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Abstract

In system identification, the Akaike Information Criterion (AIC) is a well known
method to balance the model fit against model complexity. Regularization here
acts as a price on model complexity. In statistics and machine learning, regular-
ization has gained popularity due to modeling methods such as Support Vector
Machines (SVM), ridge regression and lasso. But also when using a Bayesian ap-
proach to modeling, regularization often implicitly shows up and can be associ-
ated with the prior knowledge. Regularization has also had a great impact on
many applications, and very much so in clinical imaging. In e.g., breast cancer
imaging, the number of sensors is physically restricted which leads to long scan
times. Regularization and sparsity can be used to reduce that. In Magnetic Reso-
nance Imaging (MRI), the number of scans is physically limited and to obtain high
resolution images, regularization plays an important role.

Regularization shows-up in a variety of different situations and is a well known
technique to handle ill-posed problems and to control for overfit. We focus on
the use of regularization to obtain sparseness and smoothness and discuss novel
developments relevant to system identification and signal processing.

In regularization for sparsity a quantity is forced to contain elements equal to
zero, or to be sparse. The quantity could e.g., be the regression parameter vector
of a linear regression model and regularization would then result in a tool for
variable selection. Sparsity has had a huge impact on neighboring disciplines,
such as machine learning and signal processing, but rather limited effect on sys-
tem identification. One of the major contributions of this thesis is therefore the
new developments in system identification using sparsity. In particular, a novel
method for the estimation of segmented ARX models using regularization for
sparsity is presented. A technique for piecewise-affine system identification is
also elaborated on as well as several novel applications in signal processing. An-
other property that regularization can be used to impose is smoothness. To re-
quire the relation between regressors and predictions to be a smooth function
is a way to control for overfit. We are here particularly interested in regression
problems with regressors constrained to limited regions in the regressor-space
e.g., a manifold. For this type of systems we develop a new regression technique,
Weight Determination by Manifold Regularization (WDMR). WDMR is inspired by
applications in biology and developments in manifold learning and uses regular-
ization for smoothness to obtain smooth estimates. The use of regularization for
smoothness in linear system identification is also discussed.

The thesis also presents a real-time functional Magnetic Resonance Imaging (fMRI)
bio-feedback setup. The setup has served as proof of concept and been the foun-
dation for several real-time fMRI studies.
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Populärvetenskaplig sammanfattning

Modeller används inom de flesta områden för att efterlikna verkligheten. Anled-
ningarna kan vara allt ifrån att det är fysikaliskt omöjligt till att det är kostsamt
att utföra experimenten och därför utförs dessa på en modell istället. En modell
kan också användas till att generalisera och förutse beteenden för nya situatio-
ner. Vi använder exempelvis en mental modell för cykling för att från tidigare
erfarenheter kunna hantera nya situationer.

I denna avhandling studeras matematiska modeller. Framför allt diskuteras en
teknik för att framkalla egenskaper så som gleshet och glatthet hos modellpara-
metrar och skattningar. Denna teknik betecknas regularisering. Varför är man då
intresserad av att framkalla dessa egenskaper? Gleshet kan vara av nytta för att
välja ut mätstorheter som man bör fortsätta att mäta om man vill bibehålla go-
da skattningsresultat. Om det är kostsamt att mäta kan denna användning vara
värdefull. Gleshet har också visats användbart vid medicinsk bildbehandling för
till exempel minskning av röntgentider. I denna avhandling används regularise-
ring för gleshet på problem inom områdena systemidentifiering och signalbehand-
ling. Bland annat diskuteras hur regularisering för gleshet kan användas för att
upptäcka plötsliga förändringar. Glatthet är i många fall motiverat av fysikaliska
skäl. Många signaler som är intressanta att modellera och förutse beter sig på ett
mjukt och kontinuerligt sätt. Det finns därför skäl till att modellen som används
även har dessa egenskaper. Ett av resultaten i denna avhandling är en ny mo-
delleringsmetod, Weight Determination by Manifold Regularization (WDMR). Ett
specifikt användningsområde som diskuteras är skattning av vattentemperatur
från mätningar av den kemiska sammansättningen i musselskal. Antagandet att
det finns ett glatt samband mellan den kemiska koncentrationen i musselskalet
och temperaturen är här viktigt för bra skattningar.

