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Road Intensity Based Mapping using Radar
Measurements with a Probability Hypothesis

Density Filter
Christian Lundquist, Lars Hammarstrand, and Fredrik Gustafsson, Senior Member, IEEE,

Abstract—Mapping stationary objects is essential for au-
tonomous vehicles and many autonomous functions in vehicles.
In this contribution the probability hypothesis density (PHD)
filter framework is applied to automotive imagery sensor data for
constructing such a map, where the main advantages are that it
avoids the detection, the data association and the track handling
problems in conventional multiple-target tracking, and that it
gives a parsimonious representation of the map in contrast to grid
based methods. Two original contributions address the inherent
complexity issues of the algorithm: First, a data clustering
algorithm is suggested to group the components of the PHD
into different clusters, which structures the description of the
prior and considerably improves the measurement update in the
PHD filter. Second, a merging step is proposed to simplify the
map representation in the PHD filter. The algorithm is applied
to multi-sensor radar data collected on public roads, and the
resulting map is shown to well describe the environment as a
human perceives it.

Index Terms—probability hypothesis density, PHD, mapping,
Gaussian mixture, clustering, road edge estimation.

I. INTRODUCTION

AUTONOMOUS vehicles and autonomous functionality
in vehicles require situation awareness. Situation aware-

ness is traditionally split into two main tasks: tracking of
moving objects and navigation relative to stationary objects
represented by a map. The precision in commercial maps
and position services today is not sufficient for autonomous
functions. For that reason, imagery sensors as radar, vision and
laser scanners have been used to build local maps of stationary
objects on the fly, which requires sophisticated estimation
algorithms. Similarly to the classic target tracking application,
going from single-sensor single-object estimation to multi-
sensor multi-object estimation increases the complexity of the
algorithms substantially. For that reason, there is a strong
need for structured maps rather than point maps, where single
objects that together form structures as lines or curves are
described as one extended object. This contribution describes
an efficient algorithm to create maps that are particularly
useful to describe structures along road sides. Such a map is
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promising for a range of applications, from collision avoidance
maneuvers to true autonomy on public roads and off-road.

There exist many algorithms and representations of maps
using imagery sensor data. However, so far methods based on
probabilistic theory are most successful, see e.g., [1] or [2]
for a recent overview. Feature based maps have become very
popular in the related field simultaneous localization and
mapping (SLAM) [3], [4], where a vehicle builds a map of
environmental features, while simultaneously using that map
to localize itself. Location based maps, such as the occupancy
grid map (OGM) [5], were primarily developed to be used
with laser scanners to generate consistent maps. They have
also been used with radar sensors, where the data comprises a
complete signal power profile [6], [7], or a thresholded radar
report [8]. The OGM was very popular at the DARPA urban
challenge, see the special issues [9]. Generally, line shaped and
curved objects, such as roads and coast lines can be identified
in topographic maps. Road edge and obstacle detection have
been tackled using raw radar images, see e.g., [10]–[13]. There
have been several approaches making use of reflections from
the road edges, such as guard rails and reflection posts, to
compute information about the free space, see e.g. [14]–[16]
for some examples using laser scanners. Radar reflections
were used to track the road edges as extended targets in [17].
This method is promising but a drawback is the large data
association problem, which arises since it is hard to create a
general model for the various types of objects.

The bin occupancy filter is devised via a quantized state
space model, where each cell is denoted bin [18]. In the limit,
when the volume of the bins become infinitesimal, the filter
equations are identical to the probability hypothesis density
(PHD) filter, proposed by Mahler [19]–[21]. The PHD is
the first moment density or intensity density of a random
set. In Section II we propose to represent the map by the
surface described by the intensity density of point sources
of stationary objects. Individual sources are not tracked, but
the PHD filter framework makes it possible to estimate the
intensity of sources in a given point. To describe the map by
a continuous surface distinguishes our method from the other
mapping approaches mentioned above. An approach to make
use of the PHD filter to solve the related SLAM problem is
presented in [22]. In contrast to the intensity based map, the
map in [22] is represented by a finite set of map features,
which are extracted from the intensity density.

Section III summarizes the Gaussian mixture PHD (GM-
PHD) filter recursion. We investigate the possibility to improve
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the efficiency of the GM-PHD filter by utilizing structure in
the map. These structures are first identified and modeled
in Section IV, to then be used to improve the prior in the
GM-PHD recursion and to create an efficient representation
of the intensity in Section V. Road edges and guardrails are
typical examples of such map structures. All parts of the road
mapping example are put together in Section VI to present the
complete map, based on measurements from automotive radar
sensors. The map may be used by automotive safety functions,
for instance trajectory control, which aims at minimizing the
probability to hit objects. Other examples are functions which
can perform automatic evasive maneuvers, and need map
information for threat assessment [23]. The conclusions are
in Section VII.

