What can regularization offer for
estimation of dynamical systems?

Lennart Ljung Tianshi Chen

Division of Automatic Control, Department of Electrical Engineering,
Linkoping University, SE-581 83
Linképing, Sweden

Abstract: Estimation of unknown dynamics is what system identification is about and a
core problem in adaptive control and adaptive signal processing. It has long been known that
regularization can be quite beneficial for general inverse problems of which system identification
is an example. But only recently, partly under the influence of machine learning, the use of
well tuned regularization for estimating linear dynamical systems has been investigated more
seriously. In this presentation we review these new results and discuss what they may mean for
the theory and practice of dynamical model estimation in general.

Fig. 1. Fit models but do not overfit!

1. MEET YOUR DATA WITH A PREJUDICE!

Estimation is about information in data. It is the question
of squeezing out all relevant information in the data.
... but not more. In addition to relevant information,
all measured data contain also irrelevant information -
misinformation. In engineering we talk about signal and
noise. To handle the information without getting fooled
by the misinformation it is necessary to meet the data
with some kind of prejudice.

Noise — Model Structure A typical prejudice that is used
when building a model from data from a system, is that
“nature is simple”: it should be possible to describe the
system with model with some simple “structure”, it should
belong to a set of models with restricted complexity, or
has smooth responses in some sense. This should put a
restriction on how much unstructured noise may affect the
model.

Variance — Bias It is important to realize that the error
in an estimated model has two sources: (1) We may have
used too much constraints and restrictions; “too simple
model sets”. This gives rise to a bitas error or systematic
error. (2) The data is corrupted by noise, which gives rise
to a variance error or random error.

In a formal, statistical sense this can be expressed as
Mean Square Error(MSE) = (Bias)® + Variance (1)

* Support from the European Research Council under the advanced
grant LEARN, contract 267381 is gratefully acknowledged.

To minimize the MSE is a trade off in constraining the
model: A flexible model gives small bias (easier to describe
complex behaviour) and large variance (with a flexible
model it is easier to get fooled by the noise), and vice
versa.

This trade-off is at the heart of all estimation
problems.

Data Fit — Regularization So, we should keep a keen
eye on both how well the model is capable to reproduce
the measured data and the complexity of the model.
Conceptually, a reasonable estimation criterion is

Model = argmin [Fit to Data + Penalty on Flexibility]
Model Class
(2)

This codifies the basic elements in estimation. A very
common way to handle the flexibility constraint is to
simply restrict the model class. If an explicit penalty is
added, this is known as regularization.

2. A FORMAL CRITERION

We shall here give a more specific version of (2): A model
structure M is a parameterized collection of models that
describe the relations between the input and output signal
of the system. The parameters are denoted by 6 so M(0)
is a particular model. The model set then is

M ={M(0)|0 € D} (3)
That model gives a rule to predict (one-step-ahead) the
output at time ¢, i.e. y(t), based on observations of
prtevli;)us input-output data up to time ¢t — 1 (denoted by
YARRE
y(tlo) = g(t,0,2'7") (4)
It is natural to compare the model predicted values (4)
with the actual outputs and form the prediction errors

e(t, 0) = y(t) — §(t)0) (5)

and to introduce a criterion of fit

N

Fy(0) =) [e(t.0)" A" e(t, 0)] (6)
t=1

where A is a psd matrix, weighting together the differ-
ent output components (channels). To add the flexibility

penalty in (2) we could add a quadratic norm:
V() = Fn(0) + A0 — 0")"R(0 — 07) (7
(M is a scaling and R is a psd matrix). The estimate is then

determined as
On = argmin Vy (0) (8)
0eD

This criterion is a clear cut balance between model fit and
a penalty on the model parameter size. The amount of
penalty is governed by A and R. Clearly the model struc-
ture itself means an important model flexibility constraint.

2.1 A Maximum Likelihood View

Assume that the innovations in the system are Gaussian
with zero mean and (known) covariance matrix A, so that

y(t) = 9(tl0) +e(t), e(t) € N(0,A) 9)
for the 6 that generated the data. Then it follows that the

negative logarithm of the likelihood function for estimating
0 from y is

L) = %[FN(H) + Nlogdet A+ Nlog2x] (10)

where Fiv(6) is defined by (6). See Lemma 5.1 in Ljung
[1999]. So the Maximum Likelihood model estimate (MLE)
for known A is obtained by minimizing Fy (9).

