + Grog, vg ~ N(0,Qr), (38a)
Yp = Hyzp, + ey, e, ~ N (0, Ry), (38Db)

the Kalman filter covariancé’,;, coincides withP,ﬁ,?LB. That is, the CRLB bound is attainable in
the linear Gaussian case.

« Inthe linear non-Gaussian case, the covariaiiggsi, and P, are replaced with the inverse intrinsic
accuracieszl;l, I;j and Iajol, respectively. Intrinsic accuracy is defined as the Fish&rmation
with respect to the location parameter, and the inversengitr accuracy is always smaller than the
covariance. As a consequence of this, the CRLB is alwayslenfak non-Gaussian noise than for
Gaussian noise with the same covariance. See [58] for tlelslet

. The parametric CRLB is a function of the true state trajgctdr, and can thus be computed only
in simulations or when ground truth is available from a refee system.

« The posterior CRLB is the parametric CRLB averaged over afisible trajectoriesP,ﬁgstCRLB =

E(P,;’erRLB). The expectation makes its computation quite complex iregen

« In the linear Gaussian case, the parametric and posteriordsocoincide.

« The covariance of the state estimate from the particle fitdsounded by the CRLB. The CRLB
theory also says that the particle filter estimate asymgalthyi in both the number of particles and
the information in the model (basically the signal to noiaga) attains the CRLB bound.

Consult [59] for details on these issues.

VII. COMPLEXITY BOTTLENECKS

It is instructive and recommended to generate a profile tepam an implementation of the particle
filter. Quite often, unexpected bottlenecks are discovénatlcan be improved with a little extra work.

A. Resampling

One real bottleneck is the resampling step. This crucial B#s to be performed at least regularly when
N.g becomes too small.

The resampling can be efficiently implemented using a aakslgorithm for samplingV ordered
independent identically distributed variables accordm@0], commonly referred to as Ripley’s method:

function [x,w]=resample(x,w)

% Multinomial sampling with Ripley’'s method
u = cumprod(rand(1,N).”(1./[N:-1:1]));
u = fliplr(u);
wc = cumsum(w);
k=1,
for i=1:N

while(wc(k)<u(i))

k=k + 1;

end

ind(i)=k;
end
x=x(ind,:);
w=ones(1,N)./N;

The complexity of this algorithm is linear in the number ofrjpdes N, which cannot be beaten if the
implementation is done at a sufficiently low level. This is fbis reason the most frequently suggested
algorithm also in the particle filter literature. Howevar, engineering programming languages as™
LAB™  vectorized computations are often an order of magnitudeefahan code based on “for” and
“while” loops.
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—*— Ripley
Sort
—v— Stratified
—&- Systematic

Computation time [s]

Fig. 4. Computational complexity in a vectorized languafiewm different resampling algorithms: Ripley and sort.

The following code also implements the resampling needetddrparticle filter by completely avoiding
loops.

function [x,w]=resample(x,w)
% Multinomial sampling with sort
u = rand(N,1);
wc = cumsum(wy);
we=wc/wc(N);
[dum,ind1]=sort([u;wc]);
ind2=find(ind1<=N);
ind=ind2-(0:N-1)’;
x=x(ind,:);
w=ones(1,N)./N;

This implementation relies on the efficient implementatainsort. Note that sorting is of complexity
N log,(N) for low level implementations, so in theory it should not beaternative to Ripley’s method
for sufficiently largeN. However, as Figure 4 illustrates, the sort algorithm iscadiaof five faster for one
instance of a vector oriented programming language. Usitgrpreters with loop optimization reduces
this difference, but the sort algorithm is still an altermat

Note that this code does not use the fact thatis already ordered. The sorting gets further simplified
if also the sequence of uniform numbers is ordered. This s avantage of systematic or stratified
sampling [16], where the random number generation is replaath one of the following lines:

% Stratified sampling

u=([O:N-1]'+(rand(N,1)))/N;

% Systematic sampling

u=([0:N-1]+rand(1))/N;

Both the code based wort andfor, while are possible. Another advantage with these options is
that the state space is more systematically covered, se wi#mot be any large uncovered volumes just
by random.

B. Likelihood Evaluation and Iterated Measurement Updates

The likelihood evaluation can be a real bottleneck if notpemty implemented. In case there are several
independent sensors, an iterated measurement update parfdrened. Denote th& sensor observations
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yi for j=1,2,..., M. Then, independence directly gives

M
p(yrlzr) = Hp(yi\«%’k)- (39)

This trick is even simpler than the corresponding iteratehsnrement update in the Kalman filter.
However, this iterated update is not necessarily the mdisieeft implementation. One example is the
multivariate Gaussian distribution for independent measents

Yk,j = hj (l'z;) + €k,j5 €k,j ™~ N(O, Rk,j)- (40)
The likelihood is given by
plye|at) o 005 301 (kg —hy (2})) " By s (wk 5=y (2},) (41a)
M
_ H 6*0-5(%,;‘*hj(l“};))TR;:j(yk,j*hj(l“};)). (41b)

j=1
The former equation with a sum should be used to avoid extemsills to the exponential function. Even
here, it is not trivial how to vectorize the calculations hetsum for all particles in parallel.

C. Time Update Sampling

Generating random numbers from non-standard proposalsméyne consuming. Then, remembering
that dithering is often a necessary practical trick to tureRF, one should investigate proposals including
dithering noise that are as simple as possible to sample. from

D. Function Evaluations

When all issues above have been dealt with, the only thingrédraains is to evaluate the functions
f(z,v) and h(z). These functions are evaluated a huge number of times, sovibithwile to spend
time to optimize their implementation. An interesting ideao implement these in dedicated hardware
taylored to the application. This was done using analogware in [61] for an arctangens function, which
is common in sensor models for bearing measurements.

