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Abstract— High-precision estimation of vehicle tire radii is
considered, based on measurements on individual wheel speeds
and absolute position from a global navigation satellite system
(GNSS). The wheel speed measurements are subject to noise
with time-varying covariance that depends mainly on the road
surface. The novelty lies in a Bayesian approach to estimate
online the time-varying radii and noise parameters using a
marginalized particle filter, where no model approximations are
needed such as in previously proposed algorithms based on the
extended Kalman filter. Field tests show that the absolute radius
can be estimated with millimeter accuracy, while the relative
wheel radius on one axle is estimated with submillimeter
accuracy.

I. INTRODUCTION

Tire pressure monitoring has become an integral part of
todays’ automotive active safety concept. With the announce-
ment of US standard (FMVSS 138) and European standard
(ECE R-64) vehicle manufacturer must provide a robust
solution to early detect tire pressure loss. A direct way to
measure the tire pressure is by equipping the wheel with a
pressure sensor and transmitting the information wireless to
the body. This is costly and therefore indirect solutions have
been introduced on the market lately, see e.g., [1]. In this
paper an indirect approach is presented where the tire radius
is estimated simultaneously with the vehicle trajectory. This
is done under the assumption that there is a relation between
a reduction in tire radius and tire pressure.

The indirect approach presented in [1] is only based on
the wheel speed sensors and it is shown how a tire pressure
loss in one wheel leads to a relative radii error between the
wheels. In later publications GPS measurements has also
been included to improve the radius estimation and even
make it possible to estimate the absolute radius of one tire.
The effective tire radius is estimated using a simple least-
squares regression technique in [2]. A non-linear observer
approach to estimate the tire radius is presented in [3], and
a second order sliding mode observer is used to estimate
the tire radius in [4]. A simultaneous maximum likelihood
calibration and sensor pos estimation approach for mobile
robots is presented in [5], where among other parameters
the wheel radii are estimated.

In the present contribution the tire radius is assumed to
be afflicted with Gaussian distributed noise, where both the
mean and the covariance are unknown. The noise statistics
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are treated as unknown parameters and the trajectory of
the vehicle is described by the state vector. The structure
of this nonlinear problem with biased and unknown noise
requires approximative algorithms for the state estimation.
The particle filter provides one generic approach to non-
linear non-Gaussian filtering. Probably the most common
way to handle a joint parameter and state estimation problem
is augmenting the state vector with the unknown parameters
and redefine the problem as a filtering problem, see e.g., [6],
[7]. The approach has some major disadvantages as it re-
quires artificial dynamics for the static parameters and it
leads also to an increase in the state dimension which is not
preferable for particle filters. This is particularly important
to stress in automotive applications, where the computational
cost must be kept low. In this work, an efficient Bayesian
method is proposed for approximating the joint density of
the unknown parameters and the state based on the particle
filters and the marginalization concept, introduced in [8]. The
statistics of the posterior distribution for the unknown noise
parameters is propagated recursively and conditioned on the
output of the particle filter.

The paper is outlined as follows. The problem is formu-
lated together with the vehicle model and a description of
the sensors in Section II. The estimation procedure and the
filter approach is described in Section III. Results based on
real data collected with a production type passenger car are
presented in Section IV. The work is concluded in Section V.

II. MODEL

In this section we introduce the model used in estimating
the pose trajectory of a four wheeled vehicle, where the
angular velocities of the wheels and GPS positions are used
as the inputs and the measurements, respectively. Our aim is
to jointly estimate the state trajectory and the unknown tire
radius errors given the measurements. The unknown wheel
radii effect the state through the wheel speed sensor. The
state vector is defined as the planar position and the heading
angle of the vehicle,

x =
[
x y ψ

]T
. (1)

The discrete time model for the evolution of the state is given
as,

xk+1 = xk + T vk cosψk (2a)
yk+1 = yk + T vk sinψk (2b)

ψk+1 = ψk + T ψ̇k. (2c)



Fig. 1. The notation of the vehicle variables.

