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ABSTRACT

There are more and more systems emerging making use of
measurements from a forward looking radar and a forward
looking camera. It is by now well known how to exploit
this data in order to compute estimates of the road geome-
try, tracking leading vehicles, etc. However, there is va-
luable information present in the radar concerning statio-
nary objects, that is typically not used. The present work
shows how radar measurements of stationary objects can
be used to obtain a reliable estimate of the free space in
front of a moving vehicle. The approach has been evalua-
ted on real data from highways and rural roads in Sweden.

INTRODUCTION

For a collision avoidance system it is imperative to have a
reliable map of the environment surrounding the host ve-
hicle. This map, consisting of both stationary and moving
objects, has to be built in real time using measurements
from the sensors present in the host vehicle. This is cur-
rently a very active research topic within the automotive
industry and many other areas as well. Great progress has
been made, but much remains to be done. Current state-
of-the-art when it comes to the problem of building maps
for autonomous vehicles can be found in the recent spe-
cial issues [3–5] on the 2007 DARPA Urban Challenge.
In these contributions measurements from expensive and
highly accurate sensors are used, while we in the present
paper utilize measurements from off-the-shelf automotive
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radars.
In this contribution we consider the problem of esti-

mating the free space in front of the vehicle, making use of
radar measurements originating from stationary objects.
The free space is defined as the space where a ground ve-
hicle can manoeuvre without colliding with other objects.
Another name for the free space is the drivable space.

The present solution makes use of an already existing
sensor fusion framework [19], which among other things
provided a good road geometry estimate. This framework
improves the raw vision estimate of the road geometry by
fusing it with radar measurements of the leading vehicles.
The idea is that the motion of the leading vehicles reveals
information about the road geometry [9, 10, 32]. Hence, if
the leading vehicles can be accurately tracked, their mo-
tion can be used to improve the road geometry estimates.
Furthermore, we used a solid dynamic model of the host
vehicle allowing us to further refine the estimates by incor-
porating several additional proprioceptive sensor measu-
rements readily available on the CAN bus. The resulting,
rather simple, yet useful map of the environment surroun-
ding the host vehicle consists in

• Road geometry, typically parameterized using road
curvature and curvature rate.

• Position and velocity of the leading vehicles.

• Host vehicle position, orientation and velocity.

This information can and has indeed been used to design
simpler collision avoidance systems. However, in order



to devise more advanced systems, more information about
the environment surrounding the host vehicle is needed.
The purpose of this paper is to exploit information already
delivered by the radar sensor in order to compute a more
complete map. Hence, there is no need to introduce any
new sensors, it is just a matter of making better use of the
sensor information that is already present in a modern pre-
mium car. To be more precise, it is the radar echoes from
stationary objects that are used to estimate the road bor-
ders, which determines the free space in front of the host
vehicle. The radar measurements used originate from for
instance, guard rails and concrete walls. Obviously these
stationary radar measurements are not enough to fully ex-
plain the road borders. However, as we will see, there is
surprisingly much information present in these measure-
ments.

The key in our approach is to make use of the road
curvature estimate from the sensor fusion framework [19]
mentioned above to sort the stationary radar measurements
according to which side of the road they originate from.
These measurements are then used together with the esti-
mates from the sensor fusion to dynamically form a sui-
table constrained quadratic program (QP) for estimating
the free space in front of the vehicle. This QP models the
temporal correlation that exists in roads and the fact that
the road shape cannot change arbitrarily fast.

The approach has been evaluated on real data from
highways and rural roads in Sweden. The test vehicle is a
Volvo S80 equipped with a forward looking 77 GHz me-
chanically scanned FMCW radar and a forward looking
vision sensor (camera).

RELATED WORK

We have also investigated a completely different approach
to represent the map of the free space in front of the host
vehicle based on so call occupancy grid maps (OGM).
This is a commonly used method for tackling the pro-
blem of generating consistent maps from uncertain measu-
rements of stationary object under the assumption that the
host vehicle pose is known. Occupance grid maps are very
popular in the robot community, especially for all sorts of
autonomous vehicles equipped with laser scanners, indeed
several of the DARPA vehicles [3–5] used OGM’s. The
OGM was introduced by Elfes [7] and a solid treatment
can be found in the recent textbook [28].