E. PF versus EKF

The computational steps are compared to the Kalman filterainleTl. The EKF requires only one
function evaluation off(z,v) and h(z) per time step, while the particle filter requir@é evaluations.
However, if the gradients are not available analyticallyhia EKF, then at least anothey evaluations of
both f(z,v) and h(x) are needed. These numbers increase when the step size airttezia gradients
are adaptive. Further, if the process noise is not addigBven more numerical derivatives are needed.
However, the PF is still roughly a factay/n, more complex.

The most time consuming step in the Kalman filter is the Rige&ursion of the matrix°. Here, either
the matrix multiplication/ P in the time update or the matrix inversion in the measureropadéte are
dominating for large enough models. Neither of these arelettén the particle filter. The time update
of the state is the same.

The complexity of a matrix inversion using state of the agoaithms [62] isO(n2*™). The matrix
inversion in the measurement update can be avoided by ubmgdtdrated measurement update. The
condition is that the covariance matri¥, is (block-) diagonal.

As a first order approximation for large,, the Kalman filter isO(n3) from the matrix multiplication
F P, while the particle filter i<D(Nn?2) for a typical dynamic model where all elementsfif:, v) depend
on all states, for instance the linear modét, v) = Fxz+wv. Also from this perspective, the PF is a factor
N/n, computationally more demanding than the EKF.
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TABLE |
CoMPARISON OFEKF IN (4) AND SIR-PFIN (16): MAIN COMPUTATIONAL STEPS

Algorithm Extended Kalman filter Particle filter
Time update p=tlen g2 2 iy,
v = f(2.0) 2= fai, )
P:= FPFT 4+ GQGT
Measurement update H = 2] w' = wipe(y — h(x?))

K = PHT(HPHT + R)~
x:=x+ K(y— h(x))
P.=P-KHP
Estimation i=ux b= wiz
Resampling — o~ SN wid(a — ad)

VIII. M ARGINALIZED PARTICLE FILTER THEORY

The main purpose of thearginalized particle filteMPF) is to keep the state dimension small enough
for the PF to be feasible. The resulting filter is called theRVii? the Rao-Blackwellized particle filter,
and it has been known for quite some time under different sasee e.g., [49, 63-68].

The MPF utilizes possible linear Gaussian sub-structuréeeé model (1). The state vector is assumed
partitioned asr;, = ((z7)7, (4)T)7, wherez! enters both the dynamic model and the observation model
linearly. We will a bit informally refer tar! as the linear state ang' as the nonlinear state, respectively.
MPF essentially represents! with particles, and applies one Kalman filter per particlattprovides
the conditional distribution forz}, conditioned on the trajectory?, of nonlinear states and the past
observations.

A. Model Structure
A rather general model, containing a conditionally lineauSsian sub-structure is given by

Tpy = fR @)+ F (e ap+ G (a)vr, (42a)
Thpr = [o(@) +Fi(z)z), +Gl(a)) g, (42Db)
Ye = hi(27)+Hy (272 +ep. (42c)

The state vector and Gaussian state noise are partitioned as

_ (7 _ (v _( @ Q%”)
Ty = . v = ~ N(0,Q4), = k . 42d
Furthermore,z), is assumed Gaussiam}, ~ N (Zy, P). The density ofz? can be arbitrary, but it is
assumed known. The underlying purpose with this model &traas that conditioned on the sequence

z7,, (42) is linear inz{ with Gaussian prior, process noise and measurement neggectively, so the
Kalman filter theory applies.

B. Algorithm Overview
The MPF relies on the following key factorization

(@, 21 alyin) = (il ety yio)p(atlye). (43)
These two factors decompose the nonlinear filtering task twb sub-problems:
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TABLE I
SUMMARY OF THE INFORMATION STEPS INALGORITHM 2 FOR THE MARGINALIZED PFUTILIZING A LINEAR GAUSSIAN
SUB-STRUCTURE

Prior Pl 2 lyik) = plai]a] . yi)p(al g lyie)

1. PF TU p(allyie) = p(a g lyie)

2. KF TU (ackla:1 W ULE) = p(kaﬂlﬂfl ko YL:k)

3. KF dyn MU p(mk+1|x1 g YLk) = p(mk+1|x1 k10 Y1ik)

4. PF MU P lyie) = p(fvl k1 |Y1k41)

5. KF obs MU p(mk+1|3§1 10 Y1 k) = P(mk+1|3f1 k41> Y1: h+1)

Posterior P(@h1s P [Y1a1) = @2 g1 Y )@ [Y1k1)

« A Kalman filter operating on the conditionally linear, Gaass model (42) provides thexact
conditional posteriom(xﬂx’f:k,yljk) = _/\/’(xﬁg;iﬁdk(x’f;;),P,_i‘k(x’f;;)). Here, (42a) becomes an extra
measurement for the Kalman filter wittf , — f;'(x}}) acting as the observation.

« A patrticle filter for estimating the filtering density of th@mlinear states. This involves a nontrivial
marginalization step by integrating over the state spacallof, using the law of total probability

(i yin) = p(2yrw) p(Tpy o |77 0, Y1k)

= p(x?k|y1k) /p('rZJrl‘x;wx?:k?yl:k)p(xéc‘x?:k7yl:k)dx§€

= p(@Vk|y1:x) /p($2+1|$2>$711:k7 ?Jl:k)/\/’(xfka $k|k($1 k) Pk\k(xl k))d% (44)

The intuitive interpretation of this result is that the lamestate estimate acts as an extra state noise
in (42a) when performing the particle filter time update.
The time and measurement updates of KF and PF are interleagethe timing is important. The
information structure in the recursion is described in Aitjon 2. Table Il summarizes the information

Algorithm 2 Marginalized Particle Filter
With reference to the standard patrticle filter in Algorithmadd the Kalman filter, iterate the following
steps for each time step:
1) PF measurement update and resampling using (42c) whereinterpreted as measurement noise.
2) KF measurement update using (42c) for each partitje
3) PF time update using (42a) wherg is intepreted as process noise.
4) KF time update using (42b) for each partialg;, .
5) KF extra measurement update using (42a) for each pant@e

steps in Algorithm 2. Note that the time index appears fiveeinn the right hand side expansion of the
prior. The five steps increase eakttone at the time to finally form the posterior at tirher 1.

