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Abstract

The standard machinery for system identi�cation of
linear time invariant (LTI) models delivers a nominal
model and a con�dence (uncertainty) region around
it, based on (second order moment) residual analysis
and covariance estimation. In most cases this gives
an uncertainty region that tends to zero as more and
more data become available, even if the true system
is non-linear and/or time-varying. In this paper, the
reasons for this are displayed, and a characterization
of the limit LTI model is given under quite general
conditions. Various ways are discussed, and tested,
to obtain a more realistic limiting model, with un-
certainty. These should re
ect the distance to the
true possibly non-linear, time-varying system, and
also form a reliable basis for robust LTI control de-
sign.

1 Introduction: The Fiction of

an LTI System

Linear, Time-invariant (LTI) descriptions of dynam-
ical systems are clearly the bread and butter of con-
trol theory. Nevertheless, they are still a �ction: No
real-life system is exactly linear and time-invariant.
So, although there are no LTI systems out there, LTI
models as a basis for control design have proved to be

of enormous value. There are basically two reasons
for this: (1) an LTI model may be a good approxi-
mation of a real life system and (2) feedback control
is forgiving, in the sense that you can achieve good
control based on quite an approximate model.

System Identi�cation o�ers an eÆcient machinery
to estimate LTI models from observed input-output
data. This machinery will be brie
y surveyed in Sec-
tion 2. Identi�cation techniques deliver a nominal
LTI model, with an associated uncertainty region, re-

ecting the estimated statistical con�dence region of
the estimated parameters. It is intuitive to visualize
the delivered model as a band around the Nyquist
curve or as bands in the Bode plots. These con�-
dence regions are deemed to be reliable (or at least
"not falsi�ed") if certain model validation tests are
passed. A typical such test is to check the correla-
tion between the model residuals (prediction errors)
and past inputs, as well as the correlation among the
model residuals themselves.

It is important to realize that the LTI identi�ca-
tion machinery is always able to deliver an unfalsi�ed
linear model with decreasing uncertainty regions as
more and more data become available, regardless of
the character of the system. The reason for this is
that LTI-techniques (i.e. second order moment tech-
niques) cannot distinguish a system from its LTI sec-
ond order equivalent. The details of this are discussed
in Section 3.
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Let us illustrate this important fact:

Example 1.1: Rotation of a Rigid Body

Consider the rotation of a rigid body around a �xed
point. The input u is a moment applied along a certain
axis. The output y is the angular velocity around one of
the principal axes of the moment of inertia. If u is applied
around the same principal axis, the rotation is decoupled
and there is a linear relationship between u and y. How-
ever, if u is applied along another axis, the system will
not be linear, unless the body is spherically symmetrical.
The reason is that there are non-linear cross-couplings
between the principal axes of the moment of inertia. To
be speci�c, we consider a thin and long body with mo-
ments of inertia being 0.11, 100.01, and 100.10, respec-
tively, along the principal axes. There is also a viscous
damping factor of 0.01 around each of the axes. We per-
form two experiments:

� A. The input moment is applied around an axis that
deviates from the output principal axis by 0.003 ra-
dians.

� B. The input moment is applied along the line that
deviates from the output principal axis by 0.1 radi-
ans.

The �rst system would then be "rather linear", while the
second one is highly non-linear.
In each case a low frequency random input was chosen

and 10000 data points collected. Portions of the data are
shown in Figures 1 - 2. The linear identi�cation process
selected a third order BJ model in both cases. Results
from residual analysis in the two cases are shown in Fig-
ures 3 - 4. Neither give any reason to reject the mod-
els. Amplitude Bode plots with con�dence regions corre-
sponding to 3 standard deviations are shown in Figures
5 - 6. The delivered picture is clear: Both systems can
con�dently be described by LTI models with only minor
uncertainty.
For experiment A, the model is able to describe 100 %

of the output variation by one-step ahead prediction and
99.39 % in a pure simulation. The corresponding �gures
for experiment B is 99.97 % and 0.13 %, respectively. The
last �gure is low, but the LTI- identi�cation machinery
explains the deviation as noise that is uncorrelated with
the input and can be described as �ltered white noise
disturbances, giving rise to some limited uncertainty in
the estimated model.
If we know that the data collection has been essentially

noise-free, this interpretation should cause some concern,
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Figure 1: Portions of the data. Experiment A. The
upper plot is output (angular velocity around the sec-
ond principal axis.) and the lower plot is the input
(applied moment around another axis.)
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Figure 2: Portions of the data. Experiment B. Out-
put and input as in the previous �gure.
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Figure 3: Result of residual analysis. Experiment
A. The upper curve shows the autocorrelation of the
residuals. The lower plot shows the cross correlation
between residuals and inputs. The shaded zone is the
con�dence region.
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Figure 4: Result of residual analysis. Experiment B.
Same explanation as in Figure 3.
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Figure 5: Amplitude Bode plot of the obtained
model, with con�dence regions corresponding to 3
standard deviations marked. Experiment A.
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Figure 6: Amplitude Bode plot of the obtained
model, with con�dence regions corresponding to 3
standard deviations marked. Experiment B.
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but this is the only cloud in the LTI sky. For us, who
did the simulation and know that the system in case B
is highly non-linear, the Bode plot in Figure 6 and the
residual test plot in Figure 4 should call for fundamental
concern.

The example points out a fundamental shortcom-
ing of the standard LTI identi�cation process: With
increasing amounts of data, models will be deliv-
ered with uncertainty zones converging to zero in
Nyquist/Bode diagrams. This does not rhyme well
with our knowledge that while LTI models may be
good approximations, no real life system is exactly
LTI. It would be much more satisfactory if the deliv-
ered LTI model has some remaining uncertainty, no
matter how many data it is estimated from.