Ett annat område som berörs i avhandlingen är mätning av hjärnaktivitet. Mer
specifikt presenteras en praktisk uppställning för att mäta och tolka hjärnaktivi-
tet i realtid.
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MR Magnetic Resonance
MRI Magnetic Resonance Imaging
MSE Mean Squared Error
OE Output Error

PCA Principal Component Analysis
PEM Prediction Error Method
PLS Partial Least Squares

PRBS Pseudo-Random Binary Sequence
PWA Piece-Wise Affine

PWARX Piece-Wise Auto-Regressive with eXogenous variables
PWASON Piece-Wise Affine system identification using Sum-Of-

Norms regularization
RKHS Reproducing Kernel Hilbert Space
SISO Single-Input Single-Output
SNR Signal-to-Noise Ratio
s.t. subject to

STATESON STATE estimation by Sum-Of-Norms regularization
SVM Support Vector Machines
SVR Support Vector Regression
UAV Unmanned Aerial Vehicle
UTM Universal Transverse Mercator

WDMR Weight Determination by Manifold Regularization
w.p. with probability
w.r.t. with respect to
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Introduction

1.1 Models and Modeling

Models are used in most scientific disciplines as substitutes for reality. It can be
that it is practically impossible to conduct experiments on the physical system
and a model thereof is therefore used to replace it. Or it could be that the model
is used to generalize to new situations not previously seen.

We humans use models every day, mental models. These models are built-up from
past experiences and make it possible for us to, e.g., ride our bikes. When we
bike, we use our mental model for biking to not fall over. In particular, we need
to use previous biking experience to generalize to new situations.

In this thesis, methods for computing models are discussed. Like for a human,
most of the models will be based on gathered past observations. We do not sum-
marize these in a mental model, but seek instead a mathematical model that can
explain these observations. A mathematical model describes a system’s behav-
ior using mathematical language. Mathematical language could be a set of dif-
ferential or difference equations, or it could be a rule for how to combine past
observations.

Mental models are of particular use for us and our brain. Mathematical models
are not useful for our brain (at least not in the same way as mental models) but
of particular interest and use for engineering and science. The two next exam-
ples motivate the use of mathematical models. We will return to both of these
examples at later phases of this thesis.

3
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Example 1.1: Climate Reconstruction
There exist a number of climate recorders in nature from which the past temper-
ature can be extracted. However, only a few natural archives are able to record cli-
mate fluctuations with high enough resolution so that the seasonal variations can
be reconstructed. One such archive is a bivalve shell, see Figure 1.1. The chemical

Figure 1.1: Bivalve shell.

composition of a shell of a bivalve depends on a number of chemical
and physical parameters of the water in which the shell was
composed. Of these parameters, the water temperature is
probably the most important one. It should therefore be
possible to estimate the water temperature for the time the
shell was built, from measurements of the shell’s chemical
composition. This would e.g., give climatologists the
ability to estimate past water temperatures by analyzing
ancient shells. To do this, a model for how the chemical
composition relates to water temperature would be
needed.

Example 1.2: Model-Based Reference Generation
Flight planning is essential for safety when flying. It makes sure that, on the

flight route, the airplane does not get to close to other airplanes, takes into ac-
count weather forecasts, fuel consumption and time constraints, and makes sure
that the airplane reaches its final destination. A route, in its simplest form, is a
set of ordered coordinates, waypoints. In an autopilot of a commercial airplane
or in the computer of an Unmanned Aerial Vehicle (UAV), waypoints are used to
generate reference trajectories which the controllers then use to navigate between
the waypoints. The most primitive reference generator does not take into account
limitations and the dynamics of the airplane. It gives a reference which is simply
a sequence of line segments connecting the waypoints. The airplane will not be
able to follow this reference very well and it is obvious that fuel could have been
saved and the comfort of the passengers could have been improved if instead a
smooth trajectory would have been generated. However, any smooth trajectory
does not suffice. The airplane may e.g., be too large to follow the turns which may
cause a not so smooth behavior after all. Therefore, a better approach would be
to include a model of the airplane in the reference generator and do a model-based
reference generation.

