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Abstract

The use of radar and camera for situation awareness is gaining popularity in automotive
safety applications. In this thesis situation awareness consists of accurate estimates of the
ego vehicle’s motion, the position of the other vehicles and the road geometry. By fusing
information from different types of sensors, such as radar, camera and inertial sensor, the
accuracy and robustness of those estimates can be increased.

Sensor fusion is the process of using information from several different sensors to
compute an estimate of the state of a dynamic system, that in some sense is better than
it would be if the sensors were used individually. Furthermore, the resulting estimate is
in some cases only obtainable through the use of data from different types of sensors. A
systematic approach to handle sensor fusion problems is provided by model based state
estimation theory. The systems discussed in this thesis are primarily dynamic and they are
modeled using state space models. A measurement model is used to describe the relation
between the state variables and the measurements from the different sensors. Within the
state estimation framework a process model is used to describe how the state variables
propagate in time. These two models are of major importance for the resulting state
estimate and are therefore given much attention in this thesis. One example of a process
model is the single track vehicle model, which is used to model the ego vehicle’s motion.
In this thesis it is shown how the estimate of the road geometry obtained directly from the
camera information can be improved by fusing it with the estimates of the other vehicles’
positions on the road and the estimate of the radius of the ego vehicle’s currently driven
path.

The positions of stationary objects, such as guardrails, lampposts and delineators are
measured by the radar. These measurements can be used to estimate the border of the
road. Three conceptually different methods to represent and derive the road borders are
presented in this thesis. Occupancy grid mapping discretizes the map surrounding the
ego vehicle and the probability of occupancy is estimated for each grid cell. The second
method applies a constrained quadratic program in order to estimate the road borders,
which are represented by two polynomials. The third method associates the radar mea-
surements to extended stationary objects and tracks them as extended targets.

The approaches presented in this thesis have all been evaluated on real data from both
freeways and rural roads in Sweden.
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Populärvetenskaplig sammanfattning

Användandet av radar och kamera för att skapa en bra situationsmedvetenhet ökar i pop-
ularitet i säkerhetsapplikationer för bilar. I den här avhandlingen omfattar situationsmed-
vetenheten noggranna skattningar av den egna bilens rörelse, de andra bilarnas positioner
samt vägens geometri. Genom att fusionera information från flera typer av sensorer, såsom
radar, kamera och tröghetssensor, kan noggrannheten och robustheten av dessa skattningar
öka.

Sensorfusion är en process där informationen från flera olika sensorer används för att
beräkna en skattning av ett systems tillstånd, som på något sätt kan anses vara bättre än om
sensorerna användes individuellt. Dessutom kan den resulterande tillståndsskattningen i
vissa fall endast erhållas genom att använda data från olika sensorer. Ett systematiskt sätt
att behandla sensorfusionsproblemet tillhandahålls genom att använda modellbaserade
tillståndsskattningsmetoder. Systemen som diskuteras i den här avhandlingen är huvud-
sakligen dynamiska och modelleras med tillståndsmodeller. En mätmodell används för
att beskriva relationen mellan tillståndsvariablerna och mätningarna från de olika sensor-
erna. Inom tillståndsskattningens ramverk används en processmodell för att beskriva hur
en tillståndsvariabel propagerar i tiden. Dessa två modeller är av stor betydelse för den re-
sulterande tillståndsskattningen och ges därför stort utrymme i den här avhandlingen. Ett
exempel på en processmodell är den så kallade enspårs fordonsmodellen, som används för
att skatta den egna bilens rörelse. I den här avhandlingen visas hur skattningen av vägens
geometri, som erhålls av kameran, kan förbättras genom att fusionera informationen med
skattningen av de andra bilarnas positioner på vägen och skattningen av den egna bilens
körda radie.

Stationära objekt, såsom vägräcken och lampstolpar uppmäts med radarn. Dessa mät-
ningar kan användas för att skatta vägens kanter. Tre konceptuellt olika metoder att rep-
resentera och beräkna vägkanterna presenteras i den här avhandlingen. “Occupancy grid
mapping” diskretiserar kartan som omger den egna bilen, och sannolikheten att en kartcell
är ockuperad skattas. Den andra metoden applicerar ett kvadratiskt program med bivill-
kor för att skatta vägkanterna, vilka är representerade i form av två polynom. Den tredje
metoden associerar radarmätningarna med utsträckta stationära objekt och följer dem som
utsträckta mål.

Tillvägagångssätten som presenteras i den här avhandlingen är alla utvärderade på
mätdata från svenska motorvägar och landsvägar.
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1
Introduction

This thesis is concerned with the problem of estimating the motion of a vehicle and the
characteristics of its surroundings, i.e. to improve the situation awareness. More specif-
ically, the description of the ego vehicle’s surroundings consists in other vehicles and
stationary objects as well as the geometry of the road. The signals from several different
sensors, including camera, radar and inertial sensor, must be combined and analyzed to
compute estimates of various quantities and to detect and classify many objects simulta-
neously. Sensor fusion allows the system to obtain information that is better than if it was
obtained by individual sensors.

Situation awareness is the perception of environmental features, the comprehension
of their meaning and the prediction of their status in the near future. It involves being
aware of what is happening in and around the vehicle to understand how the subsystems
impact on each other.

Sensor fusion is introduced in Section 1.1 and its application within the automotive
community is briefly discussed in Section 1.2. The study presented in this thesis was
accomplished in a Swedish research project, briefly described in Section 1.3. The sensor
fusion framework and its components, such as infrastructure, estimation algorithms and
various mathematical models, are all introduced in Section 1.4. Finally, the chapter is
concluded with a statement of the contributions in Section 1.5, and the outline of this
thesis in Section 1.6.

1.1 Sensor Fusion

Sensor fusion is the process of using information from several different sensors to com-
pute an estimate of the state of a dynamic system. The resulting estimate is in some sense
better than it would be if the sensors were used individually. The term better can in this
case mean more accurate, more reliable, more available and of higher safety integrity.
Furthermore, the resulting estimate may in some cases only be possible to obtain by using

1



2 1 Introduction

Sensor Fusion

Process Model

Measurement Model

State Estimation

Sensors

...

State
Estimate

Applications

...

Figure 1.1: The main components of the sensor fusion framework are shown in the
middle box. The framework receives measurements from several sensors, fuses them
and produces one state estimate, which can be used by several applications.

data from different types of sensors. Figure 1.1 illustrates the basic concept of the sensor
fusion framework. Many systems have traditionally been stand alone systems with one
or several sensors transmitting information to only one single application. Using a sen-
sor fusion approach it might be possible to remove one sensor and still perform the same
tasks, or add new applications without the need to add new sensors.

Sensor fusion is required to reduce cost, system complexity and number of compo-
nents involved and to increase accuracy and confidence of sensing.

1.2 Automotive Sensor Fusion

Within the automotive industry there is currently a huge interest in active safety systems.
External sensors are increasingly important and typical examples used in this work are
radar sensors and camera systems. Today, a sensor is usually connected to a single func-
tion. However, all active safety functions need information about the state of the ego
vehicle and its surroundings, such as the lane geometry and the position of other vehicles.
The use of signal processing and sensor fusion to replace redundant and costly sensors
with software attracted recent attention in IEEE Signal Processing Magazine (Gustafs-
son, 2009).

The sensors in a modern passenger car can be divided into a number of subgroups;
there are internal sensors measuring the motion of the vehicle, external sensor measuring
the objects surrounding the vehicle and there are sensors communicating with other vehi-
cles and with the infrastructure. The communication between sensors, fusion framework,
actuators and controllers is made possible by the controller area network (CAN). It is a
serial bus communication protocol developed by Bosch in the early 1980s and presented
by Kiencke et al. (1986) at the SAE international congress in Detroit. An overview of
the CAN bus, which has become the de facto standard for automotive communication, is
given in Johansson et al. (2005).

Internal sensors are often referred to as proprioceptive sensors in the literature. Typi-
cal examples are gyrometers, primarily measuring the yaw rate about the vehicle’s vertical
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(a) (b)

Figure 1.2: Figure (a) shows the camera in the vehicle, and Figure (b) the front
looking radar. Note that this is not serial production mounting. Courtesy of Volvo
Car Corporation.

axis, and accelerometers, measuring the longitudinal and lateral acceleration of the vehi-
cle. The velocity of the vehicle is measured using inductive wheel speed sensors and the
steering wheel position is measured using an angle sensor. External sensors are referred
to as exteroceptive sensors in the literature, typical examples are radar (RAdio Detection
And Ranging), lidar (LIght Detection And Ranging) and cameras.

An example of how a radar and a camera may be mounted in a passenger car is il-
lustrated in Figure 1.2. These two sensors complement each other very well, since the
advantage of the radar is the disadvantage of the camera and vice versa. A summary of
the two sensors’ properties is presented in Table 1.1 and in e.g., Jansson (2005).

As already mentioned, the topic of this thesis is how to estimate the state variables
describing the ego vehicle’s motion and the characteristics of its surroundings. The ego
vehicle is one subsystem, labeled E in this work. The use of data from the vehicle’s ac-
tuators, e.g. the transmission and steering wheel, to estimate a change in position over

Table 1.1: Properties of radar and camera for object detection

Camera Radar
Detects other vehicles, lane

markings, pedestrians
other vehicles, sta-
tionary objects

Classifies objects yes no
Azimuth angle high accuracy medium accuracy
Range low accuracy very high accuracy
Range rate not very high accuracy
Field of View wide narrow
Weather Conditions sensitive to bad visi-

bility
less sensitive
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time is referred to as odometry. The ego vehicle’s surroundings consists of other vehicles,
referred to as targets T , and stationary objects as well as the shape and the geometry of
the road R. Mapping is the problem of integrating the information obtained by the sen-
sors into a given representation, see Adams et al. (2007) for a recent overview and Thrun
(2002) for a survey. The main focus of this thesis is the ego vehicle E (odometry) and
the road geometryR, which includes stationary objects along the road (mapping). Simul-
taneous localization and mapping (SLAM) is an approach used by autonomous vehicles
to build a map while at the same time keeping track of their current locations, see e.g.
Durrant-Whyte and Bailey (2006), Bailey and Durrant-Whyte (2006). This approach is
not treated in this thesis.

1.3 Sensor Fusion for Safety

The work in this thesis has been performed within the research project Sensor Fusion
for Safety (SEFS), which is funded by the Swedish Intelligent Vehicle Safety Systems
(IVSS) program. The project is a collaboration between Volvo Technology, Volvo Cars,
Volvo Trucks, Mecel, Chalmers University of Technology and Linköping University.

The overall objective of this project is to obtain sensor fusion competence for auto-
motive safety applications in Sweden by doing research within relevant areas. This goal
is achieved by developing a sensor fusion platform, algorithms, modeling tools and a sim-
ulation platform. More specifically, the aim is to develop general methods and algorithms
for a sensor fusion systems utilizing information from all available sensors in a modern
passenger car. The sensor fusion will provide a refined description of the vehicle’s envi-
ronment that can be used by a number of different safety functions. The integration of the
data flow requires new specifications with respect to sensor signals, hardware, processing,
architectures and reliability.

The SEFS work scope is divided into a number of work packages. These include at
a top level, fusion structure, key scenarios and the development of requirement methods.
The next level consists in work packages such as pre-processing and modeling, the im-
plementation of a fusion platform and research done on fusion algorithms, into which
this thesis can be classified. The use-case work package consists of implementation of
software and design of prototypes and demonstrators. Finally, there is an evaluation and
validation work package.

During the runtime of the SEFS project, i.e. from 2005 until today, two PhD theses
(Schön, 2006, Gunnarsson, 2007) and two licentiate theses (Bengtsson, 2008, Danielsson,
2008) have been produced. An overview of the main results in the project is given in
Ahrholdt et al. (2009) and the sensor fusion framework is well described in Bengtsson
and Danielsson (2008). Furthermore it is worth mentioning some of the publications
produced by the project partners. Motion models for tracked vehicles are covered in
Svensson and Gunnarsson (2006), Gunnarsson et al. (2006). A better sensor model of
the tracked vehicle is presented in Gunnarsson et al. (2007). Detection of lane departures
and lane changes of leading vehicles are studied in Schön et al. (2006), with the goal
to increase the accuracy of the road geometry estimate. Computational complexity for
systems obtaining data from sensors with different sampling rates and different noise
distributions is studied in Schön et al. (2007).
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1.4 Components of the Sensor Fusion Framework

A systematic approach to handle sensor fusion problems is provided by nonlinear state es-
timation theory. Estimation problems are handled using discrete-time model based meth-
ods. The systems discussed in this thesis are primarily dynamic and they are modeled
using stochastic difference equations. More specifically, the systems are modeled using
the discrete-time nonlinear state space model

xt+1 = ft(xt,ut,wt,θ), (1.1a)
yt = ht(xt,ut, et,θ), (1.1b)

where (1.1a) describes the evolution of the state variable x over time and (1.1b) explains
how the state variable x relates to the measurement y. The state vector at time t is de-
noted by xt ∈ Rnx , with elements x1, . . . , xnx being real numbers. Sensor observations
collected at time t are denoted by yt ∈ Rny , with elements y1, . . . , ynx being real num-
bers. The model ft in (1.1a) is referred to as the process model, the system model, the
dynamic model or the motion model, and it describes how the state propagates in time.
The model ht in (1.1b) is referred to as the measurement model or sensor model and it
describes how the state is propagated into the measurement space. The random vectorwt
describes the process noise, which models the fact that the actual state dynamics is usually
unknown. The random vector et describes the sensor noise. Furthermore, ut denotes the
deterministic input signals and θ denotes the possibly unknown parameter vector of the
model.

The ego vehicle constitutes an important dynamic system in this thesis. The yaw and
lateral dynamics are modeled using the so called single track model. This model will be
used as an example throughout the thesis. Some of the variables and parameters in the
model are introduced in Example 1.1.

Example 1.1: Single Track Ego Vehicle Model
A so called bicycle model is obtained if the wheels at the front and the rear axle of a
passenger car are modeled as single wheels. This type of model is also referred to as
single track model and a schematic drawing is given in Figure 1.3. Some examples of
typical variables and parameters are:

State variables x: the yaw rate ψ̇E and the body side slip angle β, i.e.

x =
[
ψ̇E β

]T
. (1.2)

Measurements y: the yaw rate ψ̇E and the lateral acceleration ay , i.e.

y =
[
ψ̇E ay

]T
, (1.3)

which both are measured by an inertial measurement unit (IMU).

Input signals u: the steering wheel angle δs, which is measured with an angular sensor
at the steering column, the longitudinal acceleration v̇x, which is measured by the
IMU and the vehicle velocity vx, which is measured at the wheels, i.e.

u =
[
δs v̇x vx

]T
. (1.4)
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Figure 1.3: Illustration of the geometry for the single track model, describing the
motion of the ego vehicle. The ego vehicle velocity vector vx is defined from the
center of gravity (CoG) and its angle to the longitudinal axis of the vehicle is denoted
by β, referred to as the body side slip angle. Furthermore, the slip angles are referred
to as αf and αr. The front wheel angle is denoted by δf and the current driven radius
is denoted by ρ.

Parameters θ: the vehicle mass m, which is weighed before the tests, the steering ratio
is between the steering wheel angle and the front wheels, which has to be esti-
mated in advance, and the tire parameter Cα, which is estimated on-line, since the
parameter value changes due to different road and weather conditions.

The nonlinear models f and h are derived in Section 2.3.

The model (1.1) must describe the essential properties of the system, but it must also
be simple enough to be efficiently used within a state estimation algorithm. The model
parameters θ are estimated using techniques from system identification community. The
main topic of Chapter 2 is the derivation of the model equations through physical rela-
tions and general assumptions. Chapter 3 describes algorithms that are used to compute
estimates of the state xt and the parameter θ in (1.1).

Before describing the individual steps of the sensor fusion framework another impor-
tant example is presented in Example 1.2.

Example 1.2: Object Tracking

Other objects, such as vehicles or stationary objects on and along the road, are tracked
using measurements from a radar mounted in the ego vehicle. A simple model for one
such tracked object is given by using the following variables:

State variables x: Cartesian position of tracked targets i = 1, . . . , Nx in a world fixed
coordinate frame W , i.e. xi =

[
xW yW

]T
.
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Measurements y: Range and azimuth angle to objects m = 1, . . . , Ny measured by the
radar in the ego vehicle fixed coordinate frame E, i.e. ym =

[
dE δ

]T
.

At every time step t, Ny observations are obtained by the radar. Hence, the radar delivers
Ny range and azimuth measurements in a multi-sensor set Y =

{
y1, . . . ,yNy

}
to the

sensor fusion framework. The sensor fusion framework currently also tracks Nx targets.
The multi-target state is given by the set X = {x1, . . . ,xNx} where x1, . . . ,xNx are the
individual states.

Obviously, the total number of state variables in the present example is 2Nx and the
total number of measurements is 2Ny . This issue may be compared to Example 1.1,
where the size of the y-vector corresponds to the total number of measurements at time t.
Typically, the radar also observes false detections, referred to as clutter, or receives several
measurements from the same target, i.e. Ny is seldom equal to Nx for radar sensors.

The different steps of a typical sensor fusion algorithm, as the central part of the larger
framework, are shown in Figure 1.4. The algorithm is initiated using a prior guess of the
state x0 or, if it is not the first iteration, the state estimate x̂t−1|t−1 from the previous time
step t−1 is used. New measurements Yt are collected from the sensors and preprocessed
at time t. Model (1.1) is used to predict the state estimate x̂t|t−1 and the measurement
ŷt|t−1. For Example 1.2 it is necessary to associate the radar observations Yt with the
predicted measurements Ŷt|t−1 of the existing state estimates and to manage the tracks,
i.e. initiate new states and remove old, invalid states. The data association and track
management are further discussed in Section 4.2. Returning to Example 1.1, where the
data association and track management are obviously not needed, since there the data
association is assumed fixed. Finally, the new measurement yt is used to improve the
state estimate x̂t|t at time t in the so called measurement update step. The prediction
and measurement update are described in Section 3.2. This algorithm is iterated, x̂t|t is
used to predict x̂t+1|t, new measurements Yt+1 are collected at time t + 1 and so on.
The state estimation theory, as part of the sensor fusion framework, is discussed further
in Chapter 3.

prediction data
association

track
management

measurement
update

pre-
processing

sensor

p(xt|y1:t−1) Yt, Λt

p(xt|y1:t−1)

Yt, Λt

p(xt|y1:t−1)

p(xt|y1:t)

p(xt|y1:t)p(xt−1|y1:t−1)
time step

Yt

Yt

Figure 1.4: The new measurements Yt contain new information and are associ-
ated to the predicted states X̂t|t−1 and thereafter used to update them to obtain the
improved state estimates X̂t|t.
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1.5 Contributions

The main contributions of this thesis are briefly summarized and presented below:

• A method to improve the road curvature estimate, using information from the image
processing, the motion of the ego vehicle and the position of the other vehicles on
the road is presented in Paper A. Furthermore, a new process model for the road is
presented.

• An approach to estimate the tire road interaction is presented in Paper B. The load
transfer between the front and rear axles is considered when recursively estimating
the stiffness parameters of the tires.

• Two different methods to estimate the road edges and stationary objects along the
road are presented in the Papers C and D. The methods are compared to the standard
occupancy grid mapping technique, which is presented in Section 4.3.1.

1.6 Outline

There are two parts in this thesis. The objective of the first part is to give a unified
overview of the research reported in this thesis. This is accomplished by explaining how
the different publications in Part II relate to each other and to the existing theory.

1.6.1 Outline of Part I

The main components of a sensor fusion framework are depicted in Figure 1.1. Part I aims
at giving a general description of the individual components of this framework. Chapter 2
is concerned with the inner part of the model based estimation process i.e., the process
model and the measurement model illustrated by the two white rectangles in Figure 1.1.
The estimation process, illustrated by the gray rectangle, is outlined in Chapter 3. In
Chapter 4 some examples including the sensors to the left in Figure 1.1 and the tracking
or fusion management, illustrated by the black rectangle, are described. Chapters 2 and 3
emphasize on the theory and the background of the mathematical relations used in Part II.
Finally, the work is summarized and the next steps for future work are given in Chapter 5.

1.6.2 Outline of Part II

Part II consists of a collection of edited papers, introduced below. Besides a short sum-
mary of the paper, a paragraph briefly explaining the background and the contribution is
provided. The background is concerned with how the research came about, whereas the
contribution part states the contribution of the present author.

Paper A: Joint Ego-Motion and Road Geometry Estimation

Lundquist, C. and Schön, T. B. (2008a). Joint ego-motion and road geometry
estimation. Submitted to Information Fusion.
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Summary: We provide a sensor fusion framework for solving the problem of joint ego-
motion and road geometry estimation. More specifically we employ a sensor fusion
framework to make systematic use of the measurements from a forward looking radar and
camera, steering wheel angle sensor, wheel speed sensors and inertial sensors to compute
good estimates of the road geometry and the motion of the ego vehicle on this road. In
order to solve this problem we derive dynamical models for the ego vehicle, the road and
the leading vehicles. The main difference to existing approaches is that we make use of
a new dynamic model for the road. An extended Kalman filter is used to fuse data and to
filter measurements from the camera in order to improve the road geometry estimate. The
proposed solution has been tested and compared to existing algorithms for this problem,
using measurements from authentic traffic environments on public roads in Sweden. The
results clearly indicate that the proposed method provides better estimates.

Background and contribution: The topic had already been studied in the automatic
control group in Linköping by Dr. Thomas B. Schön and Dr. Andreas Eidehall, see e.g.,
Eidehall et al. (2007), Schön et al. (2006), where a simplified vehicle model was used. The
aim of this work was to study if the results could be improved by using a more complex
vehicle model, i.e. the single track model, which in addition includes the side slip of the
vehicle. The author of this thesis contributed with the idea that the single track model
could be used to describe the current driven curvature instead of using a road model based
on road construction standards.

Paper B: Recursive Identification of Cornering Stiffness
Parameters for an Enhanced Single Track Model

Lundquist, C. and Schön, T. B. (2009b). Recursive identification of corner-
ing stiffness parameters for an enhanced single track model. In Proceedings
of the 15th IFAC Symposium on System Identification, pages 1726–1731,
Saint-Malo, France.

Summary: The current development of safety systems within the automotive industry
heavily relies on the ability to perceive the environment. This is accomplished by us-
ing measurements from several different sensors within a sensor fusion framework. One
important part of any system of this kind is an accurate model describing the motion of
the vehicle. The most commonly used model for the lateral dynamics is the single track
model, which includes the so called cornering stiffness parameters. These parameters de-
scribe the tire-road contact and are unknown and even time-varying. Hence, in order to
fully make use of the single track model, these parameters have to be identified. The aim
of this work is to provide a method for recursive identification of the cornering stiffness
parameters to be used on-line while driving.

Background and contribution: The tire parameters are included in the single track
model, which is used to describe the ego vehicle’s motion in all papers in this thesis.
This work started as a project in a graduate course in system identification held by Profes-
sor Lennart Ljung. The idea to use RLS to estimate the parameters was formulated during
discussion between the two authors of this paper. Andreas Andersson at Nira Dynamics
and the author of this thesis collected the measurement data during a trip to Germany.
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Paper C: Estimation of the Free Space in Front of a Moving
Vehicle

Lundquist, C. and Schön, T. B. (2009a). Estimation of the free space in front
of a moving vehicle. In Proceedings of the SAE World Congress, SAE paper
2009-01-1288, Detroit, MI, USA.

Summary: There are more and more systems emerging making use of measurements
from a forward looking radar and a forward looking camera. It is by now well known
how to exploit this data in order to compute estimates of the road geometry, tracking lead-
ing vehicles, etc. However, there is valuable information present in the radar concerning
stationary objects, that is typically not used. The present work shows how radar measure-
ments of stationary objects can be used to obtain a reliable estimate of the free space in
front of a moving vehicle. The approach has been evaluated on real data from highways
and rural roads in Sweden.

Background and contribution: This work started as a project in a graduate course on
convex optimization held by Professor Anders Hansson, who also proposed the idea of
using the arctan-function in the predictor. Dr. Thomas Schön established the contact with
Dr. Adrian Wills at the University of Newcastle, Australia, whose toolbox was used to
efficiently solve the least squares problem.

Paper D: Tracking Stationary Extended Objects for Road Mapping
using Radar Measurements

Lundquist, C., Orguner, U., and Schön, T. B. (2009). Tracking stationary
extended objects for road mapping using radar measurements. In Proceedings
of the IEEE Intelligent Vehicles Symposium, pages 405–410, Xi’an, China.

Summary: It is getting more common that premium cars are equipped with a forward
looking radar and a forward looking camera. The data is often used to estimate the road
geometry, tracking leading vehicles, etc. However, there is valuable information present
in the radar concerning stationary objects, that is typically not used. The present work
shows how stationary objects, such as guardrails, can be modeled and tracked as extended
objects using radar measurements. The problem is cast within a standard sensor fusion
framework utilizing the Kalman filter. The approach has been evaluated on real data from
highways and rural roads in Sweden.

Background and contribution: The author of this thesis came up with the ideas pre-
sented in this paper as he was writing Paper C. Dr. Umut Orguner contributed with his
knowledge in the area of target tracking to the realization of the ideas.

1.6.3 Related Publications

Publications of related interest, but not included in this thesis:

Ahrholdt, M., Bengtsson, F., Danielsson, L., and Lundquist, C. (2009). SEFS
– results on sensor data fusion system development. In 16th World Congress
of ITS, Stockholm, Sweden
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Reinelt, W. and Lundquist, C. (2006a). Controllability of active steering sys-
tem hazards: From standards to driving tests. In Pimintel, J. R., editor, Safety
Critical Automotive Systems, ISBN 13: 978-0-7680-1243-9, pages 173–178.
SAE International, 400 Commonwealth Drive, Warrendale, PA, USA,

Malinen, S., Lundquist, C., and Reinelt, W. (2006). Fault detection of a steer-
ing wheel sensor signal in an active front steering system. In Preprints of the
IFAC Symposium on SAFEPROCESS, pages 547–552, Beijing, China,

Reinelt, W. and Lundquist, C. (2006b). Mechatronische Lenksysteme: Mod-
ellbildung und Funktionalität des Active Front Steering. In Isermann, R., ed-
itor, Fahrdynamik Regelung - Modellbildung, Fahrassistenzsysteme, Mecha-
tronik, ISBN 3-8348-0109-7, pages 213–236. Vieweg Verlag,

Lundquist, C. and Reinelt, W. (2006a). Back driving assistant for passenger
cars with trailer. In Proceedings of the SAE World Congress, SAE paper
2006-01-0940, Detroit, MI, USA,

Lundquist, C. and Reinelt, W. (2006b). Rückwärtsfahrassistent für PKW mit
Aktive Front Steering. In Proceedings of the AUTOREG (Steuerung und
Regelung von Fahrzeugen und Motoren, VDI Bericht 1931, pages 45–54,
Wiesloch, Germany,

Reinelt, W. and Lundquist, C. (2005). Observer based sensor monitoring
in an active front steering system using explicit sensor failure modeling. In
Proceedings of the 16th IFAC World Congress, Prague, Czech Republic,

Reinelt, W., Lundquist, C., and Johansson, H. (2005). On-line sensor moni-
toring in an active front steering system using extended Kalman filtering. In
Proceedings of the SAE World Congress, SAE paper 2005-01-1271, Detroit,
MI, USA,

Reinelt, W., Klier, W., Reimann, G., Lundquist, C., Schuster, W., and Groß-
heim, R. (2004). Active front steering for passenger cars: System modelling
and functions. In Proceedings of the first IFAC Symposium on Advances in
Automotive Control, Salerno, Italy.

Patents of related interest, but not included in this thesis:

Lundquist, C. and Großheim, R. (2009). Method and device for determining
steering angle information. International Patent WO 2009047020, 2009.04.16
and German Patent DE 102007000958, 2009.05.14,

Lundquist, C. (2008). Method for stabilizing a vehicle combination. U.S.
Patent US 2008196964, 2008.08.21 and German Patent DE 102007008342,
2008.08.21,

Reimann, G. and Lundquist, C. (2008). Verfahren zum Betrieb eines elek-
tronisch geregelten Servolenksystems. German Patent DE 102006053029,
2008.05.15,



12 1 Introduction

Reinelt, W., Schuster, W., Großheim, R., and Lundquist, C. (2008c). Verfah-
ren zum Betrieb eines Servolenksystems. German Patent DE 102006052092,
2008.05.08,

Reinelt, W., Schuster, W., Großheim, R., and Lundquist, C. (2008b). Verfah-
ren zum Betrieb eines elektronischen Servolenksystems. German Patent
DE 102006043069, 2008.03.27,

Reinelt, W., Schuster, W., Großheim, R., and Lundquist, C. (2008d). Verfah-
ren zum Betrieb eines Servolenksystems. German Patent DE 102006041237,
2008.03.06,

Reinelt, W., Schuster, W., Großheim, R., and Lundquist, C. (2008e). Verfah-
ren zum Betrieb eines Servolenksystems. German Patent DE 102006041236,
2008.03.06,

Reinelt, W., Schuster, W., Großheim, R., and Lundquist, C. (2008a). Verfah-
ren zum Betrieb eines elektronisch geregelten Servolenksystems. German
Patent DE 102006040443, 2008.03.06,

Reinelt, W. and Lundquist, C. (2007). Method for assisting the driver of a mo-
tor vehicle with a trailer when reversing. German Patent DE 102006002294,
2007.07.19, European Patent EP 1810913, 2007.07.25 and Japanese Patent
JP 2007191143, 2007.08.02,

Reinelt, W., Lundquist, C., and Malinen, S. (2007). Automatic generation of
a computer program for monitoring a main program to provide operational
safety. German Patent DE 102005049657, 2007.04.19,

Lundquist, C. and Reinelt, W. (2006c). Verfahren zur Überwachung der Ro-
torlage eines Elektromotors. German Patent DE 102005016514, 2006.10.12,
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2
Models of Dynamic Systems

Given measurements from several sensors the objective is to estimate one or several state
variables, either by means of improving a measured signal or by means of estimating
a signal which is not, or can not, be directly measured. In either case the relationship
between the measured signals and the state variable must be described, and the equations
describing this relationship is referred to as the measurement model. When dealing with
dynamic or moving systems, as is commonly the case in automotive applications, the
objective might be to predict the value of the state variable at the next time step. The
prediction equation is referred to as the process model. This section deals with these two
types of models.

As mentioned in the introduction in Section 1.4, a general model of dynamic systems
is provided by the nonlinear state space model

xt+1 = ft(xt,ut,wt,θ), (2.1a)
yt = ht(xt,ut, et,θ). (2.1b)

The single track model, introduced in Example 1.1, is used as an example throughout
the first sections of this chapter. For this purpose the process and measurement models
are given in Example 2.1, while the derivations are provided later in Section 2.3. Most
mechanical and physical laws are provided in continuous-time, but computer implemen-
tations are made in discrete-time, i.e. the process and measurement models are derived in
continuous-time according to

ẋ(t) = a(x(t),u(t),w(t),θ, t), (2.2a)
y(t) = c(x(t),u(t), e(t),θ, t), (2.2b)

and are then discretized. Discretization is the topic of Section 2.1. Special cases of the
general state space model (2.1), such as the state space model with additive noise and the
linear state space model, are discussed in Section 2.2.