The topic of this contribution is to discuss this is-
sue.

Dealing with remaining bias errors in models is by
no means a new problem. There are many contribu-
tions in the literature that deal with the problem to
live with both bias errors and the classical statistical
variance errors. We could point to, among many ref-
erences, [1] for a characterization of the bias error in
the frequency domain, [2] and [3] for the concept of
stochastic embedding, [4] for model error models, [5]
for total error estimates, [6], [7] and [8] for more de-
terministic measures, [9] for explicit analysis of bias
and variance contributions, [10] for model approxima-
tions tailored to control design, and [11] for explicit
robustness measures for identi�ed models.

Most of these references, however, deal with the
problem that the model is of lower order than the
true system, which still is assumed to be given as an
LTI description. In this paper we will speci�cally dis-
cuss model discrepancies that are caused by systems
that are more diÆcult to describe. An early treat-
ment of LTI models and ill-de�ned systems is given
in Chapter 8 of [12].

2 The Machinery of Estimating

LTI Models

A general LTI-model of a dynamical system can al-
ways be described as

y(t) = G(q; �)u(t) +H(q; �)e(t) (1)

Here, q is the shift operator, and G and H are the
transfer matrices from the measured input u and the
noise source e, which is modeled as white noise (se-
quence of independent random variables). For nota-
tional convenience we will from now on only consider
Single-Input-Single-Output systems, but the theory
is the same in the multivariable case.
We shall also use the following shorthand notation

for the corresponding frequency function

G� = G(ei!; �) (2)

The transfer functions are parameterized by a �nite-
dimensional parameter vector �, and this parameter-
ization can be quite arbitrary. For black-box models,
it is common to parameterizeG andH in terms of the
coeÆcients of numerator and denominator polynomi-
als, perhaps constraining G and H to have the same
denominators. This leads to well established model
classes, known under names like ARX, ARMAX, OE,
BJ, etc.
Another possibility is to parameterize the model as

a state-space model, in discrete or continuous time:

x(t+ 1) = A(�)x(t) +B(�)u(t) +K(�)e(t) (3a)

y(t) = C(�)x(t) +D(�)u(t) + e(t) (3b)

which gives

G(q; �) = C(�)(qI �A(�))�1B(�) +D(�)

H(q; �) = C(�)(qI �A(�))�1K(�) + I

The parameterization of the state-space matrices can
be of black-box character as canonical forms, or even
�lling all the matrices with parameters. It can also be
in terms of a grey-box, where physical insight (typi-
cally in continuous time descriptions) is used, mixed
with parameters with unknown values.
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Whatever the parameterization, the problem is to
estimate the parameters in (1) based on observed
input-output sequences fy(t); u(t); t = 1; 2; : : : ; Ng.
Among many suggested algorithms for this, two ma-
jor approaches are dominating today:

� Sub-space methods

� Prediction error methods

Sub-space methods, e.g. [13], [14], [15], can be de-
scribed as �rst estimating the state sequence in (3a)
and then treating the two equations, with assumed
known x, as linear regressions to �nd the state space
matrices.
Prediction error methods �rst determine the pre-

diction errors associated with (1):

"(t; �) = H�1(q; �)(y(t)�G(q; �)u(t)) (4)

This requires � be con�ned to a region D, so that the
�lters H�1 and H�1G are stable. Then the � that
minimizes the norm of the errors

�̂N = argmin
�2D

VN (�) (5a)

VN (�) =
1

N

NX
t=1

"2(t; �) (5b)

is determined, typically by numerical search. A good
combination of the two approaches, in the black-box
case, is to initialize the search at the estimate pro-
vided by the subspace method.
How will these methods perform? Well, that de-

pends on the input-output data. A typical approach
to analysis is to assume that the data indeed have
been generated by a system like (1) for some par-
ticular parameter vector �0, and for e being a se-
quence of independent random variables. In that
case the asymptotic statistical properties (conver-

gence and asymptotic distribution) of �̂N can be cal-
culated readily. We refer to [16] for a comprehen-
sive analysis of this kind, as well as for more de-
tails on model structures and estimation techniques.
Just one thing will be pointed out, though: It is part
of the standard LTI-identi�cation machinery to com-
pute the resulting residuals:

"(t) = "(t; �̂N) (6)

It is then tested whether "(t) is uncorrelated with
past inputs u(s); s � t and if they are mutually un-
correlated. If such a residual analysis test is passed
(i.e. there is no convincing statistical evidence that
correlation is present), the assumption of a true sys-
tem within (1) corresponding to a particular value

�0 is \not falsi�ed", and the distribution of �̂N � �0
can be calculated using the aforementioned theory.
This means that a con�dence region for the true sys-
tem can be estimated. The delivered LTI model thus
comes with a quality tag, corresponding to con�dence
regions around the estimate. This was depicted, e.g.
in Figure 5.
Instead of reviewing this standard material, we

shall in this paper develop an independent analysis
of the limit of the prediction error method estimate
�̂N . This will use minimal assumptions on the prop-
erties of the input-output data. In particular, it will
not be assumed that they have been generated by
an LTI system, and it will not employ a stochastic
framework. Some related results were presented in
[17].

3 Second Order Equivalent LTI

Models

3.1 Quasistationary Signals

A deterministic signal z(t) will be called quasistation-
ary, [16], if

jz(t)j � C; 8t for some C <1 (7a)

lim
N!1

1

N

NX
t=1

z(t)zT (t� �) = Rz(�); exists8� (7b)

If Rz is such that the Z-transform

�z(z) =
1X

�=�1

Rz(�)z
�� (8)

is well de�ned on the unit circle, we call �z(e
i!)

the spectrum or spectral density of z. �z(z) will be
called the spectral function. It can be shown that
Rz and �z possess all the properties normally asso-
ciated with covariance functions and spectra, de�ned
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for stationary stochastic processes. In Section 4.2 we
shall speci�cally prove how they transform under lin-
ear �ltering.
We will also use the following standard concepts:

A �lter

G(z) =

1X
k=�1

gkz
�k (9)

will be called

� stable if
P jgkj <1

� causal if gk = 0; k < 0

� strictly causal if gk = 0; k � 0

� anti-causal if gk = 0; k > 0.

