
1

Particle Filter Theory and Practice with Positioning
Applications

Fredrik Gustafsson,Senior Member IEEE

Abstract

The particle filter was introduced in 1993 as a numerical approximation to the nonlinear Bayesian filtering
problem, and there is today a rather mature theory as well as anumber of successful applications described in
literature. This tutorial serves two purposes: to survey the part of the theory that is most important for applications,
and to survey a number of illustrative positioning applications from which conclusions relevant for the theory can
be drawn.

The theory part first surveys the nonlinear filtering problemand then describes the general particle filter
algorithm in relation to classical solutions based on the extended Kalman filter and the point mass filter. Tuning
options, design alternatives and user guidelines are described, and potential computational bottlenecks are identified
and remedies suggested. Finally, the marginalized (or Rao-Blackwellized) particle filter is overviewed as a general
framework for applying the particle filter to complex systems.

The application part is more or less a stand-alone tutorial without equations that does not require any background
knowledge in statistics or nonlinear filtering. It describes a number of related positioning applications, where
geographical information systems provide a nonlinear measurement, where it should be obvious that classical
approaches based on Kalman filters would have poor performance. All applications are based on real data and
several of them come from real-time implementations. This part also provides complete code examples.

I. INTRODUCTION

A dynamic systemcan in general terms be characterized by a state space model with a hidden state from
which partial information is obtained by observations. Forthe applications in mind, the state vector may
include position, velocity and acceleration of a moving platform, and the observations may come from
either internal on-board sensors (thenavigation problem) measuring inertial motion or absolute position
relative some landmarks, or from external sensors (thetracking problem) measuring for instance range
and bearing to the target.

Thenonlinear filteringproblem is to make inference on the state from the observations. In the Bayesian
framework, this is done by computing or approximating the posterior distribution for the state vector given
all available observations at that time. For the applications in mind, this means that the position of the
platform is represented with a conditional probability density function given the observations.

Classical approaches to Bayesian nonlinear filtering described in literature include the following algo-
rithms:

• The Kalman filter (KF) [1, 2] that computes the posterior distribution exactly for linear Gaussian
systems by updating finite dimensional statistics recursively.

• For nonlinear non-Gaussian models, the KF algorithm can be applied to a linearized model with
Gaussian noise with the same first and second order moments. This approach is commonly referred
to as the extended Kalman filter (EKF) [3, 4]. This may work well, but without any guarantees,
for mildly nonlinear systems where the true posterior is unimodal (just one peak) and essentially
symmetric.

• The unscented Kalman filter (UKF) [5, 6] that propagates a number of points in the state space from
which a Gaussian distribution is fit at each time step. UKF is known to accomodate also the quadratic
term in nonlinear models, and is often more accurate than EKF. The divided difference filter (DFF)
[7] and the quadrature Kalman filter (QKF) [8] are two other variants of this principle. Again, the
applicability of these filters is limited to unimodal posterior distributions.

2

• Gaussian sum Kalman filters (GS-KF) [9] represents the posterior with a Gaussian mixture distribu-
tion, and filters in this class can handle multimodal posteriors. The idea can be extended to Kalman
filter approximations as the GS-QKF in [8].

• The point mass filter (PMF) [9, 10] grids the state space and computes the posterior over this grid
recursively. PMF applies to any nonlinear and non-Gaussianmodel and is able to represent any
posterior distribution. The main limiting factor is the curse of dimensionality of the grid size in
higher state dimensions, and that the algorithm itself is ofquadratic complexity in the grid size.

It should be stressed that both EKF and UKF approximate the model and propagates Gaussian distributions
as the posterior, while the PMF uses the original model and approximates the posterior over a grid. The
particle filter (PF) also provides a numerical approximation to the nonlinear filtering problem similar to
the PMF, but uses an adaptive stochastic grid that automatically selects relevant grid points in the state
space, and in contrast to the PMF the standard PF has linear complexity in the number of grid points.

The first traces of the PF dates back to the fifties [11, 12], andthe control community made some
attempts in the seventies [13, 14]. However, the PF era started with the seminal paper [15], and the
independent developments in [16, 17]. Here, an important resampling step was introduced. The timing
for proposing a general solution to the nonlinear filtering problem was perfect, in that the computer
development enabled the use of computational complex algorithms to quite realistic problems. The research
has since the paper [15] steadily intensified, see the article collection [18], the surveys [19–22], and the
monograph [23]. Figure 1 illustrates how the number of papers increases exponentially for each year
and the same appears to be true for applied papers. The particle filters may be a serious alternative for
real-time applications classically approached by the (extended) Kalman filter. The more nonlinear model,
or the more non-Gaussian noise, the more potential particlefilters have, especially in applications where
computational power is rather cheap and the sampling rate ismoderate.

1994 1996 1998 2000 2002 2004 2006 2008
0

500

1000

1500

2000

2500

Year

pa

pe
rs

PF or SMC
PF or SMC and application
Citations to Gordon

Fig. 1. Evolution over time of research on particle filters. The graph shows the number of papers in the Thomson/ISI database that match
the search on ’particle filter’ OR ’sequential Monte Carlo’ (upper curve), ’particle filter’ OR ’sequential Monte Carlo’AND ’application’
(middle curve) and the number of citations of [15] (lower curve).

Positioning of moving platforms has been atechnical driverfor real-time applications of the particle
filter (PF) in both the signal processing and the robotics communities. For this reason, we will spend
some time to explain several such applications in detail, and to summarize the experiences of using the
PF in practice. The applications concern positioning of underwater (UW) vessels, surface ships, cars,
and aircraft using geographical information systems (GIS)containing a database with features of the
surrounding. These applications provide conclusions frompractice supporting the theoretical survey part.

3

In the robotics community, the PF has been developed into oneof the main algorithms (fastSLAM) [24]
for solving the simultaneous localization and mapping (SLAM) problem [25–27]. This can be seen as an
extension to the aforementioned applications, where the features in the GIS are dynamically detected and
updated on the fly. Visual tracking has turned out to be another important application for the particle filter.
Multiple targets are here tracked from a video stream alone [28–30], or by fusion with other information,
for instance acoustic sensors [31].

The common denominator of these applications of the PF is theuse of a low-dimensional state vector
consisting of horizontal position and course (three dimensional pose). The PF performs quite well in a
three dimensional state-space. In higher dimensions the curse of dimensionality quite soon makes the
particle representation too sparse to be a meaningful representation of the posterior distribution. That is,
the PF isnot practically useful when extending the models to more realistic cases with

• motion in three dimensions (six-dimensional pose),
• more dynamic states (accelerations, unmeasured velocities, etc),
• or sensor biases and drifts.

A technical enablerfor such applications is the marginalized particle filter (MPF), also referred to as the
Rao-Blackwellized particle filter (RBPF). It allows for theuse of high-dimensional state-space models as
long as the (severe) nonlinearities only affect a small subset of the states. In this way, the structure of
the model is utilized, so that the particle filter is used to solve the most difficult tasks, and the (extended)
Kalman filter is used for the (almost) linear Gaussian states. The fastSLAM algorithm is in fact a version
of the MPF, where hundreds or thousands of feature points in the state vector are updated using the
(extended) Kalman filter. The need for the MPF in the list of applications will be motivated by examples
and experience from practice.

This tutorial uses notation and terminology that should be familiar to the AES community, and it
deliberately avoids excessive use of concepts from probability theory, where the main tools here are Bayes’
theorem and the marginalization formula (or law of total probability). There are explicit comparisons and
references to the Kalman filter, and the applications are in the area of target tracking and navigation.
For instance, a particle represents a (target) state trajectory; the (target) motion dynamics and sensor
observation model are assumed to be on state space form and the PF algorithm is split into time and
measurement updates.

The particle filter should be the nonlinear filtering algorithm that appeals to engineers the most, since it
intimately addresses the system model. The filtering code isthus very similar to the simulation code that the
engineer working with the application should already be quite familiar with. For that reason, one can have
a code first approach, starting with Section IX to get a complete simulation code for a concrete example.
This section also provides some other examples using an object oriented programming framework, where
models and signals are represented with objects, can be usedto quickly compare different filters, tunings
and models. Section X provides an overview of a number of applications of the PF, which can also be
read standalone. Section XI extends the applications to models of high state dimensions where the MPF
has been applied. The practical experiences are summarizedin Section XII.

However, the natural structure is to start with an overview of the PF theory as found in Section II,
and a summary of the MPF theory is provided in Section VIII, where the selection of topics is strongly
influenced by the practical experiences in Section XII.

II. NONLINEAR FILTERING

A. Models and Notation

Applied nonlinear filtering is based on discrete time nonlinear state space models relating a hidden
statexk to the observationsyk

xk+1 = f(xk, vk), vk ∼ pvk
, x1 ∼ px1 , (1a)

yk = h(xk) + ek, ek ∼ pek
. (1b)

4

Here,k denotes the sample number,vk is a stochastic noise process specified by its known probability
density function (PDF)pvk

, which is compactly expressed asvk ∼ pvk
. Similarly, ek is an additive

measurement noise also with known PDFpek
. The first observation is denotedy1, and thus the first

unknown state isx1 where the PDF of the initial state is denotedpx1 . The model can also depend on
a known (control) inputuk, so f(xk, uk, vk) and h(xk, uk), but this dependence is omitted to simplify
notation. The notations1:k denotes the sequences1, s2, . . . , sk (s is one of the signalsx, v, y, e), andns

denotes the dimension of that signal.
In the statistical literature, a general Markov model and observation model in terms of conditional

PDF’s are often used

xk+1 ∼ p(xk+1|xk), (2a)

yk ∼ p(yk|xk). (2b)

This is in a sense a more general model. For instance, (2) allows implicit measurement relationsh(yk, xk, ek) =
0 in (1b), and differential algebraic equations that add implicit state constraints to (1a).

The Bayesian approach tononlinear filteringis to compute or approximate the posterior distribution for
the state given the observations. The posterior is denotedp(xk|y1:k) for filtering,p(xk+m|y1:k) for prediction
andp(xk−m|y1:k) for smoothing, respectively, wherem > 0 denotes the prediction or smoothing lag. The
theoretical derivations are based on the general model (2),while algorithms and discussions will be based
on (1). Note that the Markov property of the model (2) impliesthe formulasp(xk+1|x1:k, y1:k) = p(xk+1|xk)
andp(yk|x1:k, y1:k−1) = p(yk|xk), which will be used frequently.

A linearized model will turn up on several occasions, which is obtained by a first order Taylor expansion
of (1) aroundxk = x̄k andvk = 0:

xk+1 = f(x̄k, 0) + F (x̄k)(xk − x̄k) +G(x̄k)vk, (3a)

yk = h(x̄k) +H(x̄k)(xk − x̄k) + ek, (3b)

where

F (x̄k) =
∂f(xk, vk)

∂xk

∣
∣
∣
∣
xk=x̄k,vk=0

, G(x̄k) =
∂f(xk, vk)

∂vk

∣
∣
∣
∣
xk=x̄k,vk=0

, H(x̄k) =
∂h(xk)

∂xk

∣
∣
∣
∣
xk=x̄k

, (3c)

and the noise is represented by their second order moments

COV(ek) = Rk, COV(vk) = Qk, COV(x1) = P0. (3d)

For instance, the extended Kalman filter (EKF) recursions are obtained by linearizing around the previous
estimate and apply the Kalman filter equations, which gives

Kk = Pk|k−1H
T (x̂k|k−1)

(
H(x̂k|k−1)Pk|k−1H

T (x̂k|k−1) +Rk

)−1
, (4a)

x̂k|k = x̂k|k−1 +Kk(yk − hk(x̂k|k−1)), (4b)

Pk|k = Pk|k−1 −KkH(x̂k|k−1)Pk|k−1, (4c)

x̂k+1|k = f(x̂k|k, 0), (4d)

Pk+1|k = F (x̂k|k)Pk|kF
T (x̂k|k) +G(x̂k|k)QG

T (x̂k|k). (4e)

The recursion is initialized witĥx1|0 = x0 andP1|0 = P0, assuming the priorp(x1) ∼ N (x0, P0). The
EKF approximation of the posterior filtering distribution is then

p̂(xk|y1:k) = N (x̂k|k, Pk|k), (5)

whereN (m,P) denotes the Gaussian density function with meanm and covarianceP . The special case
of a linear model is covered by (3) in which caseF (x̄k) = Fk, G(x̄k) = Gk, H(x̄k) = Hk, and using
these and the equalitiesf(x̄k, 0) = Fkx̄k andh(x̄k) = Hkx̄k in (4) gives the standard KF recursion.

5

The neglected higher order terms in the Taylor expansion implies that the EKF can be biased and it
tends to underestimate the covariance of the state estimate. There is a variant of the EKF that also takes the
second order term in the Taylor expansion into account [32].This is done by adding the expected value of
the second order term to the state updates and its covarianceto the state covariance updates. The unscented
Kalman filter (UKF) [5, 6] does a similar correction by using propagation of systematically chosen state
points (called sigma points) through the model. Related approaches include the divided difference filter
(DFF) [7] that uses Sterling’s formula to find the sigma points and the quadrature Kalman filter (QKF)
[8] that uses the quadrature rule in numerical integration to select the sigma points. The common theme
in EKF, UKF, DDF and QKF is that the nonlinear model is evaluated in the current state estimate and
for the latter ones some extra points that depend on the current state covariance.

UKF is closely related to the second order EKF [33]. Both variants improve over the EKF in certain
problems and can work well as long as the posterior distribution is unimodal. Further, the algorithms are
prone to diverge, and this problem is hard to mitigate or foresee by analytical methods. The choice of
state coordinates is for instance crucial in EKF and UKF, seeChapter 8.9.3 in [34] for one example,
while this choice does not affect the performance of the PF (more than potential numerical problems).