15
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Several models for various applications are given in the papers in Part II, however, the
derivations are not always thoroughly described, and the last sections of this chapter are
aimed at closing this gap. More specifically, the single track state space model of the ego
vehicle given in Example 2.1 is derived in Section 2.3 and compared to other commonly
used models. There exist different road models, of which some are treated in Section 2.4.
Finally, target tracking models are discussed briefly in Section 2.5.

Example 2.1: Single Track Model
The state variables xE , the input signals uE and the measurement signals yIMU of the ego
vehicle model were defined in Example 1.1, and are repeated here for convenience

xE =
[
ψ̇E β

]T
, (2.3a)

uE =
[
δf v̇x vx

]T
, (2.3b)

yIMU =
[
ψ̇mE amy

]T
. (2.3c)

Note that the front wheel angle δf is used directly as an input signal to simplify the
example. The continuous-time single track process and measurement models are given
by

ẋE =
[
aE1
aE2

]
=

 −Cαf l
2
f cos δf+Cαrl

2
r

Izzvx
ψ̇E + −Cαf lf cos δf+Cαrlr

Izz
β + Cαf lf tan δf

Izz

−
(

1 + Cαf lf cos δf−Cαrlr
v2xm

)
ψ̇E − Cαf cos δf+Cαr+v̇xm

mvx
β + Cαf sin δf

mvx

 ,
(2.4a)

yIMU =
[
cE1
cE2

]
=

[
ψ̇E

−Cαf lf cos δf+Cαrlr
mvx

ψ̇E − Cαf cos δf+Cαr+mv̇x
m β + Cαf sin δf

m

]
,

(2.4b)

with parameter vector

θ =
[
lf lr Izz m Cαf Cαr

]
, (2.5)

where lf and lr denotes the distances between the center of gravity of the vehicle and the
front and rear axles, respectively. Furthermore, m denotes the mass of the vehicle and
Izz denotes the moment of inertia of the vehicle about its vertical axis in the center of
gravity. The parameters Cαf and Cαf are called cornering stiffness and describe the road
tire interaction. Typical values for the parameters are given in Table 2.1. The model is
derived in Section 2.3.

2.1 Discretizing Continuous-Time Models

The measurements dealt with in this work are sampled and handled as discrete-time vari-
ables in computers and electronic control units (ECU). All sensor signals are transferred
in sampled form from different sensors to the log-computer on a so called CAN-Bus (Con-
troller Area Network). Hence, the systems discussed in this thesis must also be described
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Table 2.1: Typical ranges for the vehicle parameters used in the single track model.

m Izz Cα lf + lr
kg kgm2 N/rad m

1000− 2500 850− 5000 45000− 75000 2.5− 3.0

using discrete-time models according to the state space model in (2.1). Nevertheless, since
physical relations commonly are given in continuous-time, the various systems presented
in this thesis, such as the single track model in Example 2.1, are derived and represented
using continuous-time state space models in the form (2.2). Thus, all continuous-time
models in this thesis have to be discretized in order to describe the measurements. Only a
few of the motion models can be discretized exactly by solving the sampling formula

xt+1 = xt +

t+T∫
t

a(x(τ),u(t),w(t),θ)dτ, (2.6)

analytically, where T denotes the sampling time. A simpler way is to make use of the
standard forward Euler method, which approximates (2.2a) according to

xt+1 ≈ xt + Ta(xt,ut,wt,θ) , ft(xt,ut,wt,θ). (2.7)

This is a very rough approximation with many disadvantages, but it is frequently used
because of its simplicity. This method is used in Example 2.2 to discretize the continuous-
time vehicle model given in (2.4).

Example 2.2: Discrete-Time Single Track Model
The single track model given in Example 2.1 may be discretized using (2.7) according to

xE,t+1 =
[
fE1
fE2

]
=
[
ψ̇E,t + TaE1
βt + TaE2

]
, (2.8a)

yIMU,t =
[
hE1
hE2

]
=
[
cE1
cE2

]
, (2.8b)

where T is the sampling time.

Sampling of linear systems is thoroughly described by Rugh (1996). Moreover, dif-
ferent options to sample and linearize non-linear continuous-time systems are described
by Gustafsson (2000). The linearization problem is treated in Chapter 3, in a discussion
of approximative model based filters such as the extended Kalman filter.

2.2 Special cases of the State Space Model

Special cases of the general state space model (2.1) are treated in this section. These
includes the linear state space model in Section 2.2.1 and the state space model with
additive noise in Section 2.2.2.
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2.2.1 Linear State Space Model

An important special case of the general state space model (2.1) is the linear Gaussian
state space model, where f and h are linear functions and the noise is Gaussian,

xt+1 = Ft(θ)xt +Gut (θ)ut +Gwt wt, (2.9a)
yt = Ht(θ)xt +Hu

t (θ)ut + et, (2.9b)

wherewt ∼ N (0, Qt) and et ∼ N (0, Rt). Note that the single track model (2.4) is linear
in the state variables, as shown in Example 2.3.

Example 2.3: Linearized Single Track Model

The front wheel angle is usually quite small at higher velocities and the assumptions
cos δf ≈ 1, tan δf ≈ sin δf ≈ δf therefore applies. The discrete-time single track
model (2.8) may be written on the linear form (2.9) according to

ẋE,t+1 =

[
1− T Cαf l

2
f+Cαrl

2
r

Izzvx
T
−Cαf lf+Cαrlr

Izz

−T − T Cαf lf−Cαrlr
v2xm

1− T Cαf+Cαr+v̇xm
mvx

]
xE,t +

[
Cαf lf
Izz
Cαf
mvx

]
δf +wt,

(2.10a)

yIMU,t =
[

1 0
−Cαf lf+Cαrlr

mvx
−Cαf+Cαr+mv̇x

m

]
xE,t +

[
0
Cαf
m

]
δf + et. (2.10b)

The model is linear in the input δf . However, the inputs v̇x and vx are implicitly modeled
in the matrices Ft(v̇x, vx,θ), Gut (vx,θ) and Ht(v̇x, vx,θ).

Several of the radar measurements in Example 1.2 can be associated to the same
tracked state. This situation leads to a problem where a batch of measurements yi, . . . ,yj
is associated to the same state xk. The update of the state with the batch of new mea-
surements may be executed iteratively, as if the measurements were collected at different
time steps. Another method, which is used in Paper C, is accomplished by stacking all
available measurements in the set yi:j and sensor models Hi:j on top of each other in
order to form

Yi:j =

yi...
yj

 and Hi:j(θ) =

Hi(θ)
...

Hj(θ)

 , (2.11)

respectively. The measurement equation (2.9b) may now be rewritten according to

Yi:j,t = Hi:j,t(θ)xk,t + et. (2.12)

Linear state space models and linear system theory in general are thoroughly described
by Rugh (1996) and Kailath (1980).
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2.2.2 State Space Model with Additive Noise

A special case of the general state space model (2.1) is given by assuming that the noise
enters additively and the input signals are subsumed in the time-varying dynamics, which
leads to the form

xt+1 = ft(xt,θ) +wt, (2.13a)
yt = ht(xt,θ) + et. (2.13b)

In Example 1.1 an ego vehicle model was introduced, where the steering wheel angle,
the longitudinal acceleration and the vehicle velocity were modeled as deterministic input
signals. This consideration can be motivated by claiming that the driver controls the
vehicle’s lateral movement with the steering wheel and the longitudinal movement with
the throttle and brake pedals. Furthermore, the steering wheel angle and the velocity are
measured with less noise than the other measurement signals, and they are often pre-
processed to improve the accuracy and remove bias. With these arguments the resulting
model, given in Example 2.1, may be employed. The model is in some sense simpler
than if these two signals would be assumed to be stochastic measurements, as shown in
Example 2.4.

Example 2.4: Single Track Model without Deterministic Input Signals
In classical signal processing it is uncommon to allow deterministic input signals, at least
not if these are measured by sensors. The input signals in Example 1.1 should instead be
modeled as stochastic measurements. Hence, the measurement vector and the state vector
are augmented and the system is remodeled. One example is given by the state space
model

xE,t+1 =


ψ̇t+1

βt+1

δf,t+1

vx,t+1

v̇x,t+1

 =


fE1(ψ̇t, βt, δf,t, vx,t, wψ̇,t,θ)

fE2(ψ̇t, βt, δf,t, v̇x,t, vx,t, wβ,t,θ)
fE3(δf,t, wδf ,t,θ)
vx,t + T v̇x,t
v̇x,t + wv̇x,t

 , (2.14a)

yt =


ψ̇mt
amy,t
δms,t
vmx,t
v̇mx,t

 =


hE1(ψ̇t, βt, δf,t, vx,t,θ) + eψ̇,t

hE2(ψ̇t, βt, δf,t, v̇x,t, vx,t,θ) + eβ,t
hE3(ψ̇t, βt, δf,t,θ) + eδs,t

vx,t + evx,t
v̇x,t + ev̇x,t

 , (2.14b)

where T is the sample time and the measured signals are labeled with superscript m to
distinguish them from the states. The first two rows of the process and measurement
models i.e., fE1 , fE2 , hE1 and hE1 , where given in (2.8). The third measurement signal
is the steering wheel angle δs, but the third state is the front wheel angle δf . A possible
measurement model hE3 will be discussed in Example 3.1. Random walk is assumed for
the longitudinal acceleration v̇x in the process model.
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Another way to represent the state space model is given by considering the probability
density function (pdf) of different signals or state variables of a system. The transition
density p(xt+1|xt) models the dynamics of the system and if the process noise is assumed
additive, the transition model is given by

p(xt+1|xt) = pw(xt+1 − f(xt,ut,θ)), (2.15)

where pw denotes the density of the process noise w. A fundamental property of the
process model is the Markov property,

p(xt+1|x1, . . . ,xt) = p(xt+1|xt). (2.16)

This means that the state of the system at time t contains all necessary information about
the past, which is needed to predict the future behavior of the system.

Furthermore, if the measurement noise is assumed additive then the likelihood func-
tion, which describes the measurement model, is given by

p(yt|xt) = pe(yk − h(xt,ut,θ)), (2.17)

where pe denotes the density of the sensor noise e. The two density functions in (2.15)
and (2.17) are often referred to as a hidden Markov model (HMM) according to

xt+1 ∼ p(xt+1|xt), (2.18a)
yt ∼ p(yt|xt), (2.18b)

since xt is not directly visible in yt. It is a statistical model where one Markov process,
that represents the system, is observed through another stochastic process, the measure-
ment model.

2.3 Ego Vehicle Model

The ego vehicle model was introduced in Example 1.1 and the single track model was
given in Example 2.1. Before the model equations are derived in Section 2.3.3, the tire
road interaction, which is an important part of the model, is discussed in Section 2.3.2.
Two other vehicle models, which are commonly used for lane keeping systems are given
in Section 2.3.4. However, to derive these models accurately some notation is required,
which is the topic of Section 2.3.1.

2.3.1 Notation

The coordinate frames describing the ego vehicle and one leading vehicle are defined
in Figure 2.1. The extension to several leading vehicles is straightforward. The inertial
world reference frame is denoted byW and its origin isOW . The ego vehicle’s coordinate
frame E is located in the center of gravity (CoG) and Es is at the vision and radar sensor
of the ego vehicle. Furthermore, the coordinate frame Ti is associated with the tracked
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Figure 2.1: Coordinate frames describing the ego vehicle, with center of gravity
in OE and the radar and camera sensors mounted in Es. One leading vehicle is
positioned in OTi .

leading vehicle i, and its origin OTi is located at the leading vehicle. In this work the
planar coordinate rotation matrix

RWE =
[
cosψE − sinψE
sinψE cosψE

]
(2.19)

is used to transform a vector dE , represented in E, into a vector dW , represented in W ,
according to

dW = RWEdE + dWEW , (2.20)

where the yaw angle of the ego vehicle ψE is the angle of rotation from W to E. The
geometric displacement vector dWEW is the direct straight line fromOW toOE represented
with respect to the frameW . Velocities are defined as the movement of a frameE relative
to the inertial reference frame W , but typically resolved in the frame E, for example vEx
is the velocity of the E frame in its x-direction. The same convention holds for the
acceleration aEx . In order to simplify the notation, E is left out when referring to the ego
vehicle’s velocity and acceleration.

This notation will be used when referring to the various coordinate frames. However,
certain frequently used quantities will be renamed, in the interest of readability. The
measurements are denoted using superscript m. Furthermore, the notation used for the
rigid body dynamics is in accordance with Hahn (2002).
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2.3.2 Tire Model

The slip angle αi is defined as the angle between the central axis of the wheel and the
path along which the wheel moves. The phenomenon of side slip is mainly due to the
lateral elasticity of the tire. For reasonably small slip angles, at maximum 3◦ or up to a
centripetal force of approximately 0.4 g, it is a good approximation to assume that the
lateral friction force of the tire Fi is proportional to the slip angle,

Fi = Cαiαi. (2.21)

The parameter Cαi is referred to as the cornering stiffness of tire i and describes the
cornering behavior of the tire. The load transfer to the front axle when braking or to the
outer wheels when driving through a curve can be considered by modeling the cornering
stiffness as

Cαi = Cαi0 + ζαi∆Fzi, (2.22)

where Cαi0 is the equilibrium of the stiffness for tire i and ζαi relates the load transfer
∆Fzi to the total stiffness. This tire model is treated in Paper B. General information
about slip angles and cornering stiffness can be found in the books by e.g. Pacejka (2006),
Mitschke and Wallentowitz (2004), Wong (2001).

Most of the ego vehicle’s parameters θ, such as the dimensions, the mass and the
moment of inertia are assumed time invariant and are given by the vehicle manufacturer.
Since the cornering stiffness is a parameter that describes the properties between road and
tire it has to be estimated on-line, as described in Paper B, or has to be estimated for the
given set, i.e. a batch, of measurements.

To determine how the front and rear cornering stiffness parameters relate to each other
and in which range they typically are, a 3 min measurement sequence, acquired on rural
roads, was used. The data used to identify the cornering stiffness parameters was split into
two parts, one estimation part and one validation part. This facilitates cross-validation,
where the parameters are estimated using the estimation data and the quality of the esti-
mates can then be assessed using the validation data (Ljung, 1999). From Pacejka (2006),
Mitschke and Wallentowitz (2004), Wong (2001) it is known that the cornering stiffness
values should be somewhere in the range between 20, 000 and 100, 000 N/rad. The sin-
gle track model (2.4) was used and the parameter space was gridded and an exhaustive
search was performed. To gauge how good a specific parameter pair is, the simulated yaw
rate and lateral acceleration were compared with the measured values according to

fit1 = 100
(

1− |y − ŷ|
|y − ȳ|

)
, (2.23)

where y is the measured value, ŷ is the estimate and ȳ is the mean of the measurement,
see Ljung (2009). Since there are two signals, two fit-values are obtained, which are
combined into a joint fit-value using a weighted sum. In Figure 2.2 a diagonal ridge
of the best fit value is clearly visible. For different estimation data sets, different local
maxima were found on the ridge. Further, it was assumed that the two parameters should
have approximately the same value. This constraint (which forms a cross diagonal or
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Figure 2.2: A grid map showing the total fit value of the two outputs and the con-
straint defined in (2.24).

orthogonal ridge) is expressed as

fit2 = 100

1− |Cαf − Cαr|∣∣∣ (Cαf+Cαr)
2

∣∣∣
 , (2.24)

and added as a third fit-value to the weighted sum, obtaining the total fit for the estimation
data set as

total fit = wψEfitψE + wayfitay + w2fit2, (2.25)

where the weights should sum to one, i.e. wψE + way + w2 = 1, w ≥ 0. The exhaus-
tive search resulted in the values Cαf = 41000 N/rad and Cαr = 43000 N/rad. The
resulting state-space model was validated using the validation data and the result is given
in Figure 5 in Paper A.

2.3.3 Single Track Model

In this work the ego vehicle motion is only considered during normal driving situations
and not at the adhesion limit. This implies that the single track model, described in e.g.,
Mitschke and Wallentowitz (2004) is sufficient for the present purposes. This model is
also referred to as the bicycle model. The geometry of the single track model with slip
angles is shown in Figure 1.3. It is worth mentioning that the velocity vector of the ego
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vehicle is typically not in the same direction as the longitudinal axis of the ego vehicle.
Instead the vehicle will move along a path at an angle β with the longitudinal direction of
the vehicle. Hence, the angle β is defined as,

tanβ =
vy
vx
, (2.26)

where vx and vy are the ego vehicle’s longitudinal and lateral velocity components, re-
spectively. This angle β is referred to as the float angle in Robert Bosch GmbH (2004)
and the vehicle body side slip angle in Kiencke and Nielsen (2005). Lateral slip is an
effect of cornering. To turn, a vehicle needs to be affected by lateral forces. These are
provided by the friction when the wheels slip.

The Slip Angles

From Figure 2.1 the following geometric constraints, describing the relations between the
front axle, rear axle and the origin of the world coordinate frame, are obtained

xWEfW = lb cosψE + xWErW , (2.27a)

yWEfW = lb sinψE + yWErW , (2.27b)

where Ef and Er are coordinate frames fixed to the front and rear wheel, respectively.
The ego vehicle’s velocity at the rear axle is given by

RE
rW ḋWErW =

[
vErx
vEry

]
, (2.28)

which is rewritten to obtain

ẋWErW cosψE + ẏWErW sinψE = vErx , (2.29a)

−ẋWErW sinψE + ẏWErW cosψE = vEry . (2.29b)

Furthermore, the direction of the tire velocity vectors are given by the constraint equations

− sin (ψE − αr) ẋWErW + cos (ψE − αr) ẏWErW = 0, (2.30a)

− sin (ψE + δf − αf ) ẋWEfW + cos (ψE + δf − αf ) ẏWEfW = 0. (2.30b)

The equations (2.27), (2.29) and (2.30) are used to obtain

ψ̇1 =
vErx
l1

tan (δf − αf )−
vEry
l1
, (2.31a)

vEry = −vErx tanαr. (2.31b)

The velocities vErx and vEry have their origin in the ego vehicle’s rear axle, and the ve-
locities in the vehicle’s center of gravity are given by vx , vEx ≈ vErx and vy , vEy =
vEry + ψ̇Elr. The ego vehicles body side slip angle β is defined in (2.26), and by inserting
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this relation into (2.31) the following equations are obtained

tanαr =
ψ̇E · lr
vx

− tanβ, (2.32a)

tan(δf − αf ) =
ψ̇E · lf
vx

+ tanβ. (2.32b)

Small α and β angles (tanα ≈ α and tanβ ≈ β) can be assumed during normal driving
conditions i.e.,

αr =
ψ̇Elr
vx
− β, (2.33a)

αf = − ψ̇Elf
vx
− β + tan δf . (2.33b)

Process Model

Newton’s second law of motion, F = ma, is applied to the center of gravity. Only the
lateral axis y has to be considered, since the longitudinal movement is a measured input∑

Fi = may, (2.34)

where
ay = v̇y + ψ̇E vx, (2.35)

and
v̇y ≈

d

dt
(βvx) = vxβ̇ + v̇xβ, (2.36)

for small angles. By inserting the tire forcesFi, which were defined by the tire model (2.21),
into (2.34) the following force equation is obtained

Cαf αf cos δf + Cαr αr = m(vxψ̇E + vxβ̇ + v̇xβ), (2.37)

where m denotes the mass of the ego vehicle. The moment equation∑
Mi = Izz ψ̈E (2.38)

is used in the same manner to obtain the relations for the angular accelerations

lf Cαf αf cos δf − lr Cαr αr = Izz ψ̈E , (2.39)

where Izz denotes the moment of inertia of the vehicle about its vertical axis in the center
of gravity. Inserting the relations for the wheel side slip angles (2.33) into (2.37) and
(2.39) results in

m(vxψ̇E + vxβ̇ + v̇xβ) = Cαf

(
ψ̇Elf
vx

+ β − tan δf

)
cos δf + Cαr

(
β − ψ̇Elr

vx

)
,

(2.40a)

Izzψ̈E = lf Cαf

(
ψ̇Elf
vx

+ β − tan δf

)
cos δf − lr Cαr

(
β − ψ̇Elr

vx

)
.

(2.40b)
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These relations are rewritten according to

ψ̈E = β
−lfCαf cos δf + lrCαr

Izz
− ψ̇E

Cαf l
2
f cos δf + Cαrl

2
r

Izzvx
+
lfCαf tan δf

Izz
,

(2.41a)

β̇ = −βCαf cos δf + Cαr + v̇xm

mvx
− ψ̇E

(
1 +

Cαf lf cos δf − Cαrlr
v2
xm

)
+
Cαf sin δf
mvx

,

(2.41b)

to obtain the process model (2.4a).

Measurement Model

The ego vehicle’s lateral acceleration in the CoG is given by

ay = vx(ψ̇E + β̇) + v̇xβ. (2.42)

By replacing β̇ with the expression given in (2.41b) and at the same time assuming that
v̇xβ is small and can be neglected, the following relation is obtained

ay = vx(ψ̇E + β̇)

= −βCαf cos δf + Cαr +mv̇x
m

+ ψ̇E
−Cαf lf cos δf + Cαrlr

mvx
+
Cαf
m

sin δf ,

(2.43)

which is the measurement equation in (2.4b).

2.3.4 Single Track Model with Road Interaction

There are several different way to model the ego vehicle. The single track model (2.4)
is used in all papers in Part II, but in Paper A a comparison is made with two other
approaches. These are based on different vehicle models, which are discussed in this
section.

The first model is commonly used for autonomous driving and lane keeping. This
model is well described by e.g. Dickmanns (2007) and Behringer (1997). Note that the
ego vehicle’s motion is modeled with respect to a road fixed coordinate frame, unlike the
single track model in Section 2.3.3, which is modeled in a Cartesian world coordinate
frame.

The relative angle between the vehicle’s longitudinal axis and the tangent of the road
is denoted ψRE . Ackermann’s steering geometry is used to obtain the relation

ψ̇RE =
vx
lb
δf − vx · c0, (2.44)

where the current curvature of the road c0 is the inverse of the road’s radius. The lateral
displacement of the vehicle in the lane is given by

l̇E = vx(ψRE + β). (2.45)
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A process model for the body side slip angle was given in (2.41b), but since the yaw rate
ψ̇E is not part of the model in this section, equation (2.41b) has to be rewritten according
to

β̇ = −Cαf cos δf + Cαr + v̇xm

mvx
β

−
(

1 +
Cαf lf cos δf − Cαrlr

v2
xm

)
vx
lb

tan δf +
Cαf
mvx

sin δf , (2.46)

which is further simplified by assuming small angles, to obtain a linear model according
to

β̇ = −Cαf + Cαr
mvx

β +
(
Cαf
mvx

− vx
lb

)
δf . (2.47)

Recall Example 2.4, where no deterministic input signals were used. Especially the
steering wheel angle might have a bias, for example if the sensor is not calibrated, which
leads to an accumulation of the side slip angle β in (2.47). Other reasons for a steering
wheel angle bias is track torsion or strong side wind, which the driver compensates for
with the steering wheel. The problem is solved by introducing an offset to the front wheel
angel as a state variable according to

δmf = δf + δoffs
f . (2.48)

To summarize, the state variable vector is defined as

xE3 =


ψRE
lE
β
δf
δoffs
f

 =


relative angle between vehicle and road
lateral displacement of vehicle in lane

vehicle body side slip angle
front wheel angle

front wheel angle bias offset

 (2.49)

and the process model is given by
ψ̇RE
l̇E
β̇

δ̇f
δ̇offs
f

 =


vx
lb
δf − vx · c0

vx(ψRE + β)
−Cαf+Cαr

mvx
β +

(
Cαf
mvx
− vx

lb

)
δf

wδf
0

 . (2.50)

Note that the curvature c0 is included in (2.44) and in the process model above. The road
geometry is the topic of the next section. The curvature c0 can either be modeled as a
deterministic input signal or as a state variable as shown in Example 2.5. This model is
used in the approach called “fusion 3” in Paper A, and the state vector is denoted xE3 .

Another and simpler vehicle model is obtained if the side slip angle is omitted and the
yaw rate ψ̇E is used instead of the steering wheel angle. The model is described together
with results in Eidehall (2007), Eidehall et al. (2007), Eidehall and Gustafsson (2006),
Gern et al. (2000, 2001), Zomotor and Franke (1997). The state variable vector is then
defined as

xE2 =
[
ψRE lE

]T
, (2.51)
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and the process model is simply given by[
ψ̇RE
l̇E

]
=
[
vxc0 + ψ̇E
vxψRE

]
, (2.52)

where the yaw rate ψ̇E is modeled as an input signal and the curvature c0 is modeled
either as an input signal or as a state variable in combination with a road model. This
model, in combination with the road model (2.56) described in the next section, is used in
the approach called “fusion 2” in Paper A, and the state vector is xE2 .

More advanced vehicle models with more degrees of freedom, including the two track
model, are described by Schofield (2008).

2.4 Road Model

The road, as a construction created by humans, possesses no dynamics; it is a static time
invariant object in the world coordinate frame. The building of roads is subject to road
construction standards such as VGU (2004a,b), hence, the modeling of roads is geared
to these specifications. However, if the road is described in the ego vehicle’s coordinate
frame and the vehicle is moving along the road it is possible and indeed useful to describe
the characteristics of the road using time varying state variables.

A road consists of straight and curved segments with constant radius and of varying
length. The sections are connected through transition curves, so that the driver can use
smooth and constant steering wheel movements instead of stepwise changes when passing
through road segments. More specifically, this means that a transition curve is formed as
a clothoid, whose curvature c changes linearly with its curve length xc according to

c(xc) = c0 + c1 ·xc. (2.53)

Note that the curvature c is the inverse of the radius. Now, suppose xc is fixed to the ego
vehicle, i.e. xc = 0 at the position of the ego vehicle. When driving along the road and
passing through different road segments c0 and c1 will not be constant, but rather time
varying state variables

xR1 =
[
c0
c1

]
=
[

curvature at the ego vehicle
curvature derivative

]
. (2.54)

Using (2.53) a change in curvature at the position of the vehicle is given by

dc(xc)
dt

∣∣∣∣
xc=0

= ċ0 =
dc0
dxc
· dxc
dt

= c1 · vx, (2.55)

where vx is the ego vehicle’s longitudinal velocity. This relation was introduced by Dick-
manns and Zapp (1986), who posted the following process model[

ċ0
ċ1

]
=
[
0 vx
0 0

] [
c0
c1

]
+
[

0
wc1

]
. (2.56)

This model is sometimes also referred to as the simple clothoid model. Note that the
road is modeled in a road aligned coordinate frame, with the components (xc, yc). There
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are several advantages using road aligned coordinate frames, especially when it comes to
the process models of the other vehicles on the same road, which can be greatly simpli-
fied. However, the flexibility of the process model is reduced and basic dynamic relations
such as Newton’s and Euler’s laws cannot be directly applied. The road model (2.53) is
transformed into Cartesian coordinates (xR, yR) using

xR(xc) =

xc∫
0

cos (χ(x))dx ≈ xc, (2.57a)

yR(xc) =

xc∫
0

sin (χ(x))dx ≈ c0
2
x2
c +

c1
6
x3
c , (2.57b)

where the heading angle χ is defined as

χ(x) =

x∫
0

c(λ)dλ = c0x+
c1
2
x2. (2.57c)

The origin of the two frames is fixed to the ego vehicle, hence, integration constants
(xR0 , y

R
0 ) are omitted. Example 2.5 shows how the simple clothoid model can be combined

with the ego vehicle model described in Section 2.3.4 into one state space model.

Example 2.5: Single Track Model with Road Interaction

An alternative single track model was proposed in Section 2.3.4. The vehicle is modeled
in a road aligned coordinate frame and the process model (2.50) includes the curvature c0,
which was considered as a state variable in this section. Hence, the vehicle model (2.50)
can be augmented with a road model e.g., the simple clothoid model (2.56), to describe
the vehicle’s motion, the shape of the road and their interaction according to the linear
state space model

ψ̇RE
l̇E
β̇

δ̇f
δ̇offs
f

ċ0
ċ1


=



0 0 0 vx
lb

0 −vx 0
vx 0 vx 0 0 0 0
0 0 Cαf+Cαr

mvx

Cαf
mvx
− vx

lb
0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 vx
0 0 0 0 0 0 0





ψRE
lE
β
δf
δoffs
f

c0
c1


+



0
0
0
wδf
0
0
wc1


,

(2.58a)


ψmRE
lmE
δmf
cm0

 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 0





ψRE
lE
β
δf
δoffs
f

c0
c1


+


eψRE
elE
eδf
ec0

 . (2.58b)
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The velocity vx is modeled as a deterministic input signal and the measurements

ycamera =
[
ψmRE lmE cm0

]T
(2.59)

are obtained using a camera and a computer vision algorithm. The front wheel angle δmf
is derived from the steering wheel angle, which is measured by the steering wheel angle
sensor. This model is similar to the model denoted “fusion 3” in Paper A.

A problem appears when two or more clothoid segments, with different parameters c0
and c1, are observed in the same camera view. The parameter c0 will change continuously
during driving, whereas c1 will be constant in each segment and change stepwise at the
segment transition. This leads to a dirac impulse in ċ1 at the transition. The problem can
be solved by assuming a high process noise wc1 , but this leads to less precise estimation
of the state variables when no segment transitions occur in the camera view. To solve
this problem Dickmanns (1988) proposed an averaging curvature model, which is best
described with an example. Assume that the ego vehicle is driving on a straight road
(i.e., c0 = c1 = 0) and that the look ahead distance of the camera is x̄c. A new segment
begins at the position x′c < x̄c, which means that there is a step in c1 and c0 is ramped
up, see Figure 2.3. The penetration into the next segment is lc = x̄c − x′c. The idea of
this model, referred to as averaging or spread-out dynamic curvature model, with the new
state variables c0m and c1m, is that it generates the true lateral offset yR(x̄c) at the look
ahead distance x̄c, i.e.

yRreal(x̄c) = yRmodel(x̄c), (2.60)

but it is continuously spread out in the range (0, x̄c). The lateral offset of the real road as
a function of the penetration lc, for 0 ≤ lc ≤ x̄c, is

yRreal(lc) =
c1
6
l3c , (2.61)

since the first segment is straight. The lateral offset of the averaging model as a function
of the penetration lc is

yRmodel(lc) =
c0m(lc)

2
x̄2
c +

c1m(lc)
6

x̄3
c , (2.62)

at the look ahead distance x̄c. The equation

c1
l3c
x̄2
c

= 3c0m(lc) + c1m(lc)x̄c, (2.63)

is obtained by inserting (2.61) and (2.62) into (2.60). By differentiating (2.63) with re-
spect to lc and using the relations dc1

dlc
= 0, dc0m(lc)

dlc
= c1m(lc) and d( · )

dlc
= d( · )

dt ·
dt
dlc

the
following equation is obtained

ċ1m = 3
vx
x̄c

(c1(lc/x̄c)2 − c1m), (2.64)

for lc < x̄c. Since (lc/x̄c)2 is unknown it is usually set to 1 (Dickmanns, 2007), which
finally yields

ċ1m = 3
vx
x̄c

(c1 − c1m). (2.65)
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yR

xR

c0 real road

xc

c1 real road

xc

x′
c

x̄c

lc

yR(x̄c)

model

real road

Figure 2.3: A straight and a curved road segment are modeled with the averaging
road model. The two upper plots shows the parameters c1 and c0 of the real road, the
bottom plot shows the real and the modeled roads in a Cartesian coordinate frame.