3. BAYESIAN VIEW

The criterion (8) makes sense in a classical estimation
framework as an ad hoc modification of the MLE to deal
with possible ill-conditioned minimization problems. The
added quadratic term then serves as proper regularization
of an ill-conditioned inverse problem, see, for example,
Tikhonov and Arsenin [1977].

But for a richer perspective it is useful to invoke a Bayesian
view. Then the sought parameter vector 6 is itself a
random vector with a certain probability density function
(pdf). This random vector will of course be correlated with
the observations y. If we assume that the prior distribution
of 0 (before y has been observed) is Gaussian with mean
0* and covariance matrix II,

6 € N(6*,1I) (11)

its prior pdf is
1 o (6-6")TTI (0-60%) /2

0) = —————

1) (2m)e det(I1)

The posterior (after y has been measured) pdf then is by
Bayes rule (Y denoting all measured y-signals)

PO,Y) P(Y|0)P(0)
POlY) = =
U=y T P

In the last step P(Y]0) is the likelihood function corre-
sponding to L(#), P(0) is the prior pdf (12) and P(Y) is a
f-independent normalization. Apart from this normaliza-

tion, and other f-independent terms, twice the negative
logarithm of (13) equals V() in (7) with

AR=T1I""

(12)

(13)

(14)

That means that with (14), the regularized estimate (8) is
the Mazimum A Posteriori (MAP) Estimate.

This Bayesian interpretation of the regularized estimate
also gives a clue to select the regularization quantities
AR 6%

4. SOME COMMON MODEL STRUCTURES

For linear systems, a general model structure is given by
the transfer function G from input to output and the
transfer function H from a white noise source e to output
additive disturbances:
y(t) = G(q, O)u(t) + H(q, O)e(t) (15a)
E2(t)=X; Ee(t)e(k) =0ifk £t (15b)
where £ denotes mathematical expectation. This model is
in discrete time and ¢ denotes the shift operator qy(t) =
y(t + 1). We assume for simplicity that the sampling
interval is one time unit. For normalization reasons, the
function H is supposed to be monic, i.e. its expansion
starts with a unity. The expansion of G(g, 6) in the inverse
(backwards) shift operator gives the impulse response (IR)

of the system:
= g(O)u(t -
k=1

0) = gr(0)g"
k=1

The natural predictor for (15) is
§(tl0) = H™'(q,0)[H (q,0) — Iy(t) + H'(

(16)

q,0)G(q, 0)u(t)

(17)
Since the expansion of H starts with I, the first term
within brackets starts with hig~! so there is a delay in
y. The question now is how to parameterize G and H.

Black-Box Input-Output Models ~ We now specialize to
SISO (single-input single-output) models. Common black
bozx (i.e. no physical insight or interpretation) parameteri-
zations are to let G and H be rational in the shift operator:

B, (0~ €O .
(q>) (q) H(qae) - D(q) (18)
B(q) =big ' +b2q % + .. bupg ™™ (18b)
Flg)=1+ fig "+ .+fnfq"f (18¢)
0 = [by, b, .. .7fnf] (18d)

C and D are, like F', monic.

A very common case is that F' = D = A and C = 1 which
gives the ARX-model:

y(t) = iég;u(t) + A(q)e(t) or (19a)
Al@y(t) = Blgu(t) + (t) or (19b)
yt) + a1yt — 1)+ ...+ anay(t — na) (19¢)

- (

ay
biu(t — 1) + ...+ bppu(t — nb) 19d)

Other common black/box structures of this kind are FIR
(Finite Impulse Response model, F = C = D = 1),
ARMAX (F = D = A), and BJ (Box-Jenkins, all four
polynomials different.)