II. MAPPING

Sensors which measure range r and bearing ψ, e.g., radar
and laser, are commonly used for automotive and robotics
navigation and mapping. These type of sensors typically do not
give the user access to their detection and decision parameters.
Automotive radar sensors threshold the amplitude and deliver
only those detections with the highest amplitude, whereas a
laser sensor delivers the first range detection along a bearing
angle. Furthermore, cameras measure two angles and represent
them in a pixel matrix. The considered sensors provide a set
of noisy measurements (thresholded detections)

Zk =
{
z
(1)
k , z

(2)
k , . . . , z

(Nz,k)
k

}
(1)

at each discrete time instant k = 1, . . . ,K.
Landmark detections from the noisy sensor data are used to

build a probabilistic map, represented by a set of Nm objects
in the environment

Mk =
{
m

(1)
k ,m

(2)
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(Nm)
k

}
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There exists primarily two types of indexing for probabilistic
maps [1]. In a feature based map each m(n) specifies the
properties and location of one object [24], whereas in a
location based map the index n corresponds to a location and
m(n) is the property of that specific coordinate. Note that the
indexing is analogous to the representation of sensor data, the
range and bearing measurements from a radar or laser are
feature based, whereas the pixels of a camera are location
based measurements. The Occupancy grid map is a classical
location based representation of a map, where each cell of the
grid is assigned a binary occupancy value that specifies if the
location n is occupied (m(n) = 1) or not (m(n) = 0) [5], [25].
The aim of all stochastic mapping algorithms, independent of
indexing, is to estimate the posterior density of the map

p(Mk|Z1:k), (3)

given all the measurements from time 1 to k.
The bin-occupancy filter, which is described in [18], aims

to estimate the probability of a target being in a given point.
The approach is derived via a discretized state-space model
of the surveillance region, where each grid cell (denoted bin
in this approach) can or may not contain a target. One of the
important assumptions in [18] is that the bins are sufficiently

small so that each bin is occupied by maximum one target.
In the limiting case, when the volume of the bins |ν| goes to
zero, it is possible to define the bin-occupancy density

Dk|k , lim
|ν|→0

Pr(m
(n)
k = 1|Z1:k)

|ν|
, (4)

where Pr(m
(n)
k = 1|Z1:k) is the probability that bin n is

occupied by one target. The continuous form of the bin-
occupancy filter prediction and update equations are the same
as the PHD filter equations [18]. Furthermore, the PHD is
the first moment density or intensity density in point process
theory, see e.g., [19], [21], and a physical interpretation is
given in [26] as the probability that one target is located in
the infinitesimal region (x,x+ dx) of the state space, divided
by dx. The continuous form of the physical bin model leads us
to a continuous location based map which we denote intensity
based map, and we intend to estimate it with the PHD filter.

The bin occupancy filter and the PHD filter were developed
for target tracking of point sources; however, the aim of the
present contribution is to create a probabilistic location based
map of the surroundings of a moving vehicle. One of the
main differences between standard target tracking problems
and the building of a location based map, is that many objects
such as, guardrails or walls, are typically not point targets,
but extended targets [21], [27], [28]. Furthermore, there is no
interest in keeping track of the identity of specific objects.
Nevertheless, the bin-occupancy filter attempts to answer the
important question: “Is there an object (target) at a given
point?”. Erdinc et al. [18] pose the following assumptions for
the bin occupancy filter:

1) The bins are sufficiently small so that each bin is
occupied by at most one target.

2) One target gives rise to only one measurement.
3) Each target generates measurements independently.
4) False alarms are independent of target originated mea-

surements.
5) False alarms are Poisson distributed.

Here, only point 2 needs some extra treatment if the aim of
the algorithm is mapping and not target tracking. It can be
argued that the measurements of the point sources belong to
extended objects and that the aim is to create a map of those
point sources. Also for mapping cases the assumption that
there will not be two measurements from the same point at
the same time is justified. The described relation is modeled by
a likelihood function p(Zk|Mk|k), which maps the Cartesian
map to polar point measurements.

So far in this section the discussion has been quite general
and the PHD or the intensity has only been considered as a sur-
face over the surveillance region. The first practical algorithms
to realize the PHD filter prediction and measurement update
equations were based on the particle filter, see e.g., [29]–[31],
where the PHD is approximated by a large set of random
samples (particles). A Gaussian mixture approximation of
the PHD (GM-PHD) was proposed by Vo and Ma [32].
The mixture is represented by a sum of weighted Gaussian
components and in particular the mean and covariance of the
components are propagated by the Kalman filter. In this work
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the intensity is represented by a Gaussian mixture, since the
parametrization and derivation is simpler than for a particle
filter based solution. The modeling of the intensity through
a number of Gaussian components makes it also simpler to
account for structures in the map. We will return to these
structures in the next two sections.

The GM-PHD filter estimates the posterior intensity, de-
noted Dk|k, as a mixture of Gaussian densities as,

Dk|k =

Jk|k∑
i=1

w
(i)
k|kN

(
m

(i)
k|k, P

(i)
k|k

)
, (5)

where Jk|k is the number of Gaussian components and w(i)
k|k is

the expected number of point sources covered by the density
N (m

(i)
k|k, P

(i)
k|k). In Section III it is shown how the intensity is

estimated with the GM-PHD filter. The Gaussian components
are parametrized by a mean m(i)

k|k and a covariance value P (i)
k|k,

which are expressed in a planar Cartesian coordinate frame,
according to

m
(i)
k =

[
x
(i)
k y

(i)
k

]T
. (6)

The aim of the mapping algorithm is to estimate the
posterior density (3). The considered intensity based map is
continuous over the surveillance region, thus, the volume of
the bins becomes infinitesimal, and the number of elements in
(2) tends to infinity (Nm →∞). Furthermore, the intensity is
a summary statistic of the map according to

p(Mk|Z1:k) ∼ p(Mk;Dk|k), (7)

see e.g., [20], and the estimated intensity Dk|k is parametrized
by

µ
(i)
k ,
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k ,m

(i)
k , P

(i)
k

}
(8)

of the Gaussian sum (5). The intensity based map is a
multimodal surface with peaks around areas with many sensor
reflections or point sources. It is worth observing that the map
M is described by a location based function (5), with feature
based parametrization (8). The intensity is a distribution and
the graphical representation provides an intuitive description
of the map.