The state variable vector of the averaging model is defined as

xR2 =

c0mc1m
c1

 =

 curvature at the ego vehicle
averaged curvature derivative

curvature derivative of the foremost segment

 , (2.66)

and the process model is given by augmenting the simple clothoid model (2.56) with (2.65)
according to ċ0mċ1m

ċ1

 =

0 vx 0
0 −3 vxx̄c 3 vxx̄c
0 0 0

c0mc1m
c1

+

 0
0
wc1

 . (2.67)

The model is driven by the process noise wc1 , which also influences the other states. The
averaging model is well described in the recent book by Dickmanns (2007) and some
early results using the model are presented by e.g. Dickmanns and Mysliwetz (1992).

A completely different approach is proposed in Paper A, where the process model
describes the driven path of the ego vehicle instead of using road construction standards.
The shape of the road is given under the assumption that the ego vehicle is driving on the
road and the angle between the road and the ego vehicle is measured by the camera and
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included as a state variable. The advantage of this approach is that the ego vehicle’s path
can be modeled more accurately than an unknown road, since there are a lot of sensors
available in the vehicle and most vehicle dimensions are known. This model, denoted
“fusion 1”, is compared with two other approaches in Section 5.3 in Paper A, including a
model, denoted “fusion 3”, which is similar to the one presented in Example 2.5.

2.5 Target Model

In this work, only measurements from the ego vehicle’s sensors are available; that is the
target’s motion is measured using the ego vehicle’s radar and camera. This is the reason
for why the target model is simpler than the ego vehicle model. The targets play an
important role in the sensor fusion framework presented in this work, but little effort has
been spent modeling their motion. Instead standard models from target tracking literature
are used. A survey of different process models and measurement models are given by
Rong Li and Jilkov (2003) and Rong Li and Jilkov (2001), respectively. The subject is
also covered in the books by Blackman and Popoli (1999) and Bar-Shalom et al. (2001).
One typical target model is given in Example 2.6.

Example 2.6: Coordinated Turn Model
The coordinated turn model is commonly used to model moving targets. The ego vehicle’s
radar and camera measures the range dmTiEs , the range rate ḋmTiEs and the azimuth angle
δmTiEs to target number i as described in the introduction in Example 1.2 and shown in
Figure 2.1. The states of the coordinated turn model in polar velocity are given by

xT =


xWTiW
yWTiW
ψTi
vTix
ψ̇Ti
aTix

 =


x-position in W -frame
y-position in W -frame

heading angle
longitudinal velocity

yaw rate
longitudinal acceleration

 . (2.68)

The process and measurement models are given by

ẋWTiW
ẏWTiW
ψ̇Ti
v̇Tix
ψ̈Ti
ȧTix

 =


vTix cosψTi
vTix sinψTi

ψ̇Ti
aTix
0
0

+



0
0
0
0

wψ̈Ti
w
ȧ
Ti
x

 (2.69a)

dmTiEsḋmTiEs
δmTiEs

 =


√(

xWTiW − x
W
EW − xEEsE

)2 +
(
yWTiW − y

W
EW − yEEsE

)2
vTix cos (−(ψTi − ψE) + δTiEs)− vx cos δTiEs

arctan
yWTiW
xWTiW

− ψE − ψEsE

+ eT (2.69b)
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where (xEEsE , y
E
EsE

, ψEsE) represents the sensor mounting position and orientation in
the ego vehicle coordinate frame E. The single track ego vehicle state variable vector and
state space model (2.4) has to be augmented with the ego vehicle’s position in the world
frame (xWEW , y

W
EW ), since it is included in the measurement model of the target (2.69b).





3
Estimation Theory

This thesis is concerned with estimation problems, i.e. given measurements y the aim
is to estimate the parameter θ or the state x in (1.1). Both problems rely on the same
theoretical basis and the same algorithms can be used. The parameter estimation problem
is a part of the system identification process, which also includes the derivation of the
model structure, discussed in the previous chapter. The state estimation problem utilizes
the model and its parameters to solve for the states. When estimatingx it is assumed that θ
is known and vice versa. The parameter is estimated in advance if θ is time invariant or in
parallel with the state estimation problem if θ is assumed to be time varying. Example 3.1
illustrates how the states and parameters may be estimated.

Example 3.1: Parameter and State Estimation
Consider the single track model introduced in Example 1.1 and its equations derived in
Section 2.3. The front wheel angle δf is considered to be a state variable in Example 2.4
and the steering wheel angle δs is treated as a measurement. The measurement equation
is in its simplest form a constant ratio given by

δs = h(δf , θ) = is · δf . (3.1)

The parameter θ = is is assumed to be time invariant. The state δf must be known in order
to identify the parameter θ. Usually the parameter is estimated off-line in advance using
a test rig where the front wheel angle is measured with highly accurate external sensors.
The parameter is then used within the model in order to estimate the states on-line while
driving.

The tire parameterCα is assumed to change with weather and road conditions, hence it
is a time varying parameter. It has to be identified on-line at time t using the state estimates
from the previous time step t − 1, which in turn were estimated using the parameter
estimate from time step t− 1.

35
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For various reasons some systems are only modeled by a likelihood function. Often
these systems are static and there exists no Markov transition density. However, most
systems in this thesis are modeled by both a prediction and a likelihood function. In
system identification, the model parameter is estimated without physically describing the
parameter’s time dependency, hence static estimation theory is used. The state can be
estimated in more or less the same way. However, the process model (1.1a) is often given
and its time transition information is exploited to further improve the state estimate.

The origins of the estimation research field can be traced back to the work by Gauss
in 1795 on least squares (Abdulle and Wanner, 2002) and Bayes (1763) on conditional
probabilities. Bayes introduced an important theorem which has come to be referred to as
Bayes’ theorem,

p(x,θ|y) =
p(y|x,θ)p(x,θ)

p(y)
, (3.2)

with which it is possible to calculate the inverse probability p(x,θ|y) given a prior proba-
bility p(x,θ) and the likelihood function p(y|x,θ). Note that both the measurement and
the state or parameter are treated as random variables. Another view of the estimation
problem was introduced by Fisher (1922), who claimed that the probability of an estimate
should be seen as a relative frequency of the state or parameter, given data from long-run
experiments. Fisher also treats the measurement as a random variable. The main dif-
ference to Bayes’ approach is that in Fisher’s approach there is a true state or parameter
which is treated as deterministic, but unknown. To accentuate the different views, the
likelihood is often written using `(x,θ) to emphasize that the likelihood is regarded as a
function of the state x and the parameter θ.

After this brief historical background, the remainder of this chapter is outlined as fol-
lows. In Section 3.1, static estimation methods based on both Fishers and Bayes theories,
are discussed. These methods can be used for both state and parameter estimation. In
Section 3.2, dynamic estimation methods are discussed. These methods are within the
scope of this thesis only used for state estimation and are based solely on Bayes’ theories.

3.1 Static Estimation Theory

The general estimation problem consists of finding the estimates x̂ and θ̂ that minimize
a given loss function V (x,θ;y). This problem is separated into a parameter estimation
problem and a state estimation problem according to

θ̂ = arg min
θ

V (θ;x,y), (3.3a)

x̂ = arg min
x

V (x;θ,y). (3.3b)

How to separate a typical estimation problem into these two parts is shown Example 3.2.
General estimation techniques are covered by most textbooks on this topic, e.g. Kay

(1993), Kailath et al. (2000), Ljung (1999). There are many estimation methods available,
however, in this section the focus is on the methods used in Part II of this thesis.
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Example 3.2: Parameter and State Estimation
Consider the linear single track model in Example 2.3. Suppose that the state variables
are measured with external and highly accurate sensors. The yaw rate is measured with an
extra IMU and the body side slip angle β is measured with a so called Correvit R© sensor,
which uses optical correlation technology. This sensor incorporates a high intensity light
source that illuminates the road surface, which is optically detected by the sensor via a
two-phase optical grating system. Now, the parameter θ can be estimated, according to
(3.3a).

Conversely, if θ is known and y is measured, the state variables x can be estimated
using (3.3b).

This section covers estimation problems without any process model f( · ), where a
set of measurements is related to a parameter only via the measurement model h( · ).
Furthermore, only an important and special case where the measurement model is linear
in x is considered. The linear measurement model was given in (2.9b) and is repeated
here for convenience

yt = Ht(θ)xt + et. (3.4)

In the system identification community the nomenclature deviates slightly and (3.4)
is there referred to as a regression model

yt = ϕT
t θt + et, (3.5)

with the regressor ϕ. The nomenclature in (3.5) is used in the Papers B and C. Never-
theless, the nomenclature presented in (3.4) is used in this section in order to conform to
the rest of this chapter. That means that in the algorithms in this section h and x can be
substituted by ϕ and θ, respectively.

3.1.1 Least Squares Estimator

The least squares (LS) estimate is defined as the solution to the optimization problem,
where the squared errors between the predicted measurements and the actual measure-
ments are minimized according to,

x̂LSt = arg min
x

t∑
k=1

||yk − hk(x)||22. (3.6)

The solution for the linear case is given in Algorithm 3.1.
If the measurement covariance R = Cov (e) is known, or in practice at least assumed

to be known, then the weighted least squares (WLS) estimate is given by the optimization
problem

x̂WLS
t = arg min

x

t∑
k=1

(yk − hk(x))TR−1
k (yk − hk(x)). (3.7)

The solution for the linear case is given in Algorithm 3.2, and Example 3.3 illustrates how
the single track vehicle model can be reformulated to estimate the parameters using the
WLS.
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Algorithm 3.1: Least Squares
The least squares estimate and its covariance are given by

x̂LSt =

(
t∑

k=1

HT
kHk

)−1 t∑
k=1

HT
k yk = (HTH)−1

HTY , (3.8a)

Cov (x̂LS) = (HTH)−1(HTRH)(HTH)−1 , PLS . (3.8b)

The last equality is the batch solution, where H and Y were defined in (2.11). Fur-
thermore, the measurement noises Rk = Cov (ek) are forming the main diagonal of R
according toR = diag(R1, . . . , Rt).

Algorithm 3.2: Weighted Least Squares
The weighted least squares estimator and its covariance matrix are given by

x̂WLS
t =

(
t∑

k=1

HT
kR
−1
k Hk

)−1 t∑
k=1

HT
kR
−1
k yk =

(
HTR−1H

)−1
HTR−1Y ,

(3.9a)

Cov (x̂WLS) = (HTR−1H)−1 , PWLS , (3.9b)

where the weighting matrix is the noise covarianceR.

Example 3.3: Parameter and State Estimation

Consider the linear single track model in Example 2.3 and the separation of the parameter
and the state estimation problems in Example 3.2. Suppose that the vehicle’s mass m and
the dimensions lf and lr are known. Furthermore, suppose that the state variable xmay be
measured as described in Example 3.2. Consider the measurement equation (2.10b); the
parameter estimation problem can now be formulated in the form (3.4) or (3.5) according
to

y = H(x,u, lf , lr,m)
[
Cαf
Cαr

]
+ e, (3.10)

and the parameters Cαf , Cαr can be solved for using e.g. WLS in (3.7). Furthermore, the
inverse of the moment of inertia 1/Izz may be estimated off-line by writing the process
model (2.10a) in the form (3.5) according to

xt+1 = H(xt,u, lv, lf ,m,Cαf , Cαr) ·
1
Izz

+w. (3.11)
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Another example, where the WLS estimator is applied, is given in Paper C. The
left and right borders of a road are modeled by polynomials and the coefficients are the
parameters which are estimated given a batch of measurements from a radar.

3.1.2 Recursive Least Squares

Consider the LS estimator in Section 3.1.1. If the state x varies with time it is a good
idea to weigh recent measurements higher than older ones. Introduce a forgetting factor
0 < λ ≤ 1 in the loss function (3.3) according to

V (x,y) =
t∑

k=1

λt−k||yk − hk(x)||22. (3.12)

In the linear case the solution is given by the recursion in Algorithm 3.3. For a detailed ac-
count of the RLS algorithm and recursive identification in general, see e.g. Ljung (1999),
Ljung and Söderström (1983).

In many practical applications the parameter estimate lies within a certain region.
Some possibilities to constrain the parameter, under the assumption that the constrained
region is a closed convex region in the parameter space, denoted DM, are described
by Goodwin and Sin (1984) and Ljung (1999). The simplest approach is to project the
new estimate x̂t back into DM by taking the old value x̂t−1 according to

x̂t =

{
x̂t if x̂t ∈ DM
x̂t−1 if x̂t /∈ DM

, (3.13)

or by projecting x̂t orthogonally onto the surface of DM, before continuing.
Another approach is the constrained least-squares algorithm described by Goodwin

and Sin (1984). If x̂t /∈ DM, then the coordinate basis for the parameter space is trans-
formed by defining

ρ = P
−1/2
t−1 x, (3.14)

where
P−1
t−1 = P

−T/2
t−1 P

−1/2
t−1 . (3.15)

The image of DM under the linear transformation (3.14) is denoted D̄M. The image
ρ̂t of x̂t, under P−1/2

t−1 , is orthogonally projected onto the boundary of D̄M to yield ρ̂′t.
Finally, the parameter x̂t is obtained by projecting back ρ̂′t under P 1/2

t−1 according to

x̂t = x̂′t , P
1/2
t−1ρ̂

′
t (3.16)

and continue.
An example of how the RLS estimator can be used for on-line estimation of the stiff-

ness parameters of the tires in a passenger car is given Paper B. The parameters in this
example tend to drift when the system is not excited enough, for example when driving at
a constant velocity on a straight road. The parameters are therefore constrained using the
simple idea given in (3.13).
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Algorithm 3.3: Recursive Least Squares
The recursive least squares solution is given by the recursion

x̂t = x̂t−1 +Kt (yt −HT
t x̂t−1) , (3.17a)

Kt = Pt−1Ht (λtΛt +HT
t Pt−1Ht)

−1
, (3.17b)

Pt =
1
λt

(
Pt−1 − Pt−1Ht(λtΛt +HT

t Pt−1Ht)−1HT
t Pt−1

)
, (3.17c)

where Pt = Cov(x̂t) and Λ denote a weighting matrix, which can be used to acknowledge
the relative importance of the different measurements.

3.1.3 Probabilistic Point Estimates

The maximum likelihood estimate, first introduced by Fisher (1912, 1922), is defined by

x̂ML
t = arg max

xt

p(y1:t|xt). (3.18)

Put into words, the estimate is chosen to be the parameter most likely to produce the
obtained measurements.

The posterior p(xt|y1:t) contains all known information about the state of the target
at time t. The maximum a posterior (MAP) estimator is defined by

x̂MAP
t = arg max

xt

p(xt|y1:t) = arg max
xt

p(y1:t|xt)p(xt), (3.19)

or put in words, find the most likely estimate of the parameter given the measurements
y1:t. Bayes’ theorem (3.2) and the fact that the maximization is performed over xt is used
in the second equality of (3.19). The ML and MAP estimates are not considered in this
work, but mentioned here to complete the view.

3.2 Filter Theory

The topic of this section is recursive state estimation based on dynamic models. The iter-
ation process of the state space estimation was briefly described in words in Section 1.4.
The state estimation theory is influenced by the Bayesian view, which implies that the
solution to the estimation problem is provided by the filtering probability density func-
tion (pdf) p(xt|y1:t). The introduction to this section will be rather general using the
model defined in (2.18). Bayes’ theorem was introduced in (3.2) and is used to derive the
recursive Bayes filter equations

p(xt+1|y1:t) =
∫
p(xt+1|xt)p(xt|y1:t)dxt, (3.20a)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
, (3.20b)
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with the denominator

p(yt|y1:t−1) =
∫
p(yt|xt)p(xt|y1:t−1)dxt. (3.20c)

These equations describe the time evolution

· · · → xt|t → xt+1|t → xt+1|t+1 → · · · (3.21)

of the random state vector x. The Bayes posterior density function p(xt|y1:t) conditioned
on the time sequence y1:t = {y1, . . . ,yt} of measurements accumulated at time t is the
probability density function of xt|t. The probability density function p(xt+1|y1:t) is the
time prediction of the posterior p(xt|y1:t) to the time step of the next measurement yt+1.
Note that the Bayes normalization factor given by (3.20c) is independent of x. In practice
the numerator of (3.20b) is calculated and then simply normalized, since the integral of
the posterior density function must be unitary.

If p(yt|xt), p(xt+1|xt) and p(xt) are linear and Gaussian then (3.20a) and (3.20b)
are reduced to the Kalman filter prediction and measurement update, respectively. The
Kalman filter is treated in Section 3.2.1. In contrast, if p(yt|xt), p(xt+1|xt) and p(xt) are
nonlinear, but still assumed Gaussian, several approximations of (3.20a) and (3.20b) exist.
The two most common filters are the extended Kalman Filter and the unscented Kalman
filter, which are outlined in the Sections 3.2.2 and 3.2.3, respectively. Other methods,
including methods that approximate other density functions than Gaussian, are neatly
covered by Hendeby (2008) and Schön (2006). The most popular approaches are the
particle filter and the marginalized particle filter, see e.g. Ristic et al. (2004), Arulampalam
et al. (2002), Cappe et al. (2007), Djuric et al. (2003), Karlsson (2005), Schön et al. (2005).

3.2.1 The Linear Kalman Filter

The linear state space representation subject to Gaussian noise, which were given in (2.9),
is the simplest special case when it comes to state estimation. The model is repeated here
for convenience;

xt+1 = Ft(θ)xt +Gut (θ)ut +Gwt wt, w ∼ N (0, Q), (3.22a)
yt = Ht(θ)xt +Hu

t (θ)ut + et, e ∼ N (0, R). (3.22b)

The linear model (3.22) has two important properties. All density functions involved in
the model and state estimation are Gaussian and a Gaussian density function is completely
parametrized by the mean and the covariance, i.e. the first and second order moment.
Hence, the Bayesian recursion (3.20) is simplified to only propagating the mean and co-
variance of the involved probability density functions. The most well known estimation
algorithm is the Kalman Filter (KF), derived by Kalman (1960) and Kalman and Bucy
(1961), and shown in Algorithm 3.4. Example 3.4 shows how the single track vehicle
model, introduced in Example 1.1, may be rewritten to be used with the Kalman filter,
which in turn is used to estimate the states.
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Algorithm 3.4: Kalman Filter
Consider the linear state space model (3.22). The Kalman filter is given by the two
following steps.

Prediction

x̂t|t−1 = Ft−1x̂t−1|t−1 +Gut−1ut−1 (3.23a)
Pt|t−1 = Ft−1Pt−1|t−1F

T
t−1 +Gwt−1Qt−1G

wT
t−1 (3.23b)

Measurement Update

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)−1 (3.24a)

x̂t|t = x̂t|t−1 +Kt(yt −Htx̂t|t−1 −Hu
t ut) (3.24b)

Pt|t = (I −KtHt)Pt|t−1 (3.24c)

Example 3.4: Linearized Single Track Model

The single track vehicle model was introduced in Example 1.1 and the model equations
were derived in Section 2.3. The process model (2.4a) and the measurement model (2.4b)
are linear in the state variables and can be written in the form[

ψ̇t+1

βt+1

]
= Ft(v̇x, vx,θ)

[
ψ̇t
βt

]
+Gut (vx,θ)δf +wt, w ∼ N (0, Q), (3.25a)[

ψ̇mt
ay,t

]
= Ht(v̇x, vx,θ)

[
ψ̇t
βt

]
+Hu

t (θ)δf + et, e ∼ N (0, R), (3.25b)

as shown in Example 2.3. Since the inputs v̇x and vx are present in Ft, Gut and Ht, these
matrices must be recalculated at each time step before being used in the Kalman filter
(Algorithm 3.4) to estimate the states.

3.2.2 The Extended Kalman Filter

In general, most complex automotive systems tend to be nonlinear. When it comes to
solving state estimation problems in sensor fusion frameworks, nonlinear models are com-
monly applied. This holds also for the work presented in this thesis, but the problems are
restricted by the assumption that the process and measurement noise is Gaussian. The
most common representation of nonlinear systems is the state space model given in (1.1),
repeated here for convenience;

xt+1 = ft(xt,ut,wt,θ), w ∼ N (0, Q), (3.26a)
yt = ht(xt,ut, et,θ), e ∼ N (0, R). (3.26b)
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The basic idea behind the extended Kalman filter (EKF) is to approximate the nonlinear
model (3.26) by a linear model and apply the Kalman filter locally. The local approxima-
tion is obtained by computing a first order Taylor expansion around the current estimate.
The result is the extended Kalman filter, which is given in Algorithm 3.5. Early practical
applications and examples of the EKF are described in the works by Smith et al. (1962),
Schmidt (1966). An early reference where the EKF is treated is Jazwinski (1970), other
standard references are Anderson and Moore (1979), Kailath et al. (2000) .

The linearization used in the EKF assumes that all second and higher order terms in
the Taylor expansion are negligible. This is certainly true for many systems, but for some
systems this assumption can significantly degrade the estimation performance. Higher
order EKF are discussed by Bar-Shalom and Fortmann (1988) and Gustafsson (2000).
This problem will be revisited in the next section.

3.2.3 The Unscented Kalman Filter

The EKF is sufficient for many applications. However, to use an EKF the gradients of
ft( · ) and ht( · ) must be calculated, which in some cases is either hard to do analyti-
cally or computational expensive to do numerically. An alternative approach, called the
unscented Kalman filter (UKF) was proposed by Julier et al. (1995), Julier and Uhlmann
(1997) and further refined by e.g. Julier and Uhlmann (2002, 2004), Julier (2002). Instead

Algorithm 3.5: Extended Kalman Filter
Consider the state space model (3.26). The extended Kalman filter is given by the two
following steps.

Prediction

x̂t|t−1 = ft−1(x̂t−1|t−1,ut−1, 0,θ) (3.27a)
Pt|t−1 = Ft−1Pt−1|t−1F

T
t−1 +Gt−1Qt−1G

T
t−1 (3.27b)

where

Ft =
∂ft(xt,ut, 0,θ)

∂xt

∣∣∣∣
xt=x̂t|t

Gt =
∂ft(x̂t|t,ut,wt,θ)

∂wt

∣∣∣∣
wt=0

(3.27c)

Measurement Update

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)−1 (3.28a)

x̂t|t = x̂t|t−1 +Kt(yt − ht(x̂t|t−1,ut, 0,θ)) (3.28b)
Pt|t = (I −KtHt)Pt|t−1 (3.28c)

where

Ht =
∂ht(xt,ut, 0,θ)

∂xt

∣∣∣∣
xt=x̂t|t−1

(3.28d)
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of linearizing ft( · ) and ht( · ), the unscented transform (UT) is used to approximate the
moments of the prediction p(xt+1|xt) and the likelihood p(yt|xt). Thereby the UKF to
some extent also considers the second order terms of the models, which is not done by
the EKF.

The principle of the unscented transform is to carefully and deterministically select
a set of points, called sigma points, of the initial stochastic variable x, such that their
mean and covariance equal those of x. Then the sigma points are passed through the non-
linear function and based on the output the resulting mean and covariance are derived. In
case the process noise and measurement noise are not additive, sigma points are selected
from an augmented state space, which includes the state x, the process noise w and the
measurement noise e in one augmented state vector

x̂at|t =

 x̂t|t
E (wt)

E (et+1)

 , (3.29)

with dimension na = nx + nw + ne and the corresponding covariance matrix

P at|t =

Pt|t 0 0
0 Qt 0
0 0 Rt+1

 . (3.30)

If the noise is additive, then the noise covariances can be added directly to the estimated
covariances of the non-augmented sigma points.

There exist many possibilities to choose the sigma points, a thorough discussion about
different alternatives is presented by Julier and Uhlmann (2004). In the present work only
the standard form is reproduced. The basic principle is to choose one sigma point in
the mean of xa and 2na points symmetrically on a given contour, described by the state
covariance P a. The sigma points χi and the associated weights w(i) are chosen as

χ(0) = x̂a w(0) = w(0) (3.31a)

χ(i) = χ(0) +
(√

na
1− w(0)

P a
)
i

w(i) =
1− w(0)

2na
(3.31b)

χ(i+na) = χ(0) −
(√

na
1− w(0)

P a
)
i

w(i+na) =
1− w(0)

2na
(3.31c)

for i = 1, . . . , na, where (
√
A)i is the ith column of any matrix B, such that A =

BBT. The augmented state vector makes it possible to propagate and estimate nonlinear
influences that the process noise and the measurement noise have on the state vector and
the measurement vector, respectively. The weight on the mean w(0) is used for tuning
and according to Julier and Uhlmann (2004) preferable properties for Gaussian density
functions are obtained by choosing w(0) = 1 − na

3 . After the sigma points have been
acquired, the augmented state vector can be partitioned according to

χat|t =

 χxt|tχwt
χet+1

 . (3.31d)
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Algorithm 3.6: Unscented Kalman Filter
Consider the state space model (3.26). The unscented Kalman filter is given by the fol-
lowing steps, which are iterated in the filter.

Choose sigma points according to (3.31)

Prediction

x̂t|t−1 =
2na∑
i=0

w(i)χ
x,(i)
t|t−1 (3.32a)

Pt|t−1 =
2na∑
i=0

w(i)
(
χ
x,(i)
t|t−1 − x̂t|t−1

)(
χ
x,(i)
t|t−1 − x̂t|t−1

)T

(3.32b)

where
χ
x,(i)
t|t−1 = ft−1

(
χ
x,(i)
t−1|t−1,ut−1, χ

w,(i)
t−1|t−1,θ

)
(3.32c)

Measurement Update

x̂t|t = x̂t|t−1 + PxyP
−1
yy (yt − ŷt|t−1) (3.33a)

Pt|t = Pt|t−1 − PxyP−1
yy P

T
xy (3.33b)

where

y
(i)
t|t−1 = ht

(
χ
x,(i)
t|t−1,ut, χ

e,(i)
t|t−1,θ

)
(3.33c)

ŷt|t−1 =
2na∑
i=0

w(i)y
(i)
t|t−1 (3.33d)

Pyy =
2na∑
i=0

w(i)
(
y

(i)
t|t−1 − ŷt|t−1

)(
y

(i)
t|t−1 − ŷt|t−1

)T

(3.33e)

Pxy =
2na∑
i=0

w(i)
(
χ
x,(i)
t|t−1 − x̂t|t−1

)(
y

(i)
t|t−1 − ŷt|t−1

)T

(3.33f)

The rest of the UKF is summarized in Algorithm 3.6.
An advantage of the UKF, compared to the EKF, is that the second order bias correc-

tion term is implicitly incorporated in the mean estimate. Example 3.5 shows an important
problem where the second order term should not be neglected.
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Example 3.5: Tracked Radar Object
The radar target tracking problem was introduced in Example 1.2 and the model was
defined in Section 2.5. The sensor model converts the Cartesian state variables to polar
measurements. This is one of the most important and commonly used transformations for
sensors measuring range and azimuth angle. Usually the azimuth angle error of these type
of sensors is significantly larger than the range error. This also holds for the sensors used
in this thesis.

Let the sensor be located at the origin and the target at (x, y) = (0, 1) in this simple,
though commonly used example (Julier and Uhlmann, 2004). Measurements may be
simulated by adding Gaussian noise to the actual polar value (r, ψ) = (1, π/2) of the
target localization. A plot of several hundred state estimates, produced in a Monte Carlo
simulation, forms a banana shaped arc around the true value (x, y) = (0, 1), as shown in
Figure 3.1. The azimuth error causes this band of Cartesian points to be stretched around
the circumference of a circle, with the result that the mean of these points lies somewhat
closer to the origin than the point (0, 1). In the figure it is clearly shown that that the UT
estimate (×) lies close to the mean of the measurements (◦). Furthermore, it is shown that
the linearized state estimate (+) produced by the EKF is biased and the variance in the y
component is underestimated.

As a result of the linearization in the EKF, the second order terms are neglected, which
produces a bias error in the mean as shown in Example 3.5. In Julier and Uhlmann (2004)
it is shown how the UT calculates the projected mean and covariance correctly to the
second order terms.
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Figure 3.1: A Monte Carlo simulation of the problem in Example 3.5 is shown in
Figure (a). The sensor, for example a radar, is in the position (0, 0) and the true
position of the target is in the position (0, 1). The mean of the measurements is at
◦ and the uncertainty ellipse is solid. The linearized mean is at + and its ellipse is
dashed. The UT mean is at × and its uncertainty ellipse is dotted. Figure (b) is a
zoom. Note that the scaling in the x and the y axis are different.





4
The Sensor Fusion Framework

The components of the sensor fusion framework were illustrated in Figure 1.1 in the
introduction. The inner boxes, i.e. the process and measurement models, have been dis-
cussed in Chapter 2, where several examples were given. Furthermore, these models were
used in the estimation algorithms, covered in Chapter 3, to estimate parameters and state
variables. The present chapter deals with the outer box, that is the “surrounding infras-
tructure”.

Instead of considering the individual components, the sensor fusion framework can
also be represented as an iterative process according to Figure 1.4. In view of this inter-
pretation, the present chapter deals with the sensor data processing, the data association
and the track management.

Practical design principles and implementation strategies, e.g. to manage asynchronous
sensor data and out-of-sequence-measurements are not considered in this work. However,
these topics, with application to automotive systems, are treated in the recent paper by
Bengtsson and Danielsson (2008).

The chapter begins with a brief presentation of the experimental setup in Section 4.1.
Multi-target multi-sensor tracking, including data association and track management, is
treated in Section 4.2. The chapter is concluded with Section 4.3 treating road border
and free space estimation. There are many alternatives when it comes to estimating and
representing the free road area in front of the ego vehicle. Two methods are presented
in the papers C and D in Part II, and a third method is described in Section 4.3.1. The
three approaches are compared and their advantages and disadvantages are discussed in
Section 4.3.2.

4.1 Experimental Setup

During the time of this work measurements from three different vehicles were used. The
vehicles and some of their sensors are shown in Figure 4.1.

49
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Figure 4.1: The Volvo S80 in Figure (a) is equipped with 5 radars and one camera,
as illustrated in Figure (b). The field of view is illustrated as striped zones for the
radar and a gray zone for the camera. Figure (c) shows the Volvo XC90, which is
equipped only with one long range radar and one camera, compare with Figure (d).
Finally, the Audi S3 in Figure (e) is not equipped with any exteroceptive sensors, but
with axle height sensors as illustrated in Figure (f). Note that the drawings are not
true to scale. Courtesy of Volvo Car Corporation.
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All three vehicles were equipped with standard, serial production IMU, steering wheel
angle sensor and wheel speed sensors. The Volvo XC90 was equipped with a forward
looking 77 GHz mechanically scanning frequency modulated continuous-wave (FMCW)
radar and a forward looking vision sensor (camera), measuring range and bearing angle to
the targets. Computer vision is included in the image sensor and comprehends object and
lane detection and provides for example the lane curvature. In addition, the Volvo S80 was
equipped with four wide field of view 24 GHz radars at the corners of the vehicle. The
range of the forward looking radar is approximately 200 m, whereas it is approximately
50 m for the four other radars.