B. Bayesian Filtering

The Bayesian solution to compute the posterior distribution, p(xk|y1:k), of the state vector, given past
observations, is given by the general Bayesian update recursion

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
, (6a)

p(yk|y1:k−1) =

∫

Rnx

p(yk|xk)p(xk|y1:k−1) dxk, (6b)

p(xk+1|y1:k) =

∫

Rnx

p(xk+1|xk)p(xk|y1:k) dxk. (6c)

This classical result [35, 36] is the cornerstone in nonlinear Bayesian filtering. The first equation follows
directly from Bayes’ law, and the other two ones follow from the law of total probability, using the model
(2). The first equation corresponds to a measurement update,the second one is a normalization constant,
and the third one corresponds to a time update.

The posterior distribution is the primary output from a nonlinear filter, from which standard measures as
the minimum mean square (MMS) estimatex̂MMS

k and its covariancePMMS
k|k can be extracted and compared

to EKF and UKF outputs:

x̂MMS
k|k =

∫

xkp(xk|y1:k)dxk, (7a)

PMMS
k|k =

∫

(xk − x̂MMS
k)(xk − x̂MMS

k)Tp(xk|y1:k) dxk. (7b)

For a linear Gaussian model, the KF recursions in (4) also provide the solution (7) to this Bayesian problem.
However, for nonlinear or non-Gaussian models there is in general no finite dimensional representation of
the posterior distributions similar to(x̂MMS

k|k , PMMS
k|k). That is why numerical approximations are needed.

C. The Point-Mass Filter

Suppose now we have a deterministic grid{xi}N
i=1 of the state spaceRnx overN points, and that we

at time k based on observationsy1:k−1 have computed the relative probabilites (assuming distinct grid
points)

wi
k|k−1 ∝ P(xk = xi|y1:k−1), (8)

6

satisfying
∑N

i=1w
i
k|k−1 = 1 (note that this is a relative normalization with respect to the grid points). The

notationxi
k is introduced here to unify notation with the PF, and it meansthat the statexk at timek visits

the grid pointxi. The prediction density and the first two moments can then be approximated by

p̂(xk|y1:k−1) =

N∑

i=1

wi
k|k−1δ(xk − xi

k), (9a)

x̂k|k−1 = E(xk) =

N∑

i=1

wi
k|k−1x

i
k, (9b)

Pk|k−1 = COV(xk) =

N∑

i=1

wi
k|k−1(x

i
k − x̂k|k−1)(x

i
k − x̂k|k−1)

T . (9c)

Here,δ(x) denotes the Dirac impulse function. The Bayesian recursion(6) now gives

p̂(xk|y1:k) =
N∑

i=1

1

ck
p(yk|x

i
k)w

i
k|k−1

︸ ︷︷ ︸

wi
k|k

δ(xk − xi
k), (10a)

ck =
N∑

i=1

p(yk|x
i
k)w

i
k|k−1, (10b)

p̂(xk+1|y1:k) =
N∑

i=1

wi
k|kp(xk+1|x

i
k). (10c)

Note that the recursion starts with a discrete approximation (9a) and ends in a continuous distribution
(10c). Now, to close the recursion, the standard approach isto sample (10c) at the grid pointsxi, which
computationally can be seen as a multidimensional convolution,

wi
k+1|k = p(xi

k+1|y1:k) =

N∑

j=1

wj

k|kp(x
i
k+1|x

j
k), i = 1, 2, . . . , N. (11)

This is the principle in thepoint mass filter[9, 10], whose advantage is its simple implementation and
tuning (the engineer basically only has to consider the sizeand resolution of the grid). The curse of
dimensionality limits the application of PMF to small models (nx less than two or three) for two reasons:
the first one is that a grid is an inefficiently sparse representation in higher dimensions, and the second
one is that the multidimensional convolution becomes a realbottleneck with quadratic complexity inN .
Another practically important but difficult problem is to translate and change the resolution of the grid
adaptively.

III. T HE PARTICLE FILTER

A. Relation to the point mass filter

The particle filter (PF) has much in common with the point massfilter (PMF). Both algorithms
approximate the posterior distribution with a discrete density of the form (9a), and they are both based
on a direct application of (6) leading to the numerical recursion in (10). However, there are some major
differences:

• The deterministic gridxi in the PMF is replaced with a dynamic stochastic gridxi
k in the PF that

changes over time. The stochastic grid is a much more efficient representation of the state space than
a fixed or adaptive deterministic grid in most cases.

7

• The PF aims at estimating the whole trajectoryx1:k rather than the current statexk. That is, the PF
generates and evaluates a set{xi

1:k}
N
i=1 of N different trajectories. This affects (6c) as follows:

p(xi
1:k+1|y1:k) = p(xi

k+1|x
i
1:k, y1:k)

︸ ︷︷ ︸

p(xi
k+1|x

i
k
)

p(xi
1:k|y1:k)

︸ ︷︷ ︸

wi
k|k

(12)

= wi
k|kp(x

i
k+1|x

i
k). (13)

Comparing this to (10c) and (11), we note that the double sum leading to a quadratic complexity is
avoided by this trick. However, this quadratic complexity appears if one wants to recover the marginal
distributionp(xk|y1:k) from p(x1:k|y1:k), more on this in Section III-C.

• The new grid is in the PF obtained by sampling from (10c) rather than reusing the old grid as done in
the PMF. The original version of the PF [15] samples from (10c) as it stands by drawing one sample
each fromp(xk+1|xi

k) for i = 1, 2, . . . , N . More generally, the concept ofimportance sampling[37]
can be used. The idea is to introduce aproposal densityq(xk+1|xk, yk+1) which is easy to sample
from, and rewrite (6c) as

p(xk+1|y1:k) =

∫

Rnx

p(xk+1|xk)p(xk|y1:k) dxk

=

∫

Rnx

q(xk+1|xk, yk+1)
p(xk+1|xk)

q(xk+1|xk, yk+1)
p(xk|y1:k) dxk. (14)

The trick now is to generate a sample at random fromxi
k+1 ∼ q(xk+1|x

i
k, yk+1) for each particle, and

then adjust the posterior probability for each particle with the importance weight

p(x1:k+1|y1:k) =

N∑

i=1

p(xi
k+1|x

i
k)

q(xi
k+1|x

i
k, yk+1)

wi
k|k

︸ ︷︷ ︸

wi
k+1|k

δ(x1:k+1 − xi
1:k+1). (15)

As indicated, the proposal distributionq(xi
k+1|x

i
k, yk+1) depends on the last state in the particle

trajectory xi
1:k, but also the next measurementyk+1. The simplest choice of proposal is to use

the dynamic model itself,q(xi
k+1|x

i
k, yk+1) = p(xi

k+1|x
i
k), leading towi

k+1|k = wi
k|k. The choice

of proposal and its actual form are discussed more thoroughly in Section V.
• Resampling is a crucial step in the PF. Without resampling, the PF would break down to a set of

independent simulations yielding trajectoriesxi
1:k with relative probabilitieswi

k. Since there would
then be no feedback mechanism from the observations to control the simulations, they would quite
soon diverge. As a result, all relative weights would tend tozero except for one that tends to one.
This is calledsample depletion, or sample degeneracy, or sample impoverishment. Note that a relative
weight of one,wi

k|k ≈ 1 is not at all an indicator of how close a trajectory is to the true one since
this is only a relative weight. It merely says that one sequence in the set{xi

1:k}
N
i=1 is much more

likely than all of the other ones. Resampling introduces therequired information feedback from the
observations, so trajectories that perform well will survive the resampling. There are some degrees
of freedom in the choice ofresampling strategydiscussed in Section IV-A.

B. Algorithm

The PF algorithm is summarized in Algorithm 1. It can be seen as an algorithmic framework from
which particular versions of the PF can be defined later on. Itshould be noted that the most common
form of the algorithm combines the weight updates (16a,d) into one equation. Here, we want to stress
the relations to the fundamental Bayesian recursion by keeping the structure of a measurement update
(6a)–(10a)–(16a), normalization (6b)–(10b)–(16b), and time update (6c)–(10c)–(16c,d).

8

Algorithm 1 Particle Filter
Choose a proposal distributionq(xk+1|x1:k, yk+1), resampling strategy and the number of particlesN .
Initialization: Generatexi

1 ∼ px0, i = 1, . . . , N and letwi
1|0 = 1/N .

Iteration: For k = 1, 2,
1) Measurement update:For i = 1, 2, . . . , N ,

wi
k|k =

1

ck
wi

k|k−1p(yk|x
i
k), (16a)

where the normalization weight is given by

ck =
N∑

i=1

wi
k|k−1p(yk|x

i
k). (16b)

2) Estimation:The filtering density is approximated bŷp(x1:k|y1:k) =
∑N

i=1w
i
k|kδ(x1:k − xi

1:k) and the

mean (7a) is approximated bŷx1:k ≈
∑N

i=1w
i
k|kx

i
1:k

3) Resampling:Optionally at each time, takeN samples with replacement from the set{xi
1:k}

N
i=1 where

the probability to take samplei is wi
k|k and letwi

k|k = 1/N .
4) Time update:Generate predictions according to the proposal distribution

xi
k+1 ∼ q(xk+1|x

i
k, yk+1) (16c)

and compensate for the importance weight

wi
k+1|k = wi

k|k

p(xi
k+1|x

i
k)

q(xi
k+1|x

i
k, yk+1)

, (16d)

C. Prediction, Smoothing and Marginals

Algorithm 1 outputs an approximation of the trajectory posterior densityp(x1:k|y1:k). For a filtering
problem, the simplest engineering solution is to just extract the last statexi

k from the trajectoryxi
1:k and

use the particle approximation

p̂(xk|y1:k) =

N∑

i=1

wi
k|kδ(xk − xi

k). (17)

Technically, this is incorrect and one may overlook the depletion problem by using this approximation.
The problem is that in general all pathsxj

1:k−1 can lead to the statexi
k. Note that the marginal distribution

is functionally of the same form as (6c). The correct solution taking all paths leading toxi
k into account

leads similar to (11) to an importance weight

wi
k+1|k =

∑N

j=1w
j

k|kp(x
i
k+1|x

j
k)

q(xi
k+1|x

i
k, yk+1)

, (18)

that replaces the one in (16d). That is, the marginal particle filter can be implemented just as Algorithm
1 by replacing the time update of the weights with (18). Note that the complexity increases fromO(N)
in the PF toO(N2) in the marginal PF, due to the new importance weight. A methodwith O(N log(N))
complexity is suggested in [38].

The marginal particle filter has found very interesting applications in system identification, where a
gradient search for unknown parameters in the model is applied [39, 40]. The same parametric approach
has been suggested for SLAM in [41] and optimal trajectory planning in [42].

9

Though the PF appears to solve the smoothing problem for free, the inherent depletion problem of the
history complicates the task, since the number of survivingtrajectories with a time lag will quickly be
depleted. For fixed-lag smoothingp(xk−m:k|y1:k), one can compute the same kind of marginal distributions
as for the marginal particle filter leading to another compensation factor of the importance weight.
However, the complexity will then beO(Nm+1). Similar to the Kalman filter smoothing problem, the
suggested solution [43] is based on first running the particle filter in the usual way, and then apply a
backward sweep of a modified particle filter.

Prediction to getp(x1:k+m|y1:k) can be implemented by repeating the time update in Algorithm1 m
times.

D. Reading Advice

The reader may at this stage continue to Section IX to see MATLAB TM code for some illustrative toy
examples, or Section X to read about the result and experience in some applications, or proceed to the
subsequent sections that discuss the following issues:

• The tuning possibilities and different versions of the basic PF are discussed in Section IV.
• The choice of proposal distribution is crucial for performance, just as in any classical sampling

algorithm [37], and this is discussed in Section V.
• Performance in terms of convergence of the approximationp̂(x1:k|y1:k) → p(x1:k|y1:k) asN → ∞

and relation to fundamental performance bounds are discussed in Section VI.
• The particle filter is computationally quite complex, and some potential bottlenecks and possible

remedies are discussed in Section VII.

IV. TUNING

The number of particlesN is the most immediate design parameter in the PF. There are a few other
degrees of freedom discussed below. The overall goal is to avoid sample depletion, which means that only
a few particles, or even only one, contribute to the state estimate. The choice of proposal distribution is
the most intricate one, and it is discussed separately in Section V. How the resampling strategy affects
sample depletion is discussed in Section IV-A. The effective number of samples in Section IV-B is an
indicator of sample depletion in that it measures how efficiently the PF is utilizing its particles. It can
be used to design proposal distributions, depletion mitigation tricks, resampling algorithms and also to
choose the number of particles. It can also be used as an on-line control variable for when to resample.
Some dedicated tricks are discussed in Section IV-C.

A. Resampling

Without the resampling step, the basic particle filter wouldsuffer from sample depletion. This means
that after a while all particles but a few ones will have negligible weights. Resampling solves this problem,
but creates another one in that resampling inevitably destroys information and thus increases uncertainty
by the random sampling. It is therefore of interest to start the resampling process only when it is really
needed. The following options for when to resample are possible:

• The standard version of Algorithm 1 is termedSampling Importance Resampling(SIR), or bootstrap
PF, and is obtained by resampling each time.

• The alternative is to useimportance sampling, in which case resampling is performed only when
needed. This is calledSampling Importance Sampling(SIS). Usually, resampling is done when the
effective number of samples, as will be defined in the next section, becomes too small.

As an alternative, the resampling step can be replaced with asampling step from a distribution that is
fitted to the particles after both the time and measurement update. The Gaussian particle filter (GPF) in
[44] fits a Gaussian distribution to the particle cloud, after which a new set of particles is generated from
this distribution. The Gaussian sum particle filter (GSPF) in [45] uses a Gaussian sum instead.