An automotive mapping example will be studied to exem-
plify the methods described in each section. In this example,
an intensity based map is constructed of the infrastructure sur-
rounding an ego vehicle equipped with three radar sensors. The
aim is to represent stationary radar reflectors, i.e. reflection
points on road side objects, such as, guard rails or lampposts,
using these radar measurements. Each sensor (s = 1, 2, 3)
collects a set of individual observations m = 1, . . . , N

(s)
z,k of

range r(m), range rate ṙ(m) and bearing angle ψ(m) to strong
radar reflectors according to{

z
(m)
k =

[
r(m) ṙ(m) ψ(m)

]T
k

}N(s)
z,k

m=1
. (9)

The three sensors are one forward looking 77 GHz mechan-
ically scanning FMCW radar, with measurement space Z(1),
and two medium distance 24 GHz radars, with measurement
spaces Z(2) and Z(3), which are mounted on the vehicle
as illustrated in Fig. 1. The radars constitute a multi-sensor

system, measuring at different ranges and in different di-
rections, but with an overlap of observation spaces. One
of the most significant advantages with the PHD filter is
that this framework scales very well for multi-sensor multi-
target problem, and the classically hard sensor fusion task is
solved more or less automatically. A coordinate frame E is
attached to the moving ego vehicle, see Fig. 3. The trajectory
x1:k = x1, . . . ,xk of the ego vehicle is assumed to be a priori
known in this work, and it is defined through the sequence of
all its positions, orientations and velocities relative the world
coordinate frame W up to time k.

Note, that the map is parametrized in a very compact
format (8), and that the parameters easily can be sent over
the CAN-bus to decision systems in a car.

III. GM-PHD FILTER

The PHD filter recursion is described in e.g., [20], the
bin occupancy filter is described in [18] and the GM-PHD
filter recursion is described in [32]. This section intents to
summarize the main algorithmic concept of those contributions
and apply the filter to the mapping application. The mentioned
filters are primarily developed for multiple-target tracking,
where, at least for the PHD filter, the targets are defined as
a random finite set, and where the extraction of the most
likely target states at the end of each recursion cycle is
an important output. However, the output for the proposed
mapping is the intensity Dk|k, which describes the density
of sensor reflections or point sources. The filter recursion is
given by the time update in Section III-A and the measurement
update in Section III-B below.

A. Time Evolution

Consider the bin occupancy model, a bin can be occupied
at time k+1, if it already was occupied at time k, or if a new
point source appears in the map at time k + 1. A new source
can appear either by spontaneous birth, as a completely new
object, or by spawning from an existing object.

In the mapping application the following definitions are
made: If a bin turns occupied independent of other bins’
occupancy it is denoted birth, whereas if a bin turns occupied
dependent on the occupancy of other bins it is denoted spawn.
The latter is for example the case if radar reflections stem from
an extended object, such as a guardrail, and new point sources

Z(2)

Z(3)

Z(1)

Fig. 1. The observation space of the forward looking radar is denoted Z(1)

and the observation spaces of the side-looking radars are Z(2) and Z(3).
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appear on other positions on the same object. The prediction
of the intensities is given by the sum of the existing intensity
Ds,k+1|k, the spawn intensity Dβ,k+1|k and the birth intensity
Db,k+1 according to

Dk+1|k = Ds,k+1|k +Dβ,k+1|k +Db,k+1. (10)

The prediction for the existing intensity is given by

Ds,k+1|k = pS,k+1

Jk|k∑
i=1

w
(i)
k|k N

(
m

(i)
k+1|k, P

(i)
k+1|k

)
, (11)

where the Gaussian components N (m
(i)
k+1|k, P

(i)
k+1|k) are de-

rived using the time update step of, e.g., the Kalman filter. The
probability of survival is denoted pS . The spawn intensity is
a Gaussian mixture of the form

Dβ,k+1|k =

Jβ,k+1∑
j=1

w
(j)
β,k+1|kN

(
m

(j)
β,k+1|k, P

(j)
β,k+1|k

)
, (12)

where w
(j)
β,k+1|k, m

(j)
β,k+1|k and P

(j)
β,k+1|k for

j = 1, . . . , Jβ,k+1, are model parameters that determine the
shape of the spawn intensity. In the original Gaussian mixture
PHD filter [32] the components N (m

(j)
β,k+1|k, P

(j)
β,k+1|k) are

in the proximity of its parents. However, in the mapping
application the existing stationary point sources are likely
to belong to extended object, which describe some structure
in the map, from which new point sources are likely to be
spawned. Typical examples of such structures are guard rails
in automotive examples or coast lines in terrain mapping. An
approach is proposed where the components are derived using
a model-based process, which takes the existing components
N (m

(i)
k|k, P

(i)
k|k) at time step k as input. A method, which

clusters the components and estimates the model parameters
simultaneously is described in Section IV. The Gaussian
mixture components N (m

(j)
β,k+1|k, P

(j)
β,k+1|k) are then sampled

from the estimated models.
The birth intensity is assumed to be a Gaussian mixture of

the form

Db,k+1 =

Jb,k+1∑
j=1

w
(j)
b,k+1 N

(
m

(j)
b,k+1, P

(j)
b,k+1

)
, (13)

where w
(j)
b,k+1, m(j)

b,k+1 and P
(j)
b,k+1 for j = 1, . . . , Jb,k+1,

are model parameters that determine the shape of the birth
intensity. The components N (m

(j)
b,k+1, P

(j)
b,k+1) are uniformly

distributed over the state space.