The Audi S3 was equipped with neither radar nor camera. In this vehicle the vertical
position of the front and the rear suspension is measured with axle height sensor, and can
be used to derive the pitch angle. A summary of the sensor equipment of the prototypes
is given in Table 4.1.

The results in this thesis are based on tests performed on public roads. Hence, no
specific test procedures are realized and no reference values are provided.

4.2 Target Tracking

Radar measurements originate from objects, referred to as targets, or from false detec-
tions, referred to as clutter. The target tracking collects the measurement data including
one or more observations of targets and partitions the data into sets of observations, re-
ferred to as tracks. Measurements associated to one track are supposed to be produced by
the same source.

The track management handles the tracks and ensures that only tracks with sufficient
quality are kept within the sensor fusion framework. If measurements are likely to origi-
nate from a new target, then the track management starts a new track and chooses a suit-
able prior p(x0|y0) to initiate the tracking filter. If a track is not observed for a number
of time steps it is removed.

When the tracks are observed a number of time steps, quantities such as position and
velocity can be estimated. Furthermore, new measurements are first considered for the
update of existing tracks and a data association algorithm is used to determine which
measurement corresponds to which track. This is the topic of Section 4.2.1. If multiple
measurements are received from the same target, i.e. when the size of the target is large

Table 4.1: Overview of the sensors equipment in the prototypes.

S80 XC90 S3

proprioceptive
sensors

IMU X X X
steering wheel angle sensor X X X
wheel speed sensor X X X
axle height sensors X

exteroceptive
sensors

forward looking radar X X
forward looking camera X X
rear radar X
side radar X
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compared to the sensor resolution, it can be modeled and tracked as a so called extended
target. Different approaches to take care of the measurements and to appropriately model
the target are discussed in Section 4.2.2.

4.2.1 Data Association

This section would not be needed if only the state variables of the ego vehicle, introduced
in Example 1.1 are estimated, because in that case it is obvious how the measurements
are associated with the state variables. In the object tracking problem, introduced in Ex-
ample 1.2, it is no longer obvious which measurement should update which track. There
are many methods available for finding likely measurement-to-track associations, i.e. for
solving the data association problem, see e.g., Bar-Shalom and Fortmann (1988), Black-
man and Popoli (1999). However, the task is seldom easy, due to noisy measurements,
multiple reflections on each target and erroneous detections caused by spurious reflec-
tions.

The first step in the data association process is called gating. Gates are constructed
around the predicted measurement ŷi,t|t−1 of each track i to eliminate unlikely pairings
and thereby to limit the number of measurement-to-track associations. This reduces the
number of measurements that are examined by the data association algorithm. The resid-
ual between a measurement yj,t and a predicted measurement ŷi,t|t−1 is

ỹi,j,t|t−1 = yj,t − ŷi,t|t−1, (4.1)

and it is assumed Gaussian distributed according to

ỹi,j,t|t−1 ∼ N (0, Si,t), (4.2)

where Si,t is the innovation covariance. The gate Gi is defined as the region

Gi ,
{
y
∣∣(y − ŷi,t|t−1)TS−1

i,t (y − ŷi,t|t−1) ≤ UG
}
, (4.3)

where UG is the gating threshold. The measurements yj,t ∈ Gi are considered as candi-
dates for updating the track xi,t in the data association algorithm.

Now, different conflicts occur. There are several measurements falling within the same
gate and there are also measurements falling within more than one gate. There exist many
techniques to solve these conflicts, which are considered to be the main part of the data
association process. The simplest association algorithm is called nearest neighbor (NN).
This approach searches for a unique pairing, i.e. one track xi,t is only updated by one
observation yj,t. There are some possibilities to decide which measurement actually is
the nearest. Common approaches are to choose the measurement with the smallest error
ỹi,j,t|t−1 or the smallest statistical distance

d2(ỹi,j,t|t−1) = ỹT
i,j,t|t−1S

−1
i,t ỹi,j,t|t−1 (4.4)

which is also known as the Mahalanobis distance, see e.g., Bar-Shalom et al. (2001).
Another method is to choose the measurement with the largest likelihood according to

`(yj,t, ŷi,t|t−1) = N
(
yj,t; ŷi,t|t−1, Si,t

)
. (4.5)

Besides the two books mentioned above a nice overview concerning data association
and track handling is given in the recent work by Svensson (2008).
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4.2.2 Extended Object Tracking

In classical target tracking problems the objects are modeled as point sources and it is
assumed that only one measurement is received from each target at each time step. In
automotive applications, the targets are at a close distance and of such a large size that
individual features can be resolved by the sensor. A target is denoted extended whenever
the target extent is larger than the sensor resolution, and it is large enough to occupy
multiple resolution cells of the sensor. Put in other words, if a target should be classified
as extended does not only depend on its physical size, but rather on the physical size
relative to the sensor resolution.

The methods used to track extended objects are very similar to the ones used for
tracking a group of targets moving in formation. Extended object tracking and group
tracking is thoroughly described in e.g., Ristic et al. (2004). The bibliography Waxman
and Drummond (2004) provides a comprehensive overview of existing literature in the
area of group and cluster tracking. There exist some different approaches to represent, i.e.
to model, the extended target, of which four methods are described in this section.

Point Features

The first and most traditional method is to model the target as a set of point features in
a target reference frame, each of which may contribute at most one sensor measurement.
The exact location of a feature in the target reference frame is often assumed uncertain.
However, if the appearance of the target is known and especially if typical radar reflection
points are known, then the location of the features in the target reference frame can be
assumed known. The motion of an extended target is modeled through the process model
in terms of the translation and rotation of the target reference frame relative to a world
coordinate frame, see e.g., Dezert (1998).

For an application in two dimensions the point features are defined as

PT =
{
pTi
}Np
i=1

with pTi =
[
xTpiT yTpiT

]T
(4.6)

in the target’s coordinate frame T . The position dWTW =
[
xWTW yWTW

]T
of the target’s

origin and the orientation ψT of the target’s frame is tracked relative to the world coordi-
nate frame. The state vector is defined as

x =
[
dWTW ψT ḋWTW ψ̇T PW

]T
, (4.7)

where the point features PW =
{
pWi
}Np
i=1

are expressed with respect to the world coor-
dinate frame W . The point features in the target’s coordinate frame can be mapped into a
point in the world frame, as they are defined in the state vector, through the transform

pWi = RWTpTi + dWTW , (4.8)

where the rotation matrix RWT was defined previously in (2.19).
The process model for the frame can for example be a constant velocity model, where

the velocities are modeled as a first order Gaussian random walk. The uncertainty about
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the exact position of the point feature is modeled according to

p(PW
t |dWTW , ψT ) =

Np∏
i=1

N (pWi,t |RWT (ψT )pTi + dWTW , wpI2), (4.9)

which means that the uncertainty is assumed isotropic around the mean location of the
point and with known variance wp.

At each time step a set of Ny measurements Y = {yi}
Ny
i=1 is received and has to be

associated to the states. Not all measurements arise from a point feature, some are due
to false detections (clutter). The association hypotheses are derived through some data
association algorithm. In Vermaak et al. (2005) a method is proposed where the asso-
ciation hypotheses are included in the state vector and the output of the tracking filter
is a joint posterior density function of the state vector and the association hypotheses.
Furthermore, a multi-hypothesis likelihood is obtained by marginalizing over all the asso-
ciation hypotheses. An alternative solution is also proposed using a particle filter, where
the unknown hypotheses are sampled from a well designed proposal density function.

An automotive radar sensor model developed for simulation purposes is proposed in
Bühren and Yang (2006), where it is assumed that radar sensors often receive measure-
ments from specific reflection centers on a vehicle. These reflection centers can be tracked
in a filter and valuable information regarding the vehicle’s orientation can be extracted as
shown in Gunnarsson et al. (2007). A difficulty in solving the data association problem
is the large number of association hypotheses available. To reduce the complexity Gun-
narsson et al. (2007) propose an approach where detections are associated with reflector
groups. The spatial Poisson distribution, discussed in the subsequent section, is consid-
ered to be inappropriate, since the number of vehicle detections is assumed essentially
known and not adequately modeled by a Poisson process.

Spatial Distribution

Instead of modeling the target as a number of point features, which are assumed to be ex-
plicit measurement sources, the target is represented by a spatial probability distribution.
It is more likely that a measurement comes from a region of high spatial density than from
a sparse region. In Gilholm and Salmond (2005), Gilholm et al. (2005) it is assumed that
the number of received target and clutter measurements are Poisson distributed, hence
several measurements may originate from the same target. Each target related measure-
ment is an independent sample from the spatial distribution. The spatial model could be a
bounded distribution, such as a uniform pdf or an unbounded distribution, such as a Gaus-
sian. The Poisson assumption allows the problem, or more specifically the evaluation of
the likelihood, to be solved without association hypotheses. The spatial distribution is
preferable where the point source models are poor representations of reality, that is in
cases where the measurement generation is diffuse.

In Gilholm and Salmond (2005) two simple examples are given. One where the princi-
ple axis of the extended target is aligned with the velocity vector, i.e. a target is represented
by a one dimensional uniform stick model. In the other example, a Gaussian mixture
model is assumed for the target. A Kalman filter implementation with explicit construc-
tions of assignment hypotheses is derived from the likelihood in Gilholm and Salmond
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(2005), whereas in Gilholm et al. (2005), a particle filter is applied directly given the like-
lihood which is represented by the Poisson spatial model of the stick. Hence, the need to
construct explicit measurement-target assignment hypotheses is avoided in Gilholm et al.
(2005).

Boers et al. (2006) present a similar approach, but since raw data is considered, no
data association hypotheses are needed. The method to use raw data, i.e. consider the
measurements without applying a threshold, is referred to as track before detect. A one
dimensional stick target is assumed also by Boers et al. (2006), but unlike Gilholm and
Salmond (2005), the target extent is assumed unknown. The state vector is given by the
stick’s center position and velocity as well as the stick’s extension according to

x =
[
x y ẋ ẏ L

]T
. (4.10)

The process model is a simple constant velocity model and the length L is modeled as a
random walk. The likelihood function is given by the probability distribution

p(y|x) =
∫
p(y|x̃)p(x̃|x)dx̃, (4.11)

where the spatial extension is modeled by the pdf p(x̃|x) and x̃ is assumed to be a point
source from an extended target with center given by the state vector x. Hence, a measure-
ment is received from a source x̃ with likelihood p(y|x̃).

Elliptical Shaped Target

In many papers dealing with the shape of a target it is assumed that the sensor, e.g. radar,
is also able to measure one or more dimensions of the target’s extent. A high-resolution
radar sensor may provide measurements of a targets down-range extent, i.e. the extension
of the objects along the line-of-sight. The information of the target’s extent is incorporated
in the tracking filter and aids the tracking process to maintain track on the target when it
is close to other objects.

An elliptical target model, to represent an extended target or a group of targets, is
proposed in Drummond et al. (1990). The idea was improved by Salmond and Parr (2003),
where the sensor not only provides measurements of point observations, but rather range,
bearing and down-range extent. The prime motivation of the study is to aid track retention
for closely spaced moving targets. Furthermore, the state vector includes the position,
velocity and the size of the ellipse. An EKF is used in Salmond and Parr (2003), but
it is concluded that the filter may diverge under certain conditions, since the relation
between the down-range extent measurement of the target and the position and velocity
coordinates in the state vector is highly nonlinear. The same problem is studied in Ristic
and Salmond (2004), where a UKF is implemented and tested. Even though the UKF
shows better performance it is concluded that neither the EKF nor the UKF are suitable
for this problem. The problem is further studied by Angelova and Mihaylova (2008),
where other filter techniques, based on Monte Carlo algorithms, are proposed. In this
paper the size of the ellipse takes values from a set of standard values, i.e. the algorithm
estimates the type of object from a list, under the assumption that typical target sizes are
known.

A group of objects moving collectively may also be modeled as an extended target.
The ellipse model is used to model a formation of aircraft in Koch (2008).
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Line Shaped Target

In paper D the road borders are modeled as extended objects in the form of lines. A line is
expressed as a third order polynomial in its coordinate frame. Since the road borders are
assumed to be stationary, the frames are not included in the state vector. Furthermore, sta-
tionary points such as delineators and lamp posts are also modeled in paper D. The nearest
neighbor algorithm is used to associate measurements from stationary observations Sm
to the targets. Here it is assumed that an extended line target Lj can give rise to several
measurements, but a point target Pi can only contribute to one measurement. Since the
likelihood of a line `SmLj is a one dimensional spatial density function, but the likelihood
of a point `SmPi is given by a two dimensional density function, a likelihood ratio test is
applied to determine the measurement-to-track association problem. The likelihood ratio
for a measurement ySm is given by

Λ(ySm) ,
`SmPi
`SmLj

. (4.12)

The corresponding likelihood ratio test is

Λ(ySm)
H0

≷
H1

η, (4.13)

where H0 and H1 correspond to hypotheses that the measurement ySm is associated to
the point Pi and to the line Lj , respectively. The threshold is selected as η < 1, since
the density function of a point is two dimensional and the density function of a line is one
dimensional. More theory about likelihood ratio test is given by e.g., van Trees (1968).

4.3 Estimating the Free Space using Radar

In this section three conceptually different methods to estimate stationary objects along
the road, or more specifically to estimate the road borders, are introduced and compared.
The first method considered in Section 4.3.1 is occupancy grid mapping, which discretizes
the map surrounding the ego vehicle and the probability of occupancy is estimated for
each grid cell. The second method applies a constrained quadratic program in order to
estimate the road borders and is described in detail in Paper C. The problem is stated as
a constrained curve fitting problem. The third method, described in Paper D and briefly
introduced in Section 4.2.2, associates the radar measurements to extended stationary
objects and tracks them as extended targets. This section is concluded in Section 4.3.2 by
comparing the three approaches.

4.3.1 Occupancy Grid Map

The objective is to compute a map of the environment surrounding the ego vehicle us-
ing as few variables as possible. A map is defined over a continuous space and it can
be discretized with, e.g. a grid approximation. The size of the map can be reduced to a
certain area surrounding the ego vehicle. In order to keep a constant map size while the
vehicle is moving, some parts of the map are thrown away and new parts are initiated.
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Occupancy grid mapping (OGM) is one method for tackling the problem of generating
consistent maps from noisy and uncertain data under the assumption that the ego vehicle
pose, i.e. position and heading, is known. These maps are very popular in the robotics
community, especially for all sorts of autonomous vehicles equipped with laser scanners.
Indeed several of the DARPA urban challenge vehicles (Buehler et al., 2008a,b,c) used
OGM’s. This is because they are easy to acquire, and they capture important information
for navigation. The OGM was introduced by Elfes (1987) and an early introduction is
given by Moravec (1988). To the best of the author’s knowledge, Borenstein and Koren
(1991) were the first to utilize OGM for collision avoidance. Examples of OGM in auto-
motive applications are given in Vu et al. (2007), Weiss et al. (2007). A solid treatment
can be found in the recent textbook by Thrun et al. (2005).

This section begins with a brief introduction to occupancy grid maps, according to
Thrun et al. (2005). Using this theory and a sensor with high resolution usually gives a
nice looking bird eye’s view map. However, since a standard automotive radar is used,
producing only a few range and bearing measurements at every time sample, some modi-
fications are introduced as described in the following sections.

Background

The planar map m is defined in the world coordinate frame W and is represented by a
matrix. The goal of any occupancy grid mapping algorithm is to calculate the filtering
probability density function of the map

p(m|y1:t,xE,1:t), (4.14)

where m denotes the map, y1:t , {y1, . . . ,yt} denotes the set of all measurements up
to time t, and xE,1:t denotes the path of the ego vehicle defined through the discrete-time
sequence of all previous positions. An occupancy grid map is partitioned into finitely
many grid cells

m = {mi}Nmi=1. (4.15)

The probability of a cell being occupied p(mi) is specified by a number ranging from 1
for occupied to 0 for free. The notation p(mi) will be used to refer to the probability that
a grid cell is occupied. A disadvantage with this design is that it not enables to represent
dependencies between neighboring cells.

The occupancy grid map was originally developed to primarily be used with measure-
ments from a laser scanner. A laser is often mounted on a rotating shaft and generates
a range measurement for every angular step of the mechanical shaft, i.e. a bearing an-
gle. This means that the continuously rotating shaft produces many range and bearing
measurements during every cycle. The OGM algorithms transform the polar coordinates
of the measurements into Cartesian coordinates in a fixed world or map frame. After
completing one mechanical measurement cycle the sensor provides the measurements for
use.

The algorithm loops through all cells and increases the occupancy probability p(mi)
if the cell was occupied according to the measurement yt. Otherwise the occupancy value
either remains unchanged or is decreased, depending on if the range to the cell is greater
or less than the measured range. The latter implies that the laser beam did pass this cell
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without observing any obstacles. If the measured range is great or the cell size is small,
it might be necessary to consider the angular spread of the laser beam and increase or
decrease the occupancy probability of several cells with respect to the beam width.

The map is assumed not to be changed during sensing. Problems of this kind, where
a state does not change over time are solved with binary Bayes filter, of which OGM is
one example. In this case the state can either be free mi = 0 or occupied mi = 1. A
standard technique to avoid numerical instabilities for probabilities close to 0 and to avoid
truncation problems close to 0 and 1 is to use the log odds representation of occupancy

`i,t = log
p(mi|y1:t,xE,1:t)

1− p(mi|y1:t,xE,1:t)
, (4.16)

or put in words, the odds of a state is defined as the ratio of the probability of this event
p(mi|y1:t,xE,1:t) divided by the probability of its complement 1 − p(mi|y1:t,xE,1:t).
The probabilities are easily recovered using

p(mi|y1:t,xE,1:t) = 1− 1
1 + exp `i,t

. (4.17)

Note that the filter uses the inverse measurement model p(m|y,x). Using Bayes’ rule it
can be shown that the binary Bayes filter in log odds form is

`i,t = `i,t−1 + log
p(mi|yt,xE,t)

1− p(mi|yt,xE,t)
− log

p(mi)
1− p(mi)

, (4.18)

where p(mi) represents the prior probability. The log odds ratio of the prior before pro-
cessing any measurements is defined as

`i,0 = log
p(mi)

1− p(mi)
. (4.19)

Typically p(mi) = 0.5 is assumed, since before having measurements nothing is known
about the surrounding environment. This value yields `0 = 0.

OGM with Radar Measurements

The radar system provides range and bearing measurements for observed targets at every
measurement cycle. The main difference to a laser is that there is not one range mea-
surement for every angular position of the moving sensor. The number of observations
depends on the environment. In general there are much fever observations compared to a
laser sensor. There is also a limit on the number of objects transmitted by the radar equip-
ment on the CAN-bus. Moving objects, which are distinguished by measurements of the
Doppler shift, are prioritized and more likely to be transmitted than stationary objects.
Furthermore, it is assumed that the opening angle of the radar beam is small compared
to the grid cell size. With these the OGM algorithm was changed to loop through the
measurements instead of the cells, in order to decrease the computational load. A radar’s
angular uncertainty is usually larger than its range uncertainty. When transforming the po-
lar coordinates of the radar measurements into the Cartesian coordinates of the map, the
uncertainties can either be transformed in the same manner or it can simply be assumed
that the uncertainty increases with the range.
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Experiments and Results

Figure 4.2a shows an OGM example of a highway situation. The ego vehicle’s camera
view is shown in Figure 4.2c. The size of the OGM is 401× 401 m, with the ego vehicle
in the middle cell. Each cell represents a 1×1 m square. The gray-level in the occupancy
map indicates the probability of occupancy p(m|y1:t,xE,1:t), the darker the grid cell, the
more likely it is to be occupied. The map shows all major structural elements as they are
visible at the height of the radar. This is a problem if the road is undulated and especially
if the radar observes obstacles over and behind the guardrail. In this case the occupancy
probability of a cell might be decreased even though it was previously believed to be
occupied, since the cell is between the ego vehicle and the new observation. The impact
of this problem can be reduced by tuning the filter well.

It is clearly visible in Figure 4.2a that the left border is sharper than the right. The only
obstacle on the left side is the guardrail, which gives rise to the sharp edge, whereas on the
right side there are several obstacles behind the guardrail, which also cause reflections,
e.g. noise barrier and vegetation. A closer look in Figure 4.2b reveals that there is no black
line of occupied cells representing the guardrail as expected. Instead there is a region with
mixed probability of occupancy and after about 5 m the gray region with initial valued
cells tell us that nothing is known about these cells.

In summary the OGM generates a good-looking overview of the traffic situation, but
not much information for a collision avoidance system. Given the sparse radar measure-
ments it is inefficient to represent the occupancy information as a rather huge square
matrix with most of its elements equal to 0.5, which indicates that nothing is known about
these cells.

4.3.2 Comparison of Free Space Estimation Approaches

The presented methods, i.e. the OGM in the previous section, the constrained curve fitting
problem in Paper C and the extended stationary objects tracks in Paper D, do not depend
on the fact that only one radar sensor is used. In fact it is straightforward to add more sen-
sor information from additional sensors. In other words, the approach introduced here fits
well within a future sensor fusion framework where additional sensors, such as cameras
and additional radars, are incorporated.

The properties of the three approaches are compared and summarized below.

The results of the presented methods are better than expected, given the fact that only
measurements delivered by standard automotive sensors are used. The main draw-
back of the presented methods is that the result can be unstable or erroneous if
there are too few measurement points or if the measurements stem from other ob-
jects than the guardrail. However, the problem of having too few measurements
or having measurements from the wrong objects is very hard to solve with any
algorithm.

The representation form of the OGM is a square matrix with the log odds of each grid
cell. Since most of the environment is unknown many of the matrix elements are
equal to the initial log odds. In this example, a 401× 401 matrix is used, implying
that the environment is described by 160801 parameters. The number of parameters
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Figure 4.2: The filled circle at position (201, 201) in the occupancy grid map in
Figure (a) is the ego vehicle, the + are the radar observations obtained at this time
sample, the black squares are the two leading vehicles that are currently tracked.
Figure (b) shows a zoom of the OGM in front of the ego vehicle. The gray-level in
the figure indicates the probability of occupancy, the darker the grid cell, the more
likely it is to be occupied. The shape of the road is given as solid and dashed lines,
calculated as described in Lundquist and Schön (2008b). The camera view from the
ego vehicle is shown in Figure (c), the concrete walls, the guardrail and the pillar of
the bridge are interesting landmarks. Furthermore, the two tracked leading vehicles
are clearly visible in the right lane.
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used for the constrained curve fitting is 8 and 12 for the linear and nonlinear model,
respectively. The start and endpoint of valid segments can be limited by the user,
even though no vector with more than 100 elements was observed during the tests.
A line modeling the extended objects is represented by 5 parameters and one coor-
dinate frame which is defined by its position and heading, i.e. 3 parameters. The
author observed at maximum 20 lines, adding up to 160 parameters. However, it is
suggested that the user limits the number of lines to 10, adding up to 80 parameters.

The computational time does of course depend on the hardware on which the algorithm
is implemented, but it is still worth comparing the proposed algorithms. The aver-
age computational times over a sequence of 1796 samples for the presented meth-
ods are given in Table 4.2. Note that the times given in this table include the com-
plete algorithms, including initialization and coordinate frame transformations. The
times given in Table 1 in Paper C only compare the optimization algorithms. All
of the algorithms can be made more efficient by fine tuning the code. However, the
potential of the extended object tracking is assumed to be highest. This is because
time implicitly depends on the number of tracked objects, which can be reduced by
merging tracks and associating measurements to fewer tracks.

Table 4.2: Average computational time for one sample.

Method Time [ms]
Occupancy Grid Mapping, Section 4.3.1 14.9
Linear Predictor, Paper C 109.5
Nonlinear Predictor, Paper C 137.2
Extended Object Tracking, Paper D 28.6

The flexibility of the OGM and the extended object tracking must be said to be higher.
The OGM is not tied to any form of the road border or the stationary objects. The
extended objects can be modeled in various types of shapes. The constrained curve
fitting problem is the least flexible in that it only models the left and right border
lines.





5
Concluding Remarks

In the first part an overview of the basics behind the research reported in this thesis has
been presented. This part also aims at explaining how the papers in Part II relate to each
other and to the existing theory. A conclusion of the results is given in Section 5.1 and
ideas for future work are discussed in Section 5.2.

5.1 Conclusion

The work presented in this thesis has dealt with the problem of estimating the motion of
a vehicle and representing and estimating its surroundings, i.e. improving the situation
awareness. The surroundings consist of other vehicles and stationary objects, as well
as the shape and the geometry of the road. Here, a major part of the work is not only
the estimation problem itself, but also the way in which to represent the environment,
i.e. the mapping problem. Paper A is concerned with estimating the lane geometry, i.e.
the lane markings are described by a polynomial and the coefficients are the states to
estimate. This problem can be solved with a camera and computer vision, but by fusing
the data obtained from the image processing with information about the ego vehicle’s
motion and the other vehicles’ movement on the road, the road geometry estimate can be
improved. The other vehicles are tracked primarily by using measurements from a radar.
The motion of the ego vehicle is estimated by combining measurements from the vehicle’s
IMU, steering wheel angle sensor and wheel velocity sensors in a model based filter. The
model is in this case the so called single track model or bicycle model, in which the
tire road interaction plays a major role. This interaction can be considered as a constant
parameter, which is estimated off-line in advance, or the parameter can be considered
time varying and be estimated on-line while driving. This is the topic of Paper B.

The surroundings of a vehicle is more complicated than the shape of the lane mark-
ings. In this thesis three conceptually different methods to estimate the road borders and
the stationary objects along the road are studied and compared. The first method consid-
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ered in Section 4.3.1 is occupancy grid mapping, which discretizes the surroundings into
a number of grid cells. The probability of occupancy is estimated for each grid cell using
radar data regarding the position of the stationary objects. The second method, described
in detail in Paper C, consists in a constrained quadratic program in order to estimate the
road borders. The problem is formulated as a constrained curve fitting problem, and the
road borders are represented as two polynomials. The third method, described in Pa-
per D, associates the radar measurements to extended stationary objects in the form of
curved lines and tracks these lines as extended targets.

The approaches have been evaluated on real data from both freeways and rural roads
in Sweden. The results are encouraging and surprisingly good at times, not perfect but
much more informative than the raw measurements. Problems typically occur when there
are too few measurements or if the measurements stem from other objects than the road
side objects.

5.2 Future Research

The radar and camera data used in this thesis is generally preprocessed. Nevertheless,
the preprocessing is not covered in this thesis. Specifically, more effort can be spent on
the image processing to increase the information content. For example within the area
of odometry the estimate could be more accurate if the camera information is used in
addition to the measurements in Example 1.1. This is called visual odometry and it would
probably improve the estimate of the body side slip angles, especially during extreme
maneuvers where the tire road interaction is strongly nonlinear. Since only one camera is
used, the inverse depth parametrization introduced by Civera et al. (2008) is an interesting
approach, see e.g., Schön and Roll (2009) for an automotive example on visual odometry.
To verify the state estimates more accurate reference values are needed as well.

The stationary objects along the road are treated as extended targets in this thesis. This
approach requires comprehensive data association. The probability hypothesis density
(PHD) filter, based on a finite random set description of the targets is a newly developed
approach to propagate the intensity of these sets of states in time, see e.g., Mahler (2003),
Vo and Ma (2006), Erdinc et al. (2006). It is an elegant method that avoids the combina-
torial problem that arises from data association in a multi-sensor multi-target framework.
A first example of an intensity map describing the density of stationary targets along the
road is shown in Figure 5.1. In this thesis only radar data has been used to estimate the po-
sition of stationary objects. However, the camera captures information about the objects
along the road and this source of information should be better used.

Currently there is a lot of activity within the computer vision community to enable
non-planar road models, making use of parametric models similar to the ones used in this
paper. A very interesting avenue for future work is to combine the ideas presented in
this thesis with information from a camera about the height differences on the road side
within a sensor fusion framework. This would probably improve the estimates, especially
in situations when there are too few radar measurements available.

Parameter and model uncertainty in general are not treated in this thesis. One impor-
tant aspect is how to model the process noise, i.e. how it shall best be included into the
process model. In all applications discussed in this thesis the process noise is assumed
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Figure 5.1: Illustration of stationary target estimation. The intensity map of the
PHD filter is illustrated using a gray scale, the darker the area, the higher the density
of stationary targets. Here, only measurements from the radar are used. The photo
shows the driver’s view.
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additive. Can the state estimate computed in a filter be improved by modeling the pro-
cess noise differently? Another aspect is how to treat bias and variance of the parameter
θ. Bias and variance of θ is propagated to a bias and a variance increase of the states
x. How can this impact on x be reduced? These two aspects are interesting and would
improve many results if they are thoroughly considered.
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Abstract

We provide a sensor fusion framework for solving the problem of joint ego-
motion and road geometry estimation. More specifically we employ a sensor
fusion framework to make systematic use of the measurements from a for-
ward looking radar and camera, steering wheel angle sensor, wheel speed
sensors and inertial sensors to compute good estimates of the road geometry
and the motion of the ego vehicle on this road. In order to solve this problem
we derive dynamical models for the ego vehicle, the road and the leading
vehicles. The main difference to existing approaches is that we make use of
a new dynamic model for the road. An extended Kalman filter is used to fuse
data and to filter measurements from the camera in order to improve the road
geometry estimate. The proposed solution has been tested and compared
to existing algorithms for this problem, using measurements from authentic
traffic environments on public roads in Sweden. The results clearly indicate
that the proposed method provides better estimates.

Keywords: sensor fusion, single track model, bicycle model, road geometry
estimation, extended Kalman filter.

1 Introduction

We are in this paper concerned with the problem of integrated ego-motion and road ge-
ometry estimation using information from several sensors. The sensors used to this end
are a forward looking camera and radar, together with inertial sensors, a steering wheel
sensor and wheel speed sensors. The solution is obtained by casting the problem within
an existing sensor fusion framework. An important part of this solution is the nonlinear
state-space model. The state-space model contains the dynamics of the ego vehicle, the
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road geometry, the leading vehicles and the measurement relations. It can then be written
in the form

xt+1 = f(xt,ut) +wt, (1a)
yt = h(xt,ut) + et, (1b)

where xt ∈ Rnx denotes the state vector, ut ∈ Rnu denotes the input signals, yt ∈ Rny
denotes the measurements, wt ∈ Rnw and et ∈ Rne denote the process and measure-
ment noise, respectively. The process model equations, describing the evolution of the
state over time are denoted by f : Rnx × Rnu → Rnx . Furthermore, the measurement
model describing how the measurements from the vision system, the radar and the inertial
sensors relate to the state is given by h : Rnx × Rnu → Rny . When we have a model in
the form (1) we have transformed the problem into a standard nonlinear state estimation
problem, where the task is to compute estimates of the state based on the information in
the measurements. There are many different ways of solving this problem and we will
in this work make use of the popular Extended Kalman Filter (EKF), described by e.g.
Smith et al. (1962), Schmidt (1966), Anderson and Moore (1979).