The map is discretized into a number of cells with an
associated probability of occupancy. The map is repre-
sented by a matrix, with each element corresponding to
a map-cell. Figure 1a shows an OGM computed for the
highway situation given in the host vehicle’s camera view
in Figure 1b. The host vehicle is positioned at (200, 200),
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Figure 1: The filled circle at position (200, 200) in the oc-
cupancy grid map in Figure (a) is the host vehicle, the stars
are the radar observations obtained at this time sample,
the black squares with numbers 1 and 2 are the two lea-
ding vehicles that are currently tracked. The gray-level in
the figure indicates the probability of occupancy, the dar-
ker the grid cell, the more likely it is to be occupied. The
shape of the road is given as solid and dashed lines, cal-
culated as described in [19]. The camera view from the
host vehicle is shown in Figure (b), the concrete walls, the
guardrail and the pillar of the bridge are interesting land-
marks. Furthermore, the two tracked leading vehicles are
clearly visible in the right lane.

indicated by the filled circle. The gray-level in the oc-
cupancy map indicates the probability of occupancy, the
darker the grid cell, the more likely it is to be occupied.
As can be seen in Figure 1a, the OGM generates a good-
looking overview of the traffic situation. However, since
the measurements are obtained from a standard automo-
tive radar the results are not very informative for a colli-
sion avoidance system, better accuracy is needed. For a
more complete description of the application of the OGM
to the present problem we refer to [18].

The work presented here is clearly related to lane tra-
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Figure 2: ISO 3888 double lane change maneuver [13].

cking, which by now is a very well-studied problem, see
e.g. [23] for a recent survey using cameras. In fact the
required sensor fusion framework [19] makes use of the
estimates from a visual lane tracker. The recent book [6]
contains a lot of interesting information about detecting
and tracking lanes using cameras. Lane tracking has also
been tackled using radar sensors, see e.g., [14, 17, 21, 24]
and laser sensors, see e.g. [31]. Using laser scanners there
have been several approaches making use of reflections
from the road boundary, such as crash barriers and reflec-
tion posts, to compute information about the free space,
see e.g. [15, 16, 26]. Furthermore, the use of a side loo-
king radar to measure the lateral distance to a sidewall is
described in various papers, e.g., [8, 22, 27]. The intended
application in these papers [8,22,27] were automatic late-
ral control. Here, we have no specific application in mind,
we just try to obtain the best possible map based on the
available sensor information. This map can then be used
by any control system.

In [30] the authors presents an algorithm for free space
estimation, capable of handling non-planar roads, using
a stereo camera system. Similar to the present paper the
authors make use of a parametric model of the road ahead.
An interesting avenue for future work is to combine the
idea presented in this paper with the ideas of [30] within a
sensor fusion framework.

PROBLEM FORMULATION

An important question is how the information of the free
space should be represented and for which distances ahead
of the vehicle that it is needed. We will start by addres-
sing the latter through an example, the standard double
lane change manoeuvre according to ISO 3888 [13]. In
this maneuver a vehicle has to overtake an obstacle and
come back to its original lane as shown in Figure 2. As-
sume that the host vehicle is entering section 1 at a ve-
locity of 100 km/h and that there is an obstacle straight
ahead in section 3. The free space, i.e. the distance to
the left and right road borders has to be known in order
to autonomously overtake the obstacle as shown in the fi-

gure. This means that an automatic collision avoidance
system needs to have information about the free space at
least three sections ahead in order to make a decision on
where to steer the vehicle. From this simple, yet informa-
tive, calculation we conclude that the road must be well
estimated for at least 60 m ahead when driving at approxi-
mately 100 km/h.

In this paper we will use the planar coordinate trans-
formation matrix

ARL =
(

cosψ − sinψ
sinψ cosψ

)
(1)

to transform a vector, represented in the vehicle’s coordi-
nate system L, into a vector, represented in the reference
coordinate system R, where ψLR is the angle of rotation
from R to L. We will refer to this angle as the yaw angle
of the vehicle, and in order to simplify the notation we will
use ψ , ψLR. The point O is the origin of R and P is the
origin of L situated in the vehicles center of gravity. The
geometric displacement vector rRPO is the direct straight
line from O to P represented with respect to the frame R.
The angles and distances are shown in Figure 3.