B. Measurement Update

The measurement update is given by a sum of intensities
according to

Dk|k = (1− pD,k)Dk|k−1 +
∑
z∈Zk

Dd,k|k, (14)

where pD is the probability of detection. The updated intensity
Dd,k|k is given by

Dd,k|k =

Jk|k−1∑
i=1

w
(i)
k (z)N

(
m

(i)
k|k(z), P

(i)
k|k(z)

)
, (15)

where the the number of Gaussian components is Jk|k−1 =
Jk−1|k−1 + Jβ,k|k−1 + Jb,k. The Gaussian components
N (m

(i)
k|k(z), P

(i)
k|k(z)) are calculated by using the measurement

update step of, e.g., the Kalman filter. Furthermore, the weights
are updated according to

w
(i)
k (z) =

pD,kw
(i)
k|k−1q

(i)
k (z)

κk + pD,k
∑Jk|k−1

`=1 w
(`)
k|k−1q

(`)
k (z)

, (16a)

q(i)(z) = N
(
z; η

(i)
k|k−1, S

(i)
k|k−1

)
, (16b)

where η(i)k|k−1 is the predicted measurement and S(i)
k|k−1 is the

innovation covariance from the ith component in the predicted
intensity. The clutter intensity at time k is denoted κk, and the
clutter measurements are assumed to be Poisson distributed.

IV. JOINT CLUSTERING AND ESTIMATION

The spawning process was briefly introduced in Sec-
tion III-A. Provided that there exists a certain structure in
between the single point objects in the map, then this structure
can be used to improve the spawning process. This section
describes how the map structure can be found, modeled and es-
timated. We propose a regression clustering algorithm, which
alternates between clustering the Gaussian components and
estimating the model parameters, using a simple weighted least
squares method. The standard K-means cluster algorithm is
first described in Section IV-A followed by the joint clustering
and estimation algorithm in Section IV-B. Road edges are
typical structures in a map, and it is shown in Section IV-C
how to apply the joint clustering and estimation algorithm to
estimate these.

A. K-Means Clustering

Given a set of Ny observations y, then the clustering
algorithm aims to find a partition Y = {Y(1), . . . ,Y(K)} of
the observations, where K < Ny . Note, that in this section
y represents any arbitrary observation, which should not be
confused with the sensor measurements z. The original K-
means clustering algorithm, introduced by Lloyd [33], aims at
minimizing the within-cluster sum of squares of the distances
according to

min
Y(1),...,Y(K)

Y(1)]...]Y(K)=Y

K∑
k=1

∑
y(i)∈Y(k)

||y(i) − µ(k)||2, (17)

where µ(k) is the mean value of the set Y(k). A solution
is found by alternating between the assignment step, which
assigns each observation to the cluster with the closest mean,
and the update step, which calculate the new means, until
convergence, see e.g., the textbooks [34]–[36]. A study of the
convergence properties of the K-means algorithm is given in
[37].

B. Regression Clustering

Now, suppose that the observations y(i) of the set Y(k)

are produced by a regression model, with the regressors ϕ(i),
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according to

y(i) = (ϕ(i))Tθ(k)+e(i), y(i) ∈ Y(k), e(i) ∼ N (0, R(i)),
(18)

and that the objective is to identify the parameters θ(k) for
every expected cluster k = 1, . . . ,K. The observations y(i)

within one set Y(k) are chosen to fit the common parameter
θ(k), i.e., the aim is to minimize the sum of squared residuals
within each cluster according to

min
Y(1),...,Y(K)

Y(1)]...]Y(K)=Y

K∑
k=1

min
θ(k)

∑
y(i)∈Y(k)

||y(i) − (ϕ(i))Tθ(k)||2R(i) ,

(19)
using the norm ||x||2R = xTR−1x. This can be done by first
clustering all observations using K-means (17) and thereafter
estimating the parameters θ(k) for each cluster. However, we
propose a joint clustering and estimation algorithm, which
instead of clustering the observations around mean values µ(k),
clusters around models (ϕ(i))Tθ(k). Similar methods are used
to solve for piecewise affine systems, see e.g., [38], [39],
and for switching dynamic systems, see e.g., [40], where the
observation regions and submodels are identified iteratively.
A solution is found by alternating between an assignment
step and an estimation step until convergence. These steps are
described in detail below.

1) Assignment Step: Given an initial guess of K parameters
θ̂
(k)
0 and covariances P (k)

0 , for k = 1 . . . ,K; each observation
y(i) is first assigned to the cluster with the smallest estimation
error according to

Y(k)
τ ={
y(i) :

∥∥y(i) − (ϕ(i))Tθ̂(k)τ

∥∥
S

(k,i)
τ
≤
∥∥y(i) − (ϕ(i))Tθ̂(j)τ

∥∥
S

(k,i)
τ

, ∀j
}
,

(20a)

using the norm ||x||2S = xTS−1x, where

S(k,i)
τ = (ϕ(i))TP (k)

τ ϕ(i) +R(i). (20b)

The covariance of the parameter estimate, denoted P
(k)
τ =

Cov θ̂
(k)
τ , is calculated in the estimation step. Note, that the

discrete iteration index is denoted τ here.
2) Estimation Step: The second step is the update step,

where new parameters θ̂(k) are estimated for each cluster. Any
estimation algorithm may be used, e.g., the weighted least
squares according to

θ̂
(k)
τ+1 =

 ∑
y(i)∈Y(k)

τ

ϕ(i)(R(i))−1(ϕ(i))T

−1

·
∑

y(i)∈Y(k)
τ

ϕ(i)(R(i))−1(ϕ(i))Ty(i), (21a)

P
(k)
τ+1 =

 ∑
y(i)∈Y(k)

τ

ϕ(i)(R(i))−1(ϕ(i))T

−1 . (21b)

The assignment step (20) and estimation step (21) are iterated
until the assignments no longer change.