10

B. Effective Number of Samples

An indicator of the degree of depletion is theeffective number of samples1, defined in terms of the
coefficient of variationcv [19, 46, 47] as

Neff =
N

1 + c2v(w
i
k|k)

=
N

1 +
Var(wi

k|k
)

(
E(wi

k|k
)
)2

=
N

1 +N2 Var(wi
k|k)

. (19a)

The effective number of samples is thus at its maximumNeff = N when all weights are equalwi
k|k = 1/N ,

and the lowest value it can attain isNeff = 1, which occurs whenwi
k|k = 1 with probability 1/N and

wi
k|k = 0 with probability (N − 1)/N .
A logical computable approximation ofNeff is provided by

N̂eff =
1

∑

i(w
i
k|k)

2
. (19b)

This approximation shares the property1 ≤ N̂eff ≤ N with the definition (19a). The upper bound̂Neff = N
is attained when all particles have the same weight, and the lower boundN̂eff = 1 when all the probability
mass is devoted to a single particle.

The resampling condition in the PF can now be defined asN̂eff < Nth. The threshold can for instance
be chosen aŝNth = 2N/3.

C. Tricks to Mitigate Sample Depletion

The choice of proposal distribution and resampling strategy are the two available instruments in theory
to avoid sample depletion problems. There are also some simple and more practicalad-hoc tricks that
can be tried as will be discussed below.

One important trick is to modify the noise models so the statenoise and/or the measurement noise
appear larger in the filter than they really are in the data generating process. This technique is called
jittering in [48], but a similar approach was introduced in [15] under the nameroughening. Increasing the
noise level in the state model (1a) increases the support of the sampled particles which partly mitigates
the depletion problem. Further, increasing the noise levelin the observation model (1b) implies that the
likelihood decays slower for particles that do not fit the observation, and the chance to resample these
increases. In [49], the depletion problem is handled by introducing an additional Markov Chain Monte
Carlo (MCMC) step to separate the samples.

In [15], the so-calledprior editing method is discussed. The estimation problem is delayed one time-
step, so that the likelihood can be evaluated at the next timestep. The idea is to reject particles with
sufficiently small likelihood values, since they are not likely to be resampled. The update step is repeated
until a feasible likelihood value is received. The roughening method could also be applied before the
update step is invoked. Theauxiliary particle filter [50] is a more formal way to sample in such a way
that only particles associated with large predictive likelihoods are considered, see Section V-F.

Another technique isregularization. The basic idea to is convolve each particle with a diffusionkernel
with a certain bandwidth before resampling. This will prevent multiple copies of a few particles. One
may for instance use a Gaussian kernel where the variance acts as the bandwidth. One problem in theory
with this approach is that this kernel will increase the variance of the posterior distribution.

1Note that the literature often defines the effective number of samples as N

1+Var(wi

k|k
)
, which is incorrect.

11

V. CHOICE OFPROPOSAL DISTRIBUTION

In this section, we focus on the choice of proposal distribution, which influences the depletion problem
a lot, and we will here outline available options with some comments on when they are suitable.

First, note that the most general proposal distribution hasthe formq(x1:k|y1:k). This means that the whole
trajectory should be sampled at each iteration, which is clearly not attractive in real-time applications.
Now, the general proposal can be factorized as

q(x1:k|y1:k) = q(xk|x1:k−1, y1:k)q(x1:k−1|y1:k). (20)

The most common approximation in applications is to reuse the pathx1:k−1 and only sample the new state
xk, so the proposalq(x1:k|y1:k) is replaced byq(xk|x1:k−1, y1:k). The approximate proposal suggests good
values ofxk only, not of the trajectoryx1:k. For filtering problems this is not an issue, but for smoothing
problems the second factor becomes important. Here, the idea of block sampling [51] is quite interesting.

Now, the proposalq(xk|x1:k−1, y1:k) can due to the Markov property of the model be written as

q(xk|x1:k−1, y1:k) = q(xk|xk−1, yk). (21)

The following sections discuss various approximations of this proposal, and in particular how the choice of
proposal depends on thesignal to noise ratio(SNR). For linear Gaussian models, the SNR is in loose term
defined as‖Q‖/‖R‖. That is, the SNR is high if the measurement noise is small compared to the signal
noise. Here, we define SNR as the ratio of the maximal value of the likelihood and prior, respectively,

SNR ∝
maxxk

p(yk|xk)

maxxk
p(xk|xk−1)

. (22)

For a linear Gaussian model, this givesSNR ∝
√

det(Q)/ det(R).
We will in this section use the weight update

wi
k|k ∝ wi

k−1|k−1

p(yk|xi
k)p(x

i
k|x

i
k−1)

q(xk|xi
k−1, yk)

, (23)

combining (16ad). The SNR thus indicates which factor in thenumerator that most likely changes the
weights the most.

Besides the options below that all relate to (21), there are many other more ad-hoc based options
described in literature. For instance one idea is to run an EKF or UKF in parallel, and use the posterior
Gaussian distribution from this filter as a proposal.

A. Optimal Sampling

The conditional distribution includes all information of the previous state and the current observation,
and should thus be the best proposal to sample from. This conditional PDF can be written as

q(xk|x
i
k−1, yk) = p(xk|x

i
k−1, yk) =

p(yk|xk)p(xk|x
i
k−1)

p(yk|xi
k−1)

. (24a)

This choice gives the proposal weight update

wi
k|k ∝ wi

k−1|k−1p(yk|x
i
k−1). (24b)

The point is that the weight will be the same whatever sample of xi
k is generated. Put in another way,

the variance of the weights is unaffected by the sampling. All other alternatives will add variance to the
weights and thus decrease the effective number of samples according to (19a). In the interpretation of
keeping the effective number of samples as large as possible, (24a) is theoptimal sampling.

The drawbacks are as follows:
• It is generally hard to sample from this proposal distribution.
• It is generally hard to compute the weight update needed for this proposal distribution, since it would

require to integrate over the whole state space,p(yk|xi
k−1) =

∫
p(yk|xk)p(xk|xi

k−1) dxk.
One important special case when these steps actually becomeexplicit is for a linear and Gaussian
measurement relation, which is the subject of Section V-E.

12

B. Prior Sampling

The standard choice in Algorithm 1 is to use the conditional prior of the state vector as proposal
distribution,

q(xk|x
i
k−1, yk) = p(xk|x

i
k−1), (25a)

wherep(xk|x
i
k−1) will be referred to as the prior ofxk for each trajectory. This yields

wi
k|k = wi

k|k−1p(yk|x
i
k) = wi

k−1|k−1p(yk|x
i
k). (25b)

This leads to the by far most common version of the PF (SIR) that was originally proposed in [15]. It
performs well when the SNR is small, which means that the state prediction provides more information
about the next state value than the likelihood function. Formedium or high SNR, it is more natural to
sample from the likelihood.

C. Likelihood Sampling

Consider first the factorization

p(xk|x
i
k−1, yk) = p(yk|x

i
k−1, xk)

p(xk|xi
k−1)

p(yk|xi
k−1)

= p(yk|xk)
p(xk|xi

k−1)

p(yk|xi
k−1)

. (26a)

If the likelihood p(yk|xk) is much more peaky than the prior and if it is integrable inxk [52], then

p(xk|x
i
k−1, yk) ∝ p(yk|xk). (26b)

That is, a suitable proposal for the high SNR case is based on ascaled likelihood function

q(xk|x
i
k−1, yk) ∝ p(yk|xk), (26c)

which yields

wi
k|k = wi

k−1|k−1p(x
i
k|x

i
k−1). (26d)

Sampling from the likelihood requires that the likelihood functionp(yk|xk) is integrable with respect to
xk [52]. This is not the case whennx > ny. The interpretation in this case is that for each value ofyk,
there is a infinite-dimensional manifold of possiblexk to sample from, each one equally likely.

D. Illustrations

A simple linear Gaussian model is used to illustrate the choice of proposal as a function of SNR. Figure
2 illustrates a high SNR case for a scalar model, where the information in the prior is negligible compared
to the peaky likelihood. This means that the optimal proposal essentially becomes (a scaled version of)
the likelihood.

Figure 3 illustrates a high SNR case for a two-dimensional state, where the observation dimension is
smaller than the state space. The optimal proposal can here be interpreted as the intersection of the prior
and likelihood.

13

Fig. 2. Illustration of (24a) for a scalar state and observation model. The state dynamics moves the particle toxk = 1 and adds uncertainty
with variance 1, after which an observationyk = 0.7 = xk + ek is taken. The posterior in this high SNR example is here essentially equal
to the likelihood.

Fig. 3. Illustration of (24a) for a two-state and scalar observation model. The state dynamics moves the particle toxk = (1, 1)T and
adds correlated noise, after which an observationyk = 0.7 = (1, 0)xk + ek is taken. The posterior in this high SNR example corresponds
roughly to the likelihood in one dimension (x1) and the prior in the other dimension (x2).

E. Optimal Sampling with Linearized Likelihood

The principles illustrated in Figures 2 and 3 can be used for alinearized model [43], similar to the
measurement update in the EKF (4ef). To simplify the notation somewhat, the process noise in (1a) is
assumed additivexk+1 = f(xk) + vk. Assuming that the measurement relation (1b) is linearizedas (3b)
when evaluating (24a), the optimal proposal can be approximated with

q(xk|x
i
k−1, yk) = N

(

f(xi
k−1) +Ki

k(yk − ŷi
k),

(

H i,T
k R†

kH
i +Q†

k−1

)†
)

, (27a)

14

where † denotes pseudo-inverse. The Kalman gain, linearized measurement model and measurement
prediction, respectively, are given by

Ki
k = Qk−1H

i,T
k

(

H i
kQk−1H

i,T
k +Rk

)−1

, (27b)

H i
k =

∂h(xk)

∂xk

∣
∣
∣
∣
xk=f(xi

k−1)

, (27c)

ŷi
k = h

(
f(xi

k−1)
)
. (27d)

The weights should thus be multiplied by the following likelihood in the measurement update,

p(yk|x
i
k−1) = N (yk − ŷi

k, H
i
kQk−1H

i,T
k +Rk). (27e)

The modifications of (27) can be motivated intuitively as follows. At timek−1, each particle corresponds
to a state estimate with no uncertainty. The EKF recursions (4) using this initial value gives

x̂k−1|k−1 ∼ N (xi
k−1, 0) ⇒ (28a)

x̂k|k−1 = f(xi
k−1), (28b)

Pk|k−1 = Qk−1, (28c)

Kk = Qk−1H
T
k

(
HkQk−1H

T
k +Rk

)−1
, (28d)

x̂k|k = x̂k|k−1 +Kk(yk − h(x̂k|k−1)), (28e)

Pk|k = Qk−1 −KkHkQk−1. (28f)

We denote this sampling strategy OPT-EKF. To compare it to the standard SIR algorithm, one can
interpret the difference in terms of the time update. The modification in Algorithm 1 assuming a Gaussian
distribution for both process and measurement noise, is to make the following substitution in the time
update

xi
k+1 = f(xi

k) + vi
k, (29a)

SIR : vi
k ∼ N (0, Qk), (29b)

OPT − EKF : vi
k ∈ N

(

Ki
k+1

(
yk+1 − h

(
f(xi

k)
))
,
(

H i,T
k+1R

†
k+1H

i
k+1 +Q†

k

)†
)

. (29c)

and measurement update

SIR : wi
k|k = wi

k−1|k−1N (yk − h(xi
k), Rk), (29d)

OPT − EKF : wi
k|k = wi

k−1|k−1N
(

yk − h
(
f(xi

k−1)
)
, H i

kQk−1H
i,T
k +Rk

)

, (29e)

respectively. For OPT-SIR, the SNR definition can be more precisely stated as

SNR ∝
‖H i

kQk−1H
i,T
k ‖

‖Rk‖
. (30)

We make the following observations and interpretations on some limiting cases of these algebraic expres-
sons:

• For small SNR,Ki
k ≈ 0 in (27b) and

(

H i,T
k R†

kH
i
k +Q†

k−1

)†

≈ Qk−1 in (29c), which shows that the
resampling (29c) in OPT-EKF proposal approaches (29b) in SIR as the SNR goes to zero. That is,
for low SNR the approximation approaches prior sampling in Section V-B.

• Conversely, for large SNR and assumingH i
k invertible (implicitly implying ny ≥ nx), then

(

H i,T
k R†

kH
i
k +Q†

k−1

)†

≈ H i,−1
k RkH

i,−T
k in (29c). Here, all information about the state is taken from

15

the measurement, and the model is not used. That is, for high SNR the approximation approaches
likelihood sampling in Section V-C.

• The pseudo-inverse† is used consequently in the notation for the proposal covariance
(

H i,T
k R†

kH
i
k +Q†

k−1

)†

instead of inverse to accomodate the following cases:

– Singular process noiseQk−1, which is the case in most dynamic models including integrated
noise.

– Singular measurement noiseRk, to allow ficticious measurements that model state constraints.
For instance, a known state constraint corresponds to infinite information in a subspace of the
state space, and the corresponding eigenvector of the measurement informationH i

kR
†
kH

i,T
k will

overwrite the prior informationQ†
k−1.