The posterior distribution for the nonlinear states is gily a discrete particle distribution as usual,
while the posterior for the linear states is given by a Gaumssnixture:

p(z gl y1w) ~ Zwk\k (@) — 210), (453)
playlyrr) = Z wlic\k:N(xi:; fﬁqk@rf;)a Pli\k(lei)) (45b)
=1

For a complete derivation, see [67]. As demonstrated in, [§@ndard Kalman and particle filtering code
can be reused when implementing the MPF. The model (42) cduartheer generalized by introducing an
additional discrete mode parameter, giving a larger familynarginalized filters, see [68].
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C. Complexity Issues

In general, each Kalman filter comes with its own Riccati ¢igma However, the Riccati equation is
the same if the following three conditions are satisfied:

Gp(zy) =Gy or Fi(zp) =0, (46a)
Gi(zp) = Gy, (46b)
Hy(a}) = Hy. (460)

It is easy to verify that the Ricatti equations in this casé anvolves matrices that are the same for all
trajectoriesz’,. This implies a significant complexity reduction.

One important special case of (42) in practice is a model Vuitbar state equations with a nonlinear
observation which is a function of a (small) part of the statetor,

;cgﬂ = [ F”la:LJervk, (47a)
x,m _Fl” m il Gt (47b)

For instance, all applications in Section X fall into thistegory. In this case, step 3 in Algorithm 2
disappears.

The MPF appears to add quite a lot of overhead computatibmstris out, however, that the MPF is
often more efficient. It may seem impossible to give any ganeonclusions, so application dependent
simulation studies have to be performed. Neverthelesde gealistic predictions of the computational
complexity can be done with rather simple calculations, asitpd out in [70]. The result is that for
the case when (46) is satisfied, MPF should always be moreeefficotherwise the complexities are
comparable.

D. Variance Reduction

The MPF reduces the variance of the linear states which wilimonstrated below. Thaw of total
variancesays that

Cov (U) = Cov (E(U|V)) + E(Cov(U|V)). (48)
Letting U = !, andV = 27, gives the following decomposition of the variance of the PF:
Cov(ay) = Cov (E(xylaiy)) + E (Cov(aylaty)) (49a)
PF
= CoV (i (@15)) + > wi, Pin(e) (49b)
N J/ i—1 H,—/
MPF KF

Here, we recognizért |z} ‘) as the Gaussian distribution, delivered by the KF, conadiétbon the trajectory
z1. Now, the MPF computes the mean of each trajectorwg,g(:c ) and the unconditional mean
estimator is simply the mean of these,

xk|k = Z wﬁmk 5’31 %) (50)

and its covariance follows from the first term in (49b). Thetfierm in (49b) corresponds to tkpread
of the mearcontribution from the Gaussian mixture, and this is the antgertainty in the MPF.

The variance decomposition shows that the covariance ®IMRF is strictly smaller than the corre-
sponding covariance for the PF. This can also be seen as k oéfao-Blackwell's lemma, see, e.g.,
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Covariance for linear states

12
—— MPF
PF
——KF
0 . .
10° 10° 10" 10°

Fig. 5. Schematic view of how the covariance of the lineat pathe state vector depends on the number of particles Pt and MPF,
respectively. The gain in MPF is given by the Kalman filter amd&nce.

[37], and the marginalization is commonly referred to as-B&ckwellization. This result says that the
improvement in the quality of the estimate is given by thentéf (Cov (. |27,)). Note that when (46)
is satisfied, therP,j‘k = Py, and thusZﬁi1 w,@Pélk = Py,. That is, the Kalman filter covariandg,; is a
good indicator of how much that has been gained in using thé MBtead of the PF. As a practical rule
of thumb, the gain in MPF increases as the uncertainty initteai state increases in the model. Further
discussions regarding the variance reduction properth@fMPF are provided for instance in [49].

The variance reduction in the MPF can be used in two diffevenys:

« With the same number of particles, the variance in the estisnaf the linear states can be decreased.

« With the same performance in terms of variance for the lirtaties, the number of particles can be

decreased.

This is schematically illustrated in Figure 5, for the cadaew (46) is satisfied, implying that the same
covariance matrix can be used for all particles. The twordtives above are illustrated for the case a
PF with 10000 particles is first applied, and then replaced by the MPF.

E. MPF Synonyms

The following names have been suggested for the filter ingdion:

« MPF as is motivated by the nontrivial marginalization stég)(

« Rao-Blackwellized patrticle filteras motivated by the variance reduction in (49).

« Mixture Kalman filter as motivated by the various mixture distributions thatesggpfor instance in
(45b).

« Another logical name would bseparable particle filtein parallel to the well established separable
nonlinear least squares problem. In fact, the special chaestatic problem where only (42c) exists
falls into this class of problems. Here, the weighted leastases estimate of! is first computed
as a function of:7,, which is then backsubstituted into the model with its eation covariance to
form a nonlinear least squares problemuif, only.
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F. lllustrating Example
The aim here is to illustrate how the MPF works using the feifg nonlinear stochastic system.