C. Road Edge Estimation

To illustrate the joint clustering and estimation algorithm
proposed above, we return to the example discussed in Sec-
tion II. In this example, it is likely that new stationary objects
are spawned from road-side objects, such as guard rails.
Consequently, we propose to use a simplified version of the
road edge model in [41] in the joint clustering and estimation
algorithm to find the road edge in the current map. From
this estimate of the road edge the spawning intensity can be
described.

The road edge is described by a polynomial model, linear
in its parameters

y = a
(k)
0 + a1x + a2x

2 + a3x
3, (22)

given the x and y-coordinates of the Gaussian components, and
expressed in the vehicle’s coordinate frame E. Furthermore,
assume that the left and right edge of the road are approxi-
mately parallel and that they can be modeled using at most K
polynomials (22). The polynomials only differ by the lateral
distances a(k)0 for the k = 1, . . . ,K clusters.

Given the Jk|k Gaussian components, the parameters

θ(k) =
[
a
(k)
0 a1 a2 a3

]T
(23)

are estimated by rewriting the linear predictor (22) according
to

y(i) =
(
ϕ(i)

)T

θ(k), (24)

where the regressors are given by

ϕ(i) =
[
1 x(i) (x(i))2 (x(i))3

]T
(25)

for the mean values of the components (8) in cluster k. The
values of the parameters θ(k) are found by minimizing the
estimation error within each cluster according to (19), i.e.,

min
Y(1),...,Y(K)

Y(1)]...]Y(K)=Y

K∑
k=1

min
θ(k)

∑
y(i)∈Y(k)

||y(i) − (ϕ(i))Tθ̂(k)||2R(i) .

(26)
In this case the observations y(i) are the mean values m(i) =[
x(i) y(i)

]T
of the Gaussian components and the noise covari-

ances R(i) are the estimated weighted covariances P (i)/w(i).
The parameters θ(k) are estimated iteratively using the as-
signment step (20) and the estimation step (21). Since radar
measurements also are obtained by objects on the opposite
side of the freeway, the states are clustered into four sets. A
fair initial guess for K = 4 clusters could be a

(1)
0 = 10,

a
(2)
0 = −10, a(3)0 = 30, a(4)0 = −30 and a1 = a2 = a3 = 0.
Fig. 2 shows the four resulting clusters in two traffic

situations. The stars are the mean values of the Gaussian
components, which are used as input to the joint clustering and
estimation algorithm, and the lines are the resulting road edge
models ϕTθ(k). The past and future path of the ego vehicle
is shown by black dots in the figure and can be used as a
good reference of the road edges being correctly estimated.
The number of components in each cluster indicates how many
objects that should be spawned from the cluster. The spawning
along the road edges is described in Section VI-B.
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Fig. 2. The four clusters, describing the road edges, are illustrated with
different colors, and can be compared with the vehicles driven path indicated
with black dots. The lines are a “snapshot” estimate, based on the Gaussian
components at one time step k. The drivers view is shown in Fig. 5a and 5d
for the two traffic scenarios in (a) and (b), respectively.

V. MERGING

The Gaussian mixture formulation of the PHD filter tends
to suffer from a high computational complexity as the number
of mixture components, Jk|k, in (5) grows rapidly. To keep
the complexity under control, methods are typically used to
prune mixture components with too low weight w(i)

k|k, which
makes small contribution to the posterior density, and to merge
components that are similar. The general merging process
is discussed in Section V-A. However, while keeping the
complexity in check, it is important not to lose too much
information in the process. The errors introduced in pruning
and merging are analyzed in [42]. In Section V-B, we propose
a general algorithm, which can be used for merging Gaussian
components if more information about the system is available.
The state space is often chosen since it is a convenient space
to perform tracking in, i.e., to predict and update tracks in.
However, as described in Section V-B, Gaussian components
may be better merged in another space, in which the system
requirements are easier to describe.

Typically there exists some structure in a map. By exploiting
this structure in the merging of the components, it is possible
to maintain the information in the map, while reducing the
number of components needed to describe it. The algorithm
proposed in Section V-B is applied on the road map example
in Section V-C. The model-based merging method exploits the

maps structure to find a more efficient representation of the
posterior intensity in (5).

A. Background

The Gaussian mixture posterior intensity is given in (14).
The aim of the merging is to compute a reduced Gaussian
mixture, with ` < Jk|k components, that is close to the original
intensity according to some distance measure d.

Some different methods for Gaussian mixture reduction by
means of merging components exists, and have mainly been
proposed for Gaussian sum filters. Alspach proposed a method
to merge two Gaussian components with the same covari-
ance [43]. The joining algorithm, proposed by Salmond [44],
evaluates the distances between every pair of components and
successively pairs those components with the smallest dis-
tance. To avoid scaling problems, which may occur depending
on the size of the elements in the state vector, Mahalanobis
distance measure is often used, see e.g., [45].

The clustering algorithm, also presented in [44], merges
Gaussian components in groups rather than in pairs. A clus-
ter center (centroid) is chosen as the component with the
largest weight and the algorithm then merges all surrounding
components to the centroid. This process is repeated with
the remaining components until all have been clustered. The
distance measure which is used to represent the closeness of
a components i to the centroid j is given by(
d
(i,j)
k

)2
=

w
(j)
k w

(i)
k

w
(j)
k + w

(i)
k

(
m

(j)
k −m

(i)
k

)T (
P

(j)
k

)−1 (
m

(j)
k −m

(i)
k

)
,

(27)
where the distance is normalized to the covariance of the
centroid. The factor w(j)

k w
(i)
k /(w

(j)
k + w

(i)
k ) makes it easier

to cluster small components while large components retain as
they are. The clustering algorithm is used in the original GM-
PHD filter [32].

