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e Linearize the fermentation model

v F
% VX | = f(V,VX,G,F) = WGV X
[(Gin — G)F — qa(G)VX]/V (t)
H(G) = Yaao(G), 1) = fmae

with Y, = 0.5 (g-cells per g-glucose), pmar = 0.65h7%, ks = 0.01g/¢, Gip, =
500g/¢, V(0) = 2¢, VX (0) = 10g, G(0) = k, around the nominal glucose feed
Fo(t) = Foe?t, po = plks), (Gin — ks)Fo = ga(ks)V X (0).

Nominal trajectory:

F°( ) = Fpetot,

( ) = ( ) + Fo/po (et — 1),
X°(t) = VX(0)e*?t, and
( ) = G( ),
gives
0 0 0
A(t) = g—f — o |0 1 VX (8)/(2k)
* 0 —1/[Y,V(H)] —VX(t)/[2kY.V ()]

BO=3 =0 0 Gyl

e Determine the reachability Gramian between ¢; = 1 and ¢, = 2.

Hard to get a symbolic expression for ®(¢, s). Use

%Wr(tl,tz) = B(t2) BT (t2) + A(ta)Wy(t1,t2) + Wa(t1, t2) AT (22)

and solve for W, (t1,{2) numerically starting with W, (¢1,¢1) = 0. The assump-
tions actually give that [VX(t)/Y, + V(t)G(t)]zf = [V(t)Gin]zf for any F(t).
e Discuss also how the “gain” and “timeconstant” of the glucose subsystem

changes with time.

The glucose subsystem is much faster than the cell-growth. We have approxi-
mately

d
Tﬂ+$3—KU

dt
= [2k,YV (1)

1/ [V X (2)]
= [2ksYzGin]/[

poV X ()]

i.e. T decreases from T = 22s at t = 0 to T = 4.7s at t = bh,

while K decreases from K = 1. 55//2 att=0to K =0. 35//2 at t =5h. (10 p)



Consider the periodic system
z(t) = —(sint 4 2)z(t)

with period T = 2.

e Determine ®(¢,7) and a periodic Lyapunov transformation z(t) = P(t)z(t)
giving a timeinvariant z-system.
Scalar system, thus

®(t,7) = exp{— / (sino + 2)do} = exp{cost — cosT — 2(¢t — 7)}

With R = -2 in exp{RT} = ®(T,0) we have P(t) = ®(¢,0)exp{—Rt} =
exp{cost — 1} € [e72,1].

e Would there exist initial conditions such that
z(t) = —(sint + 2)z(t) + u(t)

has a periodic solution for u(¢) = sint?

J2(0) such that z(t) = (t + T) for any f(t) = f(t + T), since
1# &(T,0)=e2T

(10 p)

An electrical system consists of three circuits, each with a resistor and an
inductance in series. Assume also coupling between the inductances. Let the
first circuit be connected to a voltage source, and let the other two circuits be
closed. Thus the system can be described by

(sL + R)I(s) = e U(s)

where L is a positive definite symmetric matrix of nonnegative inductances, R
is a diagonal matrix of positive resistances, and e{ =[1,0,0].

e Introduce a realization

A=—-L7'R, B=1Ll¢

e and formulate the PBH-test for controllability.

rank [A] — A, B] =rank[AL 4+ R,e;] =3, VA
e Discuss intuitive parameter combinations resulting in lack of controllability.
Assume for simplicity, L1 1 =1, R 1 = 1.

L1y =0,L;3=0, means no connection.
Ly3=0,Ly9 = L33, Ry» = R33 means two identical circuits by one control.

e Determine the reachable subspace and its dimension for

1 1/2 1/2 100
L=1|1/2 2 1/2 R=1[0 3 0 (1)
1/2 1/2 3 00 5

Maple



L:=matrix(3,3,[1,1/2,1/2,1/2,2,1/2,1/2,1/2,3]1):
R:=matrix(3,3,[1,0,0,0,3,0,0,0,5]):
el:=matrix(3,1,[1,0,0]):

A:=evalm(-inverse(L)&*R) :B:=evalm(inverse (L) &*el):
contr:=concat (B,A&*B,A&*A&*B) :

rank(contr) ;colspace(contr);

1 0
givesrank 2 and R [0 1
0 3/5

e There are actually also some nonintuitive combinations. Try finally to get
a general condition in terms of Lq 3, L1 3, L3, L22, L33 and Ry 3, R33 (quite
hard).

rank [sL + R,e1] = 2 & rank([sL + R,€1][2..3,1..3]) =1
ie. 5L1,2L2,3 = L1,3(5L2,2 + Rz,g) and L1,2(5L3,3 + R3,3) = 5L1,3L2,3 ie.