Moreover, a family of �lters

G�(z) =
1X

k=�1

g�kz
�k; � 2 D (10)

is called uniformly stable if

1X
k=�1

sup
�2D

jg�kj <1 (11)

3.2 Description of Systems that Pro-

duce Quasistationary Data

Let the input-output data collected from the process
be fu(t); y(t); t = 1; 2; : : : g. Let

z(t) =

�
y(t)
u(t)

�

Assume that the data are quasistationary and that
the spectral function

�z(z) =

�
�y(z) �yu(z)
�uy(z) �u(z)

�
(12)

is well de�ned.
Now, do spectral factorization

�z(z) = L(z)LT (1=z)

so that L(z) and L�1(z) are stable and causal 2-by-2
transfer function matrices. Then de�ne

P (z) =
�
�yu(z) �y(z)

�
LT (1=z)�1

=

0X
k=�1

pkz
�k +

1X
k=1

pkz
�k = P�(z) + P+(z)

where P+(z) is the strictly causal part of the left hand
side. Next de�ne Wu and Wy by

P+(z)L
�1(z) =

�
Wu(z) Wy(z)

�
(13)

By construction Wu and Wy will be strictly causal,
i.e. start with a delay (contain a factor 1=z). The
reader will recognize

ŷ(tjt� 1) =Wu(q)u(t) +Wy(q)y(t) (14)

as the Wiener �lter, [18] for estimating (predicting)
y(t) from u(s); y(s); s � t� 1. Let

e0(t) = y(t)� ŷ(tjt� 1)

Then (14) can be rearranged as

y(t) = G0(q)u(t) +H0(q)e0(t) (15a)

with

H0(z) = (I �Wy(z))
�1 (15b)

G0(z) = H0(z)Wu(z) (15c)

By the properties of the Wiener �lter e0(t) will be
uncorrelated with y(s); u(s); s � t� 1, i.e.

lim
N!1

1

N

NX
t=1

e0(t)

�
y(t� �)
u(t� �)

�
=

�
0
0

�
;8� � 1 (16)

Since e0(s) is constructed from y(r); u(r); r � s, this
also implies that

lim
N!1

1

N

NX
t=1

e0(t)e0(t� �) = 0 for � 6= 0 (17)

The corresponding limit for � = 0 we denote by �0.
Let

�(t) =

�
u(t)
e0(t)

�
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De�ning spectra analogously to (7b)-(8) gives

��(z) =

�
�u(z) �ue(z)
�eu(z) �0

�
(18)

where �ue(z) will be an anti-causal function, in view
of (16).

Remark. Note that �ue will normally not be zero,
even if there is no feedback in the data. An explicit
example of a non-linear, causal, feedback-free rela-
tionship between u and y that still gives a non-zero
(but non-causal) correlation between u and e is given
in Example 1 of [19]. �.

The point of this discussion is of course that any
quasistationary input-output data set
fz(t); t = 0; 1; : : :g
can be seen as being produced by (15a), with a signal
e0 which has a constant spectrum (\white noise") and
such that e0(t) is uncorrelated with past u(s); s < t
(i.e. (16) holds.) Statistical independence between e
and u and among e will generally not hold. Anyway,
we have not introduced any stochastic framework for
the data.

This means that considering just second order
properties (i.e. the spectra) of the signals y and u,
we cannot disprove that they have been generated by
(15a). In other words, the system (15a) is a sec-

ond order equivalent of the system that generated
y from u.

Now, it must immediately be said that G0 and H0

will in general depend on the input spectrum �u,
so that the second order equivalent obtained for one
input may be useless to describe the true system for
another input.

4 A Characterization of the

Limit Model

We shall in this section develop some results about
limits of estimated LTI-models based on data from
arbitrary systems. The theory will actually be self-
contained and it will not rely upon the traditional
convergence results for identi�ed models, given e.g.
in [16].

4.1 The Theorem

The result is as follows

Theorem 4.1 Consider the input-output data
fu(t); y(t); t = 1; 2; : : :g. Assume that the data are
quasistationary and that Wu and Wy given by (12)
{ (13) are well de�ned and stable. Consider the

LTI model structure (1) and let the estimate �̂N be
de�ned by (5a). Then

lim
N!1

�̂N

=argmin
�

Z �

��

1

jH�j2
�
(G0 �G�) (H0 �H�)

���
�u �ue

�eu �0

� �
(G0 �G�)
(H0 �H�)

�
d!

(19)

Here G0 and H0 are de�ned from u and y by (12)
-(15b), the argument ei! of all the transfer function
has been omitted as in (2), and overbar denotes com-
plex conjugation.

Note that this is exactly the same result that holds
w.p.1 in case it is assumed that (15a) has generated
the data with e0 being a sequence on independent
random variance with zero mean values and variance
= �0. This is the basic, "traditional" convergence
result, see e.g. [16]. This means that all traditional
analysis of limiting estimates in open and closed loop
can be directly applied to the general, non-linear,
non-stochastic case dealt with here, since that just
amounts to an analysis of the integral in (19). See,
for example, [20].

To prove this theorem we �rst establish a result of
independent interest:

4.2 Transformation of Spectra by Lin-

ear Systems

Theorem 4.2 Let fw(t)g be a deterministic, quasis-
tationary signal with spectrum �w(!) and let G(q) be
a stable �lter. Let

s(t) = G(q)w(t) (20)
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Then

z(t) =

�
s(t)
w(t)

�

is also quasistationary with spectrum

�z(!) =

�
G(ei!)�w(!)G

T (e�i!) G(ei!)�w(!)
�w(!)G

T (e�i!) �w(!)