Black-box State-Space Models Another general black-
box structure is to use an n:th order state space model

z(t +1) = Az(t) + Bu(t) + Ke(t) (20a)
y(t) = Cx(t) + e(t) (20b)
where the state-vector = is a column vector of dimension
n and A, B, C, K are matrices of appropriate dimensions.
The parameters € to be estimated consists of all entries
of these matrices. Due to possible changes of basis in the
state-space, there are many values of € that correspond
to the same system properties. It is easy to see that (20)
describes the same models as the ARMAX model with
orders n for the A, B, C- polynomials. Also, if the matrix
K is fixed to zero, (20) describes the same models as the
OE model with orders n for the B, F- polynomials. (See
Chapter 4 in Ljung [1999].)

5. TUNING THE REGULARIZATION
5.1 General Aspects

All of the material in Sections 2 — 3 is well known in
statistics since a long time, even if not utilized very much
in System Identification.

An important question, that has been intensely discussed
recently is that of how to select the regularization variables
A, R, 0*. The most common special case is R = I (identity
matrix) and 6* = 0. Then it remains only to select the
scaling A. This special case is known as ridge regression
in statistics (at least if the underling model is a linear
regression).

The most common general tool for tuning the regulariza-
tion is cross validation. Then the data set is split into two
parts, estimation and validation data. Regularized models
are then estimated using the estimation data for various
values of the regularization variables, and it is evaluated
how well these models can reproduce the validation data.
Then pick those regularization variables that give the
model with the best fit to validation data.

It is attractive to be able to estimate more directly what
are good regularization variables. That can be done with a
twist back to a classical view of the Bayesian calculations
(13)—(14): Assume that we can parameterize II(a) and
0* (o) with a parameter vector a that may contain a
good description of §. We can then, at least conceptually
compute the likelihood function for estimating « from Y.
In somewhat loose notation we have:

P(Y|a):/P(Y|0,a)P(9\a)d9 (21)
Here P(Y|0) corresponds essentially to the likelihood
function Fy(f) and P(f|a) is essentially (12) (for the
parameterization II(a) and 6*(«).) The difficulty is the
integration. That could be a hard problem, except when
the model is a linear regression.

5.2 Linear Regression

A Linear Regression problem has the form

y(t) = " (1)0 + e(t) (22)
Here y (the scalar output) and ¢ (the regression vector)
are observed variables, e is a noise disturbance and 6 is
the unknown parameter vector. In general e(t) is assumed
to be independent of ¢(t).

It is convenient to rewrite (22) in vector form, by stacking
all the elements (rows) in y(t) and 7 (t) to form the
vectors (matrices) Y and ® and obtain

Y=90+F (23)
Consider (23). Suppose 6 is a Gaussian random vector with
zero mean and covariance matrix II, and E is a random
Gaussian vector with zero mean and covariance matrix I,
and @ is a known, deterministic matrix.Then from (23)
also Y will be a Gaussian random vector with zero mean
and covariance matrix

Z(Il) = oOd” + 1 (24)
(Two times) the negative logarithm of the probability

density function (pdf) of the Gaussian random vector Y’
will thus be

W(Y) = YT Z(I) 'Y + logdet Z(I1) (25)
That will also be the negative log likelihood function for
estimating IT from observations Y, so it means that we

have achieved the integration of (21) so the ML estimate
of IT will be

I = arg min W (Y'|TI) (26)
We have thus lifted the problem of estimating 6 to a prob-
lem where we estimate parameters (in) II that describe the
distribution of . Such parameters are commonly known
as hyperparameters.

Parameterizing 11 for FIR models Let us now return to
the IR (16) and assume it is finite (FIR):

G(g,0) = brult — k) = oy ()0 (27)

k=1

where we have collected the m elements of u(t — k) in
©u(t) and the m IR coefficients by in . That means
that the estimation of FIR models is a linear regression
problem. All that was said above about linear regressions,
regularization and estimation of hyper-parameters can
thus be applied to estimation of FIR models. In particular
suitable choices of II should reflect what is reasonable to
assume about an IR: If the system is stable, b should
decay exponentially, and if the IR is smooth, neighboring
values should have a positive correlation. That means that
a typical regularization matrix (prior covariance matrix)
II° for 6, would be matrix whose &, j element is something
like

I} ;(a) = Cmin(*, ¥); a = [C, \] (28)
where C' > 0 and 0 < X\ < 1. This is one of many possible
parameterizations of II (so called kernels). This choice is

known as the TC-kernel. The hyperparameter « can then
be tuned by (26):

& = arg min W (Y [I1°(a)) (29)
Efficient numerical implementation of this minimization

problem is discussed in Chen and Ljung [2013] and Carli
et al. [2012].