The available raw signals are the angular velocities of the
wheels which can be measured by the ABS sensors. The an-
gular velocities can be converted to virtual measurements of
the absolute longitudinal velocity and yaw rate as described
in [9], [10], assuming a front wheel driven vehicle with slip-
free motion of the rear wheels,

vvirt =
w3r3 + w4r4

2
(3a)

ψ̇virt =
w4r4 − w3r3

B
. (3b)

See Figure 1 for the notation. In practice the actual tyre radii
are unknown and need to be estimated on the run. The wheel
radius errors are defined as the difference between the actual
and the nominal values of the rear left and right wheel radii
δ3 , r3− r and δ4 , r4− r, respectively. Here, the nominal
value of the wheel radius is denoted r and equivalently

r3 = r + δ3 (4a)
r4 = r + δ4. (4b)

Substituting (4) in equations (3) results in

vvirt =
ω3r3 + ω4r4

2
= v +

ω3δ3
2

+
ω4δ4

2
(5a)

ψ̇virt =
ω4r4 − ω3r3

B
= ψ̇ +

ω4δ4
B
− ω3δ3

B
(5b)

The measurements defined as above have bias terms which
are functions of δ3 and δ4. By using the virtual measure-
ments as the inputs, the motion model (2) can be rewritten
according to

xk+1 = xk + T (vvirt
k −

ω3δ3
2
− ω4δ4

2
) cosψk (6a)

yk+1 = yk + T (vvirt
k −

ω3δ3
2
− ω4δ4

2
) sinψk (6b)

ψk+1 = ψk + T (ψ̇virt
k −

ω4δ4
B

+
ω3δ3
B

). (6c)

The equations given above can be rewritten in the form of

xk = f(xk−1,uk) + g(xk−1,uk)wk, (7a)
yk = h(xk,uk) + ek. (7b)

where where uk is the virtual measurements used as the
inputs and the noise term wk is assumed to be Gaussian,

wk = N
((

δ3
δ4

)
,

(
Σ3 0
0 Σ4

))
. (8)

The parameters aimed at estimating are the radii error bias
and the covariances,

θ = {δ3, δ4,Σ3,Σ4} . (9)

The sensor model (7b) is describing the relation with the
GPS position and the state variables according to[

xGPS
k

yGPS
k

]
=

[
1 0 0
0 1 0

]
xk + ek. (10)

where ek is the measurement noise. In the following section
we describe the estimation of the unknown bias terms and the
covariances jointly with the state in a Bayesian framework.

III. PARAMETER AND STATE ESTIMATION

In the Bayesian approach, we will utilize suitable prior
distributions for the unknowns and compute the posterior
joint density recursively. The inference will be done by
using marginalized particle filters [11] where the unknown
noise parameters are marginalized out in relevant steps. Our
approach described here heavily relies on marginalization
and conjugate priors concepts. Before introducing the de-
tails of the particle algorithm here we shortly repeat some
preliminary information.

A. Posterior Distribution for the Conjugate Prior

For multivariate Normal data z with unknown mean µ and
covariance Σ, a Normal-inverse-Wishart distribution defines
a conjugate prior1. Let us denote it as [µ,Σ] ∼ NiW(ν, V ).
The Normal-inverse-Wishart distribution defines a hierarchi-
cal Bayesian model given below:

z|µ,Σ ∼N (µ,Σ) (11)

µ|Σ ∼N (µ̂, Σ̂) (12)
Σ ∼ iW(ν − d,Λ) (13)

where iW(.) denotes the Inverse Wishart distribution and
d denotes the dimension of measurement vector z. The
parameters ν and V represent the sufficient statistics and
can be updated recursively with the new data. The relevant
quantities are defined as,

µ̂ , V −111 V1z, (14)

Σ̂ , V −111 Σ, (15)

Λ , Vzz − V1zV −111 Vz1, (16)

V ,

[
Vzz V1z
Vz1 V11

]
, (17)

where Vzz is defined as the upper-left d × d sub-block of
V ∈ R(d+1)×(d+1)

1A family of prior distributions is conjugate to a particular likelihood
function if the posterior distribution belongs to the same family as the prior.