F. Auxiliary Sampling

The auxiliary sampling proposal resampling filter[50] uses an auxiliary index in the proposal distribu-
tion q(xk, i|y1:k). This leads to an algorithm that first generates a large number M (typically M = 10N)
of pairs{xj

k, i
j}M

j=1. From Bayes’ rule, we have

p(xk, i|y1:k) ∼ p(yk|xk)p(xk, i|y1:k−1) (31a)

= p(yk|xk)p(xk|i, y1:k−1)p(i|y1:k−1) (31b)

= p(yk|xk)p(xk|x
i
k−1)w

i
k−1|k−1. (31c)

This density is implicit inxk and thus not useful as an proposal density, since it requiresxk to be known.
The general idea is to find an approximation ofp(yk|xi

k−1) =
∫
p(yk|xk)p(xk|xi

k−1)dxk. A simple though
useful approximation is to replacexk with its estimate and thus letp(yk|xi

k−1) = p(yk|x̂i
k) above. This

leads to the proposal

q(xk, i|y1:k) = p(yk|x̂
i
k)p(xk|x

i
k−1)w

i
k−1|k−1. (31d)

Here, x̂i
k = E(xk|xi

k−1) can be the conditional mean, orx̂i
k ∼ p(xk|xi

k−1) a sample from the prior. The
new samples are drawn from the marginalized density

xj
k ∼ p(xk|y1:k) =

∑

i

p(xk, i|y1:k). (31e)

To evalute the proposal weight, first Bayes rule gives

q(xk, i|y1:k) = q(i|y1:k)q(xk|i, y1:k). (31f)

Here, another choice is needed. The latter proposal factor should be defined as

q(xk|i, y1:k) = p(xk|x
i
k−1). (31g)

Then, this factor cancels out when forming

q(i|y1:k) ∝ p(yk|x̂
i
k)w

i
k−1|k−1. (31h)

The new weights are thus given by

wi
k|k = wij

k−1|k−1

p(yk|x
j
k)p(x

j
k|x

ij

k−1)

q(xj
k, i

j |y1:k)
. (31i)

Note that this proposal distribution is a product of the prior and the likelihood. The likelihood has the
ability to punish samplesxi

k that gives a poor match to the most current observation, unlike SIR and SIS
where such samples are drawn and then immediately rejected.There is a link between the auxiliary PF
and the standard SIR as pointed out in [53], which is useful for understanding its theoretical properties.

16

VI. THEORETICAL PERFORMANCE

The key questions here are how well the PF filtering densityp̂(x1:k|y1:k) approximates the true posterior
p(x1:k|y1:k), and what the fundamental mean square error bounds for the true posterior are.

A. Convergence Issues

The convergence properties of the PF are well understood on atheoretical level, see the survey [54]
and the book [55]. The key question is how well a functiong(xk) of the state can be approximatedĝ(xk)
by the PF compared to the conditional expectation E(g(xk)), where

E(g(xk)) =

∫

g(xk)p(x1:k|y1:k) dx1:k, (32)

ĝ(xk) =

∫

g(xk)p̂(x1:k|y1:k) dx1:k =

N∑

i=1

wi
k|kg(x

i
k). (33)

In short, the following key results exist:
• Almost sure weak convergence

lim
N→∞

p̂(x1:k|y1:k) = p(x1:k|y1:k), (34)

in the sense thatlimN→∞ ĝ(xk) = E(g(xk)).
• Mean square error asymptotic convergence

E (ĝ(xk) − E(g(xk)))
2 ≤

pk‖g(xk)‖sup

N
, (35)

where the supremum norm ofg(xk) is used. As shown in [55] using the Feynman-Kac formula, under
certain regularity and mixing conditions, the constantpk = p < ∞ does not increase in time. The
main condition [54, 55] for this result is that the unnormalized weight function is bounded. Further,
most convergence results as surveyed in [56] are restrictedto bounded functions of the stateg(x)
such that|g(x)| < C for someC. The convergence result presented in [57] extends this to unbounded
functions, for instance estimation of the state itselfg(x) = x, where the proof requires the additional
assumption that the likelihood function is bounded from below by a constant.

In general, the constantpk grows polynomially in time, but does not necessarily dependon the dimension
of the state space, at least not explicitly. That is, in theory we can expect the same good performance for
high order state vectors. In practice, the performance degrades quickly with the state dimension due to
the curse of dimensionality. However, it scales much betterwith state dimension than the PMF, which is
one of the key reasons for the success of the particle filter.

B. Nonlinear Filtering Performance Bound

Besides the performance bound of a specific algorithm as discussed in the previous section, there are
more fundamental estimation bounds for nonlinear filteringthat depend only on the model and not on the
applied algorithm. The Cramér-Rao Lower Bound (CRLB)Pk|k provides such a performance bound for
any unbiased estimator̂xk|k,

COV(x̂k|k) ≥ PCRLB
k|k . (36)

The most useful version of CRLB is computed recursively by a Riccati equation which has the same
functional form as the Kalman filter in (4) evaluated at the true trajectoryxo

1:k,

PCRLB
k|k = PCRLB

k|k−1 − PCRLB
k|k−1 H(xo

k)
T (H(xo

k)P
CRLB
k|k−1 H

T (xo
k) +Rk)

−1H(xo
k)P

CRLB
k|k−1 , (37a)

PCRLB
k+1|k = F (xo

k)P
CRLB
k|k F T (xo

k) +G(xo
k)QkG(xo

k)
T . (37b)

17

The following remarks summarize the CRLB theory with respect to the PF:
• For a linear Gaussian model

xk+1 = Fkxk +Gkvk, vk ∼ N (0, Qk), (38a)

yk = Hkxk + ek, ek ∼ N (0, Rk), (38b)

the Kalman filter covariancePk|k coincides withPCRLB
k|k . That is, the CRLB bound is attainable in

the linear Gaussian case.
• In the linear non-Gaussian case, the covariancesQk, Rk andP0 are replaced with the inverse intrinsic

accuraciesI−1
vk

, I−1
ek

and I−1
x0

, respectively. Intrinsic accuracy is defined as the Fisher information
with respect to the location parameter, and the inverse intrinsic accuracy is always smaller than the
covariance. As a consequence of this, the CRLB is always smaller for non-Gaussian noise than for
Gaussian noise with the same covariance. See [58] for the details.

• The parametric CRLB is a function of the true state trajectory xo
1:k and can thus be computed only

in simulations or when ground truth is available from a reference system.
• The posterior CRLB is the parametric CRLB averaged over all possible trajectoriesPPostCRLB

k|k =

E
(
PParCRLB

k|k

)
. The expectation makes its computation quite complex in general.

• In the linear Gaussian case, the parametric and posterior bounds coincide.
• The covariance of the state estimate from the particle filteris bounded by the CRLB. The CRLB

theory also says that the particle filter estimate asymptotically in both the number of particles and
the information in the model (basically the signal to noise ratio) attains the CRLB bound.

Consult [59] for details on these issues.

VII. COMPLEXITY BOTTLENECKS

It is instructive and recommended to generate a profile report from an implementation of the particle
filter. Quite often, unexpected bottlenecks are discoveredthat can be improved with a little extra work.

A. Resampling

One real bottleneck is the resampling step. This crucial step has to be performed at least regularly when
Neff becomes too small.

The resampling can be efficiently implemented using a classical algorithm for samplingN ordered
independent identically distributed variables accordingto [60], commonly referred to as Ripley’s method:

function [x,w]=resample(x,w)
% Multinomial sampling with Ripley’s method
u = cumprod(rand(1,N).ˆ(1./[N:-1:1]));
u = fliplr(u);
wc = cumsum(w);
k=1;
for i=1:N

while(wc(k)<u(i))
k=k + 1;

end
ind(i)=k;

end
x=x(ind,:);
w=ones(1,N)./N;

The complexity of this algorithm is linear in the number of particlesN , which cannot be beaten if the
implementation is done at a sufficiently low level. This is for this reason the most frequently suggested
algorithm also in the particle filter literature. However, in engineering programming languages as MAT-
LAB TM , vectorized computations are often an order of magnitude faster than code based on “for” and
“while” loops.

18

Fig. 4. Computational complexity in a vectorized language of two different resampling algorithms: Ripley and sort.

The following code also implements the resampling needed inthe particle filter by completely avoiding
loops.

function [x,w]=resample(x,w)
% Multinomial sampling with sort
u = rand(N,1);
wc = cumsum(w);
wc=wc/wc(N);
[dum,ind1]=sort([u;wc]);
ind2=find(ind1<=N);
ind=ind2-(0:N-1)’;
x=x(ind,:);
w=ones(1,N)./N;

This implementation relies on the efficient implementationof sort. Note that sorting is of complexity
N log2(N) for low level implementations, so in theory it should not be an alternative to Ripley’s method
for sufficiently largeN . However, as Figure 4 illustrates, the sort algorithm is a factor of five faster for one
instance of a vector oriented programming language. Using interpreters with loop optimization reduces
this difference, but the sort algorithm is still an alternative.

Note that this code does not use the fact thatwc is already ordered. The sorting gets further simplified
if also the sequence of uniform numbers is ordered. This is one advantage of systematic or stratified
sampling [16], where the random number generation is replaced with one of the following lines:

% Stratified sampling
u=([0:N-1]’+(rand(N,1)))/N;
% Systematic sampling
u=([0:N-1]’+rand(1))/N;

Both the code based onsort and for, while are possible. Another advantage with these options is
that the state space is more systematically covered, so there will not be any large uncovered volumes just
by random.

B. Likelihood Evaluation and Iterated Measurement Updates

The likelihood evaluation can be a real bottleneck if not properly implemented. In case there are several
independent sensors, an iterated measurement update can beperformed. Denote theM sensor observations

19

yj
k, for j = 1, 2, . . . ,M . Then, independence directly gives

p(yk|xk) =

M∏

j=1

p(yj
k|xk). (39)

This trick is even simpler than the corresponding iterated measurement update in the Kalman filter.
However, this iterated update is not necessarily the most efficient implementation. One example is the

multivariate Gaussian distribution for independent measurements

yk,j = hj(x
i
k) + ek,j, ek,j ∼ N (0, Rk,j). (40)

The likelihood is given by

p(yk|x
i
k) ∝ e−0.5

∑M
j=1(yk,j−hj(x

i
k
))T R−1

k,j
(yk,j−hj(x

i
k
)) (41a)

=
M∏

j=1

e−0.5(yk,j−hj(xi
k
))T R−1

k,j
(yk,j−hj(xi

k
)). (41b)

The former equation with a sum should be used to avoid extensive calls to the exponential function. Even
here, it is not trivial how to vectorize the calculations in the sum for all particles in parallel.

C. Time Update Sampling

Generating random numbers from non-standard proposals maybe time consuming. Then, remembering
that dithering is often a necessary practical trick to tune the PF, one should investigate proposals including
dithering noise that are as simple as possible to sample from.

D. Function Evaluations

When all issues above have been dealt with, the only thing that remains is to evaluate the functions
f(x, v) and h(x). These functions are evaluated a huge number of times, so it is worthwile to spend
time to optimize their implementation. An interesting ideais to implement these in dedicated hardware
taylored to the application. This was done using analog hardware in [61] for an arctangens function, which
is common in sensor models for bearing measurements.

E. PF versus EKF

The computational steps are compared to the Kalman filter in Table I. The EKF requires only one
function evaluation off(x, v) and h(x) per time step, while the particle filter requiresN evaluations.
However, if the gradients are not available analytically inthe EKF, then at least anothernx evaluations of
both f(x, v) andh(x) are needed. These numbers increase when the step size of the numeric gradients
are adaptive. Further, if the process noise is not additive,even more numerical derivatives are needed.
However, the PF is still roughly a factorN/nx more complex.

The most time consuming step in the Kalman filter is the Riccati recursion of the matrixP . Here, either
the matrix multiplicationFP in the time update or the matrix inversion in the measurementupdate are
dominating for large enough models. Neither of these are needed in the particle filter. The time update
of the state is the same.

The complexity of a matrix inversion using state of the art algorithms [62] isO(n2.376
y). The matrix

inversion in the measurement update can be avoided by using the iterated measurement update. The
condition is that the covariance matrixRk is (block-) diagonal.

As a first order approximation for largenx, the Kalman filter isO(n3
x) from the matrix multiplication

FP , while the particle filter isO(Nn2
x) for a typical dynamic model where all elements off(x, v) depend

on all states, for instance the linear modelf(x, v) = Fx+v. Also from this perspective, the PF is a factor
N/nx computationally more demanding than the EKF.

20

TABLE I

COMPARISON OFEKF IN (4) AND SIR-PFIN (16): MAIN COMPUTATIONAL STEPS.

Algorithm Extended Kalman filter Particle filter

Time update F = ∂f(x,v)
∂x

, G = ∂f(x,v)
∂v

vi ∼ pv

x := f(x, 0) xi := f(xi, vi)
P := FPFT + GQGT

Measurement updateH = ∂h(x)
∂x

wi := wipe(y − h(xi))
K = PHT (HPHT + R)−1

x := x + K(y − h(x))
P := P − KHP

Estimation x̂ = x x̂ =
∑N

i=1 wixi

Resampling — xi ∼
∑N

j=1 wjδ(x − xj)

VIII. M ARGINALIZED PARTICLE FILTER THEORY

The main purpose of themarginalized particle filter(MPF) is to keep the state dimension small enough
for the PF to be feasible. The resulting filter is called the MPF or the Rao-Blackwellized particle filter,
and it has been known for quite some time under different names, see e.g., [49, 63–68].

The MPF utilizes possible linear Gaussian sub-structures in the model (1). The state vector is assumed
partitioned asxk = ((xn

k)T , (xl
k)

T)T , wherexl
k enters both the dynamic model and the observation model

linearly. We will a bit informally refer toxl
k as the linear state andxn

k as the nonlinear state, respectively.
MPF essentially representsxn

k with particles, and applies one Kalman filter per particle that provides
the conditional distribution forxl

k conditioned on the trajectoryxn
1:k of nonlinear states and the past

observations.