The problem studied in this paper is by no means new, it is the proposed solution
that is new. For some early, still very interesting and relevant work on this problem
we refer to Dickmanns and Zapp (1986), Dickmanns and Mysliwetz (1992). From the
camera we can produce estimates of the road geometry based on measurements of the
lane markings. This problem is by now rather mature, see e.g. the survey by McCall and
Trivedi (2006) and the recent book by Dickmanns (2007) for solid accounts. The next
step in the development was to make use of the radar information as well. Using radar
measurements we can track the leading vehicles, that is, we can estimate the position and
velocity of the leading vehicles. Under the assumption that the leading vehicles drive
on the same road as the ego vehicle, their positions contain valuable information about
the road geometry. This idea was introduced by Zomotor and Franke (1997), Gern et al.
(2000, 2001) and has been further refined by Eidehall et al. (2007), Eidehall (2007). The
combination of radar and vision as well as the advantages and disadvantages of these
sensors are discussed by Hofmann et al. (2000, 2003). Furthermore, the ego vehicle model
used by Hofmann et al. (2000, 2003) is comparable with the one used in the present work.
The four wheel speeds are used to estimate the path of the ego vehicle, which unlike the
present work is separated from the leading vehicles dynamics and the lane estimate.

The leading vehicles are used to improve the road geometry in the present work; how-
ever the opposite is also possible as the recent work by Schubert et al. (2009), Weigel
et al. (2009) shows, where the vehicle detection algorithm benefits from the lane infor-
mation. Vision and radar are used by Schubert et al. (2009), whereas vision and lidar are
used by Weigel et al. (2009). Muller et al. (2009) used lidar to detect the leading vehicle,
and the movement of the leading vehicle is then used to estimate the lane and the driven
path, which in turn is used to autonomously follow this vehicle. This works well even
for curved and narrow roads. Unmarked and winding rural roads may be hard to detect,
recent research in this area is presented by Loose et al. (2009), where stereo vision and
image radar are used within a marginalized particle filter to obtain 3D information and
improve the task of lane recognition. Information obtained from road-side structures may
be used to improve the estimate of the lane shape and the position of the vehicle within
the lane, as showed by Watanabe et al. (2009), where only a monocular camera is used.
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Furthermore, at construction sites it is hard to identify the temporary lanes, a method
for this using color images and beacon extraction is presented by Gumpp et al. (2009).
Wedel et al. (2008) present an algorithm for free space estimation, capable of handling
non-planar roads, using a stereo camera system.

Lane tracking has also been tackled using radar sensors, see e.g. Kaliyaperumal et al.
(2001), Lakshmanan et al. (1997), Nikolova and Hero (2000), Ma et al. (2000) and laser
sensors, see e.g. Wijesoma et al. (2004). There have been several approaches making use
of reflections from the road boundary, such as crash barriers and reflection posts, to com-
pute information about the free space, see e.g. Kirchner and Heinrich (1998), Kirchner
and Ameling (2000), Sparbert et al. (2001) for some examples using laser scanners and
Lundquist et al. (2009), where radar is used.

To summarize, our approach is able to improve the performance by making use of a
dynamic model of the ego vehicle and a new dynamic model of the road at the same time
as we make use of the motion of the leading vehicles. The new road process model de-
scribes the curvature of the ego vehicle’s currently driven path. This should be compared
with existing road models, used in most of the publications mentioned above, where the
road’s curvature is modeled according to road construction standards. The advantage of
our new road model is that we are able to directly include information of the ego vehicles
motion into the estimate of the road geometry.

In the subsequent section we provide a brief introduction to the sensor fusion frame-
work we work with and explain how the present problem fits into this framework. An es-
sential part of this framework is the dynamical model (1a), which is derived in Section 3.
Furthermore, the corresponding measurement model (1b) is introduced in Section 4. In
Section 5 the proposed solution is evaluated using measurements from real and relevant
traffic environments from public roads in Sweden. Finally, the conclusions are given in
Section 6. For convenience we provide a list of the relevant notation in the appendix.

2 Sensor Fusion

In order to successfully solve the problem under study in this work it is imperative to
have a good understanding of sensor fusion. Sensor fusion is defined as the process of
using information from several different sensors to compute an estimate of the state of a
dynamical system.

We need a dynamic model and a measurement model in the form (1) in order to be
able to produce an estimate of the state. These models are derived in detail in Section 3
and Section 4. However, for the sake of the present discussion we will briefly discuss the
model here. The state vector xt consists of three parts according to

xt =

xE,txR,t
xT ,t

 , (2)

where xE,t denotes the state of the ego vehicle, xR,t denotes the state of the road and
xT ,t denotes the state of one leading vehicle (also referred to as a target). In deriving
the evolution of these states over time we will end up with continuous-time differential
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equations in the form

ẋ(t) = f(x(t),u(t)). (3)

However, according to (1) we required the model to be in discrete time. The simplest way
of obtaining a difference equation from (3) is to make use of the standard forward Euler
method, which approximates (3) according to

xt+T = xt + Tf(xt,ut) , g(xt,ut), (4)

where T denotes the sample time. The measurement model is of course already in discrete
time.

The estimate of the state is computed by a state estimator of some kind. This state esti-
mator makes use of the measurements from the different sensors to produce an estimate of
the so called filtering probability density function (pdf) p(xt|y1:t), where y1:t , {yi}ti=1

denotes all the measurements from time 1 to time t. This density function contains all
there is to know about the state xt, given the information in the measurements y1:t. Once
an approximation of p(xt|y1:t) is available it can be used to form many different estimates
and the most commonly used estimate is the conditional mean estimate

x̂t|t = E(xt|y1:t). (5)

This estimate will be used in the present work as well.
Since we are looking for an algorithm capable of working in real-time it is important

to understand how the filtering pdf evolves over time. Now, it is well-known (see e.g.
Jazwinski (1970)) that a sequential solution can be obtained according to

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

, (6a)

p(xt+1|y1:t) =
∫
p(xt+1|xt)p(xt|y1:t)dxt. (6b)

Here, it is also worth mentioning that since we have assumed additive noise in the model (1),
we have explicit expressions for p(xt+1|xt) and p(yt|xt) according to

p(xt+1|xt) = pwt(xt+1 − f(xt,ut)), (7a)
p(yt|xt) = pet(yt − h(xt,ut)), (7b)

where pwt( · ) and pet( · ) denote the pdf’s for the process and the measurement noise,
respectively.

In the special case, where the equations in the model (1) are linear and the noise
is Gaussian, the multidimensional integrals in (6) allows for an analytical solution, the
Kalman filter (Kalman, 1960). For a derivation of this kind, see e.g. Schön (2006). How-
ever, the problem is that for the general nonlinear, non-Gaussian case that we are facing,
there does not exist any closed form solution to (6). Hence, we are forced to make ap-
proximations of some kind. The most commonly used approximation is provided by the
extended Kalman filter (EKF). The idea underlying the EKF is very simple, approximate
the nonlinear model with a linear model subject to Gaussian noise and apply the Kalman
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filter to this approximation. For a solid account of the EKF we refer to Anderson and
Moore (1979), Kailath et al. (2000). Lately the so called particle filter, introduced by
Gordon et al. (1993), has become increasingly popular. This filter often provides a better
solution, but it typically requires much more computational effort. For the present ap-
plication the EKF provides an approximation that is good enough. For a more thorough
account of the framework for nonlinear estimation briefly introduced above we refer to
Schön (2006).

Before we end our brief overview on the sensor fusion problem it is important to
stress that a successful sensor fusion framework will, besides the modeling and filtering
parts mentioned above, rely on a certain surrounding infrastructure. This surrounding
infrastructure deals with issues such as time synchronization between the various sensors,
calibration, sensor-near signal processing, track handling, etc. This part of the framework
should not be overlooked and a solid treatment of the provided infrastructure is accounted
for by Bengtsson and Danielsson (2008) for the problem at hand. Despite this it is worth
mentioning that the leading vehicles are incorporated into the estimation problem using
rather standard techniques from target tracking, such as nearest neighbor data association
and track counters in order to decide when to stop tracking a certain vehicle, etc. These
are all important parts of the system we have implemented, but it falls outside the scope
of this paper and since the techniques are rather standard we simply refer to the general
treatments given in e.g. Blackman and Popoli (1999), Bar-Shalom et al. (2001).

3 Dynamic Models

As mentioned in the introduction our sensor fusion framework needs a state-space model
describing the dynamics of the ego vehicle, the road and the leading vehicles. In this
section we will derive the differential equations describing the motion of the ego vehicle
(Section 3.2), the road (Section 3.3) and the leading vehicles (Section 3.4), also referred
to as targets. Finally, in Section 3.5 we summarize these equations and form the process
model of the state-space model. However, before we embark on deriving these equations
we introduce the overall geometry and some necessary notation in Section 3.1.

3.1 Geometry and Notation

The coordinate frames describing the ego vehicle and one leading vehicle are defined in
Figure 1. The inertial world reference frame is denoted by W and its origin is OW . The
ego vehicle’s coordinate frame E is located in the center of gravity (CoG) and Es is at
the vision and radar sensor of the ego vehicle. Furthermore, Ti is associated with the
observed and tracked leading vehicle i and its origin OTi is located at the leading vehicle.
In this work we will use the planar coordinate transformation matrix

RWE =
[
cosψE − sinψE
sinψE cosψE

]
(8)

to transform a vector, represented in E, into a vector, represented in W , where the yaw
angle of the ego vehicle ψE is the angle of rotation from W to E. The geometric dis-
placement vector dWEW is the direct straight line fromOW toOE represented with respect
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Figure 1: Coordinate frames describing the ego vehicle, with center of gravity inOE
and the radar and camera sensors mounted in Es. One leading vehicle is positioned
in OTi .

to the frame W . Velocities are defined as the movement of a frame E relative to the in-
ertial reference frame W , but typically resolved in the frame E, for example vEx is the
velocity of the E frame in its x-direction. The same convention holds for the acceleration
aEx . In order to simplify the notation we leave out E when referring to the ego vehi-
cle’s velocity and acceleration. This notation will be used when referring to the various
coordinate frames. However, certain frequently used quantities will be renamed, in the
interest of readability. The measurements are denoted using superscript m. Furthermore,
the notation used for the rigid body dynamics is in accordance with Hahn (2002).

3.2 Ego Vehicle

We will only be concerned with the ego vehicle motion during normal driving situations
and not at the adhesion limit. This implies that the single track model is sufficient for the
present purposes. This model is also referred to as the bicycle model, see e.g. Mitschke
and Wallentowitz (2004), Wong (2001) for a solid treatment. The geometry of the single
track model with slip angles is shown in Figure 2. It is here worth to point out that the
velocity vector of the ego vehicle is typically not in the same direction as the longitudinal
axis of the ego vehicle. Instead the vehicle will move along a path at an angle β with the
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Figure 2: In the single track model the wheels on each axle are modeled as single
units. The velocity vector vx, with the float angle β to the longitudinal axis of the
vehicle, is attached at the center of gravity. Furthermore, the wheel slip angles are
referred to as αf and αr. The front wheel angle is denoted by δf and the current
radius is denoted by ρ.

longitudinal direction of the vehicle. Hence, the angle β is defined as,

tanβ =
vy
vx
, (9)

where vx and vy are the ego vehicle’s longitudinal and lateral velocity components, re-
spectively. This angle β is referred to as the float angle (Robert Bosch GmbH, 2004) or
the vehicle body side slip angle (Kiencke and Nielsen, 2005).

The slip angle αi is defined as the angle between the central axis of the wheel and
the path along which the wheel moves. The phenomenon of side slip is mainly due to the
lateral elasticity of the tire. For reasonably small slip angles, at maximum 3 deg, it is a
good approximation to assume that the lateral friction force of the tire Fi is proportional
to the slip angle,

Fi = Cαiαi. (10)

The parameterCαi is called cornering stiffness and describes the cornering behavior of the
tire. The load transfer to the front axle when braking or to the outer wheels when driving
trough a curve influences the parameter value. A model considering these influences is
given by Lundquist and Schön (2009).

Following this brief introduction to the ego vehicle geometry, we are now ready to
give an expression describing the evolution of yaw angle ψE and the float angle β over
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time

ψ̈E = β
−Cαf lf cos δf + Cαrlr

Izz

− ψ̇E
Cαf l

2
f cos δf + Cαrl

2
r

Izzvx
+
Cαf lf tan δf

Izz
, (11a)

β̇ = −βCαf cos δf + Cαr + v̇xm

mvx

− ψ̇E
(

1 +
Cαf lf cos δf − Cαrlr

v2
xm

)
+
Cαf sin δf
mvx

, (11b)

where m denotes the mass of the vehicle and Izz denotes the moment of inertia of the
vehicle about its vertical axis in the center of gravity. These single track model equations
are well-known in the literature, see e.g. Kiencke and Nielsen (2005).

3.3 Road Geometry

We start this section by defining the road variables and expressing a typical way to pa-
rameterize a road. The section is continued with a derivation of a new model for the road
that makes use of the dynamic motion of the ego vehicle.

Background

The most essential component in describing the road geometry is the curvature c, which
we will define as the curvature of the white lane marking to the left of the ego vehicle.
An overall description of the road geometry is given in Figure 3. The heading angle ψR
is defined as the tangent of the road at the level of the ego vehicle in the world reference
frame W , see Figure 4. The angle ψRE is the angle between the tangent of the road cur-
vature and the longitudinal axis of the ego vehicle. Note that this angle can be measured
by sensors mounted on the ego vehicle. Furthermore, we define δR as

δR , ψRE − β, (12)

i.e., the angle between the ego vehicles direction of motion (velocity vector) and the road
curvature tangent.

The road curvature c is typically parameterized according to

c(xc) = c0 + c1xc, (13)

where xc is the position along the road in a road aligned coordinate frame and xc = 0
at the vehicles center of gravity. Furthermore, c0 describes the local curvature at the ego
vehicle position and c1 is the distance derivative (hence, the rate of change) of c0. It
is common to make use of a road aligned coordinate frame when deriving an estimator
for the road geometry, a good overview of this approach is given by Eidehall (2007).
There are several advantages using road aligned coordinate frames, particularly the mo-
tion models of the other vehicles on the same road can be greatly simplified. However, the
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road. The distance between the ego vehicle’s longitudinal x-axis and the white lane
to its left is lE(t). The leading vehicle’s distance to the lane marking is lTi and its
heading angle in the road frame R is ψTiR. The lane width is w.

flexibility of the motion models is reduced and basic dynamic relations such as Newton’s
and Euler’s laws cannot be directly applied. Since we are using a single track model of
the ego vehicle, we will make use of a Cartesian coordinate frame. A good polynomial
approximation of the shape of the road curvature is given by

yE = lE + xE tanψRE +
c0
2

(xE)2 +
c1
6

(xE)3, (14)

where lE(t) is defined as the time dependent distance between the ego vehicle and the
lane marking to the left, see e.g. Dickmanns and Mysliwetz (1992), Eidehall (2007).

The following dynamic model is often used for the road

ċ0 = vxc1, (15a)
ċ1 = 0, (15b)

which can be interpreted as a velocity dependent integration. It is interesting to note
that (15) reflects the way in which roads are commonly built (Dickmanns and Mysliwetz,
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Figure 4: Infinitesimal segments of the road curvature duR and the driven path du
are shown together with the angles δR = ψR − (ψE + β).

1992). However, we will now derive a new dynamic model for the road, that makes use
of the road geometry introduced above.

A New Dynamic Road Model

Assume that duR is an infinitesimal part of the road curvature or an arc of the road circle
with the angle dψR, see Figure 4. A segment of the road circle can be described as

duR =
1
c0
dψR, (16)

which after division with the infinitesimal change in time dt is given by

duR
dt

=
1
c0

dψR
dt

. (17)

Assuming that the left hand side can be reformulated according to

duR
dt

= vx cos δR ≈ vx, (18)

this yields

vx =
1
c0
ψ̇R. (19)

The angle ψR can be expressed as

ψR = ψE + β + δR, (20)

by rewriting (12). Re-ordering equation (19) and using the derivative of (20) to substitute
ψ̇R yields

δ̇R = c0vx − (ψ̇E + β̇), (21)
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which by substituting β̇ with (11b) according to

δ̇R = c0vx − β
−Cαf cos δf − Cαr − v̇xm

mvx

+ ψ̇E
Cαf lf cos δf − Cαrlr

v2
xm

− Cαf sin δf
mvx

(22)

results in a differential equation of the road angle δR. A similar relation has been used by
Dickmanns and Mysliwetz (1992), Litkouhi et al. (1993).

We also need a differential equation for the road curvature, which can be found by
differentiating (21) w.r.t. time,

δ̈R = ċ0vx + c0v̇x − ψ̈E − β̈. (23)

From the above equation we have

ċ0 =
δ̈R + ψ̈E + β̈ − c0v̇x

vx
. (24)

Let us assume that δ̈R = 0. Furthermore, differentiating β̇, from (11b), w.r.t. time and
inserting this together with ψ̈E , given in (11a), into the above expression yields the dif-
ferential equation

ċ0 =
1

(Izzm2vx)4

(
C2
αr(Izz + l2rm)(−ψ̇Elr + βvx)

+ C2
αf (Izz + l2fm)(ψ̇Elf + (β − δf )vx)

+ CαrIzzm(−3ψ̇E v̇xlr + 3βv̇xvx + ψ̇Ev
2
x)

+ v̇xIzzm
2vx(2βv̇x + vx(ψ̇E − c0vx))

+ Cαf (Cαr(Izz + lr(−lf )m)(ψ̇Elb − 2ψ̇Elr + 2βvx − δfvx)

+ Izzm(3ψ̇E v̇xlf + (3β − 2δf )v̇xvx + (δ̇f + ψ̇E)v2
x))
)

(25)

for the road curvature.
In this model c0 is defined at the ego vehicle and thus describes the currently driven

curvature, whereas for the curvature described by the state-space model (15) and by the
polynomial (13) it is not entirely obvious where c0 is defined.

Finally, we need a differential equation describing how the distance lE(t) between
the ego vehicle and the lane markings changes over time. Assume again an infinitesimal
arc du of the circumference describing the ego vehicle’s curvature. By contemplating
Figure 4 we have

dlE = du sin δR, (26)

where δR is the angle between the ego vehicle’s velocity vector and the road. Dividing
this equation with an infinitesimal change in time dt and using (18) yield the differential
equation

l̇E = vx sin δR, (27)

which concludes the derivation of the road geometry model.
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3.4 Leading Vehicles

The leading vehicles are also referred to as targets Ti. The coordinate frame Ti moving
with target i has its origin located in OTi , as we previously saw in Figure 3. It is assumed
that the leading vehicles are driving on the road, quite possibly in a different lane. More
specifically, it is assumed that they are following the road curvature and thus that their
heading is in the same direction as the tangent of the road.

From Figure 3 it is obvious that,

dWEW + dWEsE + dWTiEs − d
W
TiW = 0, (28)

or more explicitly,

xWEW + ls cosψE + dTiEs cos(ψEs + δTiEs)− xWTiW = 0, (29a)

yWEW + ls sinψE + dTiEs sin(ψEs + δTiEs)− yWTiW = 0, (29b)

where dTiEs is the distance from the ego vehicle’s sensor to the leading vehicle, δTiEs is
the relative angle to the leading vehicle and ψEs is the mounting orientation of the sensor.
It is worth noticing that the azimuth angle δTiEs can be measured by a sensor mounted on
the vehicle.

Let us introduce the coordinate frame Vi whith origin OVi at the ego vehicle’s sensor
and with its x-axis pointing at the target Ti i.e., its heading angle ψVi is defined by

ψVi , ψEs + δTiEs . (30)

The target Ti is assumed to have zero lateral velocity in the Vi frame, i.e., ẏVi = 0, since it
is always fixed to the xVn -axis. If we transform this relation to the world frame W , using
the geometry of Figure 1 we have

RViW · ḋWTiW =
(
·
0

)
, (31)

where the top equation of the vector equality is non-descriptive and the bottom equation
can be rewritten as

−ẋWTiW sinψVi + ẏWTiW cosψVi = 0. (32)

The velocity vector of the ego vehicles is applied in the center of gravity OE . The deriva-
tive of (29) is used together with the velocity components of the ego vehicle and (32) to
get an expression for the derivative of the relative angle to the leading vehicle w.r.t. time
according to

(δ̇TiEs + ψ̇E)dTiEs + ψ̇Els cos δTiEs + vx sin(β − δTiEs) = 0, (33)

where the assumtion ψE = ψEs is made. This equation is rewritten, forming the differ-
ential equation

δ̇TiEs = − ψ̇Els cos δTiEs + vx sin(β − δTiEs)
dTiEs

− ψ̇E (34)

of the relative angle δ̇TiEs to the leading vehicles.
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3.5 Summarizing the Dynamic Model

The state-space models derived in the previous sections are nonlinear and they are given
in continuous time. Hence, in order to make use of these equations in the EKF we will
first linearize them and then make use of (4) in order to obtain a state-space model in
discrete time according to (1). This is a rather standard procedure, see e.g. Gustafsson
(2000), Rugh (1996). At each time step, the nonlinear state-space model is linearized
by evaluating the Jacobian (i.e., the partial derivatives) of the g(x,u)-matrix introduced
in (4) at the current estimate x̂t|t. It is worth noting that this Jacobian is straightforwardly
computed off-line using symbolic or numerical software, such as MATHEMATICA. Hence,
we will not go through the details here. However, for future reference we will briefly
summarize the continuous-time dynamic model here.

In the final state-space model the three parts (ego vehicle, road and leading vehicles) of
the dynamic model are augmented, resulting in a state vector of dimension 6+4 · (Number
of leading vehicles). Hence, the size of the state vector varies with time, depending on the
number of leading vehicles that are tracked at a specific instance of time.

The ego vehicle model is described by the following states,

xE =
[
ψ̇E β lE

]T
, (35)

i.e., the yaw rate, the float angle and the distance to the left lane marking. The front wheel
angle δf , which is calculated from the measured steering wheel angle, and the ego vehicle
longitudinal velocity vx and acceleration v̇x are modeled as input signals,

ut =
[
δf vx v̇x

]T
. (36)

The nonlinear state-space model ẋE = fE(x,u) is given by

fE(x,u) = β
−Cαf lf cos δf+Cαrlr

Izz
− ψ̇E

Cαf l
2
f cos δf+Cαrl

2
r

Izzvx
+ Cαf lf tan δf

Izz

−β Cαf cos δf+Cαr+v̇xm
mvx

− ψ̇E
(

1 + Cαf lf cos δf−Cαrlr
v2xm

)
+ Cαf sin δf

mvx

vx sin δR

 . (37)

The corresponding differential equations were previously given in (11a), (11b) and (27),
respectively. Note that (37) is linear in ψ̇E and β and nonlinear in δR.

The states describing the road xR are the road curvature c0 at the ego vehicle position,
the angle δR between the ego vehicles direction of motion and the road curvature tangent
and the width of the lane w, i.e.,

xR =
[
c0 δR w

]T
. (38)

The differential equations for c0 and δR were given in (25) and (22), respectively. When
it comes to the width of the current lane w, we have

ẇ = 0, (39)
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motivated by the fact that w does not change as fast as the other variables, i.e., the non-
linear state-space model ẋR = fR(x,u) is given by

fR(x,u) = ċ0
c0vx + β

Cαf cos δf+Cαr+v̇xm
mvx

+ ψ̇
Cαf lf cos δf−Cαrlr

v2xm
− Cαf sin δf

mvx

0

 . (40)

A target is described by the following states; azimuth angle δTiEs , lateral position lTi
of the target, distance between the target and the ego vehicle dTiEs and relative velocity
between the target and the ego vehicle ḋTiEs . Hence, the state vector is given by

xT =
[
δTiEs lTi ḋTiEs dTiEs

]T
. (41)

The derivative of the azimuth angle was given in (34). It is assumed that the leading
vehicle’s lateral velocity is small, implying that l̇Tn = 0 is a good assumption (compare
with Figure 3). Furthermore, it can be assumed that the leading vehicle accelerates similar
to the ego vehicle, thus d̈TiEs = 0 (compare with e.g. Eidehall (2007)). The state-space
model ẋT = fT (x,u) of a leading vehicle (target) is

fT (x,u) =


− ψ̇Els cos δTiEs+vx sin(β−δTiEs )

dTiEs
− ψ̇E

0
0

ḋTiEs

 . (42)

Note that the dynamic models given in this section are nonlinear in u.

4 Measurement Model

The measurement model (1b) describes how the measurements yt relates to the state
variables xt. In other words, it describes how the measurements enter the estimator. We
will make use of superscript m to denote measurements. Let us start by introducing the
measurements relating directly to the ego vehicle motion, by defining

y1 =
[
ψ̇mE amy

]T
, (43)

where ψ̇mE and amy are the measured yaw rate and the measured lateral acceleration, re-
spectively. They are both measured with the ego vehicle’s inertial sensor in the center of
gravity (CoG). The ego vehicle lateral acceleration in the CoG is

ay = vx(ψ̇E + β̇) + v̇xβ. (44)

By replacing β̇ with the expression given in (11b) and at the same time assuming that
v̇xβ ≈ 0 we obtain

ay = vx(ψ̇E + β̇)

= −βCαf cos δf + Cαr +mv̇x
m

+ ψ̇E
−Cαf lf cos δf + Cαrlr

mvx
+
Cαf
m

sin δf . (45)
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From this it is clear that the measurement of the lateral acceleration contains information
about the ego vehicle states. Hence, the measurement equation corresponding to (43) is
given by

h1 =

[
ψ̇E

−β Cαf cos δf+Cαr+mv̇x
m + ψ̇E

−Cαf lf cos δf+Cαrlr
mvx

+ Cαf
m sin δf

]
. (46)

The vision system provides measurements of the road geometry and the ego vehicle posi-
tion on the road according to

y2 =
[
cm0 ψmRE wm lmE

]T
(47)

and the corresponding measurement equations are given by

h2 =
[
c0 (δR + β) w lE

]T
. (48)

In order to include measurements of a leading vehicle we require that it is detected both by
the radar and the vision system. The range dmTiEs and the range rate ḋmTiEs are measured
by the radar. The azimuth angle is also measured by the radar, but not used directly in this
framework. Instead, the accuracy of the angle estimate is improved by using the camera
information. We will not describe these details here, since it falls outside the scope of this
work. The corresponding measurement vector is

y3 =
[
δmTiEs ḋmTiEs dmTiEs

]T
. (49)

Since these are state variables, the measurement equation is obviously

h3 =
[
δTiEs ḋTiEs dTiEs

]T
. (50)

The fact that the motion of the leading vehicles reveals information about the road geome-
try allows us to make use of their motion in order to improve the road geometry estimate.
This will be accomplished by introducing a nontrivial artificial measurement equation
according to

h4 = lE + (δR + β)dTiEs cos δTiEs +
c0
2

(dTiEs cos δTiEs)
2 +

lTi
cosψTiR

, (51)

which is derived from Figure 3 and describes the predicted lateral distance of a leading
vehicle in the ego vehicles coordinate frame E. In order to model the road curvature we
introduce the road coordinate frame R, with its origin OR on the white lane marking to
the left of the ego vehicle. This implies that the frame R is moving with the frame E of
the ego vehicle. The angle ψTiR , ψTi − ψR is derived by considering the road’s slope
at the position of the leading vehicle, i.e.,

ψTiR = arctan
dyR

dxR
= arctan c0xR, (52)

where xR = xRTiR, see Figure 3. The Cartesian x-coordinate of the leading vehicle Ti in
the R-frame is

xRTiR ≈ x
E
TiEs ≈ dTiEs

cos δTiEs
cosψRE

. (53)
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The sensors only provide range dmTiEsn and azimuth angle δmTiEs . Hence, the correspond-
ing quasi-measurement is

y4 = dmTiEs sin(δmTiEs), (54)

describing the measured lateral distance to a leading vehicle in the ego vehicle’s coordi-
nate frame. This might seem a bit ad hoc at first. However, the validity of the approach
has recently been justified in the literature, see e.g. Teixeira et al. (2007).

5 Experiments and Results

The experiments presented in this section are based on measurements acquired on public
roads in Sweden during normal traffic conditions. The test vehicle is a Volvo XC90
equipped with a forward looking 77 GHz mechanically scanning FMCW radar and a
forward looking vision sensor (camera), measuring the distances and angles to the targets.
The image sensor includes object and lane detection and provides for example the lane
curvature. Information about the ego vehicle motion, such as the steering wheel angle,
yaw rate, etc. were acquired directly from the CAN bus.

Before stating the main results in this section we outline how to estimate the parame-
ters of the ego vehicle and how the filter is tuned. Subsequently we state the results of the
ego vehicle validation. We compare our road curvature estimates with two other sensor
fusion approaches as well as one road model.

5.1 Parameter Estimation and Filter Tuning

Most of the ego vehicle’s parameters, such as the dimensions, the mass and the moment
of inertia were provided by the vehicle manufacturer. Since the cornering stiffness is a pa-
rameter which describes the properties between road and tire it has to be estimated for the
given set of measurements. An on-line method to estimate the cornering stiffness param-
eter using recursive least square is presented by Lundquist and Schön (2009). However,
in the present work an exhaustive search was accomplished off-line using a batch of mea-
surements to estimate Cαf and Cαr. A state-space model with the differential equations
given in (11a) and (11b) and with the yaw rate ψ̇E and the float angle β in the state vector
was used for this purpose. Furthermore, the front wheel angle δf and the ego vehicle lon-
gitudinal velocity vx were modeled as input signals. The measurements were provided by
the yaw rate ψ̇mE and the lateral acceleration amy . The corresponding measurement equa-
tion was given in (46). The data used to identifying the cornering stiffness parameters
was split into two parts, one estimation part and one validation part. This facilitates cross-
validation, where the parameters are estimated using the estimation data and the quality
of the estimates can then be assessed using the validation data (Ljung, 1999).

The approach is further described by Lundquist and Schön (2008a). The resulting
state-space model with the estimated parameters was validated using the validation data
and the result is given in Figure 5.

The process and measurement noise covariances are the design parameters in the ex-
tended Kalman filter (EKF). It is assumed that the covariances are diagonal and that there
are no cross correlations between the measurement noise and the process noise. The
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Figure 5: Comparing the simulated result of the nonlinear state-space model (black)
with measured data (gray) of a validation data set. The upper plot shows the yaw
rate and the lower shows the lateral acceleration.

present filter has ten states and ten measurement signals, which implies that 20 parame-
ters have to be tuned. The tuning was started using physical intuition of the error in the
process equations and the measurement signals. In a second step, the covariance parame-
ters were tuned simply by trying to minimize the root mean square error (RMSE) of the
estimated ĉ0 and the reference curvature c0. The estimated curvature was obtained by
running the filter using the estimation data set. The calculation of the reference value is
described by Eidehall and Gustafsson (2006). The chosen design parameters were vali-
dated on a different data set and the results are discussed in the subsequent sections.

5.2 Validation Using Ego Vehicle Signals

The state variables of the ego vehicle are according to (35), the yaw rate, the float angle
and the distance to the left lane marking. The estimated and the measured yaw rate signals
are, as expected, very similar. As described in Section 5.1, the parameters of the vehicle
model were optimized with respect to the yaw rate, hence it is no surprise that the fusion
method decreases the residual further. A measurement sequence acquired on a rural road
is shown in Figure 6a. Note that the same measurement sequence is used in Figures 5
to 7, which will make it easier to compare the estimated states.

The float angle β is estimated, but there is no reference or measurement signal to
compare it to. An example is shown in Figure 6b. For velocities above 30− 40 km/h, the
float angle appears more or less like the mirror image of the yaw rate, and by comparing
with Figure 6a, we can conclude that the sequence is consistent.
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Figure 6: A comparison between the ego vehicle’s measured (gray) and estimated
yaw rate (black dashed) using the sensor fusion approach in this paper is shown in
(a). The estimated float angle β for the same data sequence is shown in (b).