�

The proof of this theorem is given in Appendix A.
We may note that the results still parallel the theory
of stationary stochastic processes. The expressions
for transforming spectra are entirely analogous.
For families of linear �lters we have the following

results.

Theorem 4.3 Let fG�(q); � 2 Dg be a uniformly
stable family of linear �lters (see (11)) and let fw(t)g
be a quasistationary sequence. Let

s�(t) = G�(q)w(t)

Rs(�; �) = lim
N!1

NX
t=1

s�(t)s
T
� (t� �)

Then, for all �

sup
�2D

jj 1
N

NX
t=1

s�(t)s
T
� (t� �) �Rs(�; �)jj ! 0 asN !1

Proof

We only have to establish that the convergence in
(48) (in the appendix) to zero is uniform in � 2 D.
In the �rst step all the g(k) terms carry an index
� : g�(k). Interpreting

g(k) = sup
�2D

jg�(k)j

(48) will of course still hold. Since the family G�(g)
is uniformly stable

1X
k=0

g(k) <1

and this was the only property of fg(k)g used to es-
tablish that (48) tends to zero. This completes the
proof.

�

4.3 Proof of Theorem 4.1

The prediction errors according to the model (1) are

"� = H�1
� (y �G�u) (21)

where we have suppressed all arguments. The esti-
mate is determined by minimization of

�̂N = argmin

NX
t=1

"2� (22)

Studying the second order properties of "�, we can
replace y with its second order equivalent description
(15a). Inserting that expression for y in (21) gives

"� = H�1
� (G0u�G�u+H0e0)

= H�1
� [(G0 �G�)u+ (H0 �H�)e0] + e0

M

= v�(t) + e0(t)

(23)

According to Theorem 4.2 ", v� and e0 are quasista-
tionary signals, and according to Theorem 4.3

NX
t=1

"2�(t)! �V (�) + �0 (24)

uniformly in � 2 D asN !1 (25)

where �V (�) = lim
N!1

1

N

NX
t=1

v2�(t) (26)

where we also used the limits in (16) and (17). With
the notation of (7b) �V (�) = Rv� (0), so from the in-
verse Fourier transform (or Parseval's relationship)
we have that

�V (�) =

Z �

��

�v� (e
i!)d! (27)

where �v� is the spectrum of v�, which according to
(23) and Theorem 4.2 is given by

1

jH�j2
�
(G0 �G�) (H0 �H�)

�� (28)�
�u �ue

�eu �0

� �
( �G0 � �G�)
( �H0 � �H�)

�
(29)

which proves the theorem.
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5 General Model Error Models

Any estimated model will be an imperfect descrip-
tion of the system. The term Model Error Model was
coined in [4] to denote any way to characterize the
errors associated with the model. These ways will of
course themselves be imperfect, but they may be ad-
equate to describe the amount of caution that should
be exercised when the nominal model is used. The
basic model error model could simply be described
by a parallel block to the nominal model is shown in
Figure 7.
How do we gain information about the model er-

ror model? Well, all information is in the mea-
sured data, possibly in conjunction with some data-
independent prior knowledge. Since the nominal
model has squeezed out most { or part { of the in-
formation in the data, the model error model will de-
scribe the relationship between the input u and the
output error v(t) = y(t) �G(q; �̂N )u(t) or the resid-

uals "(t) = "(t; �̂N ). This is also illustrated in Fig-
ure 7. Consequently, developing a model error model
amounts to some kind of residual analysis. This is
a standard topic in regression theory, see e.g. [21],
and the analysis of correlation between past inputs
and residuals, depicted, e.g. in Figure 3 is the most
common example of such analysis.

v

y

Gmem

u

u
Gnom

Figure 7: The nominal model Gnom and the model
error model Gmem.

Building linear model error models is thus just an
alternative way of phrasing the result of such stan-
dard (second order) residual analysis. See [4]. Ex-
plicit linear model error models will consequently de-
scribe the bias distribution of the nominal model, but
will have no information about possible errors due to

non-linearities or time-variation in the true system.
The nominal model plus the linear model error model
will just describe the LTI-equivalent, de�ned in Sec-
tion 3.
It is therefore of more interest to discuss error mod-

els that are nonlinear and/or time-varying. A brief
discussion of this is given in [22]. Now, the purpose
of an error model is not to complement the nomi-
nal model with detailed structural information. That
should rather be done as part of the nominal model.
Instead, the purpose of the error model is to capture
the reliability of the nominal model, so that proper
robustness in the control design can be assured.
This means that we shall work with a model error

model depicted in Figure 8. We shall only be con-
cerned about the gain of the block ~gmem. Written
out as equations we have

" v
~gmem

uFu
W1 W2

Figure 8: The model error model with linear weight-
ing functions

"(t) =W�1
2 (q)v(t) (30a)

uF (t) =W1(q)u(t) (30b)

"(t) = ~gmem(u
t�1
F ) (30c)

k"k � �kuF k+ � (30d)

Some comments are in order:

� The role of the weighting functions W1 and W2

is to give adequate freedom for the control de-
sign. Estimating just the gain of the middle
block could be an obtuse instrument, and the
linear weights will prove useful.