A. Model Structure

A rather general model, containing a conditionally linear Gaussian sub-structure is given by

xn
k+1 = fn

k (xn
k)+F n

k (xn
k)xl

k+G
n
k(xn

k)vn
k , (42a)

xl
k+1 = f l

k(x
n
k)+F l

k(x
n
k)xl

k +Gl
k(x

n
k)vl

k, (42b)

yk = hk(x
n
k)+Hk(x

n
k)xl

k+ek. (42c)

The state vector and Gaussian state noise are partitioned as

xk =

(
xn

k

xl
k

)

, vk =

(
vn

k

vl
k

)

∼ N (0, Qk), Qk =

(
Qn

k Qln
k

(Qln
k)k Ql

k

)

. (42d)

Furthermore,xl
0 is assumed Gaussian,xl

0 ∼ N (x̄0, P̄0). The density ofxn
0 can be arbitrary, but it is

assumed known. The underlying purpose with this model structure is that conditioned on the sequence
xn

1:k, (42) is linear inxl
k with Gaussian prior, process noise and measurement noise, respectively, so the

Kalman filter theory applies.

B. Algorithm Overview

The MPF relies on the following key factorization

p(xl
k, x

n
1:k|y1:k) = p(xl

k|x
n
1:k, y1:k)p(x

n
1:k|y1:k). (43)

These two factors decompose the nonlinear filtering task into two sub-problems:

21

TABLE II

SUMMARY OF THE INFORMATION STEPS INALGORITHM 2 FOR THE MARGINALIZED PFUTILIZING A LINEAR GAUSSIAN

SUB-STRUCTURE.

Prior p(xl
k, x

p
1:k|y1:k) = p(xl

k|x
p
1:k, y1:k)p(xp

1:k|y1:k)
1. PF TU p(xp

1:k|y1:k) ⇒ p(xp
1:k+1|y1:k)

2. KF TU p(xl
k|x

p
1:k, y1:k) ⇒ p(xl

k+1|x
p
1:k, y1:k)

3. KF dyn MU p(xl
k+1|x

p
1:k, y1:k) ⇒ p(xl

k+1|x
p
1:k+1, y1:k)

4. PF MU p(xp
1:k+1|y1:k) ⇒ p(xp

1:k+1|y1:k+1)
5. KF obs MU p(xl

k+1|x
p
1:k+1, y1:k) ⇒ p(xl

k+1|x
p
1:k+1, y1:k+1)

Posterior p(xl
k+1, x

p
1:k+1|y1:k+1) = p(xl

k+1|x
p
1:k+1, y1:k+1)p(xp

1:k+1|y1:k+1)

• A Kalman filter operating on the conditionally linear, Gaussian model (42) provides theexact
conditional posteriorp(xl

k|x
n
1:k, y1:k) = N

(
xl

k; x̂
l
k|k(x

n,i
1:k), P

l
k|k(x

n,i
1:k)

)
. Here, (42a) becomes an extra

measurement for the Kalman filter withxn
k+1 − fn

k (xn
k) acting as the observation.

• A particle filter for estimating the filtering density of the nonlinear states. This involves a nontrivial
marginalization step by integrating over the state space ofall xl

k using the law of total probability

p(xn
1:k+1|y1:k) = p(xn

1:k|y1:k)p(x
n
k+1|x

n
1:k, y1:k)

= p(xn
1:k|y1:k)

∫

p(xn
k+1|x

l
k, x

n
1:k, y1:k)p(x

l
k|x

n
1:k, y1:k)dx

l
k

= p(xn
1:k|y1:k)

∫

p(xn
k+1|x

l
k, x

n
1:k, y1:k)N

(
xl

k; x̂
l
k|k(x

n,i
1:k), P

l
k|k(x

n,i
1:k)

)
dxl

k. (44)

The intuitive interpretation of this result is that the linear state estimate acts as an extra state noise
in (42a) when performing the particle filter time update.

The time and measurement updates of KF and PF are interleaved, so the timing is important. The
information structure in the recursion is described in Algorithm 2. Table II summarizes the information

Algorithm 2 Marginalized Particle Filter
With reference to the standard particle filter in Algorithm 1and the Kalman filter, iterate the following
steps for each time step:

1) PF measurement update and resampling using (42c) wherexl
k is interpreted as measurement noise.

2) KF measurement update using (42c) for each particlexn,i
1:k.

3) PF time update using (42a) wherexl
k is intepreted as process noise.

4) KF time update using (42b) for each particlexn,i
1:k.

5) KF extra measurement update using (42a) for each particlexn,i
1:k.

steps in Algorithm 2. Note that the time index appears five times in the right hand side expansion of the
prior. The five steps increase eachk one at the time to finally form the posterior at timek + 1.

The posterior distribution for the nonlinear states is given by a discrete particle distribution as usual,
while the posterior for the linear states is given by a Gaussian mixture:

p(xn
1:k|y1:k) ≈

N∑

i=1

wi
k|kδ(x

n
1:k − xn,i

1:k), (45a)

p(xl
k|y1:k) ≈

N∑

i=1

wi
k|kN

(
xl

k; x̂
l
k|k(x

n,i
1:k), P

l
k|k(x

n,i
1:k)

)
. (45b)

For a complete derivation, see [67]. As demonstrated in [69], standard Kalman and particle filtering code
can be reused when implementing the MPF. The model (42) can befurther generalized by introducing an
additional discrete mode parameter, giving a larger familyof marginalized filters, see [68].

22

C. Complexity Issues

In general, each Kalman filter comes with its own Riccati equation. However, the Riccati equation is
the same if the following three conditions are satisfied:

Gn
k(xn

k) = Gn
k or F n

k (xn
k) = 0, (46a)

Gl
k(x

n
k) = Gl

k, (46b)

Hk(x
n
k) = Hk. (46c)

It is easy to verify that the Ricatti equations in this case only involves matrices that are the same for all
trajectoriesxn,i

1:k. This implies a significant complexity reduction.
One important special case of (42) in practice is a model withlinear state equations with a nonlinear

observation which is a function of a (small) part of the statevector,

xn
k+1 = F nn

k xn
k +F nl

k x
l
k+G

n
kv

n
k , (47a)

xl
k+1 = F ln

k x
n
k +F ll

k x
l
k +Gl

kv
l
k, (47b)

yk = hk(x
n
k) +ek. (47c)

For instance, all applications in Section X fall into this category. In this case, step 3 in Algorithm 2
disappears.

The MPF appears to add quite a lot of overhead computations. It turns out, however, that the MPF is
often more efficient. It may seem impossible to give any general conclusions, so application dependent
simulation studies have to be performed. Nevertheless, quite realistic predictions of the computational
complexity can be done with rather simple calculations, as pointed out in [70]. The result is that for
the case when (46) is satisfied, MPF should always be more efficient, otherwise the complexities are
comparable.

D. Variance Reduction

The MPF reduces the variance of the linear states which will be demonstrated below. Thelaw of total
variancesays that

COV (U) = COV (E(U |V)) + E (COV(U |V)) . (48)

Letting U = xl
k andV = xn

1:k gives the following decomposition of the variance of the PF:

COV(xl
k)

︸ ︷︷ ︸

PF

= COV
(
E(xl

k|x
n
1:k)

)
+ E

(
COV(xl

k|x
n
1:k)

)
(49a)

= COV
(
x̂l

k|k(x
n,i
1:k)

)

︸ ︷︷ ︸

MPF

+

N∑

i=1

wi
k Pk|k(x

n,i
1:k)

︸ ︷︷ ︸

KF

. (49b)

Here, we recognize(xl
k|x

n,i
1:k) as the Gaussian distribution, delivered by the KF, conditioned on the trajectory

xn,i
1:k. Now, the MPF computes the mean of each trajectory asx̂l

k|k(x
n,i
1:k) and the unconditional mean

estimator is simply the mean of these,

x̂l
k|k =

N∑

i=1

wi
kx̂

l
k|k(x

n,i
1:k), (50)

and its covariance follows from the first term in (49b). The first term in (49b) corresponds to thespread
of the meancontribution from the Gaussian mixture, and this is the onlyuncertainty in the MPF.

The variance decomposition shows that the covariance for the MPF is strictly smaller than the corre-
sponding covariance for the PF. This can also be seen as a result of Rao-Blackwell’s lemma, see, e.g.,

23

10
2

10
3

10
4

10
5

0

2

4

6

8

10

12

N

P
l

Covariance for linear states

MPF
PF
KF

Fig. 5. Schematic view of how the covariance of the linear part of the state vector depends on the number of particles for the PF and MPF,
respectively. The gain in MPF is given by the Kalman filter covariance.

[37], and the marginalization is commonly referred to as Rao-Blackwellization. This result says that the
improvement in the quality of the estimate is given by the term E

(
COV(xl

k|x
n
1:k)

)
. Note that when (46)

is satisfied, thenP i
k|k = Pk|k and thus

∑N

i=1w
i
kP

i
k|k = Pk|k. That is, the Kalman filter covariancePk|k is a

good indicator of how much that has been gained in using the MPF instead of the PF. As a practical rule
of thumb, the gain in MPF increases as the uncertainty in the linear state increases in the model. Further
discussions regarding the variance reduction property of the MPF are provided for instance in [49].

The variance reduction in the MPF can be used in two differentways:
• With the same number of particles, the variance in the estimates of the linear states can be decreased.
• With the same performance in terms of variance for the linearstates, the number of particles can be

decreased.
This is schematically illustrated in Figure 5, for the case when (46) is satisfied, implying that the same
covariance matrix can be used for all particles. The two alternatives above are illustrated for the case a
PF with 10000 particles is first applied, and then replaced by the MPF.

E. MPF Synonyms

The following names have been suggested for the filter in thissection:
• MPF as is motivated by the nontrivial marginalization step (44).
• Rao-Blackwellized particle filter, as motivated by the variance reduction in (49).
• Mixture Kalman filter, as motivated by the various mixture distributions that appear, for instance in

(45b).
• Another logical name would beseparable particle filterin parallel to the well established separable

nonlinear least squares problem. In fact, the special case of a static problem where only (42c) exists
falls into this class of problems. Here, the weighted least squares estimate ofxl

k is first computed
as a function ofxn

1:k, which is then backsubstituted into the model with its estimation covariance to
form a nonlinear least squares problem inxn

1:k only.

24

F. Illustrating Example

The aim here is to illustrate how the MPF works using the following nonlinear stochastic system.

xn
k+1 = xl

kx
n
k + vn

k , (51a)

xl
k+1 = xl

k + vl
k, (51b)

yk = 0.2(xn
k)2 + ek, (51c)

where the noise is assumed white and Gaussian according to

vk =

(
vn

k

vl
k

)

∼ N

((
0
0

)

,

(
0.25 0
0 10−4

))

, (51d)

ek ∼ N (0, 1). (51e)

The initial statex0 is given by

x0 ∼ N

((
0.1
0.99

)

,

(
16 0
0 10−3

))

. (51f)

This particular model was used in [71], where it illustratedgrid-based (point-mass) filters. Obviously, the
states can be estimated by applying the standard particle filter to the entire state vector. However, a better
solution is to exploit the conditionally linear, Gaussian sub-structure that is present in (51). The nonlinear
processxn

k is a first-order AR process, where the linear processxl
k is the time-varying parameter. The

linear, Gaussian sub-structure is used by the MPF and the resulting filtering density function at time
10, p(x10|y1:10) before the resampling step is shown in Figure 6 (for a particular realization). In this
example2000 particles were used, but only100 of them are plotted in Figure 6 in order to obtain a
clearer illustration of the result. The figure illustrates the fact that the MPF is a combination of the KF

Fig. 6. The estimated filter PDF for system (51) at time10, p(x10|y1:10) using the MPF. It is instructive to see that the linear statexl
10

is estimated by Gaussian densities (from the Kalman filter) and the position along the nonlinear statexn
10 is given by a particle (from the

particle filter).

and the PF. The density functions for the linear states are provided by the Kalman filters, which is evident
from the fact that the marginalsp(xl,i

k |y1:k) are given by Gaussian densities. Furthermore, the nonlinear
state estimates are provided by the PF. Hence, the linear states are given by a parametric estimator (KF),
whereas the nonlinear states are given by a nonparametric estimator (PF). In this context the MPF can be
viewed as a combination of a parametric and a nonparametric estimator.

25

IX. PARTICLE FILTER CODE EXAMPLES

This section gives concrete MATLAB TM -like code for a general SIR particle filter, and applies it to
a fully annotated simulation example. Further, object oriented implementations of nonlinear filters are
illustrated on a target tracking applications. The classesand examples are available in the Signal and
Systems Lab, see the author’s homepage for more information.

A. Terrain-Based Positioning

The following scalar state example suits three purposes. First, it enables intuitive graphical illustrations.
Second, it introduces the positioning applications in the next section. Third, it should be easy to implement
for interested readers for reproducing the example, and extending the code to other applications.

Consider the model

xk+1 = xk + uk + vk, (52a)

yk = h(xk) + ek, (52b)

where both the state and the measurement are scalar-valued.This model mimics a navigation problem
in one-dimension, whereuk is a measurable velocity,vk unmeasurable velocity disturbance, and the
observationyk measures the terrain altitude, which is known in the database h(x). An illustration from a
real application is found in Figure 16. Note that the terrainaltitude as a measurement relation is not one
to one, since a given terrain altitude is found at many different positions. However, the observed terrain
profile will after a short time be unique for the flown trajectory.

Figure 7 shows a trajectory, and one realization of the nonlinear function terrain profileh(x), generated
by the code below.

x=1:100; % Map grid
h=20+filter(1,[1 -1.8 0.81],randn(1,100)); % Terrain alt itude
N=15;
z=100+filter(1,[1 -1.8 0.81],randn(N,1)); % Measurement input
u=2* ones(N,1); % State input
x0=20+cumsum(u); % True position
y=z-interp1(x,h,x0); % Noisefree measurement
yn=y+1 * randn(N,1); % Noisy measurement
plot(x0,y,’o-b’,x,h,’g’,x0,z-y,’go’,’linewidth’,3)

The horizontal line indicates where the first measurement istaken. There are ten different intersections
between the terrain profile and this observation, where the grid point just before each intersection is marked
in the figure. This is clearly a problem where the posterior ismulti-modal after the first measurement
update.