The measurement signal of the distance to the left white lane marking lmE is produced
by the vision system OLR (Optical Lane Recognition). Bad lane markings or certain
weather conditions can cause errors in the measurement signal. The estimated state lE of
the fusion approach is very similar to the pure OLR signal.

5.3 Road Curvature Estimation

An essential idea with the sensor fusion approach introduced in this paper is to make
use of the single track ego vehicle model in order to produce better estimates of the road
curvature. In this section we will compare this approach to approaches based on other
models of the ego vehicle and the road geometry.

Fusion 1 is the sensor fusion approach shown in this paper.

Fusion 2 is a similar approach, thoroughly described by Eidehall (2007). An important
difference to fusion 1 is that the ego vehicle is modeled with a constant velocity
model, which is less complex. The float angle β is not estimated. Furthermore, the
road is modeled according to (15) and a road aligned coordinate frame is used. This
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method is similar to the approaches used by e.g. Zomotor and Franke (1997), Gern
et al. (2000, 2001).

Fusion 3 comprehends the ego vehicle model of fusion 1 and the road model of fusion
2, i.e., substituting (25) by (15) and introducing the seventh state c1. Furthermore,
a Cartesian coordinate frame is used. This method, but without considering the
leading vehicles is similar to the ones described by e.g. Dickmanns and Mysliwetz
(1992) and Behringer (1997).

Model is the ego vehicle and road state-space model given in this paper, described by the
motion models (37) and (40) and the measurement models (46) and (48), without
the extended Kalman filter.

The curvature estimate ĉ0 from the sensor fusion approaches, the model and the raw
measurement from the optical lane recognition are compared to a reference value. The
reference value is computed off-line using a geometric method described by Eidehall and
Gustafsson (2006), which applies a least square curve fitting to a sliding window. The
entire data set i.e., also future values of the ego vehicle movement, is used to derive
the reference value. The accuracy of the method was validated on a test track, where
the ground truth is well defined, and the results are good as reported by Eidehall and
Gustafsson (2006).

A typical result of a comparison is shown in Figure 7. The data stems from a rural
road, which explains the curvature values. It can be seen that the estimates from the
sensor fusion approaches give better results than using the OLR alone, as was expected.
The OLR estimate is rather noisy compared to the fused estimates. This is not surprising,
since the raw OLR has less information. A camera view from the curve at time 32 s is
shown in Figure 8a.

The curvature estimate from the state-space model described in this paper is denoted
by model and is shown as a dash-dotted black line. The absolute position is not measured,
which leads to a clearly visible bias in the estimate of c0. The bias is transparent in
Figure 7, but it also leads to a large RMSE value in Table 1. Fusion 3 also delivers a
decent result, but it is interesting to notice that the estimate seems to follow the incorrect
OLR at time 35 s. The same behavior holds for fusion 2 in Figure 7.

To get a more aggregate view of the performance, we provide the root mean square
error (RMSE) for longer measurement sequences in Table 1. The fusion approaches im-
prove the road curvature estimate by making use of the information about the leading
vehicles, that is available from the radar and the vision systems. However, since we are
interested in the curvature estimate also when there are no leading vehicles in front of the
ego vehicle, this case will be studied as well. It is straightforward to study this case, it is
just a matter of not providing the measurements of the leading vehicles to the algorithms.
The RMSE values found without information about the leading vehicles are given in the
columns marked no in Table 1.

These results should ideally be compared to data where information about the leading
vehicles is considered, but during the 78 min drive there were not always another car in
front of us. Only for about 50 % of the time there existed other vehicles, which we could
track. Hence, for the sake of comparability we give the RMSE values for those sequences
where at least one leading vehicle was tracked, bearing in mind that these are based on
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Figure 7: Results from the three fusion approaches (fusion 1 solid black line, fusion
2 gray line and fusion 3 dotted line) and the OLR (dashed gray line), showing the
curvature estimate ĉ0. As can be seen, the curvature estimate can be improved by
taking the other vehicles (gray line) and the ego vehicle’s driven curvature in to
account (solid black line). The model (dash-dotted) is estimating the derivative of
the curvature and the absolute position is not measured, which leads to the illustrated
bias. The dashed line is the reference curvature.

(a) (b)

Figure 8: Two different camera views are shown. In (a) the lane markings are
excellent and the leading vehicles are close and clearly visible. This is the traffic
situation at 32 s in the Figures 5 to 7. Although the circumstances seem perfect, the
OLR, Fusion 2 and 3 have problems estimating the curvature, as seen in Figure 7.
The traffic situation shown in (b) is more demanding, mainly due to the weather
conditions and large distance to the leading vehicle.

only about 50 % of the data. The corresponding columns in Table 1 are marked only.
Finally, we also give the RMSE values for the complete data, where other vehicles were
considered whenever possible.

It is interesting to see that the advantage of fusion 1, which uses a more accurate
ego vehicle and road model, in comparison to fusion 2 is particularly noticeable when
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Table 1: Comparison of the root mean square error (RMSE) of the road curvature c0
in [1/m] for the three fusion approaches and the pure measurement signal OLR for
two longer measurement sequences acquired on public roads in Sweden. Three cases
were considered, using only those measurements where a leading vehicle could be
tracked, using the knowledge of the leading vehicles position whenever possible or
not at all and thereby simulating the lonely driver. Note that all RMSE values should
be multiplied by 10−3.

Highway Rural road
Time 44 min 34 min
OLR [10−3/m] 0.385 3.60
Model [10−3/m] 0.356 2.10
Leading vehicles used? only possible no only possible no
Fusion 1 [10−3/m] 0.176 0.184 0.189 1.48 1.13 1.18
Fusion 2 [10−3/m] 0.231 0.228 0.230 1.53 2.84 2.91
Fusion 3 [10−3/m] 0.203 0.210 0.205 1.32 2.01 1.94

driving alone on a rural road, the RMSE for fusion 1 is then 1.18, whereas the RMSE for
fusion 2 is 2.91. The reason for this is first of all that we are driving on a rather curvy
road which implies that any additional information will help improving the curvature
estimate. Here, the additional information is the improved ego vehicle and road models
used in fusion 1. Furthermore, the fact that there are no leading vehicles that could aid
the fusion algorithm when driving alone creates a greater disadvantage for fusion 2, since
it is its main additional information. Fusion 3, which uses the single track vehicle model
of fusion 1, but the road model of fusion 2, seems to position itself between those two.

Comparing the rural road results based only on those measurements where other ve-
hicles were tracked, we see an interesting pattern. The curvature estimate of fusion 2
and fusion 3 is improved by the additional information, but the estimate of fusion 1 is
declined. The error values of the three fusion approaches are also in the same range. The
explanation of this behavior can be found by analyzing the measurement sequences. If
the leading vehicle is close-by, as for example in Figure 8a, it helps improving the results.
However, if the leading vehicle is more distant, the curvature at this position might not
be the same as it is at the ego vehicle’s position, which leads to a degraded result. In
(Lundquist and Schön, 2008b) the authors presented preliminary results based on much
shorter measurement sequences, where the leading vehicles were more close-by and the
estimate of fusion 1 was improved by the existence of leading vehicles. The problem
could be solved by letting the measurement noise e of the measurement equation (51)
depend on the distance to the leading vehicle.

The highway is rather straight and as expected not much accuracy could be gained in
using an improved dynamic vehicle model. It is worth noticing that the OLR’s rural road
RMSE value is about 10 times higher than the highway value, but the model’s RMSE
increases only about six times when comparing the rural road values with the highway.
Comparing the RMSE values in the columns marked possible; the RMSE for fusion 1
also increases about six times, but that of fusion 2 increases as much as twelve times
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when comparing the highway measurements with the rural road.
A common problem with these road estimation methods is that it is hard to distin-

guish between the case when the leading vehicle is entering a curve and the case when
the leading vehicle is performing a lane change. With the approach in this paper the in-
formation about the ego vehicle motion, the OLR and the leading vehicles is weighted
together in order to form an estimate of the road curvature. The fusion approach in this
paper produces an estimate of the lateral position lTn of the leading vehicle which seems
reasonable. The results are thoroughly described by Lundquist and Schön (2008b).

6 Conclusions

In this contribution we have derived a method for joint ego-motion and road geometry
estimation. The presented sensor fusion approach combines the information from sensors
present in modern premium cars, such as radar, camera and IMU, with a dynamic model.
This model, which consists of a new dynamic motion model of the road, is the core of
this contribution. The road geometry is estimated by considering the information from
the optical lane recognition of the camera, the position of the leading vehicles, obtained
by the radar and the camera, and by making use of a dynamic ego vehicle motion model,
which takes IMU-data and the steering wheel angle as input. If one of these three parts
fails, for example there might not be any leading vehicles or the lane markings are bad, as
in Figure 8b, then the sensor fusion framework will still deliver an estimate.

The presented sensor fusion framework has been evaluated together with two other
fusion approaches on real and relevant data from both highway and rural roads in Sweden.
The data consists of 78 min driving on various road conditions, also including snow-
covered pavement. The approach presented in this paper obtained the best results in all
situations, when compared to the other approaches, but it is most prominent when driving
alone on a rural road. If there are no leading vehicles that can be used, the improved road
and ego vehicle models still supports the road geometry estimation and delivers a more
accurate result.

Acknowledgement

The authors would like to thank Dr. Andreas Eidehall at Volvo Car Corporation for fruitful
discussions. Furthermore, they would like to thank the SEnsor Fusion for Safety (SEFS)
project within the Intelligent Vehicle Safety Systems (IVSS) program and the strategic
research center MOVIII, funded by the Swedish Foundation for Strategic Research (SSF)
for financial support.

References

Anderson, B. D. O. and Moore, J. B. (1979). Optimal Filtering. Information and system
science series. Prentice Hall, Englewood Cliffs, NJ, USA.

Bar-Shalom, Y., Rong Li, X., and Kirubarajan, T. (2001). Estimation with Applications
to Tracking and Navigation. John Wiley & Sons, New York.



References 103

Behringer, R. (1997). Visuelle Erkennung und Interpretation des Fahrspurverlaufes durch
Rechnersehen für ein autonomes Straßenfahrzeug, volume 310 of Fortschrittsberichte
VDI, Reihe 12. VDI Verlag, Düsseldorf, Germany. Also as: PhD Thesis, Universität
der Bundeswehr, 1996.

Bengtsson, F. and Danielsson, L. (2008). Designing a real time sensor data fusion system
with application to automotive safety. In 15th World Congress of ITS, New York, USA.

Blackman, S. S. and Popoli, R. (1999). Design and Analysis of Modern Tracking Systems.
Artech House, Inc., Norwood, MA, USA.

Dickmanns, E. D. (2007). Dynamic Vision for Perception and Control of Motion.
Springer, London, UK.

Dickmanns, E. D. and Mysliwetz, B. D. (1992). Recursive 3-D road and relative ego-
state recognition. IEEE Transactions on pattern analysis and machine intelligence,
14(2):199–213.

Dickmanns, E. D. and Zapp, A. (1986). A curvature-based scheme for improving road ve-
hicle guidance by computer vision. In Proceedings of the SPIE Conference on Mobile
Robots, volume 727, pages 161–198, Cambridge, MA, USA.

Eidehall, A. (2007). Tracking and threat assessment for automotive collision avoidance.
PhD thesis No 1066, Linköping Studies in Science and Technology, Linköping, Swe-
den.

Eidehall, A. and Gustafsson, F. (2006). Obtaining reference road geometry parameters
from recorded sensor data. In Proceedings of the IEEE Intelligent Vehicles Symposium,
pages 256–260, Tokyo, Japan.

Eidehall, A., Pohl, J., and Gustafsson, F. (2007). Joint road geometry estimation and
vehicle tracking. Control Engineering Practice, 15(12):1484–1494.

Gern, A., Franke, U., and Levi, P. (2000). Advanced lane recognition - fusing vision
and radar. In Proceedings of the IEEE Intelligent Vehicles Symposium, pages 45–51,
Dearborn, MI, USA.

Gern, A., Franke, U., and Levi, P. (2001). Robust vehicle tracking fusing radar and vision.
In Proceedings of the international conference of multisensor fusion and integration for
intelligent systems, pages 323–328, Baden-Baden, Germany.

Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings on Radar and
Signal Processing, volume 140, pages 107–113.

Gumpp, T., Nienhuser, D., Liebig, R., and Zollner, J. (2009). Recognition and tracking of
temporary lanes in motorway construction sites. In Proceedings of the IEEE Intelligent
Vehicles Symposium, pages 305–310, Xi’an, China.

Gustafsson, F. (2000). Adaptive Filtering and Change Detection. John Wiley & Sons,
New York, USA.



104 Paper A Joint Ego-Motion and Road Geometry Estimation

Hahn, H. (2002). Rigid body dynamics of mechanisms. 1, Theoretical basis, volume 1.
Springer, Berlin, Germany.

Hofmann, U., Rieder, A., and Dickmanns, E. (2000). Ems-vision: application to hybrid
adaptive cruise control. In Proceedings of the IEEE Intelligent Vehicles Symposium,
pages 468–473, Dearborn, MI, USA.

Hofmann, U., Rieder, A., and Dickmanns, E. (2003). Radar and vision data fusion for
hybrid adaptive cruise control on highways. Machine Vision and Applications, 14(1):42
– 49.

Jazwinski, A. H. (1970). Stochastic processes and filtering theory. Mathematics in science
and engineering. Academic Press, New York, USA.

Kailath, T., Sayed, A. H., and Hassibi, B. (2000). Linear Estimation. Information and
System Sciences Series. Prentice Hall, Upper Saddle River, NJ, USA.

Kaliyaperumal, K., Lakshmanan, S., and Kluge, K. (2001). An algorithm for detecting
roads and obstacles in radar images. IEEE Transactions on Vehicular Technology,
50(1):170–182.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Trans-
actions of the ASME, Journal of Basic Engineering, 82:35–45.

Kiencke, U. and Nielsen, L. (2005). Automotive Control Systems. Springer, Berlin,
Heidelberg, Germany, second edition.

Kirchner, A. and Ameling, C. (2000). Integrated obstacle and road tracking using a laser
scanner. In Proceedings of the IEEE Intelligent Vehicles Symposium, pages 675–681,
Dearborn, MI, USA.

Kirchner, A. and Heinrich, T. (1998). Model based detection of road boundaries with
a laser scanner. In Proceedings of the IEEE Intelligent Vehicles Symposium, pages
93–98, Stuttgart, Germany.

Lakshmanan, S., Kaliyaperumal, K., and Kluge, K. (1997). Lexluther: an algorithm for
detecting roads and obstacles in radar images. In Proceedings of the IEEE Conference
on Intelligent Transportation System, pages 415–420, Boston, MA, USA.

Litkouhi, B., Lee, A., and Craig, D. (1993). Estimator and controller design for lanetrak,
a vision-based automatic vehicle steering system. In Proceedings of the 32nd IEEE
Conference on Decision and Control, volume 2, pages 1868 – 1873, San Antonio,
Texas.

Ljung, L. (1999). System identification, Theory for the user. System sciences series.
Prentice Hall, Upper Saddle River, NJ, USA, second edition.

Loose, H., Franke, U., and Stiller, C. (2009). Kalman particle filter for lane recognition on
rural roads. In Proceedings of the IEEE Intelligent Vehicles Symposium, pages 60–65,
Xi’an, China.



References 105

Lundquist, C., Orguner, U., and Schön, T. B. (2009). Tracking stationary extended objects
for road mapping using radar measurements. In Proceedings of the IEEE Intelligent
Vehicles Symposium, pages 405–410, Xi’an, China.

Lundquist, C. and Schön, T. B. (2008a). Road geometry estimation and vehicle track-
ing using a single track model. Technical Report LiTH-ISY-R-2844, Department of
Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden.

Lundquist, C. and Schön, T. B. (2008b). Road geometry estimation and vehicle tracking
using a single track model. In Proceedings of the IEEE Intelligent Vehicles Symposium,
pages 144–149, Eindhoven, The Netherlands.

Lundquist, C. and Schön, T. B. (2009). Recursive identification of cornering stiffness
parameters for an enhanced single track model. In Proceedings of the 15th IFAC Sym-
posium on System Identification, pages 1726–1731, Saint-Malo, France.

Ma, B., Lakshmanan, S., and Hero, A. (2000). Simultaneous detection of lane and pave-
ment boundaries using model-based multisensor fusion. IEEE Transactions on Intelli-
gent Transportation Systems, 1(3):135–147.

McCall, J. C. and Trivedi, M. M. (2006). Video-based lane estimation and tracking for
driver assistance: Servey, system, and evaluation. IEEE Transactions on Intelligent
Transportation Systems, 7(1):20–37.

Mitschke, M. and Wallentowitz, H. (2004). Dynamik der Kraftfahrzeuge. Springer,
Berlin, Heidelberg, 4th edition.

Muller, A., Manz, M., Himmelsbach, M., and Wunsche, H. (2009). A model-based object
following system. In Proceedings of the IEEE Intelligent Vehicles Symposium, pages
242–249, Xi’an, China.

Nikolova, M. and Hero, A. (2000). Segmentation of a road from a vehicle-mounted
radar and accuracy of the estimation. In Proceedings of the IEEE Intelligent Vehicles
Symposium, pages 284–289, Dearborn, MI, USA.

Robert Bosch GmbH, editor (2004). Automotive Handbook. SAE Society of Automotive
Engineers, 6th edition.

Rugh, W. J. (1996). Linear System Theory. Information and system sciences series.
Prentice Hall, Upper Saddle River, NJ, USA, second edition.

Schmidt, S. F. (1966). Application of state-space methods to navigation problems. Ad-
vances in Control Systems, 3:293–340.

Schön, T. B. (2006). Estimation of Nonlinear Dynamic Systems – Theory and Applica-
tions. PhD thesis No 998, Linköping Studies in Science and Technology, Department
of Electrical Engineering, Linköping University, Sweden.

Schubert, R., Wanielik, G., and Schulze, K. (2009). An analysis of synergy effects in
an omnidirectional modular perception system. In Proceedings of the IEEE Intelligent
Vehicles Symposium, pages 54–59, Xi’an, China.



106 Paper A Joint Ego-Motion and Road Geometry Estimation

Smith, G. L., Schmidt, S. F., and McGee, L. A. (1962). Application of statistical filter the-
ory to the optimal estimation of position and velocity on board a circumlunar vehicle.
Technical Report TR R-135, NASA.

Sparbert, J., Dietmayer, K., and Streller, D. (2001). Lane detection and street type classifi-
cation using laser range images. In Proceedings of the IEEE Intelligent Transportation
Systems Conference, pages 454–459, Oakland, CA, USA.

Teixeira, B. O. S., Chandrasekar, J., Torres, L. A. B., Aguirre, L. A., and Bernstein, D. S.
(2007). State estimation for equality-constrained linear systems. In Proceedings of the
46th Conference on Decision and Control (CDC), pages 6220–6225, New Orleans, LA,
USA.

Watanabe, A., Naito, T., and Ninomiya, Y. (2009). Lane detection with roadside structure
using on-board monocular camera. In Proceedings of the IEEE Intelligent Vehicles
Symposium, pages 191–196, Xi’an, China.

Wedel, A., Franke, U., Badino, H., and Cremers, D. (2008). B-spline modeling of road
surfaces for freespace estimation. In Proceedings of the IEEE Intelligent Vehicles Sym-
posium, pages 828–833, Eindhoven, The Netherlands.

Weigel, H., Lindner, P., and Wanielik, G. (2009). Vehicle tracking with lane assignment
by camera and Lidar sensor fusion. In Proceedings of the IEEE Intelligent Vehicles
Symposium, pages 513–520, Xi’an, China.

Wijesoma, W. S., Kodagoda, K. R. S., and Balasuriya, A. P. (2004). Road-boundary detec-
tion and tracking using ladar sensing. IEEE Transactions on Robotics and Automation,
20(3):456–464.

Wong, J. (2001). Theory Of Ground Vehicles. John Wiley & Sons, New York, USA, third
edition.

Zomotor, Z. and Franke, U. (1997). Sensor fusion for improved vision based lane recog-
nition and object tracking with range-finders. In Proceedings of IEEE Conference on
Intelligent Transportation System, pages 595–600, Boston, MA, USA.



Paper B

Recursive Identification of Cornering
Stiffness Parameters for an Enhanced

Single Track Model

Authors: Christian Lundquist and Thomas B. Schön.

Edited version of paper originally published in Proceedings of the 15th IFAC Symposium
on System Identification, Saint-Malo, France, 2009.

Preliminary version published as Technical Report LiTH-ISY-R-2893, Department of
Electrical Engineering, Linköping University, Linköping, Sweden.

107





Recursive Identification of Cornering Stiffness
Parameters for an Enhanced Single Track

Model

Christian Lundquist and Thomas B. Schön

Department of Electrical Engineering,
Linköping University,

SE–581 83 Linköping, Sweden.
E-mail: (lundquist, schon)@isy.liu.se.

Abstract

The current development of safety systems within the automotive industry
heavily relies on the ability to perceive the environment. This is accom-
plished by using measurements from several different sensors within a sen-
sor fusion framework. One important part of any system of this kind is an
accurate model describing the motion of the vehicle. The most commonly
used model for the lateral dynamics is the single track model, which includes
the so called cornering stiffness parameters. These parameters describe the
tire-road contact and are unknown and even time-varying. Hence, in order to
fully make use of the single track model, these parameters have to be identi-
fied. The aim of this work is to provide a method for recursive identification
of the cornering stiffness parameters to be used on-line while driving.

Keywords: Recursive estimation, Recursive least square, Vehicle dynamics,
Gray box model, Tire-road interaction.

1 Introduction

In Lundquist and Schön (2008a) the authors presented a new approach to estimate the road
curvature by fusing the information from a camera, a radar, inertial sensors, a steering
wheel sensor and wheel speed sensors, making use of an accurate vehicle model. This
model is an enhanced single track model, which is also referred to as the bicycle model
in the literature. This model contains several parameters, some of which are known and
others that are unknown and hence have to be identified. The cornering behavior of the
vehicle is strongly connected to the tire characteristics. The parameters of the tires are
often assumed to be constant, and this was also the case in Lundquist and Schön (2008a).
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In the present contribution we will show a way to identify these parameters in real time
when driving.

To be more specific, the cornering stiffness parameter Cαi (i = f, r for the front and
the rear tires, respectively) describes the cornering behavior of the tire. The cornering
stiffness parameters are used to describe the relation between the lateral friction force of
the tires Fi and the slip angles αi,

Fi = Cαiαi, i = f, r. (1)

The slip angle is defined as the angle between the central axis of the wheel and the path
along which the wheel moves. Hence, the cornering stiffness parameters have to be in-
cluded in the model describing the motion of the vehicle. Rather than modeling the cor-
nering stiffness as just a scalar, as indicated in (1), we will model it to be able to account
for its dependence of the load transfer from the rear axle to the front axle when braking
and vice versa when accelerating. This implies that besides the lateral and yaw dynamics
we have to model the vertical motion of the vehicle as well. In this contribution we will
derive a rather simple model for the vertical motion, including only the pitch angle and
its derivative. The pitch angle is the angle between ground and the longitudinal axis of
the vehicle. In modeling the pitching motion we end up with a linear state-space model,
containing several unknown parameters, i.e. it is a linear gray-box model. These parame-
ters can be identified using standard techniques (Ljung, 1999, Graebe, 1990). Finally, we
can make use of the dynamic models describing the pitch, the lateral and the yaw motion
of the vehicle to form an appropriate recursive least squares problem for identifying the
cornering stiffness parameters on-line.

The problem of estimating the cornering stiffness parameters in the single track model
is by no means new. However, our approach is, to the best of the authors knowledge,
new in the sense that we make use of the vertical motion as well in order to estimate
the stiffness parameters. Furthermore, as a spin-off contribution we provide a way for
identifying the pitch dynamics of a vehicle. There are several previous approaches for
identifying the cornering stiffness parameters based solely on the lateral dynamics, see
e.g. Wesemeier and Isermann (2006), Sienel (1997), Sierra et al. (2006), Baffet et al.
(2007). Grip et al. (2008) used a nonlinear observer to estimate the side slip angle. It
is the fact that we have access to measurements of the pitching motion, via the vertical
position of the front and the rear suspension, that allows us to take the load transfer into
account when identifying the cornering stiffness parameters.

2 Longitudinal and Pitch Dynamics

When a vehicle brakes or accelerates a vertical motion is induced in the vehicle body,
the vehicle is said to pitch. This motion does not only depend on the vertical vibration
characteristics and the longitudinal brake or drive force, but also on the type of suspension.
Nevertheless, we will only consider a simple model of the vertical motion, describing
how the pitch angle changes over time. In Section 2.1 we provide a brief derivation of
the pitch dynamics used in this work, for a more detailed account, see e.g. Mitschke and
Wallentowitz (2004). There are several unknown parameters in the model of the pitch
dynamics that have to be estimated from data. This is the topic of Section 2.2.
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(a) Definition of the variables used to describe the vertical motion of the
vehicle.
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(b) Vertical and longitudinal forces acting on the vehicle, relevant for our
model.

Figure 1: Side view of the vehicle, introducing the variables used to model the
vertical motion of the vehicle.

2.1 Modeling

In Figure 1 we provide a side view of the vehicle, where the variables necessary for
the present derivation are defined. First of all, let us write down the spring and damper
equations,

Fzf = −Csf (z − lfχ)− Cdf (ż − lf χ̇), (2a)
Fzr = −Csr(z + lrχ)− Cdr(ż + lrχ̇), (2b)
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where Csf , Csr, Cdf and Cdr are the front (f ) and the rear (r) spring (s) and damper (d)
constants, respectively. The vertical position of the complete chassis is denoted by z. We
also assume that the pitch angles are small, implying that li tanχ ≈ liχ, i = f, r.

The vehicle body’s kinetic motion equation in the vertical direction is given by

mz̈ = Fzr + Fzf , (3)

where Fzr and Fzf are the vertical spring and damper forces of the front and rear axle,
respectively.

The longitudinal kinetic equation of the vehicle’s body is given by

mẍ = Fxf + Fxr − Fair, (4)

where Fxf and Fxr are the longitudinal forces acting on the wheel traction (positive val-
ues) or braking force (negative values) and Fair is the drag, given by

Fair = cWA
ρ

2
v2
x, (5)

where the air density ρ is approximately 1.23 kg/m3 at 1.0133 bar and 15 ◦C (Mitschke
and Wallentowitz, 2004). The cross section is A and the drag coefficient is cW .

Finally, let us write down the torque equilibrium

χ̈Iyy = −Fzf lf + Fzrlr − (Fxf + Fxr)h− Fair(hair − h), (6)

where h and hair are the heights of the center of gravity and the center of drag, respectively.
These equations are comprehensive and not all states and parameters are known. Some

of the parameters are given by the vehicle manufacturer, other parameters must be identi-
fied. Let us first investigate what we know about the vehicle, i.e. what we are measuring
with the standard sensors. In our vehicle1 we measure the following variables related to
the longitudinal and the pitch motion,

• the vertical position of the front and the rear suspension, ∆zf and ∆zr,

• the longitudinal acceleration ax,

• the longitudinal velocity vx and

• the torque and revolution at the internal combustion engine.

The ratio between the front and the rear wheel’s longitudinal forces differ depending on
whether the vehicle is driving or braking.

The brake force is by construction higher on the front wheels than on the rear wheels.
This brake force ratio contributes to a torque around the front wheels. When driving or
coasting, the traction forces apply on the driven axle. Our vehicle is all wheel driven and
the traction forces on the front and the rear wheels are approximately equal. Hence, the
resulting traction force is not applied on the same position as the resulting brake force and
in addition whether braking or driving it leads to a non-symmetric pitch behavior.

1The measurements were collected in cooperation with Nira Dynamics AB using an Audi S3.
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2.2 Identification

In order to estimate the spring and damper constants, we form a linear gray-box model
and the parameters are identified using standard prediction error methods (Ljung, 1999).
In this gray-box model we make use of the suffix χ to clarify that it models the pitch
dynamics. Define the states

xχ =
[
z ż χ χ̇

]T
, (7)

and the input signals
uχ =

[
ax v2

x

]T
. (8)

Here it is worth noting that the velocity signal is squared before it is used as an input
signal. Finally, the output is defined according to

yχ =
[
∆zf ∆zr

]T
. (9)

To simplify things, we assume Cs , Csf = Csr and Cd , Cdf = Cdr. The parameters
to be identified are

θχ =
[
Cs Cd lf hair

]T
. (10)

Let us now substitute the traction forces using (4) and the spring and damper forces (2)
into (3) and (6) according to

mz̈ = −(2Cs)z − (2Cd)ż + (Cslf − Cs(lb − lf ))ϕ
+ (Cdlf − Cd(lb − lf ))ϕ̇ (11a)

Iyyχ̈ = (Cslf − Cs(lb − lf ))z + (Cdlf − Cd(lb − lf ))ż

− (Csl2f + Cs(lb − lf )2)χ− (Cdl2f + Cd(lb − lf )2)χ̇

−mẍh− Fairhair. (11b)

The relation between the pitch angle χ and the measurements yχ

χ = arctan
(

∆zr −∆zf
lb

)
≈ ∆zr −∆zf

lb
(12)

is used to derive a measurement equation, which together with (11) finally brings us to
the state-space model

ẋχ =


0 1 0 0
− 2Cs

m − 2Cd
m

Cslf−Cslr
m

Cdlf−Cdlr
m

0 0 0 1
Cslf−Cslr

Iyy

Cdlf+Cdlr
Iyy

−Csl
2
f+Csl

2
r

Iyy
−Cdl

2
f+Cdl

2
r

Iyy

xχ

+


0 0
0 0
0 0
−mhIyy −Fairhair

Iyy

uχ, (13a)

yχ =
[
1 0 −lf 0
1 0 lr 0

]
xχ, (13b)
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Figure 2: Illustration of the model validation. The gray line corresponds to the raw
measurement of the pitch angle, calculated from the measurements using (9). The
black line corresponds to the pitch angle produced by the identified model.

where lr = lb− lf . Measurements with acceleration and brake maneuvers excites the sys-
tem and are suitable for estimating the parameters. The measurements from the standard
sensors are noisy and are therefore filtered before being used for identification purposes.
Since the identification can be performed off-line, a zero-phase forward and backward
filter is employed. We used two different data sets collected the same day, but on differ-
ent routs for estimation and validation. More information about the data is presented in
Section 5.

A data sequence from the German Autobahn was used to identify the following pa-
rameters

Ĉs = 8.24 · 104, l̂f = 1.45,

Ĉd = 4.45 · 103, ĥair = 0.19,

and a validation sequence from a different data set is shown in Figure 2. The raw pitch an-
gle, directly calculated from the measurements using (9) is shown together with the pitch
angles computed by our model. Clearly the model match the measurements, indicating
that our model is able to capture the pitching dynamics. The corresponding longitudinal
acceleration ax, which is used as input signal to the model is shown in Figure 3. Whenever
the vehicle accelerates this will result in a vertical motion, or in other words the pitch an-
gle will change as a result of acceleration. That this is indeed the case for our model
should be clear by comparing Figure 2 to Figure 3. For example, at time t = 45 s there
is a negative acceleration (i.e. the vehicle is braking), intuitively this leads to a positive
pitching motion (recall the definition of the pitch angle χ in Figure 1(a)).