The joint density of (µ,Σ) is of the form

p(µ,Σ) = NiW(ν, V ) (18)

=
1

c
|Σ|− ν2

× exp(−1

2
tr(Σ−1[Id, µ]V [−Id, µ]T )), (19)

where c is the normalizing constant.
Via conjugacy, the posterior distribution is again a normal-

inverse-Wishart distribution with updated statistics. The up-
date equations of the statistics are as follows,

Vk = λVk−1 +

[
zk
1

] [
zTk 1

]
, (20a)

νk = λνk−1 + 1. (20b)

where the scalar real number 0 ≤ λ ≤ 1 is defined as the
forgetting factor. The use of the forgetting factor corresponds
to the application of an exponential window on the collected
statistics with effective length h = 1

1−λ . The statistics relies
on roughly the measurements within the last h frames/time
instances. That allows the algorithm to adapt the changes in
the noise statistics in time.

The recursive equations enable us to propagate the suf-
ficient statistics easily in time. Furthermore, the predictive
distribution for z becomes a t-distribution for a NiW prior.

p(zk|z1:k−1, ν0, V0) = p(zk|νk−1, Vk−1) = Stν−d+1

(
µ̂, Λ̄

)
(21a)

where

µ̂ = V −111 V1z (21b)

Λ̄ ,
(1 + V11)

(ν − d+ 1)V11
(Vzz − V1zV −111 Vz1) (21c)

Stv(µ,Υ) is the multivariate student-t distribution with v
degrees of freedom, located at µ with scale parameter Υ.

B. Marginalization in nonlinear filtering

Let us define NiW priors for the unknown process noise
sequences of the system defined by (7a) and (7b). Our aim
is to approximate the joint density p(x0:k, θ|y0:k) and allow
marginalization if possible. The joint distribution of the states
and the unknown parameters can be decomposed into the
conditional distributions as follows.

p(x0:k, θ|y0:k) = p(θ|x0:k,y0:k)p(x0:k|y0:k). (22)

Suppose we approximate the distribution p(x0:k|y0:k) by a
set of N particles and their weights as

p(x0:k|y0:k) '
N∑
i=1

ω
(i)
k δ

x
(i)
0:k

(.). (23)

For each particle we can compute analytical expressions
for the posterior distribution of the unknown parameters of
the process noise. The posterior follows the normal-inverse-
Wishart distribution and the sufficient statistics are updated
at each time step, for each particle, according to Equations

(20a)-(20b) where we define the pseudo measurements zk as
follows,

zk ,g†(xk−1, uk)(xk − fk(xk−1,uk)) (24)

where g†(xk−1,uk) is the pseudo-inverse of the matrix
gk(xk−1,uk) in (7a). For a given state trajectory x0:k and
the measurements y0:k the pseudo measurements can be
computed directly. Using the sequential importance sampling
scheme for propagating the particle approximation (23) leads
to the standard weight update equation:

ω
(i)
k = ω

(i)
k−1

p(yk|x(i)
k )p(x

(i)
k |x

(i)
0:k−1,y0:k−1)

q(x
(i)
k |x

(i)
0:k−1,y0:k)

, (25)

where q(.) is the importance distribution from which we
sample x

(i)
k .