Tp, = Thal 4+ vp, (51a)
thyy = o+ ol (51b)
yr = 0.2(z})* + ex, (51c)

where the noise is assumed white and Gaussian according to

o= (D) (0 )

0~ N <<00.919) ’ <106 100—3)) ' (517)

This particular model was used in [71], where it illustratgtl-based (point-mass) filters. Obviously, the
states can be estimated by applying the standard partige thl the entire state vector. However, a better
solution is to exploit the conditionally linear, Gaussiamsstructure that is present in (51). The nonlinear
processe? is a first-order AR process, where the linear processs the time-varying parameter. The
linear, Gaussian sub-structure is used by the MPF and thétings filtering density function at time
10, p(z10|y110) before the resampling step is shown in Figure 6 (for a pddictealization). In this
example2000 particles were used, but only00 of them are plotted in Figure 6 in order to obtain a
clearer illustration of the result. The figure illustratée tfact that the MPF is a combination of the KF

The initial stater, is given by

Fig. 6. The estimated filter PDF for system (51) at tifte p(z10|y1:10) Using the MPF. It is instructive to see that the linear stag
is estimated by Gaussian densities (from the Kalman filted) the position along the nonlinear statg, is given by a particle (from the
particle filter).

and the PF. The density functions for the linear states areiged by the Kalman filters, which is evident
from the fact that the marginaj@(xﬁyl;k) are given by Gaussian densities. Furthermore, the nomlinea
state estimates are provided by the PF. Hence, the lindassiee given by a parametric estimator (KF),
whereas the nonlinear states are given by a nonparametintaésr (PF). In this context the MPF can be
viewed as a combination of a parametric and a nonparamestiimaor.
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IX. PARTICLE FILTER CODE EXAMPLES

This section gives concrete MLAB ™-like code for a general SIR particle filter, and applies it to
a fully annotated simulation example. Further, object mgd implementations of nonlinear filters are
illustrated on a target tracking applications. The classed examples are available in the Signal and
Systems Lab, see the author's homepage for more information

A. Terrain-Based Positioning

The following scalar state example suits three purposest, /i enables intuitive graphical illustrations.
Second, it introduces the positioning applications in teetisection. Third, it should be easy to implement
for interested readers for reproducing the example, anehextg the code to other applications.

Consider the model

Tk+1 = Tk + Uk + Vg, (52a)
Yk = h(rg) + ey, (52b)

where both the state and the measurement are scalar-vdlhesdmodel mimics a navigation problem
in one-dimension, where, is a measurable velocity, unmeasurable velocity disturbance, and the
observationy, measures the terrain altitude, which is known in the dathés). An illustration from a
real application is found in Figure 16. Note that the terra@ititude as a measurement relation is not one
to one, since a given terrain altitude is found at many dffémpositions. However, the observed terrain
profile will after a short time be unique for the flown trajegto

Figure 7 shows a trajectory, and one realization of the neali function terrain profilé(z), generated
by the code below.

x=1:100; % Map grid
h=20+filter(1,[1 -1.8 0.81],randn(1,100)); % Terrain alt itude
N=15;

z=100+filter(1,[1 -1.8 0.81],randn(N,1)); % Measurement input
u=2+*ones(N,1); % State input
x0=20+cumsum(u); % True position
y=z-interp1(x,h,x0); % Noisefree measurement
yn=y+1 * randn(N,1); % Noisy measurement

plot(x0,y,’0-b’,x,h,'g’,x0,z-y,’go’, linewidth’,3)

The horizontal line indicates where the first measuremetakisn. There are ten different intersections
between the terrain profile and this observation, where tidepgint just before each intersection is marked
in the figure. This is clearly a problem where the posteriomigiti-modal after the first measurement
update.

The following code lines define the model (52) as an objecicsire:
m.f=inline(’x+u’,’x’,'u’);
m.h=inline('z-interp1(x,h,xp)’,’xp’,’h’,’x’,’2’);
m.pv=ndist(0,5); m.pe=ndist(0,1);
m.pO=udist(10,90);

The PDF classesdist andudist with the methodsand andpdf are assumed to be available. A
script that both implements a version of the PF and also aesral the partial results is given below:

Np=100; w=ones(Np,1)/Np;

xp=rand(m.p0O,Np); % Initialization

for k=1:N;
yp=m.h(xp,h,x,z(k)); % Measurement pred.
w=w.* pdf(m.pe,repmat(yn(k,:),Np,1)-yp);% Likelihood
w=w/sum(w); % Normalization

subplot(3,1,1), stem(xp,Np *W/10)
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Fig. 7. Aircraft altitudez(zx) (upper dark line) as a function of positian, (dots on upper dark line) and nonlinear measurement ralatio
h(zx) (lower gray line) for the model in (52). The computed terraltitude (1) is also marked, and a circle is put in all grid points that
give the best match to this altitude.

xhat(k,:))=w(;)’ *Xp; % Estimation
[Xp,w]=resample(xp,w); % Resampling
subplot(3,1,2), stem(xp,Np * W)

v=rand(m.pv,Np); % Random process noise
xp=m.f(xp,u(k,:))+v; % State prediction
subplot(3,1,3), stem(xp,Np * W)

end

Code examples of the functiolesample are given in Section VII-A. Figure 8 shows the posterior
density approximation at two time instants. Figure 8(a)wghdirst the unnormalized weights after the
measurement update, which with this uniform prior is just likelihood functionp(y:|zo) = p(y1). Then
follows the particle distribution after resampling (wheré = 1/N), and finally the particles after time
update (which is just a translation with).

Figure 8(b) illustrates the same thing after the 15’th meament. The posterior is now more clustered
to a unimodal distribution. Figure 9 shows the position eas a function of time. The break point in
performance indicates when the multimodal posterior ithstion becomes unimodal.

Timek=1 Time k = 15

Measurement update
Measurement update

Resampling

o o
o & ®
=
———
L o
F—
—
—
s
Resampling

o o
o & ®
g

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Time update

Time update
o o

o &

s

10 20 30 40 50 60 70 80 90 100
Position x Position x

Fig. 8. First two subplots: Approximations @f(xx|y:.x) before and after resampling, respectively. Last subplgiprAximations of
P(Trt1lyrn)-
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Fig. 9. True and estimated state as a function of time.