Parameterizing 11 for ARX-models We can write the

ARX-model (19) as
yt)=—aylt—1)— ... —apy(t—n)+ byu(t — 1)+ ...
+bmu(t —m) = ¢y () + ¢, ()0 = " ()0
(30)

where ¢, and 6, are made up from y(t — 1),...,y(t — n)
and ajp in an obvious way. That means that also the
ARX model is a linear regression, to which the same
ideas of regularization can be applied. Eq (30) shows that
the predictor consists of two IRs, one from y and one
from u and similar ideas on the parameterization of the
regularization matrix can be used. It is natural to partition
the II-matrix in (11) along with 6,0, and use

ftoson) = |5)

with TI%*(a) as in (28).

See Chen et al. [2012c], Pillonetto and Nicolao [2010]
and Pillonetto et al. [2011], Chen et al. [2012b], Chen
et al. [2012a], Dinuzzo [2012] for more information around
regularization of FIR and ARX models. This technique
also has links to so called Gaussian Processes Regression,
extensively used in machine learning, e.g. Rasmussen and
Williams [2006].

(31)

A note on the general approximation capability of ARX
models. The ARX model (19) or (30) is of more gen-
eral interest than it may seem. It is known, Ljung and
Wahlberg [1992], that any linear system (15) can be arbi-
trarily well approximated by an ARX model for sufficiently
large orders na,nb. We will illustrate that property in
Section 7.2.

6. SOFTWARE ISSUES

In the latest release of the system identification toolbox,
Ljung [2013], version R2013b, regularization has been im-
plemented as a general tool for all estimation algorithms.
This is accomplished by a new field Regularization in all
the estimation options (arxOptions, ssestOptions) etc.
This option has subfields

opt.Regularization.Lambda
opt.Regularization.R
opt.Regularization.Nominal

corresponding to A, R and 6* in (7).

The tuning of the regularization parameters for FIR and
ARX models, (29), (31) is accomplished by the command

[Lambda,R] = arxRegul(data, [na nb nk],Kernel)
7. EXAMPLES

The usefulness of regularization will be illustrated in this
section. All code examples refer to the System Identifica-
tion Toolbox, Ljung [2013].

7.1 Bias — Variance Trade-off in FIR-modelling

Consider the problem to estimate the impulse response of
a linear system as an FIR model:

nb
y(t) =3 g(k)ult — k)
k=0

These are estimated by the command m=arx(z, [0 nb 0])
The choice of order nb is a trade off between bias (large
nb is requires to capture slowly decaying impulse responses

(32)

0.16

0.14 1 q

0.12- b

011 4

0.08 - b

0.06 - 4

0.04- b

0.02- 4

ok 4

—0.02 I I I I I
0 10 20 30 40 50 60

Fig. 2. The true impulse response.

y1
1 T

Il Il Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800 900 1000
Time (seconds)

ut
2 T

I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
Time (seconds)

Fig. 3. The data used for estimation.

without too much error) and variance (large nb gives many
parameters to estimate which gives large variance).

Let us illustrate it with a simulated example. We pick a
simple second order butterworth filter as system:

_0.02008 + 0.04017z~! + 0.020082 2

1—-1.561z"1+0.64142—2
Its impulse response is shown in Figure 2. It has decayed
to zero after less than 50 samples. Let us estimate it from
data generated by the system. We simulate the system
with low-pass filtered white noise as input and add a small
white noise output disturbance with variance 0.0025 to the
output. 1000 samples are collected. The data is shown in
Figure 3. To determine a good value for nb we basically
have to try a few values and by some validation procedure
evaluate which is best. That can be done in several ways,
but since we know the true system in this case, we can
determine the theoretically best possible value, by trying
out all models with nb =1, ...,50 and find which one has
the best fit to the true impulse response. Such a test shows
that nb = 13 gives the best error norm (mse=0.2522). This
estimated impulse response is shown together with the true
one in Figure 4. Despite the 1000 data points, with very

G(2)

(33)

0.3

0251 T

0.2

0.15

0.1

0.05

~0.05 I I I I I
0 10 20 30 40 50 60

Fig. 4. The true impulse response together with the
estimate for order nb = 13.

