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1.

(a)

(b)

Calculate exp(.Jt), where .J is an arbitrary Jordan block of dimen-
sion n. (3p)

In the proof of Theorem 14.8 Rugh uses the result that for any
square matrix A and with a,, = || 4| it holds that A+ AT + 2a,, I
is a positive semidefinite matrix. Prove this result. (3p)

Consider the linear differential equation
z(t) = Az(t) + Bu(t)
y(t) = Cu(t)
which is controllable. Let it be controlled with an observer-based
dynamic output feedback
Z(t) = Az(t) + Bu(t) + H [y(t) — Ci(t)]
u(t) = Kz(t) + r(t)

Show that the closed loop state equation is not controllable. What
is the uncontrollable subspace? (3p)

2. Consider the problem of minimizing

J = 3 /tol (2" ()Qz(t) + v (t)Ru(t)] dt

subject to

#(t) = At)z(t) + Blt)ult), x(t) = 2o

over u, where it is assumed that Q = Q7 and R = RT > 0. A necessary
condition for an optimal u is that it satisfies

At) = —AT(HAE) — Qx(t), A(ty) =0
u(t) = —R™'BT (t)\(t)

(a) Show that for any optimal u it holds that

(21-22 ). -l

Denote the transition matrix of this linear differential equation by
®(t,7) and partition it as

_ | Pu(tT) Pua(t,7)
O(t, ) = [%1(15, 7) Doyt 7)]

where the partitioning is comformable with the partitioning in
the differential equation. Assume that ®q;(¢,¢;) is invertible for
all t € [t,t1] and show that

A(t) = @or(t, 1)@y (¢, 1) ()

for solutions of the above differential equation. (3p)
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(b) Let S(t) = ®yy(t,t1)®P,; (¢, 1) and show that S(t) satisfies
S(t) + S(t)A(t) + AT(1)S(t) — St)B(t)R BT (1)S(t) + Q =0
with S(t;) = 0, and that S(t) = ST (¢). (3p)

(c) Show that u(t) = —R*BT(t)S(t)z(t) is the solution to the above
optimization problem. (Hints: Develop an expression for the
derivative of 7' (¢)S(¢t)z(t) with respect to ¢ and use it to rewrite

the loss function .J. Then express an arbitrary u(t) as u(t) =
—R™'BT(t)S(t)x(t) + @(t) and show that u(t) = 0.) (4p)

3. Consider a flexible servo with two tachometers and two motors as in

Exercise 6.9. Let
0w = [710)

(a) After Laplace transformation the system can be described by
(Js* + Ds + K)O(s) = MU(s)

where U(s) and O(s) are the Laplace transforms of u and 6, re-
spectively. Determine the matrices J, D, K and M. (2p)

(b) Calculate the Smith form of the polynomial matrix in (a). (3p)

4. Consider the generalized eigenvalue problem

AE+ F)r=0
where 0 —I 0 0 A B
E = [AT 0 0]; F = [—I 1 Qlj
LBT 0 OJ [0 T QQJ

and where @, = QT, Q2 = Q¥, and A is n x n and B is n x m.

(a) Show that if A = Ay # 0 is an eigenvalue, then so is A = 1/\,.
(2p)

(b) Show that if A = 0 is an eigenvalue, then so is A = co. (2p)

(c) Assume that (A, B) is controllable. Show that there are m infinite
eigenvalues with linearly independent eigenvectors. (3p)

5. Consider the discrete-time linear system

z(k+1) = Az (k) + Bu(k)
y(k) = Ca(k)

which is assumed to be exponentially stable, reachable and observable.
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(a)

Show that the reachability and observability grammians

P =Y A*BBT (AT)"
k=0

Q=Y (A7) cToAr

k=0
converge absolutely and that they satisfy
APAT — P=-BB"
ATQA-Q =-CTC

respectively. (3p)

Define a state transformation #(k) = Tz (k). Then

)
(k4 1) = Ai(k) + Bu(k)
(

~

y(k) = Ci(k)
where A = TAT-!, B=TB, and C = CT~". Let

A

p=N"AFBET (AT)’“

hE

k=0

~

Q

hE

(47)" erea

i

0

and show that there is a T such that P = Q = 3, where ¥ is a
diagonal matrix. (3p)

Show that ||A|| < 1, if T'is choosen such that P = () = X, where
¥ is a diagonal matrix . (3p)

Choose T' such that A]5 = (Q = %, where ¥ is a diagonal matrix.
Partition A, B and C' as

TS
A21 A22 ’ B2

-~ ~ = 1 0

¢ = o &), z:{ol EZ]

and assume that the entries of z are sorted so that the diagonal
elements of ¥ are decreasing. Show that the system

#(k +1) = Api(k) + Biu(k)
y(k) = Crz(k)

is exponentially stable, reachable and observable. (7p)