B. Target Tracking

In an object oriented implementation, simulation studias be performed quite efficiently. The fol-
lowing example compares different filters for a simple tatgacking model,

o [2 TSIQ T_52]2 _ O
T+1 = (O [2 ) T + (,12—,5[2 Vg, Vg ~ N(07 1[2)7 To = 0/° (53a)

Y = (]2 0) Ty + e, €L N(O, 001]2), (53b)

The observation model is first linear to be able to compar&dotalman filter that provides the optimal
estimate. The example makes use of two different objects:

« Signal object where the statg., and observationy;., sequences are stored, with their associated
uncertainty (covariance®?, P/ or particle representation). Plot methods in this class tbem
automatically provide confidence bounds.

« Model objects for linear and nonlinear models, with methimdglementing simulation and filtering
algorithms.

The purpose of the following example is to illustrate howlditcoding that is required with this object
oriented approach. First, the model is loaded from an exterexample database as a linear state space
model. It is then converted to the general nonlinear modataire, which does not make use of the fact
that the underlying model is linear.

mss=exlti('cv2d’);
mnl=nl(mss);

Now, the following state trajectories are compared:

« The true state from the simulation.

« The Cramér-Rao lower bound (CRLB) computed from the n@airmodel.
« The Kalman filter (KF) estimate using the linear model.

« The extended Kalman filter (EKF) using the nonlinear model.

« The unscented Kalman filter (UKF) using the nonlinear model.

« The patrticle filter (PF) using the nonlinear model.

For all except the first one, a confidence ellipsoid indicéitesposition estimation uncertainty.
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Fig. 10. Simulated trajectory using a constant velocity-tlimensional motion model with a position sensor, whereplus show the
CRLB (darkest) and estimates from KF, EKF, UKF and PF, retbgeg.

y=simulate(mss,10);

xhatl=kalman(mss,y);

xhat2=ekf(mnl,y);

xhat3=ukf(mnl,y);

xhat4=pf(mnl,y,’"Np’,1000);

xcrlb=crlb(mnl,y);
xplot2(xcrlb,xhat4,xhat3,xhat2,xhat1,’conf’,90)

Figure 10 validates that all algorithms provide comparasgmates in accordance with the CRLB.
Now, consider the case of a radar sensor that provides gogleé aesolution but poor range. The
measurement relation in model (53b) is changed to

2 _
arctan (x’a) Gijz)
Uk = o 0 +er,  er ~N(0,diag(0.0001,0.3)) (54)
Vi = o) 4 (o — o)’

Figure 11 compares EKF and PF with respect to the CRLB. ThedPiénms well, where the covariances
fitted to the particles are very similar to the CRLB. The EKFKlightly biased and too optimistic about
the uncertainty, which is a typical behavior when neglertingher order terms in the nonlinearities.
However, the performance of all filters is comparable, ar@rtbnlinear measurement relation does not
in itself motivate computer intensive algorithms in thisea

C. Growth Model
The following toy example was used in the original paper [15]

Thr = =2 4 25—F 1 Qcos(k) + v, ve ~ N(0,10), o ~ N (5,5), (55a)
2 1+ a3
i,
Yk = % + e, €L ~ N(O, 1). (55b)

It has since then been used many times in the particle filteralure, and it is often claimed to be a
growth model. It is included here just because it has turméal & benchmark problem. The simulation
code is
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gadar sensor

Fig. 11. Simulated trajectory using a constant velocity-timensional motion model with a radar sensor, where thts goow the CRLB
(darkest) and estimates from EKF (small ellipsoids) andrBspectively.

Fig. 12. Simulated trajectory using the model (55), where piots show the CRLB (darkest) and estimates from EKF, PF 38,
respectively. Table Ill summarizes the performance.

m=exnl('pfex’);
z=simulate(m,30);
zcrlb=crlb(m,z);
zekf=ekf(m,z);
zukf=ukf(m,z);

zpf=pf(m,z);
xplot(zcrlb,zpf,zekf,zukf,’conf’, 90, view’,’cont’,’ conftype’,2)
[mean(zcrlb.Px) norm(z.x-zpf.x) norm(z.x-zekf.x) norm( z.X-zukf.x)];

The last two lines produce the result in Figure 12 and Tableréspectively. The conclusion from this
example is that PF performs much better than the UKF whicluiin is much better than the EKF. Thus,
this example illustrates quite nicely the ranking of thefedint filters.
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TABLE 1l
MEAN SQUARE ERROR PERFORMANCE OF THE ESTIMATES IRIGURE 12 FOR THE BENCHMARK PROBLEM IN(55).

CRLB PF UKF EKF
8 18 54 132

X. PARTICLE FILTER POSITIONING APPLICATIONS

This section is concerned with four positioning applicasioof underwater vessels, surface ships,
wheeled vehicles (cars), and aircraft, respectively. Tiothese applications are at first glance quite
different, almost the same patrticle filter can be used infalhem. In fact, successful applications of the
PF are described in literature which are all based on the state-space model and similar measurement
equations.

A. Model Framework

The positioning applications, as well as existing appia# of fastSLAM, are all based on the model
[72]

ar = (X, Vi, i) 7, (56a)
wp = (Vie, )", (56b)
Xyy1 = X + TV cos(vy), (56¢)
Yii1 = Xg + TV sin(vy), (56d)
U1 = i + T, (56e)
Yr = h(xg) + eg. (56f)

Here, X}, Y} denote the Cartesian position, the course or heading, is the sampling intervaly. is

the speed and, the yaw rate. The inertial signalg, and, are considered as inputs to the dynamic
model, and are given by on-board sensors. These are differe&ach of the four applications, and they
will be described in more detail in the subsequent sectidin@ measurement relation is based on a
distance measuring equipment (DME) and a geographicatnrgtbon system (GIS). Both the DME and
the GIS are different in the four applications, but the measent principle is the same. By comparing
the measured distance to objects in the GIS, a likelihoocefmh particle can be computed. It should
here be noted that neither an EKF, UKF nor KF bank is suitecstmh problems. The reason is that it
is typically not possible to linearize the database othantim a very small neighborhood.