The following code lines define the model (52) as an object structure:

m.f=inline(’x+u’,’x’,’u’);
m.h=inline(’z-interp1(x,h,xp)’,’xp’,’h’,’x’,’z’);
m.pv=ndist(0,5); m.pe=ndist(0,1);
m.p0=udist(10,90);

The PDF classesndist andudist with the methodsrand andpdf are assumed to be available. A
script that both implements a version of the PF and also animates all the partial results is given below:

Np=100; w=ones(Np,1)/Np;
xp=rand(m.p0,Np); % Initialization
for k=1:N;

yp=m.h(xp,h,x,z(k)); % Measurement pred.
w=w.* pdf(m.pe,repmat(yn(k,:),Np,1)-yp);% Likelihood
w=w/sum(w); % Normalization
subplot(3,1,1), stem(xp,Np * w/10)

26

Fig. 7. Aircraft altitudez(xk) (upper dark line) as a function of positionxk (dots on upper dark line) and nonlinear measurement relation
h(x) (lower gray line) for the model in (52). The computed terrainaltitudeh(x1) is also marked, and a circle is put in all grid points that
give the best match to this altitude.

xhat(k,:)=w(:)’ * xp; % Estimation
[xp,w]=resample(xp,w); % Resampling
subplot(3,1,2), stem(xp,Np * w)
v=rand(m.pv,Np); % Random process noise
xp=m.f(xp,u(k,:)’)+v; % State prediction
subplot(3,1,3), stem(xp,Np * w)

end

Code examples of the functionresample are given in Section VII-A. Figure 8 shows the posterior
density approximation at two time instants. Figure 8(a) shows first the unnormalized weights after the
measurement update, which with this uniform prior is just the likelihood functionp(y1|x0) = p(y1). Then
follows the particle distribution after resampling (wherewi = 1/N), and finally the particles after time
update (which is just a translation withu1).

Figure 8(b) illustrates the same thing after the 15’th measurement. The posterior is now more clustered
to a unimodal distribution. Figure 9 shows the position error as a function of time. The break point in
performance indicates when the multimodal posterior distribution becomes unimodal.

Fig. 8. First two subplots: Approximations ofp(xk|y1:k) before and after resampling, respectively. Last subplot: Approximations of
p(xk+1|y1:k).

27

Fig. 9. True and estimated state as a function of time.

B. Target Tracking

In an object oriented implementation, simulation studies can be performed quite efficiently. The fol-
lowing example compares different filters for a simple target tracking model,

xk+1 =

(
I2 TsI2
0 I2

)

xk +

(
T 2

s

2
I2

TsI2

)

vk, vk ∼ N (0, 1I2), x0 =

(
0
0

)

, (53a)

yk =
(
I2 0

)
xk + ek, ek ∼ N (0, 0.01I2), (53b)

The observation model is first linear to be able to compare to the Kalman filter that provides the optimal
estimate. The example makes use of two different objects:

• Signal object where the statex1:k and observationy1:k sequences are stored, with their associated
uncertainty (covariancesP x

k , P y
k or particle representation). Plot methods in this class canthen

automatically provide confidence bounds.
• Model objects for linear and nonlinear models, with methodsimplementing simulation and filtering

algorithms.
The purpose of the following example is to illustrate how little coding that is required with this object
oriented approach. First, the model is loaded from an extensive example database as a linear state space
model. It is then converted to the general nonlinear model structure, which does not make use of the fact
that the underlying model is linear.

mss=exlti(’cv2d’);
mnl=nl(mss);

Now, the following state trajectories are compared:
• The true state from the simulation.
• The Cramér-Rao lower bound (CRLB) computed from the nonlinear model.
• The Kalman filter (KF) estimate using the linear model.
• The extended Kalman filter (EKF) using the nonlinear model.
• The unscented Kalman filter (UKF) using the nonlinear model.
• The particle filter (PF) using the nonlinear model.

For all except the first one, a confidence ellipsoid indicatesthe position estimation uncertainty.

28

Fig. 10. Simulated trajectory using a constant velocity two-dimensional motion model with a position sensor, where theplots show the
CRLB (darkest) and estimates from KF, EKF, UKF and PF, respectively.

y=simulate(mss,10);
xhat1=kalman(mss,y);
xhat2=ekf(mnl,y);
xhat3=ukf(mnl,y);
xhat4=pf(mnl,y,’Np’,1000);
xcrlb=crlb(mnl,y);
xplot2(xcrlb,xhat4,xhat3,xhat2,xhat1,’conf’,90)

Figure 10 validates that all algorithms provide comparableestimates in accordance with the CRLB.
Now, consider the case of a radar sensor that provides good angle resolution but poor range. The

measurement relation in model (53b) is changed to

yk =

arctan

(

x
(2)
k

−θ(2)

x
(1)
k

−θ(1)

)

√
(
x

(1)
k − θ(1)

)2
+

(
x

(2)
k − θ(2)

)2

 + ek, ek ∼ N

(
0, diag(0.0001, 0.3)

)
(54)

Figure 11 compares EKF and PF with respect to the CRLB. The PF performs well, where the covariances
fitted to the particles are very similar to the CRLB. The EKF isslightly biased and too optimistic about
the uncertainty, which is a typical behavior when neglecting higher order terms in the nonlinearities.
However, the performance of all filters is comparable, and the nonlinear measurement relation does not
in itself motivate computer intensive algorithms in this case.

C. Growth Model

The following toy example was used in the original paper [15]:

xk+1 =
xk

2
+ 25

xk

1 + x2
k

+ 8 cos(k) + vk, vk ∼ N (0, 10), x0 ∼ N (5, 5), (55a)

yk =
x2

k

20
+ ek, ek ∼ N (0, 1). (55b)

It has since then been used many times in the particle filter literature, and it is often claimed to be a
growth model. It is included here just because it has turned into a benchmark problem. The simulation
code is

29

Fig. 11. Simulated trajectory using a constant velocity two-dimensional motion model with a radar sensor, where the plots show the CRLB
(darkest) and estimates from EKF (small ellipsoids) and PF,respectively.

Fig. 12. Simulated trajectory using the model (55), where the plots show the CRLB (darkest) and estimates from EKF, PF andUKF,
respectively. Table III summarizes the performance.

m=exnl(’pfex’);
z=simulate(m,30);
zcrlb=crlb(m,z);
zekf=ekf(m,z);
zukf=ukf(m,z);
zpf=pf(m,z);
xplot(zcrlb,zpf,zekf,zukf,’conf’,90,’view’,’cont’,’ conftype’,2)
[mean(zcrlb.Px) norm(z.x-zpf.x) norm(z.x-zekf.x) norm(z.x-zukf.x)];

The last two lines produce the result in Figure 12 and Table III, respectively. The conclusion from this
example is that PF performs much better than the UKF which in turn is much better than the EKF. Thus,
this example illustrates quite nicely the ranking of the different filters.

30

TABLE III

MEAN SQUARE ERROR PERFORMANCE OF THE ESTIMATES INFIGURE 12 FOR THE BENCHMARK PROBLEM IN(55).

CRLB PF UKF EKF
8 18 54 132

X. PARTICLE FILTER POSITIONING APPLICATIONS

This section is concerned with four positioning applications of underwater vessels, surface ships,
wheeled vehicles (cars), and aircraft, respectively. Though these applications are at first glance quite
different, almost the same particle filter can be used in all of them. In fact, successful applications of the
PF are described in literature which are all based on the samestate-space model and similar measurement
equations.

A. Model Framework

The positioning applications, as well as existing applications of fastSLAM, are all based on the model
[72]

xk = (Xk, Yk, ψk)
T , (56a)

uk = (Vk, ψ̇k)
T , (56b)

Xk+1 = Xk + TVk cos(ψk), (56c)

Yk+1 = Xk + TVk sin(ψk), (56d)

ψk+1 = ψk + T ψ̇k, (56e)

yk = h(xk) + ek. (56f)

Here,Xk, Yk denote the Cartesian position,ψk the course or heading,T is the sampling interval,Vk is
the speed anḋψk the yaw rate. The inertial signalsVk and ψ̇k are considered as inputs to the dynamic
model, and are given by on-board sensors. These are different in each of the four applications, and they
will be described in more detail in the subsequent sections.The measurement relation is based on a
distance measuring equipment (DME) and a geographical information system (GIS). Both the DME and
the GIS are different in the four applications, but the measurement principle is the same. By comparing
the measured distance to objects in the GIS, a likelihood foreach particle can be computed. It should
here be noted that neither an EKF, UKF nor KF bank is suited forsuch problems. The reason is that it
is typically not possible to linearize the database other than in a very small neighborhood.

In common for the applications is that they do not rely on satellite navigation systems, which are
assumed unavailable or to provide insufficient navigation integrity. First, the inertial inputs, DME and GIS
for the four applications are described. Conclusions concering the PF from these applications practice are
summarized in Section XII. Different ways to augment the state vector are described for each application
in Section XI. The point is that the dimension of the state vector has to be increased in order to account
for model errors and more complicated dynamics. This implies that the PF is simply not applicable, due
to the high dimensional state vector.

The outline follows a bottom–up approach, starting with underwater vessels below sea level and ending
with fighter aircraft in the air.

B. Underwater Positioning using a Topographic Map

The goal is to compute the position of an underwater (UW) vessel. A sonar is measuring the distance
d1 to the sea floor. The depth of the platform itselfd2 can be computed from pressure sensors, or from
a sonar directed up-wards. By adding these distances, the sea depth at the positionXk, Yk is measured.
This can be compared to the depth in a dedicated sea chart withdetailed topographical information, and

31

Fig. 13. The left plot is an illustration of an UW vessel measuring distanced1 to sea bottom, and absolute depthd2. The sumd = d1 + d2

is compared to a bottom map as illustrated with the contours in the plot to the right. The particle cloud illustrates a snapshot of the PF from
a known validation trajectory in a field trial, see [75].

the likelihood takes the combined effect of errors in the twosensors and the map into account, see [73].
Figure 13 provides an illustration.

The speedVk and yaw rateψ̇k in (56) are computed using simplified dynamic motion models based on
the propeller speed and the rudder angle. It is important to note that since the PF does not rely on pure
dead-reckoning, such models do not have to be very accurate,see [74] for one simple linear model. An
alternative is to use inertial measurement units (IMU) for measuring and computing speed and yaw rate.

Detailed seabed charts are so far proprietary military information, and most applications are also military.
As an example of civilian use, oil companies are starting to use unmanned UW vessels for exploring the
sea and oil platforms, and in this way building up their own maps.

C. Surface Positioning using a Sea Chart

The same principle as above can of course be used also for surface ships, which are constrained to
be on the sea level (d2 = 0). However, vectorized sea charts (for instance the S-57 standard) contain a
commercially available world-wide map.

The idea is to use the radar as DME and compare the detections with the shore profile, which is known
from the sea chart conditioned on the positionXk, Yk and courseψk (indeed the ship orientation, but
more on this later), see [73]. The likelihood function models the radar error, but must also take clutter
(false detections) and other ships into account.

The left hand part of Figure 14 illustrates the measurementsprovided by the radar, while the right hand
part of the same figure shows the radar detections from one complete revolution overlayed on the sea
chart. The inertial data can be computed from propeller speed and rudder angle using simplified dynamical
models as above.

American and European maritime authorities have recently published reports highlighting the need for
a backup and support system to satellite navigation to increase integrity. The reason is accidents and
incidents caused by technical problems with the satellite navigation system, and the risk of accidental or
deliberate jamming. The LORAN standard offers one such supporting technique based on triangulation to
radio beacons, see [78]. The PF solution here is a promising candidate, since it is in contrast to LORAN
not sensitive to jamming nor does it require any infrastructure.

D. Vehicle Positioning using a Road Map

The goal here is to position a car relative to a road map by comparing the driven trajectory to the
road network. The speedVk and yaw rateψ̇k in (56) are computed from the angular velocities of the
non-driven wheels on one axle, using rather simple geometrical relations. Dead-reckoning (56) provides
a profile that is to be fitted to the road network.

32

Fig. 14. The rotating radar returns detections of rangeR at body angleθ. The result of one radar revolution is conventionally displayed in
polar coordinates as illustrated. Comparing the(R, θ) detections to a sea chart as shown to the right, the position and course are estimated
by the PF. When correctly estimated, the radar overlay principle can be used for visual validation as also illustrated inthe sea chart. The PF
has to distinguish radar reflections from shore with clutterand other ships, see [76]. The latter can be used for conventional target tracking
algorithms, and collision avoidance algorithms, as also illustrated to the right, see [77].

Fig. 15. Left: Example of multimodal posterior representedby a number of distinct particle clouds from NIRA Dynamics navigation
system. This is caused by the regular road pattern and will beresolved after a sufficiently long sequence of turns. Right:PF in an embedded
navigation solution runs in real-time on a pocket PC with a serial interface to the vehicle CAN data bus, see [80].

The measurement relation is in its simplest form a binary likelihood which is zero for all positions
outside the roads, and a non-zero constant otherwise. In this case, the DME is basically the prior that the
vehicle is located on a road, and not a conventional physicalsensor. See [72, 79] for more details, and
Figure 15 for an illustration. More sophisticated applications use vibrations in wheel speeds and vehicle
body as a DME. When a rough surface is detected, this DME can increase the likelihood for being outside
the road. Likewise, if a forward-looking camera is present in the vehicle, this can be used to compute the
likelihood that the front view resembles a road, or if it is rather a non-mapped parking area or smaller
private road.