R33L12[L1aLas — L13Llaa]l = Ra2L13[L1,3L23 — L12L33]
Notice that we still also require that R > 0, L > 0 and L;; > 0. (10 p)

Assume in the previous example with parameters (1) that Lz 3 = 3+1/1000. As-
sume also zero initial currents. Consider the voltage function {u(t), t € [0, o0}
required to achieve i(00) = iy.

o Determine the function u,, with minimal 2-norm, i.e. minimizing ||u||? =

[° u?(t)dt. Show how you may utilize the 1yap-command in Matlab.

Assume first finite final time ¢y, i.e i(tf) = Lujo, ;) = fotf ®(ts, 7)Bu(T)dr giv-
ing (L*y)(t) = BT®T(t;,t)y and u,, = L*(LL*)"tis, where LL* = W,(0,;).
Time-invariance and stability gives that W,(0,00) = P is the solution to the
Lyapunov equation AP + PAT + BBT = 0.

0.5456773589  —0.05710018995 —0.03425452776
P =] —0.05710018995 0.01241350016 0.007446189295

—0.03425452776 0.007446189295 0.004466567554

W, (0,ts) converges quite rapidly to P, so un,(t) = BTeAT(tf_t)P_lif is very
close to optimal for some large t;.
e Which combination of currents ¢y requires the maximal and minimal ||u,,||?

From Apin(P) = 1.01071% and A,,2(P) = 0.55 and the normalized eigenvectors
it follows that i; = [0.000009704945279, —0.5143658641,0.8575708473]T gives
tmll? = 1/Amin, and i; = [~0.9924012894,0.1055134871,0.06329758955]"
gives ||tm||?2 = 1/Amaz. Notice that the eigenvector corresponding to Ay, is
almost orthogonal to the reachable subspace in problem 3.

(10 p)



A linearization of the quadruple-tank process is given by

'—1/T1 0 1/T3 0 by O

. 0 -1/T, 0 1/Ty 0 by

r = r + U

0 0 -1/Ts 0 0 b3

|0 0 0 ~1/T, by 0
oy

y =
L2

with T = [63,91, 39, 56] and b = [0.048, 0.035, 0.078, 0.056).

e Determine the controller form,

T=[63,91,39,56] ;b=[0.048,0.035,0.078,0.056] ;
A=diag(—1./T);A(1,3)=1/T(3);A(2,4)=1/T(4);
B=[b(1),0;0,b(2);0,b(3);b(4),0];C=[eye(2) zeros(2)];
M=inv([B(:,1),AxB(:,1),B(:,2),A*B(:,2)]);
P=[M(2,:),M(2,:)*A,M(4,:),M(4, :)*4A];
U=[M(2,:)*A*A,M(4, : )*A*A] ;

40=diag([1 0 11,1);B0=40([1,3],:)";
Ac=A0+(BO*U) /P ,Bc=B0,Cc=C/P

Ac =
0 1.0000 0 0
-0.0002 -0.0287 0.0000 0.0026
0 0 0 1.0000
-0.0000 -0.0002 -0.0004 -0.0416
Bc =
0 0
1 0
0 0
0 1
Cc =

0.0006 0.0480 0.0019 -0.0000
0.0010 0.0000 0.0011 0.0350

e and a state feedback making the poles twice as fast.
Three alternatives, Kp, Kcl, Kc2:

p=-2./T;Kp = place(4,B,p);

poly(p);Kc1=[0 0 -1 O;ans(5:-1:2)]*P+U
pl=poly(p([1,2]));p2=poly(p([3,4]))
Kc2=[p1(3) p1(2) 0 0;0,0,p2(3),p2(2)1*P+U

e Determine also a reduced order observer
with poles at s = —1/10 and s = —1/20.