In common for the applications is that they do not rely on l§tgenavigation systems, which are
assumed unavailable or to provide insufficient navigatigegrity. First, the inertial inputs, DME and GIS
for the four applications are described. Conclusions congeghe PF from these applications practice are
summarized in Section XIlI. Different ways to augment theesteector are described for each application
in Section Xl. The point is that the dimension of the stateteebas to be increased in order to account
for model errors and more complicated dynamics. This inspiieat the PF is simply not applicable, due
to the high dimensional state vector.

The outline follows a bottom—up approach, starting withemhter vessels below sea level and ending
with fighter aircraft in the air.

B. Underwater Positioning using a Topographic Map

The goal is to compute the position of an underwater (UW) elegs sonar is measuring the distance
d, to the sea floor. The depth of the platform itséjf can be computed from pressure sensors, or from
a sonar directed up-wards. By adding these distances, theeggh at the positioXy, Y is measured.
This can be compared to the depth in a dedicated sea chartet#iiied topographical information, and
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Fig. 13. The left plot is an illustration of an UW vessel maasy distanced; to sea bottom, and absolute depth The sumd = di + d2
is compared to a bottom map as illustrated with the contautke plot to the right. The particle cloud illustrates a steq of the PF from
a known validation trajectory in a field trial, see [75].

the likelihood takes the combined effect of errors in the seosors and the map into account, see [73].
Figure 13 provides an illustration.

The speed/, and yaw rate), in (56) are computed using simplified dynamic motion modeisdd on
the propeller speed and the rudder angle. It is importanbte that since the PF does not rely on pure
dead-reckoning, such models do not have to be very accuege][74] for one simple linear model. An
alternative is to use inertial measurement units (IMU) fazasuring and computing speed and yaw rate.

Detailed seabed charts are so far proprietary militaryrmftion, and most applications are also military.
As an example of civilian use, oil companies are startingge unmanned UW vessels for exploring the
sea and oil platforms, and in this way building up their ownpma

C. Surface Positioning using a Sea Chart

The same principle as above can of course be used also facseuships, which are constrained to
be on the sea leveli{ = 0). However, vectorized sea charts (for instance the S-57datd) contain a
commercially available world-wide map.

The idea is to use the radar as DME and compare the detectitiméhw shore profile, which is known
from the sea chart conditioned on the positi&p, Y, and coursey, (indeed the ship orientation, but
more on this later), see [73]. The likelihood function madtie radar error, but must also take clutter
(false detections) and other ships into account.

The left hand part of Figure 14 illustrates the measuremartgided by the radar, while the right hand
part of the same figure shows the radar detections from oneletenrevolution overlayed on the sea
chart. The inertial data can be computed from propellerdp@e rudder angle using simplified dynamical
models as above.

American and European maritime authorities have recentblighed reports highlighting the need for
a backup and support system to satellite navigation to aserantegrity. The reason is accidents and
incidents caused by technical problems with the satelbtégation system, and the risk of accidental or
deliberate jamming. The LORAN standard offers one such sujmg technique based on triangulation to
radio beacons, see [78]. The PF solution here is a promisindidate, since it is in contrast to LORAN
not sensitive to jamming nor does it require any infrastrcet

D. Vehicle Positioning using a Road Map

The goal here is to position a car relative to a road map by eoimg the driven trajectory to the
road network. The speet, and yaw ratey; in (56) are computed from the angular velocities of the
non-driven wheels on one axle, using rather simple geooattrelations. Dead-reckoning (56) provides
a profile that is to be fitted to the road network.
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Fig. 14. The rotating radar returns detections of raRgat body angled. The result of one radar revolution is conventionally digeld in
polar coordinates as illustrated. Comparing {li& 0) detections to a sea chart as shown to the right, the positidrcaurse are estimated
by the PF. When correctly estimated, the radar overlay pliecan be used for visual validation as also illustratethim sea chart. The PF
has to distinguish radar reflections from shore with clusted other ships, see [76]. The latter can be used for comrelttarget tracking
algorithms, and collision avoidance algorithms, as alkstitated to the right, see [77].

Fig. 15. Left: Example of multimodal posterior represent®da number of distinct particle clouds from NIRA Dynamicsvigation
system. This is caused by the regular road pattern and wilébalved after a sufficiently long sequence of turns. RiBRin an embedded
navigation solution runs in real-time on a pocket PC with dasénterface to the vehicle CAN data bus, see [80].

The measurement relation is in its simplest form a binargliilood which is zero for all positions
outside the roads, and a non-zero constant otherwise.drcéisie, the DME is basically the prior that the
vehicle is located on a road, and not a conventional physieator. See [72,79] for more details, and
Figure 15 for an illustration. More sophisticated appl@as use vibrations in wheel speeds and vehicle
body as a DME. When a rough surface is detected, this DME caerase the likelihood for being outside
the road. Likewise, if a forward-looking camera is presenthie vehicle, this can be used to compute the
likelihood that the front view resembles a road, or if it isher a non-mapped parking area or smaller
private road.

The system is suitable as a support to satellite navigatiomrbban environments, in parking garages
or tunnels or whenever satellite signals are likely to beroloted. It is also a stand-alone solution to the
navigation problem. Road databases covering completeneons are available from two main vendors
(NavTech and TeleAtlas).

E. Aircraft Positioning using a Topographic Map

The principal approach here is quite similar to the undeswpbsitioning application, and extends the
one-dimensional example in Section 1X to two dimensions.