The system is suitable as a support to satellite navigation in urban environments, in parking garages
or tunnels or whenever satellite signals are likely to be obstructed. It is also a stand-alone solution to the
navigation problem. Road databases covering complete continents are available from two main vendors
(NavTech and TeleAtlas).

E. Aircraft Positioning using a Topographic Map

The principal approach here is quite similar to the underwater positioning application, and extends the
one-dimensional example in Section IX to two dimensions.

A high-end IMU is used in an inertial navigation system (INS)which dead-reckons the sensor data to
speedVk and yaw rateψ̇k in (56) with quite high accuracy. Still, absolute position support is needed to
prevent long-term drifts.

33

The DME is a wide-lobe down-ward looking radar that measuresthe distance to the ground. The
absolute altitude is computed using the INS and a supportingbarometric pressure sensor. Figure 16 shows
one example just before convergence to a unimodal filtering density.

Fig. 16. The left figure is an illustration of an aircraft measuring distanceh1 to ground. The on-board baro-altitude supported INS system
provides absolute altitude over sea levelh, and the differenceh2 = h − h1 is compared to a topographical map. The right plot shows a
snapshot of the PF particle cloud, just after the aircraft has left the sea in the upper left corner. There are three distinct modes, where the
one corresponding to the correct position dominates.

Commercial databases of topographic information are available on land (but not below sea level), with
a resolution of50–200 meters.

XI. M ARGINALIZED PARTICLE FILTER APPLICATIONS

This section continues the applications in Section X with extended motion models where the marginal-
ized particle filter (MPF) has been applied.

A. Underwater Positioning

Navigating an unmanned or manned UW vessel requires knowledge of the full three-dimensional
position and orientation, not only the projection in a horizontal plane. That is, at least six states are
needed. For control, also the velocity and angular velocities are needed, which directly implies at least a
twelve dimensional state vector. The PF cannot be assumed toperform well in such cases, and MPF is a
promising approach [73].

B. Surface Positioning

There are two bottlenecks in the surface positioning PF thatcan be mitigated using the MPF. Both
relates to the inertial measurements. First, the speed sensed by the log is the speed in water, not the speed
over ground. Hence, the local water current is a parameter toinclude in the state vector. Second, the radar
is strap-down and measures relative to body orientation, which is not the same as the courseψk. The
difference is the so called crab angle, which depends on currents and wind. This can also be included in
the state vector. Further, there is in our demonstrator system [76] an unknown and time-varying offset in
the reported radar angle, which has to be compensated for.

C. Vehicle Positioning

The bottleneck of the first generation of vehicle positioning PF is the assumption that the vehicle must
be located on a road. As previously hinted, one could use a small probability in the likelihood function
for being off-road, but there is no real benefit for this without an accurate dead-reckoning ability, so
re-occurrence on the road network can be predicted with highreliability.

The speed and yaw rate computed from the wheel angular velocity are limited by the insufficient
knowledge of wheel radii. However, the deviation between actual and real wheel radii on the two wheels
on one axle can be included in the state vector. Similarly, with a yaw rate sensor available (standard

34

Fig. 17. Navigation of a car in a parking garage. Results for MPF when relative wheel radii and gyro offset are added to the state vector.
The two trajectories correspond to the map-aided system andan EKF with the same state vector, but where GPS is used as position sensor.
Since the GPS gets several drop-outs before the parking garage, the dead-reckoning trajectory is incorrect, see [81].

component in electronic stability programs (ESP) and navigation systems), the yaw rate drift can be
included in the state vector. The point is that these parameters are accurately estimated when the vehicle
is on the road, and in the off-road mode, improved dead-reckoning can be achieved. Tests in demonstrator
vehicles have shown that the exit point from parking garagesand parking areas are well estimated, and
that shorter unmapped roads are not a problem, see Figure 17.

D. Aircraft Positioning

The primary role of the terrain based navigation (TERNAV) module is to support the INS with absolute
position information. The INS consists of an extended Kalman filter based on a state vector with over
20 motion states and sensor bias parameters. The current bottleneck is the interface between TERNAV
and INS. The reason is that TERNAV outputs a possibly multimodal position density, while the INS EKF
expects a Gaussian observation. The natural idea is to integrate both TERNAV and INS into one filter.
This gives a high-dimensional state vector, where one measurement (radar altitude) is very nonlinear. The
MPF handles this elegantly, by essentially keeping the EKF from the existing INS and using the PF only
for the radar altitude measurement.

The altitude radar gives a measurement outlier when the radar pulse is reflected in trees. Tests have
validated that a Gaussian mixture where one mode has a positive mean models the real measurement
error quite well. This Gaussian mixture distribution can beused in the likelihood computation, but such
a distribution is in this case logically modeled by a binary Markov parameter, which is one in positions
over forest and zero otherwise. In this way, the positive correlation between outliers is modeled, and a
prior from ground type information in the GIS can be incorporated. This example motivates the inclusion
of discrete states in the model framework. See [67, 68] for the details.

XII. SUMMARY

This section summarizes practical experience from the applications in Sections X and XI with respect
to the theorectical survey in Sections II and VIII.

A. Real-Time Issues

The PF has been applied to real data and implemented on hardware targeted for the application platforms.
The sampling rate has been chosen in the order1–2 Hz, and there is no problem to achieve real-time
performance in any of the applications. Some remarkable cases:

35

• The vehicle positioning PF was implemented on a PDA using15000 particles already in2001, see
[79].

• The aircraft positioning PF was implemented in ADA and shownto satisfy real-time performance on
the on-board computer in the Swedish fighter Gripen in the year 2000. Real-time performance was
reached, despite the facts that a very large number of particles were used on a rather old computer.

B. Sampling Rates

The DME can in all cases deliver measurements much faster than the chosen sampling rate. However,
faster sampling will introduce an unwanted correlation in the observations. This is due to the fact that
the databases are quantized, so the platform should make a significant move between two measurement
updates.

C. Implementation

Implementing and debugging the PF has not been a major issue.On the contrary, students and non-
experts have faced less problems with the PF than for similarprojects involving the EKF. In many cases,
they obtained deep intuition for including non-trivial butad-hocmodifications. There are today several
hardware solutions reported in literature, where the parallel structure of the PF algorithms can be utilized
efficiently. For instance, an FPGA implementation is reported in [82], and on a general purpose graphics
processing unit (GPGPU) in [83]. Analog hardware can further be used to speed up function evaluations
[61].

D. Dithering

Both the process noise and measurement noise distributionsneed some dithering (increased covariance).
Dithering the process noise is a well-known method to mitigate the sample depletion problem [15].
Dithering the measurement noise is a good way to mitigate theeffects of outliers and to robustify the
PF in general. One simple and still very effective method to mitigate sample depletion is to introduce
a lower bound on the likelihood. This lower bound was first introduced more or lessad hoc. However,
recently this algorithm modification has been justified morerigorously. In proving that the particle filter
converges for unbounded functions, like the statexk itself, it is sufficient to have a lower bound on the
likelihood, see [57] for details.

E. Number of Particles

The number of particles is chosen quite large to achieve goodtransient behaviour in the start up phase
and to increase robustness. However, it has been concluded that in the normal operational mode the number
of particles can be decreased substantially (typically a factor of ten). Figure 18 shows experimental results
for the terrain navigation application. The transient improves when going fromN = 1200 to N = 2500,
but using more particles give no noticable improvement after convergence.

A real-time implementation should be designed for the worstcase. However, using an adaptive sampling
intervalT and number of particlesN is one option. The idea is to use a longer sampling interval and more
particles initially, and when the PF has converged to a few distinct modes,T andN can be decreased in
such a way that the complexityN/T is constant.

F. Choosing the Proposal Density

The standard sampling importance resampling (SIR) PF worksfine for an initial design. However,
the maps contain rather detailed information about position, and can in the limit be considered as state
constraints. In such high signal-to-noise applications, the standard proposal density used in the SIR PF is
not particularly efficient. An alternative, that typicallyimproves the performance, is to use the information

36

Fig. 18. RMSE performance for aircraft terrain navigation as a function of the number of particles.

available in the next measurement already in the state prediction step. Note that the proposal in its most
general form includes the next observation. Consider for instance positioning based on road maps. In
standard SIR PF, the next positions are randomized around the predicted position according to the state
noise, which is required to obtain diversity. Almost all of these new particles are outside the road network,
and will not survive the resampling step. Obviously this is awaste of particles. By looking in the map
how the roads are located locally around the predicted position, a much more clever process noise can
be computed, and the particles explore the road network muchmore efficiently.

G. Divergence Monitoring

Divergence monitoring is fundamental for real-time implementations to achieve the required level of
integrity. After divergence, the particles do not reflect the true state distribution and there is no mechanism
that automatically stabilizes the particle filter. Hence, divergence monitoring has to be performed in parallel
with the actual PF code, and when divergence is detected, thePF is re-initialized.

One indicator of particle depletion is the effective numberof samplesNeff , used in the PF. This number
monitors the amount of particles that significantly contribute to the posterior, and it is computed from the
normalized weights. However, the un-normalized likelihoods are a more logical choice for monitoring.
Standard hypothesis tests can be applied for testing whether the particle predictions represent the likelihood
distribution.

Another approach is to use parallel particle filters interleaved in time. The requirement is that the
sensors are faster than the chosen sampling rate in the PF. The PF’s then use different time delays in the
sensor observations.

The re-initialization procedure issued when divergence isdetected is quite application dependent. The
general idea is to use a very diffuse prior, or to infer external information. For the vehicle positioning
application in [79], a cellular phone operator took part in the demonstrator, and cell information was used
as a new prior for the PF in case of occasional divergence.

H. Performance Bounds

For all four GPS-free applications the positioning performance is in the order of ten meter root mean
square error (RMSE), which is comparable to GPS performance. Further, the performance of the PF has
been shown to be close to the Cramér-Rao lower bound (CRLB) for a variety of examined trajectories.
In Figure 19 two examples of performance evaluations in terms of the RMSE are depicted. On the left
hand side the position RMSE and CRLB are shown for the UW application and on the right hand side
the horizontal position error is provided for the aircraft application.

37

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

Time [s]

R
M

S
E

 [m
]

PF
CRLB

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

Time [s]

R
M

S
E

 [m
]

PF
CRLB

Fig. 19. The position RMSE for the UW (left) and surface (right) applications respectively, compared to the CRLB.

I. Particle Filter in Embedded Systems

The primary application is to output position information to the operator. However, in all cases there
have been decision and control applications built on the position information, which indicates that the PF
is a powerful software component in embedded systems:

• UW positioning: Here, the entire mission relies on the position, so path planning and trajectory
control are based on the output from the PF. Note that there ishardly any alternative below sea level,
where no satellites are reachable, and deploying infrastructure (sonar buoys) is quite expensive.

• Surface positioning: Differentiating radar detections from shore, clutter and other ships is an essential
association task in the PF. It is a natural extension to integrate a collision avoidance system in such
an application, as illustrated in a sea chart snapshot in Figure 14.

• Vehicle positioning: The PF position was also used in a complete voice controlled navigation system
with dynamic route optimization, see Figure 15.

• Aircraft navigation: The position from the PF is primarily used as a supporting sensor in the INS,
whose position is a refined version of the PF output.

J. Marginalized Particle Filtering

Finally, the marginalized particle filter offers a scalableextension of the PF in all applications surveyed
here and many others. MPF is applicable for instance in the following localization, navigation and tracking
problems:

• Three-dimensional position spaces.
• Motion models with velocity and acceleration states.
• Augmenting the state vector with unknown nuisance parameters as sensor offsets and drifts.

State of the art is the FastSLAM algorithm, see [24], that applies MPF to the Simultaneous Localization
and Mapping (SLAM) problem. FastSLAM has been applied to applications where thousands of two-
dimensional landmark features are marginalized out from a three dimensional motion state. Further, in
[84] a double marginalization process was employed to handle hundreds of landmark features and a 24-
dimensional state vector for three-dimensional navigation of an unmanned aerial vehicle in an unknown
environment.

ACKNOWLEDGEMENT

This survey is the result of various research projects over the last ten years, and the author is greatly
indebted to the following persons who have completed a PhD with focus on particle filtering: Niclas
Bergman, Rickard Karlsson, Thomas Schön, Gustaf Hendeby,David Törnqvist and Per-Johan Nordlund.
There are also numerous current graduate students and post-docs, and more than 50 master students who
have contributed indirectly. This survey is very much influenced by their work.

38

REFERENCES

[1] R. Kalman, “A new approach to linear filtering and prediction problems,”J Basic Engr. Trans. ASME Series D, vol. 82, pp. 35–45,
1960.

[2] T. Kailath, A. Sayed, and B. Hassibi,Linear Estimation, ser. Information and System Sciences. Upper Saddle River,New Jersey:
Prentice-Hall, 2000.

[3] L. A. M. G. L. Smith, S. F. Schmidt, “Application of statistical filter theory to the optimal estimation of position andvelocity on board
a circumlunar vehicle,” NASA, Tech. Rep. TR R-135, 1962.

[4] S. Schmidt, “Application of state-space methods to navigation problems,”Advances in Control Systems, pp. 293–340, 1966.
[5] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach for filtering nonlinear systems,” pp. 1628–1632.
[6] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” vol. 92, no. 3, pp. 401–422, Mar. 2004.
[7] M. Norgaard, N. Poulsen, and O. Ravn, “New developments in state estimation of nonlinear systems,” vol. 36, pp. 1627–1638, 2000.
[8] I. Arasaratnam, S. Haykin, and R. Elliot, “Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature,” Proceedings

of IEEE, vol. 95, p. 953, 2007.
[9] D. Alspach and H. Sorenson, “Nonlinear Bayesian estimation using Gaussian sum approximation,”IEEE Transactions on Automatic

Control, vol. 17, pp. 439–448, 1972.
[10] S. Kramer and H. Sorenson, “Recursive Bayesian estimation using piece-wise constant approximations,”Automatica, vol. 24, pp.