The joining and clustering algorithms are local methods in
the sense that closely lying individual components are merged
without considering the total density. During the last years
some global methods, which take the whole Gaussian mixture
into account, were published. A cost-function based approach
was presented in [46], a global cluster approach in [47]
and a bottom-up approach which starts with one component
and successively builds up components to approximate the
original mixture in [48]. The global methods are typically
more accurate at the expense of higher computational effort,
and are therefore not a good choice for the GM-PHD filter.

B. Algorithm

Let us introduce an invertible, possibly nonlinear, mapping
function T ( · ), which transforms the Gaussian components µ,
defined in (8), from the state space to the merging space. The
proposed algorithm consists of the following steps

1) Transform µ̄
(i)
k := T (µ

(i)
k ).

2) Merge µ̄
(i)
k using the cluster algorithm in Table I,

resulting in ˜̄µ
(i)
k .

3) Inverse transform µ̃
(i)
k := T −1(˜̄µ

(i)
k ).
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TABLE I
MERGING GAUSSIAN MIXTURE BY MEANS OF THE CLUSTER ALGORITHM

Require: the Gaussian components {µ̄(i)
k }

J̄k|k
i=1 and the threshold δm

1: initiate: by setting ` = 0, I = {i = 1, . . . , Jk|k} and then
2: repeat
3: ` := `+ 1
4: j := arg max

i∈I
w

(i)
k

5: L :=

{
i ∈ I

∣∣∣∣d(i,j)
k ≤ δm

}
, where d(i,j) is given in (27)

6: w̃
(`)
k =

∑
i∈L w

(i)
k

7: m̃
(`)
k = 1

w̃
(`)
k

∑
i∈L w

(i)
k m

(i)
k

8: P̃
(`)
k = 1

w̃
(`)
k

∑
i∈L w

(i)
k (P

(i)
k + (m̃

(`)
k −m

(i)
k )(m̃

(`)
k −m

(i)
k )T)

9: I := I\L
10: until I = ∅
11: return the Gaussian components {˜̄µ(i)

k }
`
i=1

The merging algorithm and the transformation is exem-
plified on the the road mapping example in the subsequent
Section V-C.

C. Road Mapping

The state space is spanned by the Cartesian world coordinate
frame. However, for road mapping it is advantageous to
merge Gaussian components lying along the road. Hence, the
merging space is spanned by a road-aligned coordinate frame.
The shape of the road can be described by a polynomial
according to (cf. (22))

yE = ψREx
E +

c0
2

(xE)2 +
c1
6

(xE)3, (28)

where xE and yE are expressed in the ego vehicle’s coordinate
frame E. This model was introduced by Dickmanns [49] and
a neat feature of the model is that the parameters can be inter-
preted as physical sizes. The angle between the longitudinal
axis of the vehicle and the road lane is ψRE , see Fig. 3. It is
assumed that this angle is small and hence the approximation
sinψRE ≈ ψRE is used. The curvature parameter is denoted
c0. The parameters can be estimated using computer vision and
a lane tracker, or taken from the joint clustering and estimation
method described in the previous section.

The non-linear transformation T from the world coordinate
frame to the road fixed coordinate frame is calculated in two
steps. First the components

[
xW yW

]T
, represented in the

world coordinate frame W are transformed to
[
xE yE

]T
,

represented in the ego vehicle coordinate frame E, using[
xE

yE

]
=
(
RWE

)T([xW
yW

]
− dWEW

)
, (29)

where the planar rotation matrix is given by

RWE =

[
cosψE − sinψE
sinψE cosψE

]
, (30)

and where ψE is the angle of rotation from W to E. This angle
is referred to as the yaw angle of the vehicle. In this work it
is assumed that the position dWEW and orientation ψE of the
ego vehicle is known. In the second step the components are

z(i)

r

dW
EW

δ

x̄R

ȳR

ψRE

ψE

yW

xW

W

yE
xE

E

yE(s)
s

xE(s)
s

E
(s)
s

Fig. 3. The world coordinate frame is denoted W , the ego vehicle’s
coordinate frame is denoted E and the curved road coordinate frame is
denoted R.

transformed into the road aligned coordinate frame according
to [

x̄R

ȳR

]
=

[
xE

yE + ψREx
E + c0

2 (xE)2 + c1
6 (xE)3

]
. (31)

Some other approximations of the transformation T are de-
scribed in [50]. Since the transformation is nonlinear, the
unscented transform, see e.g., [51], is used to propagate the
Gaussian components between the two spaces.

The covariance P
(j)
k in the distance measure (27) is arti-

ficially formed to make it more likely for components lying
along the road to be merged. A diagonal covariance matrix
Σ ∈ R2×2 is created, with its two elements well separated,
resulting in a pin-shaped covariance ellipse, and added to the
state covariance according to

P̄
(j)
k = P

(j)
k + Σ. (32)

The merging is performed according to Table I, and the
components are transformed back to the world coordinate
frame using the inverse transform T −1, cf. Section V-B. An
example showing the components before and after the merging
is illustrated in Fig. 4. Compared with the camera view in
Fig. 5a, it is clearly shown that the resulting components are
following the road edge.