A stationary object i will be referred to as an observa-
tion in the point Si. The radar in the host vehicle measures
the azimuth angle ψSiP and the range r = ||rLSiP ||2 to the
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Figure 3: The host vehicle’s coordinate frame L has its
origin P situated in the vehicle’s center of gravity. A sta-
tionary object Si is observed at a distance ||rLSiP ||2 and
an angle ψSiP with respect to the vehicles radar, which is
mounted in the radiator cowling. The lane width isW , the
heading angle is δr and the road curvature is c.



stationary object. These are transformed into Cartesian
coordinates

(
xSiO ySiO

)T in any coordinate frame.
All the observations of stationary objects S = {Si}Nsi=1

from the radar are sorted into two ordered sets, one for the
left side Sl and one for the right side Sr of the road. In or-
der to be able to perform this sorting we need some infor-
mation about the road geometry, otherwise it is of course
impossible. In [19] we provide a sensor fusion framework
for sequentially estimating the parameters l, δr, c0 in the
following model of the road’s white lane markings,

yL = l + δrx
L +

c0

2
(xL)2, (2)

where xL and yL are expressed in the host vehicle’s coor-
dinate frame L. The angle between the longitudinal axis
of the vehicle and the road lane is δr, see Figure 3. It is
assumed that this angle is small and hence the approxi-
mation sin δr ≈ δr is used. The curvature parameter is
denoted by c0 and the offset between the host vehicle and
the white lane is denoted by l.

The information about the road shape in (2) can now
be used to decide if an observation should be sorted into
the left set according to

Sl =
{
Si ∈ S | yLSiP ≥ l + δrx

L
SiP +

c0

2
(xLSiP )2

}
(3)

or the right set according to

Sr =
{
Si ∈ S | yLSiP < l + δrx

L
SiP +

c0

2
(xLSiP )2

}
. (4)

Observations which lay more than 200 m behind the ve-
hicle are removed from the set. The two sets Sl and Sr are
resorted at every sample, according to the new curvature
estimate.

Given the data in Sl we seek a road border model, pro-
vided by a predictor

ŷLSiP (xLSiP , θ), (5)

where θ denotes a parameter vector describing the road
boarders. The exact form of this predictor is introduced
in the subsequent section, where two different predictors
are derived. The data in Sr in treated analogously. The
road boarder parameters θ are estimated by solving the
following least-square problem

min
θ

∑N
i=1 λi

(
yLSiP − ŷ

L
SiP

(xLSiP , θ)
)2
,

(6)

where N is the number of observations and λi is a weigh-
ting factor. The problem (6) is formulated as if there is
only an error in the y-coordinate. Obviously there are er-
rors present also in the x-coordinate. This can be taken

care of by formulating a so called errors-in-variables pro-
blem (within the optimization literature this problem is re-
ferred to as a total least squares problem), see e.g., [1].
However, for the sake of simplicity we have chosen to
stick to an ordinary least squares formulation in this work.

ROAD BORDER MODEL

In this section we will derive and analyze two different
predictor models, one linear and one nonlinear.

An important problem to be solved is to decide which
radar measurements that should be used in estimating the
parameters. Later in this section we will introduce suitable
constraints that must be satisfied. This will allow us to
remove non-relevant data, i.e., outliers.

PREDICTOR – The two ordered sets Sl and Sr are
handled analogously. Hence, only the processing related
to the left set is described here. The observations are ex-
pressed in the reference coordinate system R when they
are stored in Sl. Obviously it is straightforward to trans-
form them into the vehicle’s coordinate system, using the
rotation matrix ALR = (ARL)T .

As depicted earlier the lanes are modeled using the po-
lynomial (2). Let us assume that the white lane markings
are approximately parallel with the road border. In order
to allow the number of lanes to change, without simul-
taneously changing the curvature, we extend the second
order model (2) with a fourth element. Hence, a linear
predictor is provided by

ŷL1 (xL, θ1) = l0 + l1x
L + l2(xL)2 + l3(xL)3, (7)

which is a third order polynomial, describing the road’s
left border, given in the host vehicle coordinate system.

By analyzing road construction standards, such as [29],
we assume that the increment and decrement of the num-
ber of lanes can be modelled using the arctan function
illustrated in Figure 4a. This allows for a continuous, but
possible rapid, change in shape. Let us now, as a second
approach, extend (2) and form the following nonlinear
predictor

ŷL2 (xL, θ2) = l0 + l1x
L + l2(xL)2

+ k arctan τ(xL − b), (8)

where the parameter b indicates where arctan crosses zero.
The slope τ and magnitude k could be chosen according
to typical road construction constants. An example of the
complete nonlinear road border model (8) is shown in Fi-
gure 4b.