A high-end IMU is used in an inertial navigation system (IN@)ich dead-reckons the sensor data to
speedV, and yaw ratey;, in (56) with quite high accuracy. Still, absolute positianmpport is needed to
prevent long-term drifts.
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The DME is a wide-lobe down-ward looking radar that measuhes distance to the ground. The
absolute altitude is computed using the INS and a suppodongmetric pressure sensor. Figure 16 shows
one example just before convergence to a unimodal filtergrsidy.

Fig. 16. The left figure is an illustration of an aircraft medsg distanceh; to ground. The on-board baro-altitude supported INS system
provides absolute altitude over sea le¥igland the differencéi, = h — h; is compared to a topographical map. The right plot shows a
snapshot of the PF particle cloud, just after the aircra#t lleft the sea in the upper left corner. There are three distirodes, where the
one corresponding to the correct position dominates.

Commercial databases of topographic information are abiglon land (but not below sea level), with
a resolution 050200 meters.

XI. MARGINALIZED PARTICLE FILTER APPLICATIONS

This section continues the applications in Section X witteegded motion models where the marginal-
ized particle filter (MPF) has been applied.

A. Underwater Positioning

Navigating an unmanned or manned UW vessel requires kngeled the full three-dimensional
position and orientation, not only the projection in a hontal plane. That is, at least six states are
needed. For control, also the velocity and angular velkexiéire needed, which directly implies at least a
twelve dimensional state vector. The PF cannot be assumgertorm well in such cases, and MPF is a
promising approach [73].

B. Surface Positioning

There are two bottlenecks in the surface positioning PF ¢hat be mitigated using the MPF. Both
relates to the inertial measurements. First, the spee@ddnsthe log is the speed in water, not the speed
over ground. Hence, the local water current is a parametectode in the state vector. Second, the radar
is strap-down and measures relative to body orientationglwts not the same as the courgg. The
difference is the so called crab angle, which depends orectgrand wind. This can also be included in
the state vector. Further, there is in our demonstratoesy$76] an unknown and time-varying offset in
the reported radar angle, which has to be compensated for.

C. Vehicle Positioning

The bottleneck of the first generation of vehicle positign®F is the assumption that the vehicle must
be located on a road. As previously hinted, one could use & gnadability in the likelihood function
for being off-road, but there is no real benefit for this with@n accurate dead-reckoning ability, so
re-occurrence on the road network can be predicted with regability.

The speed and yaw rate computed from the wheel angular telace limited by the insufficient
knowledge of wheel radii. However, the deviation betweetua@cand real wheel radii on the two wheels
on one axle can be included in the state vector. Similarlyhwai yaw rate sensor available (standard
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VEL. 11.8 [kmnsh]

Parking garage

Fig. 17. Navigation of a car in a parking garage. Results f&fFMvhen relative wheel radii and gyro offset are added to tiie vector.
The two trajectories correspond to the map-aided systenaarieKF with the same state vector, but where GPS is used asoposgnsor.
Since the GPS gets several drop-outs before the parking@attae dead-reckoning trajectory is incorrect, see [81].

component in electronic stability programs (ESP) and retieg systems), the yaw rate drift can be

included in the state vector. The point is that these pamrrseire accurately estimated when the vehicle
is on the road, and in the off-road mode, improved dead-maokocan be achieved. Tests in demonstrator
vehicles have shown that the exit point from parking garayes$ parking areas are well estimated, and
that shorter unmapped roads are not a problem, see Figure 17.

D. Aircraft Positioning

The primary role of the terrain based navigation (TERNAV)dule is to support the INS with absolute
position information. The INS consists of an extended Kairfiter based on a state vector with over
20 motion states and sensor bias parameters. The currdfgnieck is the interface between TERNAV
and INS. The reason is that TERNAV outputs a possibly multiai@osition density, while the INS EKF
expects a Gaussian observation. The natural idea is torateegoth TERNAV and INS into one filter.
This gives a high-dimensional state vector, where one measnt (radar altitude) is very nonlinear. The
MPF handles this elegantly, by essentially keeping the Eimfthe existing INS and using the PF only
for the radar altitude measurement.

The altitude radar gives a measurement outlier when the qaalae is reflected in trees. Tests have
validated that a Gaussian mixture where one mode has avgosittan models the real measurement
error quite well. This Gaussian mixture distribution canused in the likelihood computation, but such
a distribution is in this case logically modeled by a binararkbv parameter, which is one in positions
over forest and zero otherwise. In this way, the positiveatation between outliers is modeled, and a
prior from ground type information in the GIS can be incogded. This example motivates the inclusion
of discrete states in the model framework. See [67, 68] ferdétails.

XIl. SUMMARY

This section summarizes practical experience from thei@gmns in Sections X and XI with respect
to the theorectical survey in Sections Il and VIII.

A. Real-Time Issues

The PF has been applied to real data and implemented on harthwgeted for the application platforms.
The sampling rate has been chosen in the oid€rHz, and there is no problem to achieve real-time
performance in any of the applications. Some remarkablescas
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« The vehicle positioning PF was implemented on a PDA udis@g)0 particles already ir2001, see
[79].

« The aircraft positioning PF was implemented in ADA and shaasatisfy real-time performance on
the on-board computer in the Swedish fighter Gripen in the 96@). Real-time performance was
reached, despite the facts that a very large number of [erticere used on a rather old computer.

B. Sampling Rates

The DME can in all cases deliver measurements much fastarttieachosen sampling rate. However,
faster sampling will introduce an unwanted correlation he bbservations. This is due to the fact that
the databases are quantized, so the platform should malgniiceint move between two measurement
updates.

C. Implementation

Implementing and debugging the PF has not been a major i€sue¢he contrary, students and non-
experts have faced less problems with the PF than for sipilgects involving the EKF. In many cases,
they obtained deep intuition for including non-trivial badl-hoc modifications. There are today several
hardware solutions reported in literature, where the persdructure of the PF algorithms can be utilized
efficiently. For instance, an FPGA implementation is reparin [82], and on a general purpose graphics
processing unit (GPGPU) in [83]. Analog hardware can furthe used to speed up function evaluations
[61].