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

-0.02

-0.04 1 1 1 1 1
0 10 20 30 40 50 60

Fig. 5. The true impulse response together with the ridge-
regularized estimate for order nb = 50.

good signal to noise ratio the estimate is not impressive.
The reason is that the low pass input has poor excitation.

Let us therefore try to reach a good bias-variance trade-off
by ridge regression for a FIR model of order 50:

aopt=arxOptions;
aopt.Regularization.Lambda=1;
m50r=arx(z, [0 50 0] ,aopt);

The resulting estimate has an error norm of 0.1171 to the
true impulse response and is shown in Figure 5. Clearly
even this simple choice of regularization gives a much
better bias-variance tradeoff, than selecting FIR order.

We can do even better. By using the insight that the true
impulse response decays to zero and is smooth, we can
tailor the choice of R, A to the data and obtain

[L,R]=arxRegul(z, [0 50 0],’TC’);
aopt.Regularization.Lambda=L;
aopt.Regularization.R=R;
mrtc=arx(z, [0 50 0],aopt);
imtc=impulse (mrtc,50);

0.16

—0.02 I I I I I
0 10 20 30 40 50 60

Fig. 6. The true impulse response together with the tuned
regularized estimate for order nb = 50.

05 L L L L L L L L L
0 10 20 30 40 50 60 70 80 20 100

Fig. 7. The impulse responses of G (top) and H (bottom).

This gives an error norm of 0.0461 and the response is
shown in Figure 6. This kind of tuned regularization is
what is achieved also by the command impulseest.

7.2 The Use of Regularized ARX-models for Estimating
State-space Models

Consider a system m0, which is a 30:th order linear system
with coloured measurement noise:

y(t) = Gq)y(t) + H(q)e(t) (34)
The impulse responses of G and H are shown in Figure 7.
(impulse(m0), impulse(noise2meas(m0)). We have col-
lected 210 data points z from (34) with a white noise input
u with variance 1, and a noise level e with variance 0.1.
The data is shown in Figure 8. To estimate the impulse
responses of mO from these data, we can naturally employ
state-space models of order k in innovations form,

mk = ssest(z,k,’ts’,1);

(or equivalently ARMAX models), and find impulse (mk) ,
impulse(noise2meas (mk). The catch is to determine a
good order k. There are two commonly used methods:

y1

a4k B

—2F 4

3t 4

—4 L I I L
0 50 100 150 200 250
Time (seconds)

ul

-4 1 1 1 I
0 50 100 150 200 250

Time (seconds)

Fig. 8. The data used for estimation.

o Cross validation, CV: Estimatemk for k = 1,...,maxo

using the first half of the data, ze=z(1:150), and
evaluate the fit to the second half of the data

zv=z(151:end), [,fitk]=compare(zv,mk,’ini’,’z’)

and determine the order k that maximizes fitk. Then
reestimate the model using the whole data record.

o Use the Akaike criterion AIC: Estimate models for
orders k = 1,...,maxo using the whole data set, and
then pick that model that minimizes aic (mk).

Applying these techniques to the data with a maximal
order maxo = 30 shows that cross validation picks order
15 and AIC picks order 3.

There is a test that can be done (“The oracle”) if we know
m0, which of course cannot be done in practice: We check
which of the models mk show the best fit of G resp H to the
true system. For the current data, it follows that order 12
gives the best for G and order 3 gives the best fit for H.

In figure 9 we show how all these models compare to the
true impulse response forG. Figure 10 shows the same plot
for H.

We see that a fit of 82.95% is possible to achieve for
G among the state-space models, but the order selection
procedure may not find that best order.

We then turn to what can be obtained with regularization.
Recall from Section 5.2 that a sufficiently high order
ARX model can approximate a general linear system (34)
arbitrarily well. We thus estimate a rather high order,
regularized ARX-model by

aopt = arxOptiomns;

[Lambda,R] = arxRegul(z,[5 60 0],’TC’);
aopt.Regularization.R = R;
aopt.Regularization.Lambda = Lambda;
mr = arx(z,[5 60 0],aopt);

nmr = noise2meas (mr);

It turns out that this regularized arx model shows a fit to
the true G of 83.55% which is even better than the oracle!
The fit to H is 81.50% which also is better than the oracle
choice of order for best noise model.