P - . y
z=Fz+Gu+G z =
a bY, Z_I_Hy
F11=A(1:2,1:2);F12=A(1:2,3:4) ;F21=A(3:4,1:2) ;F22=A(3:4,3:4) ;
G1=B(1:2,:);G2=B(3:4,:) ;H=diag([2.9,1.8]);
Ftilde=F22-H*F12;Gatilde=G2-H*G1;Gbtilde=F21-H*¥F11+Ftilde*H;



e Is the resulting controller, i.e. transfer function from y to u, reasonable?

K1=-K(:,1:2);K2=-K(:,3:4);
Ar=Ftilde+Gatilde*K2;Cr=K2;Dr=K1+K2*H ;Br=Gbtilde+Gatilde*Dr;
eig(Ar) ,sysr=ss(Ar,Br,Cr,Dr) ;sysrtf=tf(sysr)

Kpand K cl give reasonable controllers, while K ¢2 has very high high-frequency
gain. All three controllers have stable poles. (10 p)

e Use Rugh’s method (Corollary 14.13) to get noninteracting control of the
quadrupel tank. Determine the Markov parameters and the relative degrees.

GO=C*B,Delta=GO0;Omega=C;
K=-Delta\ (Omegax4) ,N=inv(Delta)
sysg=ss (A+B*K,B*N,C,zeros(2));
tf(sysg) ,eig (A+B*K)

~ [0.3307 0 —0.5342 0 ]

X [20.8333 0
B 0 0.3140 0 —0.5102

0 28.5714

gives the closed loop system G.(s) = I x  after cancellation of the two closed
loop poles {—0.0565,0.0130}.

(5p)

In the enclosed very recent paper is calculated among other things the singular
values of the controllability matrix for a triple inverted pendulum. Assume that
the system is initially at rest, except for a deviation of 5 degrees in the third
link. Use the controller (18).

o Check the closed loop eigenvalues

B=[0 0 0 0 0.9033 -2.020 1.9195 0.0904]°;

A=[zeros(4),eye(4);0 -7.6199 -0.1568 -0.0005 -4.9681 0.0005 -0.0005 0;
0 38.978 -23.9878 -0.0784 11.1101 -0.0046 0.0087 -0.0037;

0 -37.0386 82.7535 -2.0117 -10.5573 0.0087 -0.0234 0.0253;

0 -1.7447 -52.8669 71.9997 -0.4973 -0.0037 0.0253 -0.4028];

K18=[45.5 246.5 -1007 2656 38.8 102.6 28.1 313.7];

eig (A+B*K18)

lamc=[-21.48+6.53*%1 -6.26+6.01*%i -2.48+4.04*%i -1.34+1.78*i ];
lamc=[lamc,conj(lamc)];

K=-place(A,B,lamc)

Obtained eigenvalues are actually unstable. There is something wrong with
K18, but K = [50.82,361.7,—704.6,3129,57.23,141.75,75.34,357.2] gives the
desired eigenvalues.

e and determine the square integral of the control signal. Hint: Determine a
Lyapunov equation for the integral

m(I; (/00 e(A+BK)TtKTKe(A+BK)tdt) Zg
0

P=1yap((A+B*K)’ ,K’*K);
zPz=P(4,4)*(5*pi/180) "2



e Use Matlab, c2d, to sample the system with sampling interval h = 12ms.
[Phi,Gamma]=c2d(A,B,0.012)

e Minimize the control signal norm to reach the origin in 1000 sampling in-
tervals, using the discrete time controllability Gramian W.(0,1000). One idea
would be to find a recursion for W,(0, k).

Determine u,, minimizing ||u|| in
0 = ®(ky,0)z0 + R(0, kf)upo,r,—1]
With
2o = Lu = L(O,kf)u[o,kf_l]
L(0,kg) = [ Y (kys,0)T, ..., 8 1 (ky, 0)®(kys, 1)T] = [@F/T, ..., 37T
we have
Uy = L*(LL*) 2o,  We(0,ks) = L(0, k) LT(0, ky)
Therefore

L(0, ks 4+ 1) = [ 1 L(0, ks), ®7'T]
We(0,k+1) ='W, (0,k)& T + o' (&'1)T

The instability and numerical roundoff errors make it hard to use the recursion.

PiG=Phi\Gamma ; Q=PiG*PiG’ ;Wc=Q;kf=100;
for k=1:kf,Wc=Phi\(Wc/Phi)+Q; end
Wei=inv(Wc);

Wci(4,4)*(5%pi/180)~2

(5p)