D. Dithering

Both the process noise and measurement noise distributemtssome dithering (increased covariance).
Dithering the process noise is a well-known method to mitigdne sample depletion problem [15].
Dithering the measurement noise is a good way to mitigateeffexts of outliers and to robustify the
PF in general. One simple and still very effective method ftgate sample depletion is to introduce
a lower bound on the likelihood. This lower bound was firstaduced more or lesad hoc However,
recently this algorithm modification has been justified magerously. In proving that the particle filter
converges for unbounded functions, like the statatself, it is sufficient to have a lower bound on the
likelihood, see [57] for details.

E. Number of Particles

The number of particles is chosen quite large to achieve g@ogient behaviour in the start up phase
and to increase robustness. However, it has been conclbdenh the normal operational mode the number
of particles can be decreased substantially (typicallyctofaof ten). Figure 18 shows experimental results
for the terrain navigation application. The transient ioy@s when going fromV = 1200 to N = 2500,
but using more particles give no noticable improvementr aftavergence.

A real-time implementation should be designed for the woase. However, using an adaptive sampling
interval T" and number of particled’ is one option. The idea is to use a longer sampling intervdlraare
particles initially, and when the PF has converged to a festirtdit modes]” and NV can be decreased in
such a way that the complexity/T" is constant.

F. Choosing the Proposal Density

The standard sampling importance resampling (SIR) PF wbns for an initial design. However,
the maps contain rather detailed information about positemd can in the limit be considered as state
constraints. In such high signal-to-noise applicatiohs,gtandard proposal density used in the SIR PF is
not particularly efficient. An alternative, that typicaliypproves the performance, is to use the information
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Fig. 18. RMSE performance for aircraft terrain navigatienaafunction of the number of particles.

available in the next measurement already in the state giredistep. Note that the proposal in its most
general form includes the next observation. Consider fetaimce positioning based on road maps. In
standard SIR PF, the next positions are randomized aroungrédicted position according to the state
noise, which is required to obtain diversity. Almost all bése new particles are outside the road network,
and will not survive the resampling step. Obviously this isvaste of particles. By looking in the map
how the roads are located locally around the predicted ipasia much more clever process noise can
be computed, and the particles explore the road network muante efficiently.

G. Divergence Monitoring

Divergence monitoring is fundamental for real-time impétations to achieve the required level of
integrity. After divergence, the particles do not reflea true state distribution and there is no mechanism
that automatically stabilizes the particle filter. Henagehence monitoring has to be performed in parallel
with the actual PF code, and when divergence is detected?Rhis re-initialized.

One indicator of particle depletion is the effective numbksamplesV.¢, used in the PF. This number
monitors the amount of particles that significantly conitébto the posterior, and it is computed from the
normalized weights. However, the un-normalized likelidl®@re a more logical choice for monitoring.
Standard hypothesis tests can be applied for testing whigtb@article predictions represent the likelihood
distribution.

Another approach is to use parallel particle filters intarél in time. The requirement is that the
sensors are faster than the chosen sampling rate in the BFPH’B then use different time delays in the
sensor observations.

The re-initialization procedure issued when divergencaeitected is quite application dependent. The
general idea is to use a very diffuse prior, or to infer exaetinformation. For the vehicle positioning
application in [79], a cellular phone operator took parthe tlemonstrator, and cell information was used
as a new prior for the PF in case of occasional divergence.

H. Performance Bounds

For all four GPS-free applications the positioning perfance is in the order of ten meter root mean
square error (RMSE), which is comparable to GPS performanageher, the performance of the PF has
been shown to be close to the Cramér-Rao lower bound (CRaB# fvariety of examined trajectories.
In Figure 19 two examples of performance evaluations in seointhe RMSE are depicted. On the left
hand side the position RMSE and CRLB are shown for the UW aafitin and on the right hand side
the horizontal position error is provided for the aircrgbipécation.
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Fig. 19. The position RMSE for the UW (left) and surface (tjghpplications respectively, compared to the CRLB.

|. Particle Filter in Embedded Systems

The primary application is to output position informatianthe operator. However, in all cases there
have been decision and control applications built on thétipoanformation, which indicates that the PF
is a powerful software component in embedded systems:

« UW positioning: Here, the entire mission relies on the posjtso path planning and trajectory
control are based on the output from the PF. Note that therardly any alternative below sea level,
where no satellites are reachable, and deploying infretstrel (Sonar buoys) is quite expensive.

« Surface positioning: Differentiating radar detectior@nfrshore, clutter and other ships is an essential
association task in the PF. It is a natural extension to mtega collision avoidance system in such
an application, as illustrated in a sea chart snapshot iar&ig4.

« Vehicle positioning: The PF position was also used in a cetepyoice controlled navigation system
with dynamic route optimization, see Figure 15.

« Aircraft navigation: The position from the PF is primarilged as a supporting sensor in the INS,
whose position is a refined version of the PF output.

J. Marginalized Particle Filtering

Finally, the marginalized particle filter offers a scalablg¢ension of the PF in all applications surveyed
here and many others. MPF is applicable for instance in th@xdig localization, navigation and tracking
problems:

« Three-dimensional position spaces.

« Motion models with velocity and acceleration states.

« Augmenting the state vector with unknown nuisance parasmete sensor offsets and drifts.

State of the art is the FastSLAM algorithm, see [24], thatliapgVIPF to the Simultaneous Localization
and Mapping (SLAM) problem. FastSLAM has been applied toliapfpons where thousands of two-
dimensional landmark features are marginalized out frorhraet dimensional motion state. Further, in
[84] a double marginalization process was employed to lahdhdreds of landmark features and a 24-
dimensional state vector for three-dimensional navigatban unmanned aerial vehicle in an unknown
environment.
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