C. State prediction

In computing the state transition density
p(xk|x0:k−1,y0:k−1), one can utilize the posterior
distribution of the unknown parameters that are computed
for each particle. One important advantage of using
conjugate priors reveals itself here as it is possible to
integrate out unknown noise parameters as they follow
normal-inverse-Wishart distribution.

p(xk|x0:k−1,y0:k−1)

=

∫
p(xk|xk−1, θ)p(θ|x0:k−1,y0:k−1)dθ. (26)

For each particle i, the distribution can be written as:

p(xk|x(i)
0:k−1,y0:k−1)

= pzk
(
g†(xk−1,uk)(xk − f(x

(i)
k−1,uk))|x(i)

0:k−1,y0:k−1
)

(27)

= pzk
(
g†(xk−1,uk)(xk − f(x

(i)
k−1,uk))|z(i)1:k−1

)
(28)

= pzk(g†(xk−1,uk)(xk − f(x
(i)
k−1,uk))|ν(i)k−1, V

(i)
k−1)

(29)

The resulting predictive distribution is a multivariate Student-
t distribution given in (21).

At the sampling stage, in most of the cases it is not
possible to sample from the optimal importance distribution.
The state transition density p(xk|x0:k−1,y0:k−1) can be used
as the importance distribution. In that case the weight update
equation (25) reduces to,

ω
(i)
k = ω

(i)
k−1p(yk|x

(i)
k ). (30)

Moreover computation of the pseudo inverse g†(xk−1,uk)
becomes no longer necessary. That is because when
q(x

(i)
k |x

(i)
0:k−1,y0:k) is chosen as p(xk|x0:k−1,y0:k−1), one

first samples from (21) in order to sample xik. Then the
samples from (21) can be used directly in the statistics update
(20a)-(20b). The pseudo code of the simplified algorithm
used in the simulations is given in Table I.

In the proposed method, each particle keeps its own
estimate for the parameters of the unknown process noise



TABLE I
PSEUDO CODE OF THE ALGORITHM

Initialization:
1: for each particle i = 1, .., N do
2: Sample x(i)0 ∼ p0(x0)

3: Set initial weights ω(i)
0 = 1

N
4: Set initial noise statistics [ν0V0] corresponding to each particle
5: end for

Iterations:
6: for k = 1, 2, . . . do
7: for For each particle i = 1, .., N do
8: sample z(i)k from (21) and compute x

(i)
k

(i.e., sample x
(i)
k ∼ q(x

(i)
k |x

(i)
0:k−1,y0:k))

9: update the weights:

ω̃
(i)
k = ω

(i)
k−1p(yk|x

(i)
k )

10: Update noise statistics using z(i)k in Equations (20a)-(20b).
11: end for
12: Normalize weights, ω(i)

k =
ω̃
(i)
k∑N

i=1 ω̃
(i)
k

.

13: Compute Neff = 1∑N
i=1(ω

(i)
k

)2
.

14: If Neff ≤ η, Resample the particles. Copy the corresponding
hyperparameters and set ω(i)

k = 1/N .
15: end for

and the measurement noise. In the importance sampling
step, the particles use their own posterior distribution of the
unknown parameters. The weight update of the particles is
made according to the measurement likelihood. The particles,
keeping the unknown parameters which best explains/fits to
the observed measurement sequence will survive in time.

D. Posterior Distribution for the Noise Parameters

The marginal posterior density of the unknown parameters
can be computed by integrating out the states in the joint
density.

p(θ|y1:k) =

∫
p(θ|x0:k,y1:k)p(x0:k|y1:k)dx0:k

≈
N∑
i=1

ω
(i)
k p(θ|x(i)

0:k,y1:k). (31)

Then the estimate of the unknown parameters could be
computed according to a chosen criterion. As an example,
according to the minimum mean square error (MMSE)
criterion, the noise variance estimate at time t could be
computed as

Σ̂k =

N∑
i=1

ω
(i)
k

Λ
(i)
k

vk − d− 1
, (32)

where the weights are inherited from the particles.

IV. RESULTS

Measurements were collected with a passenger car
equipped with standard vehicle sensors, such as wheel speed
sensors, and a GPS receiver, see Figure 2. The vehicle is
further equipped with an additional and more accurate IMU,
besides the standard IMU already mounted in the car, and
an optical velocity sensor. These two additional sensors were

Fig. 2. The test vehicle of Linköping University is logging standard CAN
data. The vehicle is in addition equipped with a GPS receiver, an IMU and
an optical velocity sensor.

used to calibrate the setup, but were not further used to
produce the results presented.