� The norms in (30d) are to be interpreted in L2

sense. With � = 0, the number � is consequently
the H1 gain of the system ~gmem.
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� There are two reasons for the o�-set term �:

1. To allow for external signals to enter the er-
ror model, as depicted in Figure 9 (� would
then be the norm of w)

2. To allow for possible very large gains for
small amplitude signals, which may not be
harmful for "practical stability". This is
further elaborated in [23]. For discussions
of such an o�-set term in connection with
stability see also [24] and [25].

w

" v
~gmem

uFu
W1 W2

Figure 9: The model error model with additive dis-
turbance

6 Estimating the Gain of a Sys-

tem

We are now faced with an essential problem: Given
the sequences uF and ", how to estimate � and � in
(30d)?

There is apparently not an extensive literature on
this problem. Some "identi�cation for robust con-
trol" articles relate to the gain estimation, like [6],
[7], [26], [27], [28] and [29]. These mostly deal with
the gain of a LTI or an LTV error model, though.

It is not the purpose of this section to launch a
recommended method for gain estimation of general
model error models. We shall instead point to some
possibilities, that indicate that the problem is not
infeasible.

6.1 Estimating the Gain from a Model

A rather obvious possibility is to explicitly estimate
the model in (30c) and then compute the gain of the
estimated model:

"(t) = ~gmem(u
t�1
F ) + w(t)

Use your favorite non-linear black box model struc-
ture for ~gmem, such as an Arti�cial Neural Network,
Local Linear Models, Piece-wise linear models, etc.
(cf Chapter 5 in [16]). Then determine � and � from
the estimated model and the size of w.
As an alternative, if just the gain is of interest, it

may be simpler to directly estimate a "ceiling" for
the surface that ~gmem de�nes. See also Section 6.3.

6.2 Estimating the Gain Directly

From Data

It is tempting to circumvent the laborious process of
estimating a general nonlinear black-box model and
then compute its gain, by directly estimating the gain
from the data. For example, if a local, radial basis
neural network is used to estimate the surface ~gmem,
the "peaks" of this surface are created by large values
of observed "(t). (See Section 6.3 for more intuition
about this \surface.") The highest gain points of the
surface are created by observations where the ratio
j"j to kuk is large. This leads to the following simple
method:

� Assume that it is known that most of the in-

uence on "(t) from past uF (s); s � t, linear or
not, lasts for d samples. Simple transient exper-
iments, or basic prior knowledge can give insight
into this. Form

'(t) =
�
uF (t� 1) uF (t� 2) : : : uF (t� d)

�
(31a)

and �nd

� = max
t

j"(t)j
k'(t)k (31b)

Here k � k2 is the usual 2-norm. Now, � is the
largest gain to a single value of " that we have
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seen in the data. To move to a corresponding
norm for " a natural upper bound on the gain
would be

�̂ =
p
d � � (31c)

The reason why �̂ is an upper bound, is that it does
not follow that d such large values of " can be pro-
duced in a sequence. Now this is a very simple al-
gorithm, that does not have any provisions for deal-
ing with noise or o�-sets. A more general version
would be to have an intelligent way of �nding a noise-
permissive upper-bounding line when regressing j"j
on k'k. Here we just let that line go through the ori-
gin (� = 0) and did not allow any observations above
the line.
Anyway, let us test how this estimator works.

Example 6.1: Estimating Gains for Time-
Varying, Non-Linear, Noise Corrupted Sys-
tems

We create a time-varying, non-linear, noise corrupted
system as follows:

� Create two random, linear third order system:
m1=idpoly(fstab([1,randn(1,3)*2],...

[0,randn(1,3)*3]) and similarly for m2.

� Create an input signal u as a white noise normal
signal with 1000 samples and low pass �lter it by
1=(q � 0:8)

� Let u pass through a static, discontinuous non-
linearity to form u1:

u1 =

(
5u if juj � 2

u else

� Form a time varying linear system from m1 and m2 by
letting its parameters vary as a cosine with period
200 samples between those of m1 and m2. The output
when simulated with u1 is called y1.

� Introduce an output dead-zone so that

y(t) =

(
0 if jy1(t)j � 5

y1(t) else

� add rectangular distrubuted noise to y so that the
signal-to-noise ratio becomes 10 (amplitude-wise)

0 20 40 60 80 100 120 140 160 180 200
0
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80

100

120

140
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180

200

Figure 10: Evaluation of the gain estimator (31). The
plot shows the result for 200 simulated systems as
described in the text. Each dot corresponds to a sys-
tem. Its y-coordinate is the estimated gain and its
x-coordinate is the true gain.

The theoretical gain of this, non-linear, time-varying sys-
tem is 5 times the largest magnitude that the frequency
functions of m1 and m2 ever assume. Two hundred systems
of this kind were simulated. Only systems m1 and m2 with
impulse response solution time (to 5%) less than 20 sam-
ples were accepted. The reason is that systems with long
impulse responses probably require modi�ed techniques
for gain estimation (see Section 6.3).

Figure 10 shows the gain estimate from algorithm (31)
versus the true gain. The root mean square deviation of
the measure

Estimated Gain

True Gain
� 1 (32)

is 34 %, which could be perceived as a surprisingly good
result.

6.3 General Gain Estimates: A Dis-

claimer

It is instructive to visualize the gain estimation prob-
lem as follows: Consider Rd+1. Let the \Floor" Rd

11



be spanned by the d-dimensional vectors '(t) and let
us view " as rising perpendicular to this 
oor. A non-
linear model ~gmem as in (30c) then is a hypersurface
over Rd. Estimating the gain is a matter of �nding
the highest elevations of this surface as viewed from
the origin.
Now, Rd is a pretty big and \empty" space. Sup-

pose we use d = 20 as in the example. Consider the
unit cube juF (t)j � 1 and use a grid of �neness 0.2
to distinguish between values of uF , which is rather
crude. Then the unit cube will contain 1020 cells.
Even with quite a respectable number of observa-
tions, like N = 104, at most a portion of 10�16 of
the cells will be populated with observations. The
surface mentioned above will therefore have an ex-
tremely thin support of observations. Finding, and
estimating the angle to the peaks of this surface con-
sequently will be a tricky problem. Practically re-
gardless of the number of observations made, most
parts of the space have not been covered, and with-
out prior information it is impossible to say what the
gain would have been at those parts.
It is in the light of this that the results of Figure 10

could be considered as \surprisingly good".
Now, the longer the e�ect of an input sample lasts,

the more diÆcult will the gain estimation be, since
the probability we will hit the \worst case" input se-
quence becomes less. This was the reason that we
only studied systems with solution time less than 20
samples, which anyway is a reasonably long response
time. Systems with longer lasting responses will re-
quire modi�ed estimation techniques.
What can be done about this lack of support of

observations in R20? Well, essentially nothing. Some
possibilities to deal with the problem could be:

1. Obtain more measurements: Will not help much,
since R20 would require a totally unrealistic
amount of data to be covered.