VI. ROAD MAPPING EXAMPLE

In this section all parts of the road mapping example,
which was introduced in Section II and configured in the
preceding sections, are put together. Especially the spawning
of new target is exemplified in Section VI-B. The application
dependent parts of GM-PHD filter recursion are described in
Section VI-C. The capability of the posterior intensity to map
the surroundings of the vehicle is shown in Section VI-D.
However, we start with an overview and definition of the
system in Section VI-A.
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(b) After Pruning and Merging

Fig. 4. Fig. (a) shows the Gaussian mixture before pruning and merging and
Fig. (b) shows the reduced mixture. The illustrated road is estimated from the
camera image, and can be used as a reference here. This is the same example
as in Fig. 5a-5b, where also a photo of the driver’s view is given.

A. System Model

In this work, variables are defined from different perspec-
tives. The measurements are obtained by the sensor on the
ego vehicle and are therefore expressed in the ego vehicles
coordinate frame, which is denoted E. The states, i.e., the
position of the stationary objects, are expressed in a world
fixed reference frame W . The radars are mounted at the front
bumper at the positions E(s)

s , for the sensors s = 1, 2, 3.

The linear process model

mk+1 = mk + wk, wk ∼ N (0, Q), (33a)

of the Gaussian components allows for some motion, even
though the objects are stationary. The reason is that one
Gaussian component covers many stationary point sources and
the mean value will change if sources are added or removed.
The nonlinear measurement equation

zk = h(mk) + ek, ek ∼ N (0, R), (33b)

describes how a measurement (9) i.e., the range r, the range
rate ṙ and the bearing angle ψ relates to the Gaussian com-

ponents mk. The nonlinear sensor model is given by

h(x
(i)
k ) =



√(
x(i) − xW

E
(s)
s W

)2
+
(
y(i) − yW

E
(s)
s W

)2
−v cos

(
arctan

y(i)−xW
E

(s)
s W

x(i)−yW
E

(s)
s W

− ψ
E

(s)
s

)
arctan

y(i)−xW
E

(s)
s W

x(i)−yW
E

(s)
s W

− ψ
E

(s)
s


,

(34)

where
[
xW
E

(s)
s W

yW
E

(s)
s W

]T
is the position and ψ

E
(s)
s

the
orientation of the radar sensor s = 1, 2, 3 in W , see Fig. 3.
The velocity of the ego vehicle is denoted v. The range rate
is the relative velocity between the source and the moving
vehicle. It is primarily included in the measurement vector to
be used to sort stationary sources from moving target in the
gate process, cf. (39).

B. Spawn Process
The left and right road edges are modeled with the polyno-

mial (22) and with the parameter vectors θ(1) and θ(2) which
were estimated in Section IV-C. The parameters θ(3) and θ(4)

are assumed to belong to lines further away, e.g., the other side
of the road, and are therefore not considered here. The models
are used to create a prior intensity, which is a Gaussian mixture
of the form (12) along the road edges. The road model (22) is
expressed in vehicle coordinates and after having derived the
Gaussian mixture, the components are transformed into the
world frame W .

A number Jβ,k+1/2 of xE-coordinates, denoted{
xE,(j)

}Jβ,k+1/2

j=1
, are chosen in the range from 0 to the

maximum range of the radar sensor. The corresponding
yE-coordinates

{
yE,(j)

}Jβ,k+1/2

j=1
and

{
yE,(j)

}Jβ,k+1

j=Jβ,k+1/2+1

are derived by using the road border model (22) and the
parameters θ̂(1) and θ̂(2), respectively. The coordinates form
the mean values of the position of the Gaussian components
on the road edges according to

m
E,(j)
β,k+1 =

[
xE,(j) yE,(j)

]T
. (35a)

The covariance of the Gaussian components is given by the
diagonal matrix

P
E,(j)
β,k+1 =

[(
σEx
)2

0

0
(
σEy (xE(j))

)2
]
, (35b)

where it is assumed that the variance of the y-coordinate
increases with the x-distance, i.e., σEy (xE,(j)) depends on
xE(j), to model the increased uncertainty in the shape of the
road at long distances.

So far the derivations are accomplished in the ego vehicles
coordinate frame E, but since the map is expressed in the
world frame W , the components of the Gaussian mixture are
transformed into the world coordinate frame according to

m
(j)
β,k+1 = RWEm

E,(j)
β,k+1 + dWEW , (36a)

P
(j)
β,k+1 = RWEP

E,(j)
β,k+1

(
RWE

)T
, (36b)

to be used in (12). The weight w(j)
β,k+1 represents the expected

number of new targets originating from m
(j)
β,k+1.
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C. GM-PHD Filter Recursion

The general GM-PHD filter recursion was described in Sec-
tion III. Additional details for the road mapping example are
given in this section. The merging of Gaussian components,
described in Section V-C, is performed in each iteration.

1) Prediction: The process model (33a) is linear and the
Gaussian components in (11) are derived using the Kalman
filter prediction step according to

m
(i)
k+1|k = m

(i)
k|k, (37a)

P
(i)
k+1|k = P

(i)
k|k +Qk−1. (37b)

The probability of survival is pS = 0.99.
2) Measurement Update: The measurement equation (34)

is nonlinear and the unscented transform (UT) is used to
propagate the state variables through the measurement equa-
tion, see e.g., [51]. A set of L sigma points and weights,

denoted by
{
χ
(`)
k , u(`)

}L
`=0

are generated from each Gaussian

component N (x
(i)
k|k−1, P

(i)
k|k−1) using the method described in

[51]. The sigma points are transformed to the measurement
space using (34) to obtain the propagated sigma point ζ(`)k|k−1
and the first and second order moments of the measurement
density are approximated as

η
(i)
k|k−1 =

L∑
`=0

u(`)ζ
(`)
k|k−1, (38a)

S
(i)
k|k−1 =

L∑
`=0

u(`)
(
ζ
(`)
k|k−1 − η

(i)
k|k−1

)(
ζ
(`)
k|k−1 − η

(i)
k|k−1

)T

+Rk,

(38b)

G
(i)
k|k−1 =

L∑
`=0

u(`)
(
χ
(`)
k|k−1 −m

(i)
k|k−1

)(
ζ
(`)
k|k−1 − η

(i)
k|k−1

)T

.