In regions where the car moves at low velocities, we utilize
the steering wheel angle measurement as follows, in order
to avoid quantization problems of the wheel cox

xk+1 = xk + T (vvirt
k −

ω3δ3
2
− ω4δ4

2
) cosψk (33a)

yk+1 = yk + T (vvirt
k −

ω3δ3
2
− ω4δ4

2
) sinψk (33b)

ψk+1 =

{
ψk + T (ψ̇virt

k −
ω4δ4
B + ω3δ3

B ) if v > γ

ψk + TδF (vvirt
k −

ω3δ3
2 − ω4δ4

2 )/lb if v < γ

(33c)

The GPS measurements of the 12 km test round is shown
as a black solid line in Figure 3. The round took about
18 min to drive and it starts and ends in urban area of
Linköping, in the upper right corner in Figure 3. The test
vehicle is driving clockwise, first on a small rural road, and
then on the left side of the figure entering a straight national
highway, before driving back to urban area on the top of the
figure. The gray dashed line shows the estimated trajectory
of the vehicle.

For the first round the pressure of the rear wheel tires was
adjusted to be equal 2.8 bar on both tires. For the second
round the pressure of the rear left tire was released to 1.5 bar.
The estimated parameters, i.e., the mean and the covariance
for the left and the right wheel are shown in the Figures 4
and 5, respectively. The black solid line shows the estimated
mean and covariance for the balanced pressure case, whereas
the gray line shows the estimated parameters for the second
round where the left tire radius was released by almost 50%.
Note that the pressure loss of the left wheel reduces the
estimated tire radius error δ3 by approximately 1.5 mm, see
Figure 4. However, the estimated tire radius error of the right
wheel, which has the same tire pressure for both experiment,
keeps its value, see Figure 5
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Fig. 3. The black line is GPS position measurements and the gray line is the
estimated driven trajectory. The experiment starts and ends at a roundabout
in the upper right corner.
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Fig. 4. Tire radius error of the left rear wheel. The upper plot shows
the mean value δ3 and the lower plot the covariance estimate Σ3. The
black solid line is the estimated values from the first experiment, with
balanced wheel pressure, and the gray line shows the estimate from the
second experiment where the pressure of the left wheel is reduced by 50%.
The tire pressure loss lead to a radius reduction of about 1.5 mm.

The results are even more apparent in Figure 6, where the
difference between the left and the right tire radius error, i.e.,
δ3−δ4, is shown. In the first experiment with balanced wheel
pressure the difference is around zero, whereas in the second
experiment the tire radius difference is around 1.5 mm.
Besides the the situations where the vehicle is moving slowly
and cornering, i.e., the junctions at 500− 600 s and the
roundabout at 1000− 1100 s it is possible to estimate the
relative tire radius difference with sub-millimeter accuracy.

V. CONCLUSION

In this study, we address the problem of joint estimation
of unknown tire radii and the trajectory of a four wheeled
vehicle based on GPS and wheel angular velocity measure-
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Fig. 5. Tire radius error of the right rear wheel. The upper plot shows
the mean value δ4 and the lower plot the covariance estimate Σ4. The
black solid line is the estimated values from the first experiment, with
balanced wheel pressure, and the gray line shows the estimate from the
second experiment where the pressure of the right wheel is unchanged.
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Fig. 6. Tire radius error difference between the left and the right rear
wheels. The black solid line is the estimated values from the first experiment,
with balanced wheel pressure, and the gray line shows the estimate from
the second experiment where the pressure of the left wheel is reduced by
50%. The tire pressure loss lead to a radius reduction of about 1.5 mm.

ments. The problem is defined in Bayesian framework and
an efficient method that utilizes marginalized particle filters
is proposed in order to accomplish the difficult task of joint
parameter and state estimation. The algorithm is tested on
real data experiments. The results show that it is possible to
estimate relative tire radius difference within sub-millimeter
accuracy.
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