2. Assume that the surface is \very smooth", and
that the collected data exhibit the behavior of
the system, that we are likely to encounter also
later. This is really the alibi behind algorithm
(31).

3. Assume that the surface is a hyperplane, i.e.

that ~gmem is a linear FIR-model. Or, assume
that the actual model surface can be e�ectively
over-bounded by such a hyperplane.

4. Assume that the surface can be well approxi-
mated by a radial basis neural network. This is
essentially the same as 2.

5. Assume that the surface can be well approxi-
mated with a ridge type neural network, such as
the traditional sigmoidal networks. This, in a
sense, is a combination of 2 and the idea that
you can extrapolate along hyperplanes.

It is obvious, in the light of this, that no procedure
for estimating the gain can come with any quality
guarantees, unless some very reliable prior informa-
tion is available about the shape of the surface. For
a linear error model, it would be possible to describe
the distribution of the estimate provided by (31), but
in the general case such analytical results cannot be
derived.
Estimating the gain in the general case will thus be

subject to veri�cation in the particular applications
of interest, just as the construction of general non-
linear black-box models.

7 An LTI Model with a Gen-

eral Model Error Model as

an Equivalent Uncertain LTI

Model

7.1 Linear Model Errors

Once a model with its model error uncertainty is de-
livered, the question is how to design a controller that
will stabilize the system robustly. By this we would
mean that the chosen controller should stabilize all
models in the \region" de�ned by the nominal model
and the model error model.
In case we have used a linear model error model,

this region is easily depicted in the frequency domain.
It will look like a strip in the Bode, or Nyquist plot,
i.e.

G 2 G = fGj jG(ei!)�Gnom(e
i!)j < �(!)g (33)
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See, e.g., Figure 5. How to achieve robust stability
for such a set of models is well known: Choose a
regulatorK, such that the complementary sensitivity
function

T =
GnomK

1 +GnomK
(34)

is less than the inverse relative model error bound:

jT (ei!)j < jGnom(e
i!)j

�(!)
; 8! (35)

H1 techniques can be used to determine if such a K
exists, for given Gnom and �. See, e.g. [30].

7.2 Frequency Weighted Non-linear

Model Error Model

w

" v
~gmem

Gnom

uFu

y

�K

W1 W2

Figure 11: Block diagram of the feedback loop with
model error

The error model (30) corresponds to a closed loop
block diagram as in Figure 11. This can be rear-
ranged to be seen as feedback between the non-linear
part of the error model ~gmem and

KW1W2

1 +KGnom

(keeping in mind that we only consider SISO models
here). Suppose that the gain of the non-linear part
is subject to

k"k � �kuFk+ � (36)

as in (30d). Here the o�-set term � includes both
e�ects of the non-linearity and of the additive dis-
turbance w. The small gain theorem tells us that
stability is assured if�����W1(e

i!)W2(e
i!)K(ei!)

1 +K(ei!)Gnom(ei!)

���� < 1 8! (37)

Comparing with (35) we realize that we just can con-
sider the set of possible system descriptions to be
linear and given by

G 2 G = fGj jG(ei!)�Gnom(e
i!)j < : : : (38)

< �W1(e
i!)W2(e

i!)g
By stabilizing any linear model in this set, i.e.,
achieving (35) for � = �W1W2, we have also made
the linear control design robust against non-linear
model errors of the type (30).
We can also go beyond stability robustness and

consider sensitivity to disturbances. It follows, see
[23], that the output norm is bounded by

kyk � kSW2k �

1� �kGwk ; Gw = T
W1W2

Gnom

(39)

where S is the sensitivity and T the complementary
sensitivity of the nominal design. Again, standard
linear techniques tell us how to design the pair S and
T fromW1;W2; �; � and Gnom so that the sensitivity
expressed by (39) is acceptable.

7.3 An Equivalent Uncertain Linear

Model to be Delivered to the User

From the discussion above it follows that if the
LTI identi�cation process estimates a nominal model
Gnom and we select the weighting functions W1 and
W2 and then estimate the gain � of the block ~gmem

we can deliver an LTI uncertainty model consisting
of Gnom and the band G de�ned by (38). If robust
linear control design is applied to this uncertainty
model, LTI regulators will be produced that are ro-
bust also to non-linear, time-varying model errors up
to the size determined by the gain estimator. This
extends in a quite natural way LTI-identi�cation +
LTI control design to general systems that can be well
approximated by LTI models.
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7.4 Choice of Linear Weights

It may be quite important to correctly use the free-
dom o�ered by the weights W1 and W2. As will be
seen in the next section, di�erent weights can produce
quite di�erent LTI uncertainty models. The choice
ofW is an interplay between shaping the uncertainty
regions to what suits the control design, and creat-
ing descriptions that leave the unexplained (\�") as
small as possible.
Some natural choices are

� W1 = Gnom. This makes uF = ŷ, the model's
simulated output. It is natural to compare the
model error with the simulated output, since this
directly relates to the percentage of the output's
variation that is explained by the model. It also
leads to a quanti�cation of the relative model er-
ror, which naturally arises in robustness criteria
(see e.g. Gw in (39) which contains the ratio
W1=Gnom).