Time Response Comparison

0.3 T T T

0.2 7

0.1 3

Amplitude
y1
|
o
)
T
L

~0.3F True G
Oracle choice: 82.95 %
-0.4
—— CV choice: 76.25 %
-0.51 —— AIC choice:79.42 %
-0.6[1
0.7 I I I I I I I I I

10 20 30 40 50 60 70 80 920 100

Time (seconds)

Fig. 9. The true impulse response of G compared to state
space models of different orders. The figures refer
to the “fit”, i.e. how much (in %) of the impulse
response variation in reproduced by the model. 100%
thus means a perfect fit.

Time Response Comparison
1 T T T

True H
Oracle choice: 77.04 %
—— CV choice: 58.66 %
— AIC choice:77.04 %

1

Amplitude
y

05 I I I I I I I I I
10 20 30 40 50 60 70 80 90 100

Time (seconds)

Fig. 10. The true impulse response of H compared to
various models.

It could be argued that mr is a high order (60 states) model,
and it is unfair to compare it with lower order state space
models. But this high order model can be reduced to, say,
order 7 by

mred7=balred(idss(mr),7);
nmred7=noise2meas (mred?7) ;

without any essential loss of accuracy. Figures 11 and 12
shows how the regularized and reduced order regularized
models compare with the oracle choice of state-space order
for ssest.

A natural question to ask is whether the choice of orders
in the ARX model is as sensitive a decision as the state
space model order in ssest. Simple test, using e.g.

arx(z, [10 50 0],aopt)

Time Response Comparison
03 T T T

True G
Oracle choice: 82.95 %| |
Regul: 83.55 %
Balred regul: 83.56 %

02

0.1

Amplitude
y

~0.7 L L L L L L I I I
10 20 30 40 50 60 70 80 90 100

Time (seconds)

Fig. 11. The regularized models compared to the oracle
choice for G.

Time Response Comparison
1 T T T

True H
Oracle choice: 77.04 %
Regul: 81.59 %

Balred Regul:80.66 %

0.5 1

1

Amplitude
y

05 I I I I I I I I I
10 20 30 40 50 60 70 80 90 100

Time (seconds)

Fig. 12. The regularized models compared to the oracle
choice for H.

only shows minor changes in the fit of G (82.28 % instead
of 83.55 %)

8. ISSUES OF RECURSIVENESS AND ADAPTIVITY

Evidently regularization can be most useful for estimating
models of dynamical systems. That means that it will be
interesting to use it also in adaptive situations where the
system may be changing and data information is sup-
plied continuously. Traditionally such adaptive schemes
have been engined by some sort of recursive identification
technique, see e.g. Ljung [1999], Ch. 11. Let us give some
comments on how regularization (of ARX models) appears
in that light.

The estimate of a regularized linear regression model (22)
is obtained as

t -1
é<t>=(z¢<w</@>+3) S o) (39)
k=1 k=1

where R is the regularization matrix in (7) (with 6* = 0).
This expression can be written recursively as the well
known RLS (recursive least squares) algorithm with no
explicit matrix inversion. The regularization then only acts
as an initial condition for the matrix update and does not
affect the algorithm.

Now, if we use tuned regularization as in (28)—(29) (as
implemented in arxRegul) it is natural to retune R as
more information becomes available. If R = R(t) is time
varying, the recursive update of (35) becomes

0(t) =0t = 1) + S (1) (o ()y(1)-
[p(0)e” (1) + R(t) = R(t = 1)]6(t 1))

where S(t) is the matrix inverse in (35).

(36)

It is worth noting that with the progress in numerical
linear algebra the advantage to avoid matrix inversion
for moderate sizes is less pronounced. Solving the “off-
line expression” (35) by “backslash” in MATLAB on an
ordinary laptop takes about 0.5 microseconds for a model
with 100 parameters. That is about the same time one step
of (36) takes, even without updating S(t).