789–801, 1988.
[11] J. Hammersley and K. Morton, “Poor man’s Monte Carlo,”Journal of the Royal Statistical Society, Series B, vol. 16, p. 23, 1954.
[12] M. Rosenbluth and A. Rosenbluth, “Monte Carlo calculation of the average extension of molecular chains,”Journal of Chemical

Physics, vol. 23, p. 590, 1956.
[13] H. Akashi and H. Kumamoto, “Random sampling approach tostate estimation in switching environment,”Automation, vol. 13, p. 429,

1977.
[14] J. Handshin, “Monte Carlo techniques for prediction and filtering of nonlinear stochastic processes,” vol. 6, p. 555, 1970.
[15] N. Gordon, D. Salmond, and A. Smith, “A novel approach tononlinear/non-Gaussian Bayesian state estimation,” inIEE Proceedings

on Radar and Signal Processing, vol. 140, 1993, pp. 107–113.
[16] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian nonlinear state space models,”Journal of Computational and Graphical

Statistics, vol. 5, no. 1, pp. 1–25, 1996.
[17] M. Isard and A. Blake, “Condensation - conditional density propagation for visual tracking,”International Journal of Computer Vision,

vol. 29, no. 1, pp. 5–28, 1998.
[18] A. Doucet, N. de Freitas, and N. Gordon, Eds.,Sequential Monte Carlo Methods in Practice. Springer Verlag, 2001.
[19] J. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic systems,”Journal of the American Statistical Association, vol. 93,

1998.
[20] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian

tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188, 2002.
[21] P. Djuric, J. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M.Bugallo, and J. Miguez, “Particle filtering,”IEEE Signal Processing Magazine,

vol. 20, p. 19, 2003.
[22] O. Cappé, S. Godsill, and E. Moulines, “An overview of existing methods and recent advances in sequential Monte Carlo,” IEEE

Proceedings, vol. 95, p. 899, 2007.
[23] B. Ristic, S. Arulampalam, and N. Gordon,Beyond the Kalman filter: Particle filters for tracking applications. London: Artech House,

2004.
[24] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM a factored solution to the simultaneous localization and mapping

problem,” in Proceedings of the AAAI National Conference on Artificial Intelligence, Edmonton, Canada, 2002.
[25] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping (SLAM): Part I,”IEEE Robotics & Automation Magazine,

vol. 13, no. 2, pp. 99–110, June 2006.
[26] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (SLAM): Part II,”IEEE Robotics & Automation Magazine,

vol. 13, no. 3, pp. 108–117, Sept. 2006.
[27] S. Thrun, W. Burgard, and D. Fox,Probabilistic Robotics. MIT Press, 2005.
[28] Y. Rathi, N. Vaswani, A. Tannenbaum, and A. Yezzi, “Tracking deforming objects using particle filtering for geomet ric active contours,”

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 8, pp. 1470–1475, 2007.
[29] Y. Rathi, N. Vaswani, and A. Tannenbaum, “A generic framework for tracking using particle filter with dynamic shape prior,” IEEE

Transactions on Image Processing, vol. 16, no. 5, pp. 1370–1382, 2007.
[30] W.-L. Lu, K. Okuma, and J. Little, “Tracking and recognizing actions of multiple hockey players using the boosted particle filter,”

Image and Vision Computing, vol. 27, pp. 189–205, 2009.
[31] V. Cevher, A. Sankaranarayanan, J. McClellan, and R. Chellappa, “Target tracking using a joint acoustic video system,” IEEE

Transactions on Multimedia, vol. 9, no. 4, pp. 715–727, 2007.
[32] Y. Bar-Shalom and T. Fortmann,Tracking and Data Association, ser. Mathematics in Science and Engineering. Academic Press,

1988, vol. 179.
[33] F. Gustafsson and G. Hendeby, “On nonlinear transformations of stochastic variables and its application to nonlinear filtering,” in

Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Las Vegas, NV, USA, 2008.
[34] F. Gustafsson,Adaptive filtering and change detection. John Wiley & Sons, Ltd, 2001.
[35] A. Jazwinsky,Stochastic Process and Filtering Theory, ser. Mathematics in Science and Engineering. New York: Academic Press,

1970, vol. 64.
[36] H. Van Trees,Detection, Estimation and Modulation Theory. New York: Wiley, 1971.
[37] C. P. Robert and G. Casella,Monte Carlo Statistical Methods, ser. Springer texts in statistics. New York: Springer, 1999.
[38] M. Klaas, “Toward practicaln2 Monte Carlo: The marginal particle filter,”Uncertainty in Artificial Intelligence, 2005.

39

[39] G. Poyiadjis, A. Doucet, and S. Singh, “Maximum likelihood parameter estimation in general state-space models using particle methods,”
in Proceedings of Joint Statistical Meeting, Minneapolis, Minnesota, 2005.

[40] ——, “Maximum likelihood parameter estimation using particle methods,” inIEEE Conference on Acoustics, Speech and Signal
Processing, 2006.

[41] R. Martinez-Cantin, N. de Freitas, and J. Castellanos,“Analysis of particle methods for simultaneous robot localization and mapping
and a new algorithm: Marginal-slam,” inProceedings of IEEE International Conference on Robotics and Automation, Roma, Italy,
2007.

[42] S. Sing, N. Kantas, B. Vo, A. Doucet, and R. Evans, “Simulation-based optimal sensor scheduling with application toobserver trajectory
planning,” vol. 43, pp. 817–830, 2007.

[43] A. Doucet, S. Godsill, and C. Andrieu, “On sequential simulation-based methods for Bayesian filtering,”Statistics and Computing,
vol. 10, no. 3, pp. 197–208, 2000.

[44] J. Kotecha and P. Djuric, “Gaussian particle filtering,” IEEE Transactions on Signal Processing, vol. 51, p. 2592, 2003.
[45] ——, “Gaussian sum particle filtering,”IEEE Transactions on Signal Processing, vol. 51, p. 2602, 2003.
[46] A. Kong, J. S. Liu, and W. H. Wong, “Sequential imputations and Bayesian missing data problems,”J. Amer. Stat. Assoc., vol. 89, no.

425, pp. 278–288, 1994.
[47] J. Liu, “Metropolized independent sampling with comparison to rejection ampling and importance sampling,”Statistics and Computing,

vol. 6, pp. 113–119, 1996.
[48] P. Fearnhead, “Sequential Monte Carlo methods in filtertheory,” Ph.D. dissertation, University of Oxford, 1998.
[49] A. Doucet, N. Gordon, and V. Krishnamurthy, “Particle filters for state estimation of jump Markov linear systems,”IEEE Transactions

on Signal Processing, vol. 49, no. 3, pp. 613–624, 2001.
[50] M. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters,”Journal of the American Statistical Association, vol. 94,

no. 446, pp. 590–599, June 1999.
[51] A. Doucet, M. Briers, and S. Sénécal, “Efficient blocksampling strategies for sequential Monte Carlo methods,”Journal of

Computational and Graphical Statistics, vol. 15, no. 3, pp. 1–19, 2006.
[52] S. Thrun, D. Fox, F. Dellaert, and W. Burgard, “Particlefilters for mobile robot localization,” inSequential Monte Carlo Methods in

Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds. Springer-Verlag, 2001.
[53] A. Johansen and A. Doucet, “A note on auxiliary particlefilters,” Statistics & Probability Letters, vol. 78, no. 12, pp. 1498–1504,

2008.
[54] D. Crisan and A. Doucet, “Convergence of sequential Monte Carlo methods,” Signal Processing Group, Department of Engineering,

University of Cambridge, Tech. Rep. CUED/F-INFENG/TR381,2000.
[55] P. D. Moral,Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer, 2004.
[56] D. Crisan and A. Doucet, “A survey of convergence results on particle filtering methods for practitioners,”IEEE Transactions on Signal

Processing, vol. 50, no. 3, pp. 736–746, 2002.
[57] X. Hu, T. Schön, and L. Ljung, “A basic convergence result for particle filtering,” IEEE Transactions on Signal Processing, vol. 56,

no. 4, pp. 1337–1348, Apr. 2008.
[58] G. Hendeby, “Performance and implementation aspects of nonlinear filtering,” Dissertation No. 1161, Linköping University, Sweden,

2008.
[59] A. D. N. Bergman and N. Gordon, “Optimal estimation and Cramer-Rao bounds for partial non-Gaussian state-space model,” Ann.

Inst. Stat. Math, vol. 52, no. 1, pp. 97–112, 2001.
[60] B. Ripley, Stochastic Simulation. John Wiley, 1988.
[61] R. Velmurugan, S. Subramanian, V. Cevher, D. Abramson,K. Odame, J. Gray, H.-J. Lo, M. McClellan, and D. Anderson, “On low-power

analog implementation of particle filters for target tracking,” in European Signal Processing Conf. EUSIPCO, 2006.
[62] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,”Journal of Symbolic Computation, vol. 9, pp.

251–280, 1990.
[63] A. Doucet, S. J. Godsill, and C. Andrieu, “On sequentialMonte Carlo sampling methods for Bayesian filtering,”Statistics and

Computing, vol. 10, no. 3, pp. 197–208, 2000.
[64] G. Casella and C. P. Robert, “Rao-Blackwellisation of sampling schemes,”Biometrika, vol. 83, no. 1, pp. 81–94, 1996.
[65] R. Chen and J. S. Liu, “Mixture Kalman filters,”Journal of the Royal Statistical Society, vol. 62, no. 3, pp. 493–508, 2000.
[66] C. Andrieu and A. Doucet, “Particle filtering for partially observed Gaussian state space models,”Journal of the Royal Statistical

Society, vol. 64, no. 4, pp. 827–836, 2002.
[67] T. Schön, F. Gustafsson, and P. Nordlund, “Marginalized particle filters for nonlinear state-space models,”IEEE Transactions on Signal

Processing, vol. 53, pp. 2279–2289, 2005.
[68] P.-J. Nordlund and F. Gustafsson, “Marginalized particle filter for accurate and reliable terrain-aided navigation,” IEEE Transactions

on Aerospace and Electronic Systems, 2008.
[69] G. Hendeby, R. Karlsson, and F. Gustafsson, “A new formulation of the Rao-Blackwellized particle filter,” inProceedings of IEEE

Workshop on Statistical Signal Processing, Madison, WI, USA, Aug. 2007.
[70] R. Karlsson, T. Schö, and F. Gustafsson, “Complexity analysis of the marginalized particle filter,”IEEE Transactions on Signal

Processing, vol. 53, pp. 4408–4411, 2005.
[71] M. Šimandl, J. Královec, and Söderström, “Advanced point-mass method for nonlinear state estimation,”Automatica, vol. 42, no. 7,

pp. 1133–1145, July 2006.
[72] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell,J. Jansson, R. Karlsson, and P.-J. Nordlund, “Particle filters for positioning,

navigation and tracking,”IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 425–437, February 2002.
[73] R. Karlsson and F. Gustafsson, “Bayesian surface and underwater navigation,”IEEE Transactions on Signal Processing, vol. 54, no. 11,

pp. 4204–4213, Nov. 2006.

40

[74] K. Fauske, F. Gustafsson, and O.Herenaes, “Estimationof AUV dynamics for sensor fusion,” inFusion 2007, Quebec, Canada, July
2007.

[75] T. Karlsson, “Terrain aided underwater navigation using Bayesian statistics,” Dept of Elec. Eng. Linköping University, S-581 83
Linköping, Sweden, Master Thesis LiTH-ISY-EX-3292, 2002.

[76] M. Dahlin and S. Mahl, “Radar distance positioning system – with a particle filter approach,” Master’s thesis, Dept of Elec. Eng.
Linköping University, LiTH-ISY-EX-3998.

[77] A. Rönnebjerg, “A tracking and collision warning system for maritime applications,” Dept of Elec. Eng. Linköping University, S-581
83 Linköping, Sweden, Master Thesis LiTH-ISY-EX-3709, 2005, in Swedish.

[78] S. Lo, B. Peterson, and P. Enge, “Loran data modulation:a primer (AESS Tutorial IV),”IEEE Aerospace and Electronic Systems
Magazine, vol. 22, pp. 31–51, 2007.

[79] U. Forssell, P. Hall, S. Ahlqvist, and F. Gustafsson, “Novel map-aided positioning system,” inProc. of FISITA, no. F02-1131, Helsinki,
2002.

[80] P. Hall, “A Bayesian approach to map-aided vehicle positioning,” Dept of Elec. Eng. Linköping University, S-581 83 Linköping,
Sweden, Master Thesis LiTH-ISY-EX-3104, 2001, in Swedish.

[81] J. Kronander, “Robust vehicle positioning: Integration of GPS and motion sensors,” Dept of Elec. Eng. Linköping University, S-581
83 Linköping, Sweden, Master Thesis LiTH-ISY-EX-3578, 2003.

[82] A. Athalye, “Design and implementation of reconfigurable hardware for real-time particle filtering,” Ph.D. dissertation, Stody Brook
University, 2007.

[83] G. Hendeby, J. D. Hol, R. Karlsson, and F. Gustafsson, “Agraphics processing unit implementation of the particle filter,” in European
Signal Processing Conference (EUSIPCO), Poznań, Poland, Sept. 2007.

[84] R. Karlsson, T. Schön, D. Törnqvist, G. Conte, and F. Gustafsson, “Utilizing model structure for efficient simultaneous localization
and mapping for a UAV application,” inIEEE Aerospace Conference, Big Sky, Montana, 2008.