� W2 = Hnom, the nominal noise model. This
makes " equal to the model residuals, which gives
an output the the unknown block with the small-
est possible variance. This should lead the the
smallest �, but the shape of the uncertainty re-
gion may perhaps be unsuitable for control de-
sign.

There are of course many other possible choices. One
should however avoid weighs with long impulse re-
sponses, since this may make the gain estimation
more tricky.

8 Some Numerical Experimen-

tation

Let us do some experiments to see how the outlined
works out. We �rst test a time-varying, nonlinear
system:

Example 8.1: Estimating LTI models for
Non-Linear, Time-Varying Systems

Consider a system that is time-varying between the two

descriptions

y(t)� 2y(t� 1) + 1:45y(t� 2)� 0:35y(t� 3)

= u(t� 1) + 0:5u(t� 2) + 0:2u(t � 3)

and

y(t)� 1:93y(t� 1) + 1:43y(t� 2)� 0:41y(t� 3)

= 1:05u(t� 1) + 0:41u(t� 2) + 0:18u(t � 3)

It is also subject to an input static non-linearity, so that
inputs with an amplitude less than 0.8 is multiplied by
1.2, as well as an output dead-zone of length 1. The input
is white Gaussian noise with unit variance. A third or-
der LTI model was estimated from the data. This passes
the traditional model validations tests well. Figure 12
shows the nominal estimated model and the equivalent
uncertain LTI-models, as described in the previous sec-
tion, with the gain estimated using (31).

Finally, we return to Example 1.1.

Example 8.2: Rotation of a Rigid Body,
Cont'd

From the data of experiments A and B (see Figures 1 -
2) nominal third order LTI models were estimated as de-
scribed in Example 1.1. Error models were estimated as
in (30) and (31) for some di�erentW1 andW2. Figures 13
and 14 show the amplitude bode plots of the resulting er-
ror models. These should be compared with Figures 5 and
6. We see that the essentially linear case of experiment
A is correctly identi�ed as such, while the non-linear case
of experiment B gives an error model that clearly shows
that a reliable linear approximation is not feasible.

9 Conclusions

In this contribution four facts have been pointed out:

� Under general conditions we can explicitly spec-
ify in which way an estimated LTI model approx-
imates a general system. It is essentially only re-
quired that the system produces quasistationary
signals.
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Figure 12: Results from the experiment described
in Example 6. The amplitude bode plots show as
a light shaded region the error models constructed as
in Section 4. The dark shaded region is the nominal
estimated LTI model along with an uncertainty re-
gion corresponding to 1 standard deviation. The four
thin lines are the frequency functions of the two lin-
ear systems, each multiplied by 1 and by 1.2 (Recall
that there is a static non-linearity with gain between
1 and 1.2.) The plots correspond to di�erent weight-
ing �lters W1 and W2. From above and left to right:
(1) W1 =W2 = 1,
(2) W1 = Gnom , W2 = 1,
(3) W1 = Gnom, W2 = Hnom (nominal noise model).
(4) W1 = 1=(q + 0:3);W2 = 1,
(5) W1 = 1=(q � 0:95);W2 = 1.
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Figure 13: The resulting uncertainty model for Ex-
periment A in Example 1. Left: Relative model error
(i.e W1 = Gnom) with W2 = Hnom. Right: Relative
model error with W2 = 1.
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Figure 14: The resulting uncertainty model for Ex-
periment B in Example 1. Left: Relative model error
(i.e W1 = Gnom) with W2 = Hnom. Right: Relative
model error with W2 = 1.
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� We have pointed to the possibility of directly
estimating the size of the distance between the
true system and the LTI-approximation

� We have shown how the resulting model can be
seen as an LTI-model with an uncertainty region,
much in the same spirit as the traditional model
with statistical con�dence intervals.

� LTI robust control design for the family of LTI
models delivered by this process will give reg-
ulators that are robust also to model errors re-
sulting from the possibly nonlinear, time-varying
true system

An artifact of the standard LTI identi�cation ma-
chinery is that it produces a nominal model with a
con�dence interval that tends to zero as the num-
ber of observed data grows to in�nity. This is really
an undesired feature, since, realistically, there are no
true LTI systems in the real world.

An attractive aspect of the outlined way of deliv-
ering uncertain LTI models is that it resembles the
classical approach, with the important exception that
the uncertainty regions will typically not tend to zero
as more and more data become available. There will
be some \remaining uncertainty", which should be
thought of as a healthy sign.

Now, the outlined process also will need several
enhancements:

� More e�ective gain estimators are required.
There should be a good potential for such a de-
velopment. The fundamental limitation is that
you can only base the estimate on what you have
seen and typically the observations are but a tiny
fraction of the actual response surface. This is
more pronounced if the response time to an in-
put change is long. The need to deal with worse
signal-to-noise ratios than that in Figure 10 calls
for techniques that allow certain observations be
outside a bounding cone or a bounding \ceiling"
of the response surface. For a time-invariant
system this should be quite feasible, but for a
time-varying system the distinction between sig-
nal and noise is not trivial.