We will start describing the linear model (7) and come
back to the nonlinear model (8) later in this section. Given
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Figure 4: A pure arctan is shown in Figure (a), whereas
the complete expression (8) is shown in Figure (b) for a
typical example.

the Nl observations in Sl, the parameters

θl =
(
l0 l1 l2 l3

)T (9)

can be approximated by rewriting the linear predictor (7)
according to

Ŷ L
1 = (ΦL)T θl, (10)

where the regressors (i = 1, . . . , Nl)

ϕLi =
(
1 xLSiP (xLSiP )2 (xLSiP )3

)T
. (11)

are stacked on top of each other in order to form

ΦL =
(
ϕL1 , . . . , ϕ

L
Nl

)
, (12)

The parameters are found by minimizing the weighted least
square error (6), here in matrix form

||Y L −ΦL θl||2Λ = (Y L −ΦL θl)TΛ(Y L −ΦL θl), (13)

where Λ is a weighting matrix

Λ = diag
(
λ1 · · · λNl

)
. (14)

and the y-coordinates are given by

Y L =
(
yL1 , . . . , y

L
Nl

)T
. (15)

The right hand side of the road is modeled analogously,
using the following parameter vector,

θr =
(
r0 r1 r2 r3

)T
. (16)

The azimuth angle ψSiO is measured with lower accuracy
than the range r in the radar system. This influences the
uncertainty of the measurements, when transformed into

Cartesian coordinates in accordance to the measured dis-
tance. Therefore, the elements of the weight matrix Λ
in (13) are defined as

λi =
1

log ri
, i = 1, . . . , Nl, (17)

modelling the fact that stationary objects close to the ve-
hicle are measured with higher accuracy than distant ob-
jects. Hence, the closer the object is, the hight the weight.

The problem of minimizing (13) can be rewritten as a
quadratic program [2] according to

min
θl

θTl ΦT Λ Φ θl − 2(Y L)T Λ Φ θl. (18)

A straightforward solution of this problem will not work
due to the simple fact that not all of the stationary objects
detected by the radar stems from relevant objects for our
purposes. For example, under some circumstances the ra-
dar also detects objects at the opposite side of the highway.
These observations could for example stem from a guard
rail or the concrete wall of a gateway from e.g. a bridge,
see Figure 5b. If the road borders are estimated according
to the quadratic program in (18) using these observations
the result will inevitably be wrong. In order to illustrate
that this is indeed the case the result is provided in Fi-
gure 5a. In the subsequent section we will explain how
this situation can be avoided by deriving a set of feasibi-
lity conditions that the curve parameters θl and θr have to
fulfill.

Let us briefly revisit the nonlinear model (8). Since
this predictor is nonlinear, it cannot be factored in the
same way as we did for the linear predictor in (10). Ins-
tead, we have to keep the nonlinear form, resulting in the
following optimization problem to be solved

min
θ

∥∥∥Y L − Ŷ L
2 (XL, θ2)

∥∥∥2

Λ
, (19)

where Y L was defined in (15) and similarly Ŷ L
2 are the

nonlinear predictions

ŷL2 (xL, θ2) = l0 + l1x
L + l2(xL)2

+ k arctan τ(xL − b) (20)

stacked on top of each other. Hence, the parameters θ2

used in (19) are given by

θ2 =
(
l0 l1 l2 k τ b

)T
. (21)

The resulting problem (19) is a non-convex least-squares
problem.
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Figure 5: The gateway shown on the opposite side of the
highway in Figure (b) misleads the road boarder estima-
tion. The stored observations are shown together with the
estimated road boarders (lines) in Figure (a). The black
points belongs to the left set Sl and the gray points be-
longs to the right set Sr.

CONSTRAINING THE PREDICTOR – The predic-
tor has to be constrained for the problem formulation to be
interesting. More specifically, we will in this section de-
rive constraints forming a convex set, guaranteeing that

the resulting linear optimization problem remains quadra-
tic. This problem can then be efficiently solved using a
dual active set method∗ [11].