The input and output signals are corrupted with noise and the state-space model (13) is
used within a Kalman filter framework to estimate the states. The load transfer is derived
using the spring and damper forces (2) and the estimated states from the Kalman filter
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Figure 3: Here the longitudinal acceleration ax, which is one of the inputs to the
model, is shown. The gray line shows the raw measurement signal and the black line
shows the filtered signal.

according to

∆Fzf = Csf lfχ+ Cdf lf χ̇, (14a)
∆Fzr = −Csrlrχ− Cdrlrχ̇. (14b)

3 Lateral and Yaw Dynamics

We will only be concerned with the vehicle motion during normal driving situations and
not at the adhesion limit. This implies that the single track model is sufficient for our
purposes (Mitschke and Wallentowitz, 2004). The geometry of the single track model
with slip angles is provided in Figure 4. It is here worth to point out that the velocity
vector of the vehicle is typically not in the same direction as the longitudinal axis of the
vehicle. Instead the vehicle will move along a path at an angle β with the longitudinal
direction of the vehicle. Hence, the angle β is defined as,

tanβ =
vy
vx
, (15)

where vx and vy are the vehicle’s longitudinal and lateral velocity components, respec-
tively. This angle β is referred to as the float angle (Robert Bosch GmbH, 2004) or the
vehicle body side slip angle (Kiencke and Nielsen, 2005). Lateral slip is an effect of cor-
nering. To turn, a vehicle needs to be affected by lateral forces. These are provided by the
friction when the wheels slip.

The slip angle αi, i = f, r is defined as the angle between the central axis of the wheel
and the path along which the wheel moves. The phenomenon of side slip is mainly due
to the lateral elasticity of the tire. For reasonably small slip angles, at maximum 3◦ or up
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Figure 4: In the single track model the wheels on each axle are modeled as single
units. The velocity vector vx, with the float angle β to the longitudinal axis of the
vehicle, is attached at the center of gravity. Furthermore, the wheel slip angles are
referred to as αf and αr. The front wheel angle is denoted by δf and the current
radius is denoted by ρ.

to a centripetal force of approximately 4 m/s2, it is a good approximation to assume that
the lateral friction force of the tire Fi is proportional to the slip angle,

Fi = Cαiαi, i = f, r. (16)

The parameter Cαi is called cornering stiffness and describes the cornering behavior of
the tire. The load transfer to the front axle when braking or to the rear axle when driving
can be considered by identifying the cornering stiffness as a parabolic function according
to Mitschke and Wallentowitz (2004)

Cαi =
(
Cαi0 − Cαi1

Fzi
Fzi,nom

)
Fzi, i = f, r. (17)

The nominal normal force Fzi,nom is constant and specified by the tire manufacturer. The
current vertical force Fzi is given by the normal force at stationary conditions Fzi,stat and
the load transfer ∆Fzi according to

Fzi = Fzi,stat + ∆Fzi, (18)

where the load transfer ∆Fzi is given in (14).
We can now derive a nonlinear state-space model for the vehicle lateral and yaw dy-

namics, using the following state vector

xψ =
[
ψ̇E β

]T
, (19)

i.e., the yaw rate ψ̇E and the float angle β. The front wheel angle δf and the vehicle
longitudinal velocity vx are both modelled as input signals,

uψ =
[
δf vx

]T
, (20)
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Figure 5: Illustration of our approach to recursive identification of the cornering
stiffness parameters. The solid lines corresponds to input signals (arrows pointing to
the box) or measurement signals (arrows pointing away from the box) and the dashed
lines corresponds to state or parameter estimates that are not directly measured. The
pitch dynamics was treated in Section 2 and this is where the load transfer ∆Fzi
is computed, which is used in forming the regression vector (27). Furthermore, by
making use of the lateral and yaw dynamics we can estimate the slip angles and
the lateral accelerations which are also needed in solving the recursive identification
problem.

and the measurements consists of the yaw rate and the lateral acceleration,

yψ =
[
ψ̇E ay

]T
. (21)

The complete details of this derivation, within the present framework, are provided by
Lundquist and Schön (2008b).

4 Recursive Identification

Our approach to recursive identification of the cornering stiffness parameters is illustrated
in Figure 5. The main idea is to make use of both the pitch, the lateral and the yaw
dynamics in order to form an appropriate identification problem. The equations modelling
the dynamics have already been derived in Section 2 and Section 3. In this section we will
pose the resulting recursive identification problem, starting with the regression model in
Section 4.1 and the recursive solution is briefly described in Section 4.2.

4.1 Regression Model

The cornering stiffness parameters are identified using a linear regression model accord-
ing to

yt = ϕT
t θ + et, (22)

where yt denote the measurements, ϕt denote the regression vector, θ denote the pa-
rameters to be identified and et denote the measurement noise. To be more specific, the
parameter vector is given by

θ =
[
Cαf0 Cαf1 Cαr0 Cαr1

]T
. (23)

Furthermore, the measurement vector is chosen as

y =
[
Fyf Fyr

]T
, (24)
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where the lateral forces are computed using Newton’s equation according to

Fyf = myayf = m
lr
lb

(
ay,m + lf ψ̈E

)
cos δf , (25a)

Fyr = myayr = m
lf
lb

(
ay,m − lrψ̈E

)
. (25b)

Furthermore, using (16) and (17) we have

Fyf =
(
Cαf0 − Cαf1

Fzf
Fzf,nom

)
Fzfαf , (26a)

Fyr =
(
Cαr0 − Cαr1

Fzr
Fzr,nom

)
Fzrαr, (26b)

implying that the regression matrix is given by

ϕ =


Fzfαf 0

−Fzfαf Fzf
Fzf,nom

0
0 Fzrαr
0 −Fzrαr Fzr

Fzr,nom

 . (27)

The only thing that is missing is expressions for the slip angles. In order to derive these,
let us start by considering the longitudinal velocities

vx cosβ = vxr cosαr = vxf cos (δf − αf ), (28)

which must all be equal, since the vehicle would stretch otherwise. The lateral velocities
differer by the yaw rate according to

vxf sin (δf − αf ) = lf ψ̇E + vx sinβ, (29a)

vxr sinαr = lrψ̇E − vx sinβ. (29b)

By combining these velocity equations we arrive at

tan(δf − αf ) =
ψ̇Elf
vx cosβ

+ tanβ, (30a)

tanαr = − tanβ +
ψ̇Elr
vx cosβ

. (30b)

Under normal driving conditions we can assume small α and β angles, i.e. that tanα = α
and tanβ = β hold, which results in the following expressions for the slip angles

αf = − ψ̇Elf
vx
− β + tan δf , (31a)

αr = −β +
ψ̇Elr
vx

. (31b)

This means that we can use the measurements vx and δf and the estimated states ψ̇E and
β to calculate the slip angles.
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4.2 Constrained Recursive Least Squares

The cornering stiffness parameters θ, given in (23), can now be estimated on-line by
making use of the recursive solution to the following least squares problem,

θ̂ = arg min
θ∈DM

1
2

t∑
k=1

λt−k(yk − ϕT
kθ)TΛ−1(yk − ϕT

kθ), (32)

where 0 < λ ≤ 1 is the so called forgetting factor. Furthermore, Λ denote a weight-
ing matrix, which can be used to acknowledge the relative importance of the different
measurements. It is possible to let λ and/or Λ be time varying. This can for instance be
used to model the fact that the parameters are not identifiable during low excitation, i.e.,
when accelerations or velocities are missing. Finally, DM is used to denote the set of
values over which θ ranges in the given model structure i.e., enforcing constraints on the
parameter θ. The unconstrained recursive solution to (32) is given by

θ̂t = θ̂t−1 +Kt

(
yt − ϕT

t θ̂t−1

)
, (33a)

Kt = Pt−1ϕt (λtΛt + ϕT
t Pt−1ϕt)

−1
, (33b)

Pt =
1
λt

(
Pt−1 − Pt−1ϕt(λtΛt + ϕT

t Pt−1ϕt)−1ϕT
t Pt−1

)
. (33c)

This is commonly referred to as the recursive least square (RLS) algorithm. For a detailed
account of the RLS algorithm and recursive identification in general we refer to Ljung
(1999), Ljung and Söderström (1983).

The constraint θ ∈ DM can be enforced by simply projecting the estimates back into
DM when necessary (Ljung, 1999),

θ̂t =

{
θ̂t if θ̂t ∈ DM
θ̂t−1 if θ̂t /∈ DM

(34)

5 Experiments and Results

The measurements used to illustrate and evaluate the approach proposed in this work were
collected during normal driving conditions. Note that we are only using measurements
that are directly available on the CAN bus in our test vehicle.

The cornering stiffness parameters are identified using the RLS algorithm given in (32)
using the model given in (22) – (27), with Λ = I and λ = 0.99. Furthermore, the corner-
ing stiffness parameters θ have to belong to the following set DM,

20000 < Cαi < 120000, i = f, r,
θ > 0,

Cαi0 > Cαi1, i = f, r.
(35)

The projection (34) is typically active in the beginning of the data sequence or when the
system is not exited, i.e. at low velocities or at low lateral accelerations.
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Figure 6: Identified cornering stiffness parameters as a function of time for two
different cases, wet and dry asphalt, respectively.

Let us start out by providing an illustration of the identified cornering stiffness param-
eters in Figure 6. The measurements were collected in a test vehicle, which starts from
a crossover, accelerates to approximately 100 km/h and follows a rural road for 10 min.
Since we do not have access to the true values for the cornering stiffness parameters it
is impossible to directly evaluate the accuracy. However, one interesting comparison is
made in the figure. That is that there is a significant difference in the value depending
on whether the asphalt is dry or wet. This was expected, since the cornering stiffness
parameters describes the tire-road contact, which of course varies with wet/dry asphalt.
The stiffness is higher on dry asphalt than on a wet and slippery road.

In Figure 7 we try to illustrate the fact that when the longitudinal acceleration is small,
the covariance given in (33c) increase and as soon as there is a significant longitudinal
acceleration present, the covariance is reduced. This illustrates the excitation problems
inherent in this problem.

The slip angles are computed according to (31) and the result is illustrated in Figure 8.
Since there are no measurements, we cannot objectively evaluate these estimates. How-
ever, based on knowledge about the test drive it can at least be said that the slip angles
agrees with the expectation.

The experiments were performed on various public roads in Germany and the results
are encouraging. In order to thoroughly validate the results it is necessary to carry out
more dedicated experiments and use reference measurement equipment.

6 Conclusion

The contribution of this paper is a method for recursive identification of the cornering
stiffness parameters that are essential for the single track model. Both the vertical, the
lateral and the yaw dynamics are used to form the resulting regression problem that is
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Figure 7: Illustration of the longitudinal acceleration and the covariance associated
to the parameter Cαf1. The plot shows that whenever there is little excitation in the
acceleration, the covariance grows and as soon as there is significant acceleration
present, the covariance is reduced.
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Figure 8: The calculated slip angles during part of the time window used in Figure 7.

solved using a constrained RLS algorithm. In order to find the vertical (pitch) dynamics
we had to solve a linear gray-box problem. The method has been successfully evaluated
on real measurements.
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Abstract

There are more and more systems emerging making use of measurements
from a forward looking radar and a forward looking camera. It is by now
well known how to exploit this data in order to compute estimates of the road
geometry, tracking leading vehicles, etc. However, there is valuable informa-
tion present in the radar concerning stationary objects, that is typically not
used. The present work shows how radar measurements of stationary objects
can be used to obtain a reliable estimate of the free space in front of a mov-
ing vehicle. The approach has been evaluated on real data from highways
and rural roads in Sweden.

Keywords: road geometry, weighted least squares, quadratic program, road
borders, free space estimation, automotive radar, road mapping

1 Introduction

For a collision avoidance system it is imperative to have a reliable map of the environment
surrounding the ego vehicle. This map, consisting of both stationary and moving objects,
has to be built in real time using measurements from the sensors present in the ego ve-
hicle. This is currently a very active research topic within the automotive industry and
many other areas as well. Great progress has been made, but much remains to be done.
Current state-of-the-art when it comes to the problem of building maps for autonomous
vehicles can be found in the recent special issues by Buehler et al. (2008a,b,c) on the
2007 DARPA Urban Challenge. In these contributions measurements from expensive and
highly accurate sensors are used, while we in the present paper utilize measurements from
off-the-shelf automotive radars.
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In this contribution we consider the problem of estimating the free space in front of
the vehicle, making use of radar measurements originating from stationary objects. The
free space is defined as the space where a ground vehicle can manoeuvre without colliding
with other objects. Another name for the free space is the drivable space.

The present solution makes use of an already existing sensor fusion framework by
Lundquist and Schön (2008a), which among other things provided a good road geome-
try estimate. This framework improves the raw vision estimate of the road geometry by
fusing it with radar measurements of the leading vehicles. The idea is that the motion of
the leading vehicles reveals information about the road geometry, as described by e.g.,
Zomotor and Franke (1997), Gern et al. (2000, 2001). Hence, if the leading vehicles can
be accurately tracked, their motion can be used to improve the road geometry estimates.
Furthermore, we used a solid dynamic model of the ego vehicle allowing us to further
refine the estimates by incorporating several additional proprioceptive sensor measure-
ments readily available on the CAN bus. The resulting, rather simple, yet useful map of
the environment surrounding the ego vehicle consists in

• Road geometry, typically parameterized using road curvature and curvature rate.

• Position and velocity of the leading vehicles.

• Ego vehicle position, orientation and velocity.

This information can and has indeed been used to design simpler collision avoidance
systems. However, in order to devise more advanced systems, more information about
the environment surrounding the ego vehicle is needed. The purpose of this paper is
to exploit information already delivered by the radar sensor in order to compute a more
complete map. Hence, there is no need to introduce any new sensors, it is just a matter of
making better use of the sensor information that is already present in a modern premium
car. To be more precise, it is the radar echoes from stationary objects that are used to
estimate the road borders, which determines the free space in front of the ego vehicle.
The radar measurements used originate from for instance, guardrails and concrete walls.
Obviously these stationary radar measurements are not enough to fully explain the road
borders. However, as we will see, there is surprisingly much information present in these
measurements.

The key in our approach is to make use of the road curvature estimate from the sensor
fusion framework by Lundquist and Schön (2008a) mentioned above to sort the stationary
radar measurements according to which side of the road they originate from. These mea-
surements are then used together with the estimates from the sensor fusion to dynamically
form a suitable constrained quadratic program (QP) for estimating the free space in front
of the vehicle. This QP models the temporal correlation that exists in roads and the fact
that the road shape cannot change arbitrarily fast.

The approach has been evaluated on real data from highways and rural roads in Swe-
den. The test vehicle is a Volvo S80 equipped with a forward looking 77 GHz mechani-
cally scanned FMCW radar and a forward looking vision sensor (camera).
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2 Related Work

We have also investigated a completely different approach to represent the map of the free
space in front of the ego vehicle based on so call occupancy grid maps (OGM). This is
a commonly used method for tackling the problem of generating consistent maps from
uncertain measurements of stationary object under the assumption that the ego vehicle
pose is known. Occupancy grid maps are very popular in the robot community, especially
for all sorts of autonomous vehicles equipped with laser scanners, indeed several of the
DARPA vehicles, described by e.g., Buehler et al. (2008a,b,c), used OGM’s. The OGM
was introduced by Elfes (1987) and a solid treatment can be found in the recent textbook
by Thrun et al. (2005).

The map is discretized into a number of cells with an associated probability of oc-
cupancy. The map is represented by a matrix, with each element corresponding to a
map-cell. Figure 1a shows an OGM computed for the highway situation given in the ego
vehicle’s camera view in Figure 1b. The ego vehicle is positioned at (200, 200), indicated
by the filled circle. The gray-level in the occupancy map indicates the probability of oc-
cupancy, the darker the grid cell, the more likely it is to be occupied. As can be seen in
Figure 1a, the OGM generates a good-looking overview of the traffic situation. However,
since the measurements are obtained from a standard automotive radar the results are not
very informative for a collision avoidance system, better accuracy is needed. For a more
complete description of the application of the OGM to the present problem we refer to
Lundquist et al. (2009).

The work presented here is clearly related to lane tracking, which by now is a very
well-studied problem, see e.g., McCall and Trivedi (2006) for a recent survey using cam-
eras. In fact the required sensor fusion framework by Lundquist and Schön (2008a) makes
use of the estimates from a visual lane tracker. The recent book by Dickmanns (2007)
contains a lot of interesting information about detecting and tracking lanes using cam-
eras. Lane tracking has also been tackled using radar sensors, see e.g., Kaliyaperumal
et al. (2001), Lakshmanan et al. (1997), Nikolova and Hero (2000), Ma et al. (2000) and
laser sensors, see e.g. Wijesoma et al. (2004). Using laser scanners there have been sev-
eral approaches making use of reflections from the road boundary, such as crash barriers
and reflection posts, to compute information about the free space, see e.g., Kirchner and
Heinrich (1998), Kirchner and Ameling (2000), Sparbert et al. (2001). Furthermore, the
use of a side looking radar to measure the lateral distance to a sidewall is described in
various papers, e.g., Mayhan and Bishel (1982), Tamiya et al. (1996), Fukae et al. (1996).
The intended application in these papers by Mayhan and Bishel (1982), Tamiya et al.
(1996), Fukae et al. (1996) were automatic lateral control. Here, we have no specific ap-
plication in mind, we just try to obtain the best possible map based on the available sensor
information. This map can then be used by any control system.

Wedel et al. (2008) presents an algorithm for free space estimation, capable of han-
dling non-planar roads, using a stereo camera system. Similar to the present paper the
authors make use of a parametric model of the road ahead. An interesting avenue for
future work is to combine the idea presented in this paper with the ideas of Wedel et al.
(2008) within a sensor fusion framework.
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Figure 1: The filled circle at position (200, 200) in the occupancy grid map in Fig-
ure (a) is the ego vehicle, the stars are the radar observations obtained at this time
sample, the black squares with numbers 1 and 2 are the two leading vehicles that
are currently tracked. The gray-level in the figure indicates the probability of occu-
pancy, the darker the grid cell, the more likely it is to be occupied. The shape of
the road is given as solid and dashed lines, calculated as described by Lundquist and
Schön (2008a). The camera view from the ego vehicle is shown in Figure (b), the
concrete walls, the guardrail and the pillar of the bridge are interesting landmarks.
Furthermore, the two tracked leading vehicles are clearly visible in the right lane.
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Figure 2: ISO 3888 double lane change maneuver according to ISO (1999).

3 Problem Formulation

An important question is how the information of the free space should be represented and
for which distances ahead of the vehicle that it is needed. We will start by addressing
the latter through an example, the standard double lane change maneuver according to
ISO (1999). In this maneuver a vehicle has to overtake an obstacle and come back to
its original lane as shown in Figure 2. Assume that the ego vehicle is entering section 1
at a velocity of 100 km/h and that there is an obstacle straight ahead in section 3. The
free space, i.e. the distance to the left and right road borders has to be known in order to
autonomously overtake the obstacle as shown in the figure. This means that an automatic
collision avoidance system needs to have information about the free space at least three
sections ahead in order to make a decision on where to steer the vehicle. From this simple,
yet informative, calculation we conclude that the road must be well estimated for at least
60 m ahead when driving at approximately 100 km/h.

In this paper we will use the planar coordinate rotation matrix

RWE =
[
cosψE − sinψE
sinψE cosψE

]
(1)

to transform a vector, represented in the vehicle’s coordinate system E, into a vector,
represented in the reference coordinate system W , where ψE is the angle of rotation from
W to E. We will refer to this angle as the yaw angle of the vehicle. The point OW is
the origin of W and OE is the origin of E situated in the vehicles center of gravity. The
geometric displacement vector dWEW is the direct straight line from W to E represented
with respect to the frame W . The angles and distances are shown in Figure 3.

A stationary object Si may be observed by the ego vehicles radar in the point Si.
The radar in the ego vehicle measures the azimuth angle δSiEs and the range dSiEs =
||rESiEs ||2 to the stationary object. These are transformed into Cartesian coordinates ac-
cording to

ySi =
[
xESiEs
yESiEs

]
=
[
dSiEs cos δSiEs
dSiEs sin δSiEs

]
(2)
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Figure 3: The ego vehicle’s coordinate frame E has its origin OE situated in the
vehicle’s center of gravity. A stationary object Si is observed at a distance ||dWSiEs ||2
and an angle δSiEs with respect to the vehicles radar, which is mounted in the radiator
cowling at Es. The lane width is w, the angle between the ego vehicle and the road
is denoted ψRE and the road curvature is c.

in the vehicle coordinate frame E.
All the observations of stationary objects YS = {ySi}

Ns
i=1 from the radar are sorted

into two ordered sets, one for the left side YSl and one for the right side YSr of the
road. In order to be able to perform this sorting we need some information about the road
geometry, otherwise it is of course impossible. Lundquist and Schön (2008a) provide
a sensor fusion framework for sequentially estimating the parameters lE , ψRE , c0 in the
following model of the road’s white lane markings,

yE = lE + ψREx
E +

c0
2

(xE)2, (3)

where xE and yE are expressed in the ego vehicle’s coordinate frame E. The angle
between the longitudinal axis of the vehicle and the road lane is ψRE , see Figure 3. It is
assumed that this angle is small and hence the approximation sinψRE ≈ ψRE is used.
The curvature parameter is denoted by c0 and the offset between the ego vehicle and the
white lane is denoted by lE .

The information about the road shape in (3) can now be used to decide if an observa-
tion should be sorted into the left set according to

YSl =
{
ySi ∈ YS | yESiEs ≥ lE + ψREx

E
SiEs +

c0
2

(xESiEs)
2
}

(4)
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or the right set according to

YSr =
{
ySi ∈ YS | yESiEs < lE + ψREx

E
SiEs +

c0
2

(xESiEs)
2
}
. (5)

Observations which lay more than 200 m behind the vehicle are removed from the set.
The two sets YSl and YSr are resorted at every sample, according to the new curvature
estimate.

Given the data in YSl we seek a road border model, provided by a predictor

ŷESiEs(x
E
SiEs ,θ), (6)

where θ denotes a parameter vector describing the road boarders. The exact form of
this predictor is introduced in the subsequent section, where two different predictors are
derived. The data in YSr in treated analogously. The road boarder parameters θ are
estimated by solving the following least-square problem

min
θ

∑N
i=1 λi

(
yESiEs − ŷ

E
SiEs

(xESiEs ,θ)
)2
,

(7)

where N is the number of observations and λi is a weighting factor. The problem (7)
is formulated as if there is only an error in the y-coordinate. Obviously there are errors
present also in the x-coordinate. This can be taken care of by formulating a so called
errors-in-variables problem (within the optimization literature this problem is referred
to as a total least squares problem), see e.g., Björck (1996). However, for the sake of
simplicity we have chosen to stick to an ordinary least squares formulation in this work.

4 Road Border Model

In this section we will derive and analyze two different predictor models, one linear and
one nonlinear.

An important problem to be solved is to decide which radar measurements that should
be used in estimating the parameters. Later in this section we will introduce suitable
constraints that must be satisfied. This will allow us to remove non-relevant data, i.e.,
outliers.

4.1 Predictor

The two ordered sets YSl and YSr are handled analogously. Hence, only the processing
related to the left set is described here. The observations are expressed in the world
coordinate system W when they are stored in YSr as the system proceeds one time step.
Obviously it is straightforward to transform them into the vehicle’s coordinate system,
using the rotation matrix REW = (RWE)T.

As depicted earlier the lanes are modeled using the polynomial (3). Let us assume that
the white lane markings are approximately parallel with the road border. In order to allow
the number of lanes to change, without simultaneously changing the curvature, we extend
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Figure 4: A pure arctan is shown in Figure (a), whereas the complete expression (9)
is shown in Figure (b) for a typical example.

the second order model (3) with a fourth element. Hence, a linear predictor is provided
by

ŷE1 (xE ,θ1l) = l0 + l1x
E + l2(xE)2 + l3(xE)3, (8)

which is a third order polynomial, describing the road’s left border, given in the ego
vehicle coordinate frame.

By analyzing road construction standards, such as VGU (2004), we assume that the
increment and decrement of the number of lanes can be modelled using the arctan func-
tion illustrated in Figure 4a. This allows for a continuous, but possible rapid, change in
shape. Let us now, as a second approach, extend (3) and form the following nonlinear
predictor

ŷE2 (xE ,θ2l) = l0 + l1x
E + l2(xE)2 + k arctan τ(xE − b), (9)

where the parameter b indicates where arctan crosses zero. The slope τ and magnitude
k could be chosen according to typical road construction constants. An example of the
complete nonlinear road border model (9) is shown in Figure 4b.

We will start describing the linear model (8) and come back to the nonlinear model (9)
later in this section. Given the Nl observations in YSl, the parameters

θ1l =
[
l0 l1 l2 l3

]T
(10)

can be approximated by rewriting the linear predictor (8) according to

Ŷ E
1l = ΦEl θ1l, (11)

where the regressors (xSiEs ∈ YSl, i = 1, . . . , Nl)

ϕEi =
[
1 xESiEs (xESiEs)

2 (xESiEs)
3
]T
. (12)
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are stacked on top of each other in order to form

ΦEl =
[
ϕE1 , . . . , ϕ

E
Nl

]T
, (13)

The parameters are found by minimizing the weighted least square error (7), here in ma-
trix form

||Y E
l − ΦEl θ1l||2Λ = (Y E

l − ΦEl θ1l)TΛ(Y E
l − ΦEl θ1l), (14)

where Λ is a weighting matrix

Λ = diag(
[
λ1 · · · λNl

]
) (15)

and the y-coordinates are given by

Y E
l =

[
yES1Es

, . . . , yESNlEs

]T
. (16)

The right hand side of the road is modeled analogously, using the following parameter
vector,

θ1r =
[
r0 r1 r2 r3

]T
. (17)

The azimuth angle δSiEs is measured with lower accuracy than the range dSiEs in the
radar system. This influences the uncertainty of the measurements, when transformed into
Cartesian coordinates in accordance to the measured distance. Therefore, the elements of
the weight matrix Λ in (14) are defined as

λi =
1

log dSiEs
, i = 1, . . . , Nl, (18)

modeling the fact that stationary objects close to the vehicle are measured with higher
accuracy than distant objects. Hence, the closer the object is, the hight the weight.

The problem of minimizing (14) can be rewritten as a quadratic program (Boyd and
Vandenberghe, 2004) according to

min
θ1l

θT
1l Φ

T
l Λ Φl θ1l − 2

(
Y E
l

)T Λ Φl θ1l. (19)

A straightforward solution of this problem will not work due to the simple fact that not
all of the stationary objects detected by the radar stems from relevant objects for our
purposes. For example, under some circumstances the radar also detects objects at the
opposite side of the highway. These observations could for example stem from a guardrail
or the concrete wall of a gateway from e.g., a bridge, see Figure 5b. If the road borders are
estimated according to the quadratic program in (19) using these observations the result
will inevitably be wrong. In order to illustrate that this is indeed the case the result is
provided in Figure 5a. In the subsequent section we will explain how this situation can be
avoided by deriving a set of feasibility conditions that the curve parameters θ1l and θ1r

have to fulfill.
Let us briefly revisit the nonlinear model (9). Since this predictor is nonlinear, it

cannot be factored in the same way as we did for the linear predictor in (11). Instead, we
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Figure 5: The gateway shown on the opposite side of the highway in Figure (b)
misleads the road boarder estimation. The stored observations are shown together
with the estimated road boarders (lines) in Figure (a). The black points belongs to
the left set YSl and the gray points belongs to the right set YSr.
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have to keep the nonlinear form, resulting in the following optimization problem to be
solved

min
θ

∥∥∥Y E
l − Ŷ E

2l (XE
l ,θ2l)

∥∥∥2

Λ
, (20)

where Y E
l was defined in (16) and similarly Ŷ E

2l are the nonlinear predictions

ŷE2li(x
E
SiEs ,θ2l) = l0 + l1x

E
SiEs + l2(xESiEs)

2 + k arctan τ(xESiEs − b) (21)

stacked on top of each other. Hence, the parameters θ2l used in (20) are given by

θ2l =
[
l0 l1 l2 k τ b

]T
. (22)

The resulting problem (20) is a non-convex least-squares problem.

4.2 Constraining the Predictor

The predictor has to be constrained for the problem formulation to be interesting. More
specifically, we will in this section derive constraints forming a convex set, guaranteeing
that the resulting linear optimization problem remains quadratic. This problem can then
be efficiently solved using a dual active set method1, see e.g., Gill et al. (1991).

As we assume that the white lane markings (3) are approximately parallel with the
road border (8), we could use the angle ψRE to constrain the second border parameter l1
and we could use the curvature c0 to constrain the third border parameter l2 according to

(1−∆)ψRE − εψRE ≤ l1 ≤ (1 + ∆)ψRE + εψRE if ψRE ≥ 0, (23a)

(1 + ∆)ψRE − εψRE ≤ l1 ≤ (1−∆)ψRE + εψRE if ψRE < 0, (23b)

(1−∆)c0 − εc0
2

≤ l2 ≤
(1 + ∆)c0 + εc0

2
if c0 ≥ 0, (23c)

(1 + ∆)c0 − εc0
2

≤ l2 ≤
(1−∆)c0 + εc0

2
if c0 < 0, (23d)

where the allowed deviation ∆ is chosen as 10%, i.e., ∆ = 0.1. A small value ε is added
to avoid that both the upper and lower bounds are equal to 0 in case ψRE or c0 is equal
to 0. Several different approaches for estimating the road curvature c0 are described by
Lundquist and Schön (2008b).

The first border parameter l0 is not constrained, because the number of lanes may
change at e.g. a gateway. It should be possible for the border of the road to move in
parallel to the ego vehicles motion without any conditions.

In order to create a feasibility condition for the fourth parameter l3 of the linear model,
the estimated position of the ego vehicle expressed in the reference frame R is saved
at each time sample. A data entry is removed from the set if it lays more than 200 m
behind the current position. Furthermore, the estimated curvature is used to extrapolate

1The QP code was provided by Dr. Adrian Wills at the University of Newcastle, Australia, see http:
//sigpromu.org/quadprog. This code implements the method described by Goldfarb and Idnani (1983),
Powell (1985).
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points 200 m ahead of the vehicle. These points together with information about the ego
vehicle’s earlier positions are used to derive a driven path as a third order polynomial

yE = l + ψREx
E +

c0
2

(xE)2 +
c1
6

(xE)3. (24)

Especially the parameter c1 is of interest and can be used to constrain l3. Hence, the final
inequality, which will further constrain (19) is given by

(1−∆)c1 − εc1
6

≤ l3 ≤
(1 + ∆)c1 + εc1

6
if c1 ≥ 0, (25a)

(1 + ∆)c1 − εc1
6

≤ l3 ≤
(1−∆)c1 + εc1

6
if c1 < 0. (25b)

To summarize, the constrained optimization problem to be solved based on the linear
predictor (8) is given by

min
θ1l

‖Y E − Ŷ E
1l (XE ,θ1l)‖2Λ

s.t. (23)
(25)

(26)

The parameter b, of the nonlinear model (9) is constrained by the measurement dis-
tance and the parameters k and τ are constrained by road construction standards. The
resulting nonlinear least-squares problem is finally given by

min
θ2l

‖Y E − Ŷ E
2l (XE ,θ2l)‖2Λ

s.t. (23)
bmax ≤ b ≤ −bmax
kmax ≤ k ≤ −kmax
τmax ≤ τ ≤ τmin.