So the recursive update on models of moderate sizes is
not a big deal. Most of the time for a tuned regularization
will anyway lie in the updates of the hyperparameters (29),
which is solved by a Gauss-Newton search algorithm, Chen
and Ljung [2013]. To do that adaptively at time ¢, it is
natural to form the criterion W(Y|a) with updated and
suitably time-weighted observations, and perform just one
minimization iteration starting from the current hyper-
parameter estimate &(t — 1) to determine &(t).

9. CONCLUSIONS

Regularization as such is nothing new. It has been used
extensively in statistics for a long time. It has been less
used in system identifiaction though. We have seen in
the examples that carefully tuned regularization matrices
can have a very significant effect on a good bias—variance
trade-off. This was very visible in Section 7.1, where a
remarkaby good estimate of the impulse response could
be achieved through thoughtful regularization. It is clear
that in this case the poor information in data about high
frequency properties were complemented by important
prior information. That information was however not very
precise (“exponentially decaying and smooth”), and it was
tuned to the data.

Perhaps it is more thought provoking (Section 7.2) that
the 7th order balanced reduced state space model from the
regularized ARX estimate is more accurate than the 7th
order ML estimate of the same structure. [In fact for the
data in the test, better than any finite order ML estimate!]
We are used to think of MLE as “the best estimates”,
with optimal asymptotic properties. But for the tested
data, with only 210 measurements and a complex system,
we are far from the asymptotics and model quality is
determined more by a well balance bias—variance trade-off.
A further point to stress that the regularized estimates are
less sensitive to choice of orders (since the regularization
is the main constraining feature), while MLE may be very
dependent on a good choice of order.

In any case, it appears to be important to complement
one’s toolbox of estimation tools for dynamical systems
with well tuned methods for regularization.

REFERENCES

F.P. Carli, A. Chiuso, and G. Pillonetto. Efficient algo-
rithms for large scale linear system identification using
stable spline estimators. In Proceedings of the 16th IFAC
Symposium on System Identification (Sysld 2012), 2012.

Tianshi Chen and Lennart Ljung. Implementation of
algorithms for tuning parameters in regularized least
squares problems in system identification. Automatica,
50, 2013. to appear.

Tianshi Chen, Martin S. Andersen, Lennart Ljung,
Alessandro Chiuso, and Gianluigi Pillonetto. System
identification via sparse multiple kernel-based regular-
ization using sequential convex optimization techniques.
IEEE Transactions on Automatic Control, Submitted,
2012a.

Tianshi Chen, Lennart Ljung, Martin Andersen, Alessan-
dro Chiuso, P. Carli Francesca, and Gianluigi Pillonetto.
Sparse multiple kernels for impulse response estimation
with majorization minimization algorithms. In IFEFE
Conference on Decision and Control, pages 1500-1505,
Hawaii, Dec 2012b.

Tianshi Chen, Henrik Ohlsson, and Lennart Ljung. On
the estimation of transfer functions, regularizations and
Gaussian processes-Revisited. Automatica, 48(8):1525—
1535, 2012c.

F. Dinuzzo. Kernels for linear time invariant system
identification. Manuscript, Max Planck Institute for In-
telligent Systems, Spemannstrasse 38,72076 Tibingen,
Germany, 2012.

L. Ljung. System Identification - Theory for the User.
Prentice-Hall, Upper Saddle River, N.J., 2nd edition,
1999.

L. Ljung. The System Identification Toolbox: The Manual.
The MathWorks Inc. 1st edition 1986, Edition 8.3 2013,
Natick, MA, USA, 2013.

L. Ljung and B. Wahlberg. Asymptotic properties of the
least-squares method for estimating transfer functions
and disturbance spectra. Adv. Appl. Prob., 24:412-440,
1992.

G. Pillonetto and G. De Nicolao. A new kernel-based
approach for linear system identification. Automatica,
46(1):81-93, January 2010.

G. Pillonetto, A. Chiuso, and G. De Nicolao. Prediction
error identification of linear systems: a nonparametric
Gaussian regression approach. Automatica, 47(2):291—
305, 2011.

C. E. Rasmussen and C. K. I. Williams. Gaussian Pro-
cesses for Machine Learning. MIT Press, Cambridge,
MA, 2006.

A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-posed
Problems. Winston/Wiley, Washington, D.C., 1977.