� The error model of Figure 8 could be quite con-
servative. This is not just a consequence of poor
gain estimates, but another reason is that hav-
ing just a gain measure will not reveal much of
the structure of the uncertainty. Put di�erently,
the small gain theorem is quite conservative. It
was illustrated in Figure 12 how the uncertainty
regions may depend on the chosen weights in an
essential way. A more general error model would
be to estimate the gain for a block

uF =W1u+W12v to " =W21u+W�1
2 v
(40)

This corresponds to an error model as in Fig-
ure 15, which is well prepared for LTI control de-

W

"
~gmem

uF

u v

Figure 15: A more general model error model. The 4
transfer functions in the linear block W are rational
combinations of the functions W1;W2;W12;W21 in
(40).

sign, using e.g. H1 techniques. The case in Fig-
ure 9 clearly is the special case W12 =W21 = 0.
The two extra weighting functions will give more
freedom to customize the error description. At
the same time, the resulting LTI uncertainty
model (consisting of Gnom, the four transfer
functions in W and the gain estimate �) is now
not simply a band around the Nyquist curve of
Gnom.

� A third line of thought to pursue, is to move from
the symmetric error descriptions inherent in the
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gain estimate and the small gain theorem to un-
symmetric descriptions, using e.g. IQC's, [31],
[32]. While the gain estimate in (31) amounts to
�nding the scalar � in expressions likeZ �

"(t) uF (t)
� ��1 0

0 �2

� �
"(t)
uF (t)

�
dt

� 0 8uF ; " (41)

which also can be written in terms of the Fourier
transforms of the signals. The more general case
(40) corresponds toZ �

V (�i!) U(�i!)��"
�2jW12j2 � jW2j�2 �2W1W 12 �W21W2

�1

�2W1W12 �W 21W
�1
2 �2jW1j2 � jW21j2

#

�
�
V (i!)
U(i!)

�
d! � 0 8u; v (42)

The IQC approach would be to �nd a matrix
�(!) such thatZ �

V (�i!) U(�i!)��(!) �V (i!)
U(i!)

�
dt

� 0 8u; v (43)

The kinship with the gain estimation is clear
from (43), (42). In this case, the delivered LTI
uncertainty model would be fGnom, �g which
may contain more structural information about
the character of the uncertainty, related to pas-
sivity properties. Control design based on such
an uncertainty model is discussed, e.g. in [32].
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Appendix A: Proof of Theorem

4.2

Proof

First assume that w(s) = 0 for s � 0 and consider

RN
s (�) =

1

N

NX
t=1

s(t)sT (t� �)

=
1

N

NX
t=1

tX
k=0

t��X
`=0

g(k)w(t� k)wT (t� � � `)gT (`)

(44)

With the convention that w(s) = 0 if s 62 [0; N ] we
can write

RN
s (�) =

NX
k=0

NX
`=0

g(k)

� 1

N

NX
t=1

w(t � k)wT (t� � � `)gT (`)

(45)

Let

RN
w (�) =

1

N

NX
t=1

w(t)wT (t� �)

We see that RN
w (� + `� k) and the inner sum in (45)

di�er by at most max(k; j� + `j) summands, each of
which are bounded by C according to (7a). Thus

jRN
w (� + `� k)� 1

N

NX
w(t� k)wT (t� � � `)j

� C
max(k; j� + `j)

N
� C

N
(k + j� + `j)

(46)

Let us de�ne

Rs(�) =

1X
k=0

1X
`=0

g(k)Rw(� + `� k)gT (`) (47)
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Then

jRs(�)�RN
s (�)j

�
X

0
X

0jg(k)jjg(`)jjRw(� + `� k)j

+
NX
k=0

NX
`=0

jg(k)jjg(`)j

� jRw(� + `� k)�RN
w (� + `� k)j

+
C

N

NX
k=0

kjg(k)j �
NX
`=0

jg(`)j

+
C

N

NX
`=0

j� + `jjg(`)j �
NX
k=0

jg(k)j:

(48)

Here, the �rst sum is over the complementary indices
of the second one i.e. k > N and/or ` > N . This �rst
sum tends to zero as N !1 since jRw(�)j � C and
G(q) is stable. It follows from the stability of G(q)
that

1

N

NX
k=0

kjg(k)j ! 0 asN !1 (49)

Hence the last two sums of (48) tend to zero as N !
1. Consider now the second sum of (48). Select an
arbitrary " > 0 and choose N = N" such that

1X
k=N"+1

jg(k)j < "=[C � C1] (50)

where

C1 =

1X
k=0

jg(k)j

This is possible since G is stable. Then select N 0

" such
that

max
1<`<N"

1<k<N"

jRw(� + `� k)�RN
w (� + `� k)j < "=C2

1

for N > N 0

". This is possible since

RN
w (�)! Rw(�) asN !1 (51)

(w is quasistationary) and since only a �nite num-
ber (which depends on ") of Rw(s):s are involved
(no uniform convergence of (51) is necessary). Then
for N > N 0

" we have that the second sum of (48) is
bounded by

NX
k=0

N"X
`=0

jg(k)jjg(`)j � "

C2
1

+

1X
k=N"+1

1X
`=0

jg(k)jjg(`)j � 2C

+

1X
k=0

1X
`=N"+1

jg(k)jjg(`)j � 2C

which is less than 5" according to (50). Hence also
the second sum of (48) tends to zero as N !1, and
we have proved that the limit of (48) is zero, and that
hence s(t) is quasistationary.

The proof that lim(1=N)
PN

t=1 s(t)w(t � �) exists
is analogous and simpler.
For �s(!) we now �nd that

�s(!) =

1X
�=�1

 
1X
k=0

1X
`=0

g(k)Rw(� + `� k)gT (`)

!
e�i�!

=

1X
�=�1

1X
k=0

g(k)e�ik!

�
1X
`=0

Rw(� � `+ k)e�i(�+`�k)!gT (`)ei`!

= [� � `+ k = s]

=

1X
k=0

g(k)e�ik! �
1X

s=�1

Rw(s)e
is! �

1X
`=0

gT (`)ei`!

= G(ei!)�w(!)G
T (e�i!)

Hence the upper left corner of �z(!) is proven. The
o� diagonal terms are analogous and simpler.

�
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