(27)

4.3 Outlier Rejection

The difference between the observed point and the calculated road border lines is used
to separate and remove outliers which lie more than 1.5 lane width (w) from the lines.
Subsequently the quadratic program (19) is used a second time and the result is shown in
Figure 6. For this case, the two predictor models yields approximately the same result.

An advantage of the nonlinear model is its ability to model changes in the number
of lanes, as can be seen in Figure 7a, where the number of lanes changes from two to
three. Recall that it is the use of the arctan function that allows us to model changes in
the number of lanes. The new lane originates from an access road to the highway. The
corresponding camera view is shown in Figure 7b.

4.4 Computational Time

We have compared the computation time for the two proposed predictors with constraints.
The nonlinear least square problem (27) was solved using the function fmincon in MAT-
LABS optimization toolbox. Furthermore, we have used two different methods for solving
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Figure 6: Road border estimation for the same situation as in Figure 5a, but the
additional constraints are now used. The feasible set for the parameters l1, l2 and l3
is between the dashed lines. The crosses shows the driven path (for x < 0) and the
estimated path (for x > 0).

the quadratic problem (26). The first method is the active set method mentioned earlier,
where parts are written in C-code, and the second method used is quadprog in MAT-
LABS optimization toolbox. The computational time was averaged over a sequence of
1796 samples. The sample time is 0.1 s, implying that the measurements were collected
during 179.6 s highway driving. The results are shown in Table 1.

The computation time of the nonlinear predictor is about 38 % higher than it is for the
linear predictor proposed in this paper. The MATLAB function quadprog needs 149 %
more computational time. This indicates that the computational time of the nonlinerar
predictor can possibly be reduced by utilizing an optimized C-code implementation.
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Figure 7: A change in the number of lanes is modeled accurately using the arctan
function in the nonlinear predictor, as shown by the solid line in Figure (a). The
dashed line is the result of the linear predictor. The camera view of the traffic situa-
tion is shown is Figure (b).
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Table 1: Average computational time for one sample.

Method Time [ms]
Linear Predictor (this paper) 84
Linear Predictor (quadprog) 209
Nonlinear Predictor 116

5 Calculating the Free Space

The free distance to the left and the right road borders is now easily calculated by con-
sidering the first parameters l0 and r0 respectively. The number of lanes on the left hand
side is given by

max
(⌊

l0 − L
w

⌋
, 0
)

(28a)

and the number of lanes on the right hand side is given by

max
(⌊
−r0 −R− 2

w

⌋
, 0
)
. (28b)

In the expressions aboveL andR are the distances from the sensor in the ego vehicle to the
left and right lane markings of the currently driven lane. We assume that the emergency
lane is 2 m on the right hand side of the road according to VGU (2004).

The number of observed stationary objects depends on the surrounding environment.
A guardrail or a concrete wall results in more observations than for example a forest.
Hence, the estimated border lines are accompanied by a quality measure which depends
on the number of observations and their variance. The variance is calculated before and
after the outliers have been removed.

It is still a problem to detect the distance to the road border if there is a noise barrier
some meters to the right of the road. This wall generates many observations with small
variance and cannot be distinguished from a guardrail. However, one solution might be
to include camera information in a sensor fusion framework.

5.1 Border Line Validity

A very thrilling problem with the present curve fitting approach is that there are no gaps to
properly leave or enter the road at a gateway. A collision avoidance system would brake
the vehicle automatically if leaving the road at a gateway when simultaneously crossing
the border line. This leads us to the conclusion that the border lines should only be defined
if the number of observations around it lies above a certain limit.

In a first step we calculate the distance between the line and the observations in the
set YSl

dl,i =
∣∣∣yESiEs − (ψRExESiEs +

c0
2

(xESiEs)
2
)∣∣∣ for i = 1, . . . , Nl (29)

and compare it with a constant or variable, e.g., the lane width w

ni =
{

1 if dl,i > w
0 otherwise. (30)
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In a second step the border line is segmented in valid and not valid parts. The start and
end points of the valid parts are given by identifying the indices of two non equal and
adjoined elements in the vector n. By applying the XOR function (⊕) according to

c = n2:Nl ⊕ n1:Nl−1, (31)

the start and end points of the border line are identified as the indices with c = 1. These
indices are stored in two additional sets for the left and right border lines, respectively.
An example is shown in Figure 8a and the corresponding camera view in Figure 8b. The
gateway to the right leads to a gap in the right border line, between 48− 73 m ahead of
the ego vehicle. One of the leading vehicles lies between the ego vehicle and the guardrail,
this is the reason whey there are so few stationary object on the left hand side from about
70 m ahead and why no line could be drawn.

6 Conclusions and Future Work

In this contribution we have derived a method for estimating the free space in front of a
moving vehicle, making use of radar measurements originating from stationary objects
along the road side. There is no need to introduce any new sensors, since the radar sensor
is already present in modern premium cars. It is just a matter of making better use of the
sensor information that is already present.

Two different road border models are introduced, one linear model containing four
parameters and one nonlinear model containing six parameters. These models do not
depend on the fact that a radar sensor is used, implying that it is straightforward to add
more sensor information from additional sensors. In other words, the approach introduced
here fits well within a future sensor fusion framework, where additional sensors, such as
cameras and additional radars, are incorporated.

The present approach has been evaluated on real data from both highways and rural
road in Sweden. The results are encouraging and surprisingly good at times. It is of
course not always perfect, but it is much more informative than just using the raw mea-
surements. The problems typically occur when there are to too few measurements or if
the measurements stems from other objects than the road side objects.

Currently there is a lot of activity within the computer vision community to be able to
handle non-planar road models, making use of parametric models similar to the ones used
in this paper. A very interesting avenue for future work is to combine the idea presented
in this paper with information from a camera about the hight differences on the road side
within a sensor fusion framework. This would probably improve the estimates, especially
in situations when there are too few radar measurements available.
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Figure 8: The gateway to the right in Figure (b) leads to a gap in the right border
line, between 48− 73 m ahead, as shown in Figure (a).
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Abstract

It is getting more common that premium cars are equipped with a forward
looking radar and a forward looking camera. The data is often used to es-
timate the road geometry, tracking leading vehicles, etc. However, there is
valuable information present in the radar concerning stationary objects, that
is typically not used. The present work shows how stationary objects, such
as guard rails, can be modeled and tracked as extended objects using radar
measurements. The problem is cast within a standard sensor fusion frame-
work utilizing the Kalman filter. The approach has been evaluated on real
data from highways and rural roads in Sweden.

Keywords: extended objects, object detection, radar imaging, road vehicle
radar, object tracking, road mapping, stationary objects

1 Introduction

For a collision avoidance system it is imperative to have a reliable map of the environment
surrounding the ego vehicle. This map, consisting of both stationary and moving objects,
has to be built in real time using measurements from the sensors present in the ego ve-
hicle. This is currently a very active research topic within the automotive industry and
many other areas as well. Great progress has been made, but much remains to be done.
Current state-of-the-art when it comes to the problem of building maps for autonomous
vehicles can be found in the recent special issues by Buehler et al. (2008a,b,c) on the
2007 DARPA Urban Challenge. In these contributions measurements from expensive and
highly accurate sensors are used, while we in the present paper utilize measurements from
off-the-shelf automotive radars.
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Obviously, these stationary radar measurements are not enough to fully explain the
road borders. However, as we will see, there is surprisingly much information present in
these measurements.

In this contribution we consider the problem of estimating the position and shape of
stationary objects in front of the vehicle, making use of echoes from a standard automotive
radar. Hence, there is no need to introduce any new sensors, it is just a matter of making
better use of the sensor information that is already present in a modern premium car. We
represent the stationary objects as

• points, with sources such as delineators or lampposts or

• lines, where measurements stem from e.g. guard rails or concrete walls.

The lines are modeled as extended objects, since an object is denoted extended whenever
the object extent is larger than the sensor resolution. Put in other words, if an object
should be classified as extended does not only depend on its physical size, but also on
the physical size relative to the sensor resolution. Extended object tracking is extensively
described by e.g., Ristic et al. (2004), Gilholm and Salmond (2005) and it has received
quite recent attention by Vermaak et al. (2005), Angelova and Mihaylova (2008) where
Monte Carlo methods are applied and by Koch (2008) which is based on random matrices.

The problem of road border estimation has been investigated in the literature dur-
ing the last decade. The approaches presented mainly differ in their models for the road
borders and the different types of sensors used in the estimation. The third order approxi-
mation of the two sided (left and right) “clothoid model” has been used in connection with
Kalman filters by Kirchner and Heinrich (1998) and Polychronopoulos et al. (2004) for
laser scanner measurements and radar measurements, respectively. Lundquist and Schön
(2009) proposed two road border models, one of which is very similar to the model pro-
posed by Polychronopoulos et al. (2004), and used a constrained quadratic program to
solve for the parameters. A linear model represented by its midpoint and orientation
(one for each side of the road) is utilized by Wijesoma et al. (2004) with ladar sensing
for tracking road-curbs. Later, Kodagoda et al. (2006) enhanced the results of Wijesoma
et al. (2004) with the addition of image sensors. A similar extended Kalman filtering
based solution is given by Fardi et al. (2003), where a circular road border modeling
framework is used. Recently, the particle filters (also referred to as condensation in image
and video processing) have been applied to the road border estimation problem by Wang
et al. (2008) with an hyperbolic road model.

The present solution extends an already existing sensor fusion framework by Lundquist
and Schön (2008), which among other things provides a good road geometry estimate.
This framework improves the raw vision estimate of the road geometry by fusing it with
radar measurements of the leading vehicles and information from various proprioceptive
sensors. The idea is that the motion of the leading vehicles reveals information about the
road geometry as described in e.g., Zomotor and Franke (1997), Gern et al. (2000, 2001).
Hence, if the leading vehicles can be accurately tracked, their motion can be used to im-
prove the road geometry estimates. Furthermore, we used a solid dynamic model of the
ego vehicle allowing us to further refine the estimates by incorporating several additional
sensor measurements from the CAN bus. The resulting, rather simple, yet useful map of
the environment surrounding the ego vehicle consists in
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• Road geometry, typically parameterized using road curvature and curvature rate.

• Position and velocity of the leading vehicles.

• Ego vehicle position, orientation and velocity.

• Position and shape of stationary objects.

The stationary objects are tracked by casting the problem within a standard sensor
fusion framework. Since we use a linear model and assume Gaussian noise we use the
standard Kalman filter (Kalman, 1960).

The approach has been evaluated on real data from highways and rural roads in Swe-
den. The test vehicle is a Volvo S80 equipped with a forward looking 77 GHz mechani-
cally scanned frequency modulated continuous-wave (FMCW) radar and a forward look-
ing vision sensor (camera).

2 Geometry and Notation

Lundquist and Schön (2008) provide a sensor fusion framework for sequentially estimat-
ing the parameters lE , ψRE , c0 in the following model of the road’s white lane markings,

yE = lE + ψREx
E +

c0
2

(xE)2, (1)

where xE and yE are expressed in the ego vehicle’s coordinate frame E. The angle
between the longitudinal axis of the vehicle and the road lane is ψRE , see Figure 1. It is
assumed that this angle is small and hence the approximation sinψRE ≈ ψRE is used.
The curvature parameter is denoted by c0 and the offset between the ego vehicle and the
white lane is denoted by lE .

In this paper we will use the planar coordinate transformation matrix

RWE =
[
cosψEW − sinψEW
sinψEW cosψEW

]
(2)

to transform a vector, represented in the ego vehicle’s coordinate frame E, into a vector,
represented in the world reference coordinate frame W , where ψEW is the angle of rota-
tion from W to E. We will refer to this angle as the yaw angle of the vehicle, and in order
to simplify the notation we will use ψ , ψEW . The point OW is the origin of W and OE
is the origin of E situated in the vehicles center of gravity. The geometric displacement
vector dWEW is the straight line from W to E represented with respect to frame W . The
angles and distances are shown in Figure 1. Hence, a point PE represented in the ego ve-
hicle coordinate frame E is transformed to be represented in the world coordinate frame
W using

PW = RWEPE + dWEW . (3)

An observation m will be referred to as a stationary object Sm in the point Sm. The
radar in the ego vehicle measures the azimuth angle δSmEs and the range d = ||dESmEs ||2.
These are transformed into Cartesian coordinates yESm =

[
xESmEs yESmEs

]T
.
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Figure 1: The ego vehicle’s coordinate frame E has its origin OE situated in the ve-
hicle’s center of gravity. A stationary object Si is observed at a distance ||dESmEs ||2
and an angle δSmEs with respect to the radar. The angle between the vehicle’s longi-
tudinal axis and the road lane is ψRE , the distance to the left lane marking is lE and
the road curvature is c0.

3 Extended Object Model

In this section we introduce models for the tracked stationary object, i.e., points and lines.
To take care of the lines a model with the object’s shape, size, position and orientation is
introduced.

3.1 Process Model of the Stationary Objects

Stationary objects are modeled as points P or lines L. A point Pi is represented using a
position in the planar world coordinate frame W , according to

xPi ,
[
xWPiW yWPiW

]T
. (4)

A line Lj is represented as a second order polynomial in its coordinate frame Lj

yLj = a0 + a1x
Lj + a2

(
xLj
)2
. (5)

The coordinate frame Lj is initiated together with the line and is equal to the ego vehicles
coordinate frame at the moment the line is created. Unlike the ego vehicle’s frame it is
fixed to the world frame, i.e., rWLjW and ψLjW are constant and it does not follow the
vehicles movement.
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The state of the line Lj is

xLj =
[
a0,j a1,j a2,j sj ej

]T
, (6)

where sj and ej are the start and end points of the line given as scalar xLj values.
The process model of the stationary objects in the form

xt+1 = Fxt +wt, wt ∼ N (0, Q), (7)

is simple, since the objects are not moving. For the points, the system matrix, referred to
as FP , is the identity matrix. The termwt in (7) represents the process noise. We include
some dynamics into the process model of the line. We assume that the lines are shrinking
with a factor λ < 1 according to

sj,t+1 = sj,t + λ(ej,t − sj,t), (8a)

ejj,t+1 = ej,t − λ(ej,t − sj,t), (8b)

leading to

FL =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1− λ λ
0 0 0 λ 1− λ

 . (9)

This shrinking behavior for the lines allows us to automatically adjust the start and end
points of the lines according to the incoming measurements.

3.2 Measurement Model

The measurement equation describing the measurements relation to a point Pi is defined
as

yPi,t = xPi,t + eP,t, eP,t ∼ N (0, RP), (10)

where the output yPi,t = yWSm is the observation m in the world coordinate frame asso-
ciated to the ith point. The term eP,t in (10) represents the measurement noise associated
with the radar. The measurement equation describing the measurements relation to a line
Lj is

yLj ,t =

[
0 0 0 h14 h15

1 x
Lj
SmLj

(
x
Lj
SmLj

)2

0 0

]
xLj ,t +

[
0
1

]
eL,t, (11)

where yLj ,t = y
Lj
Sm is the observation m in the Lj coordinate frame and associated to

line Lj . The term eL,t ∼ N (0, RL) represents the measurement noise. The first row
of the measurement matrix, which determines the update of the start and the end points,
depends on the position of the observation in relation to the predictions of the start and
the end points according to

[
h14 h15

]
=


[
1 0

]
if xLjSmLj ≤ sj,t|t−1[

0 1
]

if xLjSmLj ≥ ej,t|t−1[
0 0

]
otherwise.

(12)
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This type of measurement where some measured quantities (xLjSmLj in our case) appear as
model parameters is not conventional in dynamic estimation literature and can be consid-
ered as an extension of the so-called “errors in variables” framework. In our application,
this enables us to use the Kalman filter because the resulting model is linear.

4 Data Association and Gating

At every sampling time, the system receives a batch of NS observations ySm , m =
1, . . . , NS from the radar. These new measurements can be associated to existing tracked
points Pi, i = 1, . . . , NP or to tracked lines Lj , j = 1, . . . , NL, or a new track is ini-
tiated. The number of association events (hypotheses) is extremely large. The classical
technique to reduce the number of these hypotheses is called gating, see e.g., Bar-Shalom
and Fortmann (1988). We apply gating and make a nearest-neighbor type data associa-
tion based on likelihood ratio tests. Other more complicated data association methods like
multiple hypothesis tracking, according to e.g., Reid (1979), or joint probabilistic data as-
sociation, as described by e.g., Bar-Shalom and Fortmann (1988), can also be used in our
framework. However, these are quite complicated and computationally costly approaches
and the nearest neighbor type algorithm we used has been found to give sufficiently good
performance for our case. The gating and the data association are performed according to
the following calculations. The likelihood `Sm,Pi that the observation ySm corresponds
to the ith point Pi is given by

`SmPi =

{
N (yWSm ; ŷPi,t|t−1, SPi), if yWSm ∈ GPi
0, otherwise

(13)

where ŷPi,t|t−1 is the predicted measurement of the point Pi according to the model (10)
and SPi,t|t−1 is its covariance (innovation covariance) in the Kalman filter. The gate GPi
is defined as the region

GPi ,
{
y
∣∣∣(y − ŷPi,t|t−1)TS−1

Pi,t|t−1(y − ŷPi,t|t−1) ≤ δP
}

(14)

where δP is the gating threshold.
The likelihood that the observation m corresponds to the jth line state is derived by

considering the orthogonal distance between the line and the observation. To simplify
the calculations we assume that the curvature of the line is small and that the orthogonal
distance can be approximated with the y-distance between the observation and the line
expressed using the lines coordinate frame Lj , i.e.,

εSmLj = y
Lj
SmLj

− ŷLjSmLj , (15)

where

ŷ
Lj
SmLj

,

[
1 x

Lj
SmLj

(
x
Lj
SmLj

)2

0 0
]
x̂Lj ,t|t−1. (16)
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The likelihood `SmLj that the observation corresponds to the jth line is then given by

`SmLj =

N
(
εSmLj ; 0,E

(
∆2
yj

))
, if

[
x
Lj
SmLj

y
Lj
SmLj

]
∈ GLj

0, otherwise

(17)

where yj = y
Lj
SmLj

and the gate GLj is defined as

GLj ,

{[
x
y

] ∣∣∣ (y − ŷLjSmLj)2

E
(

∆2
yj

)−1

≤ δL, sj − δs < x < ej + δe

}
. (18)

In (17) and (18), E(∆2
yj ) represents the uncertainty of the line in the y direction at the x-

value xLjSmLj . This covariance has to be calculated in terms of the state estimate x̂Lj ,t|t−1

and its covariance PLj ,t|t−1. This derivation can be made by first rewriting the line equa-
tion (6) with mean parameters and a deviation ∆

y + ∆y = (a0 + ∆a0) + (a1 + ∆a1)x+ (a2 + ∆a2)x2, (19)

where the superscripts and subscripts are discarded for the sake of brevity. This gives

∆y = ∆a0 + ∆a1x+ ∆a2x
2. (20)

Considering the squared expectation of this deviation, we obtain

E(∆2
y) = E

(
∆a0 + ∆a1x+ ∆a2x

2
)2

= E
( [

1 x x2
] [

∆a0 ∆a1 ∆a2

]T
×
[

∆a0 ∆a1 ∆a2

] [
1 x x2

]T )
=
[

1 x x2
]

E
( [

∆a0 ∆a1 ∆a2

]T
×
[

∆a0 ∆a1 ∆a2

] ) [
1 x x2

]T
. (21)

Now, the expectation above is given by the upper-left 3 × 3 partition of the covariance
matrix PLj ,t|t−1 which we denote by P 3×3

Lj ,t|t−1. Hence,

E
(

∆2
yj

)
=
[
1 x

Lj
SmLj

(xLjSmLj )
2
]
P 3×3
Lj ,t|t−1

[
1 x

Lj
SmLj

(xLjSmLj )
2
]T
. (22)

Having calculated the likelihood values, we form two matrices of likelihood values, one
matrix ΓP ∈ RnS×nP with the combinations of observations and points, according to
(13), and one matrix ΓL ∈ RnS×nL with the combinations of observations and lines,
according to (17).

First we find the the maximum value of ΓP , and call the corresponding point state
im and measurement mm. Thereafter we find the maximum value of the mth row, corre-
sponding to measurement mm of matrix ΓL and call the corresponding line state jm. The
likelihood ratio denoted by Λ(ySm) is now given by

Λ(ySm) ,
`SmPim
`SmLjm

. (23)
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The corresponding likelihood ratio test is

Λ(ySm)
H0

≷
H1

η (24)

where H0 and H1 corresponds to hypotheses that the measurement ySm is associated to
the point Pim and to the line Ljm , respectively. The threshold is selected as η < 1, since
(13) is two dimensional and (17) is one dimensional. More theory about likelihood test is
given by e.g., van Trees (1968).

No two measurements may originate from the same point source and no two sources
may give rise to the same measurements. However, one line source may give rise to
multiple measurements. This means that if measurement ySm is associated to point Pi,
then the values in the mth row of the two matrices as well as the ith column of the point
likelihood matrix must be set to zero to exclude the measurement and the point from
further association. However, if ySm is associated to line Lj , then only the values in the
mth rows of the two matrices are set to zero because the line Lj can still be associated
to other measurements. The procedure is repeated until all measurements with non-zero
likelihood have been associated to either a point or a line. A new point is initiated if the
observations could not be associated to an existing state. This is true when a measurement
is not in the gate of a non-associated point or a line.

5 Handling Tracks

A line is initiated from tracked points under the assumption that a number of points form
a line parallel to the road. In this section we will discuss track handling matters such as
initiating and removing tracks.

5.1 Initiating Lines

All points Pi are transformed into the ego vehicles coordinate frame since the road’s
geometry is given in this frame. The road geometry is described by the polynomial given
in (1). We consider hypothetical lines passing through each point Pk parallel to the road.
For each such line, the corresponding lateral distance lPk is given by

lPk = ŷEPkEs − ψRE x̂
E
PkEs −

c0
2
(
x̂EPkEs

)2
. (25)

The likelihood `PiPk that a point Pi is on the line of point Pk is then given by

`PiPk =

N
(
εPiPk ; 0, PEPk,(2,2)

)
, if

[
x̂LEPiEs
ŷLEPiEs

]
∈ GPk

0, otherwise,

(26)

where the lateral distance between the point Pi and the proposed new line of point Pk is
given by

εik = ŷEPiEs − ŷ
E
PkEs , (27)
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where
ŷEPkEs = lPk + ψRE x̂

E
PiEs +

c0
2
(
x̂EPiEs

)2
, (28)

and the state covariance in the ego vehicles coordinate frame is given by

PEPk =
(
REW

)T
PPkR

EW . (29)

The notation PEPk,(2,2) refers to the lower-right element, i.e., the variance in the diagonal
corresponding to yE . The gate GPk is defined as

GPk ,

{[
x
y

] ∣∣∣∣∣
(
y − ŷEPkEs

)2
PEPk,(2,2)

≤ δL,−δs < x− x̂EPkEs < δe

}
. (30)

From all combinations of likelihoods we form a symmetric matrix ΓI . The columns of
ΓI are summed and the maximum value corresponding to column km is chosen. If this
column contains more than a certain number κ of non-zero rows, corresponding to points

Pl = {P | ΓI(:, km) 6= 0} (31)

within the gate of Pkm , a line is formed from the points Pl. The new line’s states a0, a1

and a2 are estimated by solving a least square problem using the points Pl. The states s
and e are the minimum and maximum x-coordinate value of the points, respectively. All
elements in column km and rows im are set to zero and the procedure is repeated until no
column contains more than κ non-zero elements.

5.2 Remove Lines or Points

For each state we introduce a counter. The counter is increased if the state is updated with
new measurements and decreased if it was not updated during one iteration. A state is
removed if the counter is zero.

6 Experiments and Results

Let us start by showing the information given by an ordinary automotive ACC radar, for
the traffic situation shown in Figure 2a. The ego vehicle, indicated by a circle, is situated
at the (0, 0)-position in Figure 2b, and the black dots are the radar reflections, or stationary
observations, at one time sample. The gray dots are former radar reflections, obtained at
earlier time samples. Figure 2c shows the estimated points and lines for the same scenario.
The mean values of the states are indicated by solid black lines or points. Furthermore,
the state variance, by means of the 1σ confidence interval, is illustrated by gray lines or
ellipses, respectively. Lundquist and Schön (2008) presented a new approach to estimate
the road curvature (1), which we show here as gray dashed lines. We also show the tracked
vehicle in front of the ego vehicle illustrated by a square.

In Figure 3a we see a traffic scenario with a freeway exit. The corresponding bird’s
eye view is shown in Figure 3b. The origin of the line’s coordinate systems are illustrated
with dots and a number which is repeated at each line. Line 1 indicates the guardrail to
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Figure 2: A traffic situation is shown in Figure (a). Figure (b) shows the radar
reflections, and Figure (c) the resulting tracked points and lines. The circle is the ego
vehicle, the square is the tracked vehicle in front and the dashed gray lines illustrates
the tracked road curvature.
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Figure 3: Freeway exit with guardrails, the camera view is shown in Figure (a) and
the bird’s eye view with the estimated states in Figure (b).
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the right of the exit, line 2 is the guardrail starting at the exit sign. The gap between line
3 and line 5 is probably due to the dimple, where the radar signals are transmitted above
the guard rail, hence not giving us any stationary observations in the desired region.

Our last example shows a situation from a rural road, see Figure 4a. The lines 5 and 6
are the guardrails of a bridge. Line 4 depicts a fence behind the bridge. From the camera
view it is hard to recognize and also the radar has problems to track it, indeed the gray
lines indicates a large uncertainty for this case.

7 Conclusion

In this contribution we have derived a method for tracking stationary objects as ex-
tended objects using radar measurements. Typically radar echoes stem from delineators
or guardrails, which are tracked as points or lines, respectively, in a standard Kalman fil-
ter framework. A major part of the present approach is the data association and gating
problem. The approach has been evaluated on real and relevant data from both freeways
and rural roads in Sweden. The results are not perfect, but surprisingly good at times,
and of course much more informative than just using raw measurements. Furthermore,
the standard state representation of the objects should not be underestimated since it is
compact and easy to send on a vehicle CAN-bus.
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Notation

Lower case letters are used to denote scalar variables, bold lower case letters are used
for vector valued variables and upper case letters are used for matrix valued variables. A
superscript letter is used to denote the coordinate frame, in which a variable or constant
is represented. A calligraphic style subscript letter is used to denote the affiliation of a
variable to a model or subsystem.

Symbols

a( · ) continuous-time nonlinear process model
ax longitudinal acceleration
ay lateral acceleration
Cα cornering stiffness
Cd damper constant
Cs spring constant
c( · ) continuous-time nonlinear measurement model
c0 road curvature
c1 road curvature derivative
χ pitch angle
∆zf axle height, front
∆zr axle height, rear
d a displacement
d a displacement vector
dEW scalar (Euclidean) displacement from OW to OE
dSiEs range between ego vehicle’s sensor and stationary object i
dTiEs range between ego vehicle’s sensor and leading vehicle i
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dWEW displacement vector from OW to OE , in the W -frame
δf mean front wheel angle
δR angle between the vehicle’s velocity vector and the lane
δs steering wheel angle
δSiEs azimuth angle between the ego vehicle’s sensor and a station-

ary object i
δTiEs azimuth angle between the ego vehicle’s sensor and a tracked

(moving) target i
E ego vehicle coordinate frame at CoG
Ef ego vehicle coordinate frame at front wheel
Er ego vehicle coordinate frame at rear wheel
Es ego vehicle coordinate frame at sensor (radar, vison)
E ego model or subsystem
e measurement noise
F discrete-time linear process matrix
Fz vertical force
f( · ) discrete-time nonlinear process model
G gate (data association)
H discrete-time linear measurement matrix
H stacked measurement models on top of each other
h( · ) discrete-time nonlinear measurement model
Izz moment of inertia about the vertical axis
K Kalman gain
L line coordinate frame
L modeled line
lb wheel base
lE offset between the ego vehicle and the left lane marking
lf distance between ego vehicle CoG and front axle
lr distance between ego vehicle CoG and rear axle
ls distance between ego vehicle CoG and sensors
lTi lateral distance between leading vehicle and lane marking
`( · ) likelihood function
m vehicle mass
m map state vector or matrix
N number of elements in a set
N (m,P ) normal (Gaussian) distribution with mean value m and covari-

ance matrix P
N (x ; m,P ) normal (Gaussian) probability density function with mean

value m and covariance matrix P
n number of elements in a vector
OE origin of E, at the vehicle’s center of gravity
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OLi origin of a line frame Li
OTi origin of Ti at the tracked target
OV origin of V at the ego vehicles vision and radar sensors
OW origin of W
O measured object (by e.g., radar)
P state covariance
P modeled point
p(x) probability density function of x
p(x,y) joint probability density function of x and y
p(x|y) conditional probability density function of x given y
ψE the ego vehicle’s yaw angle
ψTi yaw angle of target i
ψRE angle between the ego vehicle and the road tangent
Q process noise covariance
R rotation matrix
R measurement noise covariance
R road coordinate frame
R road model
Rn the set of real numbers in n dimensions
S innovation covariance
Si position of stationary object i
S stationary object model
T target coordinate frame
T sample time
T target model
t time
θ parameter vector
u known deterministic input signal
V coordinate frame in sensor pointing at leading vehicle
V (θ;x,y) criterion function to be minimized
vx longitudinal velocity
vy lateral velocity
W world coordinate frame
w road width
w process noise
X set of state vectors
x state vector
xE state vector of ego vehicle
xLi state vector of line i
xPi state vector of point i
xR state vector of road
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xTi state vector of target i
xWEW x-coordinate of a line from OW to OE , in W -frame
Y set of measurement vectors
Y stacked measurement vectors on top of each others
y measurement vector
yWEW y-coordinate of a line from OW to OE , in W -frame

Operators

diag(a) a diagonal matrix with a as diagonal entry
ẋ time derivative of x
, equal by definition
∼ denotes “is distributed according to”
∈ belongs to
∀ for all
TrA trace of matrix A
AT transpose of matrix A
A−1 inverse of matrix A
Cov(x) covariance matrix of the random variable x
E(x) expectation of the random variable x
Var(x) variance of the random variable x
min minimize
max maximize
‖x‖2A weighted vector norm, ‖x‖2A = xTAx
| · | absolute value

Abbreviations and Acronyms

pdf probability density function
s.t. subject to
CAN Controller Area Network
ECU Electronic Control Unit
EKF Extended Kalman Filter
FMCW Frequency Modulated Continuous-wave Radar
IMU Inertial Measurement Unit
KF Kalman Filter
LRT Likelihood Ratio Test
LS Least-Squares
MAP Maximum A Posteriori
ML Maximum Likelihood
OGM Occupancy Grid Mapping
QP Quadratic Program
RLS Recursive Least Squares
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RMSE Root Mean Square Error
SEFS Sensor Fusion for Safety
SLAM Simultaneous Localization and Mapping
UKF Unscented Kalman Filter
WLS Weighted Least Squares
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