As we assume that the white lane markings (2) are ap-
proximately parallel with the road border (7), we could
use the angle δr to constrain the second border parameter
l1 and we could use the curvature c0 to constrain the third
border parameter l2 according to

(1−∆)δr − εδr ≤ l1 ≤ (1 + ∆)δr + εδr if δr ≥ 0, (22a)

(1 + ∆)δr − εδr ≤ l1 ≤ (1−∆)δr + εδr if δr < 0, (22b)

(1−∆)c0 − εc0
2

≤ l2 ≤
(1 + ∆)c0 + εc0

2
if c0 ≥ 0, (22c)

(1 + ∆)c0 − εc0
2

≤ l2 ≤
(1−∆)c0 + εc0

2
if c0 < 0, (22d)

where the allowed deviation ∆ is chosen as 10%, i.e., ∆ =
0.1. A small value ε is added to avoid that both the upper
and lower bounds are equal to 0 in case δr or c0 is equal
to 0. Several different approaches for estimating the road
curvature c0 are described in [20].

The first border parameter l0 is not constrained, be-
cause the number of lanes may change at e.g. a gateway.
It should be possible for the border of the road to move
in parallel to the host vehicles motion without any condi-
tions.

In order to create a feasibility condition for the fourth
parameter l3 of the linear model, the estimated position of
the host vehicle expressed in the reference frame R is sa-
ved at each time sample. A data entry is removed from
the set if it lays more than 200 m behind the current posi-
tion. Furthermore, the estimated curvature is used to ex-
trapolate points 200 m ahead of the vehicle. These points
together with information about the host vehicle’s earlier
positions are used to derive a driven path as a third order
polynomial

yL = l + δrx
L +

c0

2
(xL)2 +

c1

6
(xL)3. (23)

Especially the parameter c1 is of interest and can be used
to constrain l3. Hence, the final inequality, which will fur-
ther constrain (18) is given by

(1−∆)c1 − εc1
6

≤ l3 ≤
(1 + ∆)c1 + εc1

6
if c1 ≥ 0, (24a)

(1 + ∆)c1 − εc1
6

≤ l3 ≤
(1−∆)c1 + εc1

6
if c1 < 0. (24b)

To summarize, the constrained optimization problem to be

∗ The QP code was provided by Dr. Adrian Wills at the University of
Newcastle, Australia, see http://sigpromu.org/quadprog.
This code implements the method described in [12, 25].



solved based on the linear predictor (7) is given by

min
θ1

‖Y L − Ŷ L
1 (XL, θ1)‖2Λ

s.t. (22)
(24)

(25)

The parameter b, of the nonlinear model (8) is constrai-
ned by the measurement distance and the parameters k and
τ are constrained by road construction standards. The re-
sulting nonlinear least-squares problem is finally given by

min
θ2

‖Y L − Ŷ L
2 (XL, θ2)‖2Λ

s.t. (22)
bmax ≤ b ≤ −bmax
kmax ≤ k ≤ −kmax
τmax ≤ τ ≤ τmin.

(26)

OUTLIER REJECTION – The difference between the
observed point and the calculated road border lines is used
to separate and remove outliers which lie more than 1.5
lane width (W ) from the lines. Subsequently the quadra-
tic program (18) is used a second time and the result is
shown in Figure 6. For this case, the two predictor models
yields approximately the same result.

An advantage of the nonlinear model is its ability to
model changes in the number of lanes, as can be seen in
Figure 7a, where the number of lanes changes from two to
three. Recall that it is the use of the arctan function that
allows us to model changes in the number of lanes. The
new lane originates from an access road to the highway.
The corresponding camera view is shown in Figure 7b.

COMPUTATIONAL TIME – We have compared the
computation time for the two proposed predictors with
constraints. The nonlinear least square problem (26) was
solved using the function fmincon in MATLABS optimi-
zation toolbox. Furthermore, we have used two different
methods for solving the quadratic problem (25). The first
method is the active set method mentioned earlier, where
parts are written in C-code, and the second method used
is quadprog in MATLABS optimization toolbox. The
computational time was averaged over a sequence of 1796
samples. The sample time is 0.1 s, implying that the mea-
surements were collected during 179.6 s highway driving.
The results are shown in Table 1.

The computation time of the nonlinear predictor is about
38 % higher than it is for the linear predictor proposed
in this paper. The MATLAB function quadprog needs
149 % more computational time. This indicates that the
computational time of the nonlinerar predictor can possi-
bly be reduced by utilizing an optimized C-code imple-
mentation.
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Figure 6: Road border estimation for the same situation as
in Figure 5a, but the additional constraints are now used.
The feasible set for the parameters l1, l2 and l3 is between
the dashed lines. The crosses shows the driven path (for
x < 0) and the estimated path (for x > 0).

Table 1 Average computational time for one sample.