(38c)

Note that these variables also are used to derive the updated
weights in (16). The Gaussian components are updated given
the information from each new measurement zk, which is in
the gate

Gi =

{
zk

∣∣∣∣ (zk − η(i)k|k−1)T (
S
(i)
k|k−1

)−1 (
zk − η(i)k|k−1

)
< δG

}
,

(39)
for the gate threshold δG = 11.3, according to

m
(i)
k|k(z) = m

(i)
k|k−1 +K

(i)
k

(
zk − η(i)k|k−1

)
, (40a)

P
(i)
k|k = P

(i)
k|k−1 −K

(i)S
(i)
k|k−1

(
K(i)

)T

, (40b)

K(i) = G
(i)
k|k−1

(
S
(i)
k|k−1

)−1
. (40c)

The updated components are together forming the updated
intensity in (15).

The posterior intensity at time step k was given in (14). The
probability of detection is adjusted according to

pD,k(x) =

{
pD,k η

(i)
k|k−1 ∈ Z,

0 η
(i)
k|k−1 /∈ Z,

(41)

and the value is pD = 10−3. Gaussian components which are
outside field of view of the sensor, i.e., the measurement space
Z(s), are hence not updated. The clutter intensity is κ = 10−8.

The measurements from the three radar sensors are fused by
considering their measurement times, synchronizing the data,
and updating the filter accordingly.

D. Experiments and Results

The experiments were conducted with a prototype passenger
car, equipped with the radar sensors configured as shown in
Fig. 1. No reference data of the road borders exist, but the
vehicle’s position was recorded and may be used to illustrate
that the resulting map is reasonable. One example of the
estimated intensity at a freeway traffic scenario is shown as
a bird’s eye view in Fig. 5b. Darker regions illustrate higher
concentrations of point sources, which in this figure stem from
the guardrails to the left and the right of the road. As expected,
the path of the ego vehicle, indicated by the black dots, is in
between the two regions of higher object concentration. The
driver’s view is shown in Fig. 5a.

A second example is shown in Fig. 5c and 5d. Here, the
freeway exit is clearly visible in the intensity map, which
shows that the proposed method to create maps is very
conformable.

The Gaussian components are generally removed from the
filter when the vehicle passed those parts of the map. However,
to give a more comprehensive overview, these components are
stored and the resulting intensity based map is shown together
with an occupancy grid map (OGM) and a flight photo in
Fig. 6. The top figure is the map produced as described in
this contribution. The OGM is based on the same data set
and used as a comparison of an existing and well established
algorithm, see e.g., [8]. The gray-level of the OGM indicates
the probability of occupancy, the darker the grid cell the
more likely it is to be occupied. As seen in the figure the
road edges are not modeled as distinct with the OGM. The
OGM representation of the map is not very efficient, since
huge parts of the map are gray indicating that nothing is
known about these areas. An OGM matrix with often more
than 10000 elements must be updated and communicated to
other safety functions of a car at each time step. The compact
representation is an advantage of the intensity based map. Each
Gaussian components is parametrized with 7 scalar values
according to (8). Since most maps are modeled with 10− 30
components it summarizes to around 70 − 210 scalar values,
which easily can be send on the vehicles CAN bus to other
safety functions. Finally, the bottom photo is a very accurate
flight photo (obtained from the Swedish mapping, cadastral
and land registration authority), which can be used as ground
truth to visualize the quality of the intensity based map. Note
for example the junction at 1000 m.

VII. CONCLUSION

In this work it is shown how the GM-PHD filter can
be used to create a map of the environment using noisy
point measurements. The map is represented by the intensity,
which describes the concentration of point sources. Methods
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Fig. 6. The top figure shows the intensity based map obtained from radar measurements collected on a highway (drivers view in Fig. 5a). The OGM in
the middle figure serves as a comparison of an existing algorithm. The bottom figure is a flight photo used as ground truth, where the driven trajectory is
illustrated with a dashed line ( c©Lantmäteriet Gävle 2010. Medgivande I 2010/1540, reprinted with permission).

to identify and utilize typical map structures and to create an
efficient prior in the GM-PHD-filter have been presented. The
structures are identified by a clustering algorithm which alter-
nates between assigning existing map features to clusters, and
estimating structures within each cluster, until convergence.
Furthermore, these structures are also used to find an efficient
representation of the resulting map.

The usefulness of the proposed mapping approach is demon-
strated using automotive radar measurements collected on
Swedish freeways. The resulting intensity map of stationary
objects, such as guardrails and lampposts, can be viewed
as a map over the concentration of radar reflectors. The
parametrization is compact and the map is easily sent over
the CAN bus to active safety functions, which can use it to
derive drivable trajectories with low probability of occupancy.

The intensity is a distribution and its graphical represen-
tation provides an intuitive description of the map, which
is useful to decision making and path planning algorithms.
However, the intensity is an approximation of a true map. It
remains for future work to find an expression for the real map
and also to develop a metric to quantify the accuracy of the
intensity map.
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