Method Time [ms]
Linear Predictor (this paper) 84
Linear Predictor (quadprog) 209
Nonlinear Predictor 116

CALCULATING THE FREE SPACE

The free distance to the left and the right road borders is
now easily calculated by considering the first parameters
l0 and r0 respectively. The number of lanes on the left
hand side is given by

max
(⌊

l0 − L
W

⌋
, 0
)

(27a)
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Figure 7: A change in the number of lanes is modeled
accurately using the arctan function in the nonlinear pre-
dictor, as shown by the solid line in Figure (a). The dashed
line is the result of the linear predictor. The camera view
of the traffic situation is shown is Figure (b).

and the number of lanes on the right hand side is given by

max
(⌊
−r0 −R− 2

W

⌋
, 0
)
. (27b)

In the expressions above L and R are the distances from
the sensor in the host vehicle to the left and right lane

markings of the currently driven lane. We assume that
the emergency lane is 2 m on the right hand side of the
road [29].

The number of observed stationary objects depends on
the surrounding environment. A guard rail or a concrete
wall results in more observations than for example a fo-
rest. Hence, the estimated border lines are accompanied
by a quality measure which depends on the number of ob-
servations and their variance. The variance is calculated
before and after the outliers have been removed.

It is still a problem to detect the distance to the road
border if there is a noise protection wall some meters to the
right of the road. This wall generates many observations
with small variance and cannot be distinguished from a
guard rail. However, one solution might be to include ca-
mera information in a sensor fusion framework.

BORDER LINE VALIDITY – A very thrilling problem
with the present curve fitting approach is that there are no
gaps to properly leave or enter the road at a gateway. A
collision avoidance system would brake the vehicle au-
tomatically if leaving the road at a gateway when simul-
taneously crossing the border line. This leads us to the
conclusion that the border lines should only be defined if
the number of observations around it lies above a certain
limit.

In a first step we calculate the distance between the
line and the observations in the set Sl

dl,i =
∣∣∣yL

i −
(
δrx

L
i +

c0
2

(xL
i )2
)∣∣∣ for i = 1, . . . , Nl (28)

and compare it with a constant or variable, e.g. the lane
width W

ni =
{

1 if dl,i > W
0 otherwise.

(29)

In a second step the border line is segmented in valid and
not valid parts. The start and end points of the valid parts
are given by identifying the indices of two non equal and
adjoined elements in the vector n. By applying the XOR
function (⊕) according to

c = n2:Nl ⊕ n1:Nl−1, (30)

the start and end points of the border line are identified as
the indices with c = 1. These indices are stored in two
additional sets for the left and right border lines, respec-
tively. An example is shown in Figure 8a and the cor-
responding camera view in Figure 8b. The gateway to
the right leads to a gap in the right border line, between
48− 73 m ahead of the host vehicle. One of the leading
vehicles lies between the host vehicle and the guard rail,
this is the reason whey there are so few stationary object
on the left hand side from about 70 m ahead and why no
line could be drawn.
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Figure 8: The gateway to the right in Figure (b) leads to a
gap in the right border line, between 48− 73 m ahead, as
shown in Figure (a).

CONCLUSIONS AND FUTURE WORK

In this contribution we have derived a method for estima-
ting the free space in front of a moving vehicle, making
use of radar measurements originating from stationary ob-
jects along the road side. There is no need to introduce
any new sensors, since the radar sensor is already present
in modern premium cars. It is just a matter of making bet-

ter use of the sensor information that is already present.
Two different road border models are introduced, one

linear model containing four parameters and one nonlinear
model containing six parameters. These models do not de-
pend on the fact that a radar sensor is used, implying that
it is straightforward to add more sensor information from
additional sensors. In other words, the approach introdu-
ced here fits well within a future sensor fusion framework,
where additional sensors, such as cameras and additional
radars, are incorporated.

The present approach has been evaluated on real data
from both highways and rural road in Sweden. The results
are encouraging and surprisingly good at times. It is of
course not always perfect, but it is much more informative
than just using the raw measurements. The problems typi-
cally occur when there are to too few measurements or if
the measurements stems from other objects than the road
side objects.

Currently there is a lot of activity within the compu-
ter vision community to be able to handle non-planar road
models, making use of parametric models similar to the
ones used in this paper. A very interesting avenue for
future work is to combine the idea presented in this pa-
per with information from a camera about the hight dif-
ferences on the road side within a sensor fusion frame-
work. This would probably improve the estimates, espe-
cially in situations when there are too few radar measure-
ments available.
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