Model-based reference generation is a particular type of trajectory generation and
of interest for e.g., industrial robotics and planning for unmanned vehicles. Tra-
jectory generation is further discussed in Paper D in Part II.

Since mathematical models are used and of importance in so many different
fields, there are of course a huge variety of different types of models and mod-
eling techniques. There are also several fields studying the act of modeling, each
with its own nomenclature. In system identification e.g., the act of modeling is
referred to as identification and in the closely related field of machine learning, the
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term learning or inference is used. Since this is a thesis in system identification,
we will most of the time stick to the nomenclature used there.

Mathematical modeling can be divided into two categories. Modeling either be-
longs to regression or classification. In this thesis we are only concerned with re-
gression. There is further a focus on different types of regularizations. This is
also reflected in the name of the thesis.

1.2 Regularization

Regularization is a methodology for making an ill-posed problem well-posed (Pog-
gio et al., 1985; Neumaier, 1998). A problem is ill-posed (Hadamard (1902), see
also Tikhonov and Arsenin (1977, p. 7)) if its solution

• does not exist,

• is not unique or

• does not depend continuously on the input data.

If a problem is not ill-posed, it is well-posed. An example of an ill-posed problem
could be the task of finding the x ∈ Rnx , given y ∈ Rny and A ∈ Rny×nx , that
solves

min
x
‖y − Ax‖22. (1.1)

If rank(A) < nx the minimizing x is not unique and the problem hence ill-posed.
A well-posed regularized version of the problem is given by the regularized least
squares problem

min
x
‖y − Ax‖22 + λ‖x‖22, λ ∈ R+. (1.2)

The added term λ‖x‖22 conveys the desire that ‖x‖22 should be small. It also makes
the solution unique and the problem well-posed. Regularization can also be used
to communicate other prior thoughts concerning a parameter, signal or model.
Common properties imposed by regularization are smoothness or sparseness, as
we will see later. We will return to the regularized least squares problem in later
chapters and leave the details for then.

Regularization is also a way to control for overfitting. Overfitting is a problem
that can occur in the estimation process of a model and in particular when a
stochastic noise process is modeled as a deterministic signal. The most common
way to avoid overfitting is to limit the model’s ability to pick up rapid variations
in the data, often associated with the noise. One technique for doing this is regu-
larization. By controlling for overfitting a bias is usually introduced. The variance
is however decreased. Regularization is therefore also a way to deal with the bias-
variance trade-off for a model.

In statistics and machine learning, regularization has gained popularity due to
modeling methods such as Support Vector Machines (SVM, Vapnik (1979, 1995)),
ridge regression (Hoerl and Kennard (1970), see also Hastie et al. (2001), p. 59)
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and lasso (least absolute shrinkage and selection operator, Tibsharani (1996), see
also Hastie et al. (2001), p. 64). When the Bayesian approach to modeling is used,
regularization often shows up and can be associated with the prior knowledge.

In system identification, the Akaike Information Criterion (AIC, Akaike (1973)) is
a well known way to balance the model fit against the model complexity. Regu-
larization here acts as a price on model complexity.

Regularization has also had a great impact on many applications, and very much
so in clinical imaging. In e.g., breast cancer imaging, the number of sensors is
physically restricted which leads to long scan times. Regularization and spar-
sity can be used to reduce that, as shown in Guo et al. (2010) and Brady et al.
(2009). In Magnetic Resonance Imaging (MRI), the number of scans is physically
limited and to obtain high resolution images, regularization plays a key role, see
e.g., Brady et al. (2009).

Example 1.3: Compressed Sensing
The Nyquist-Shannon sampling criterion states that for a bandlimited (no energy

above a certain frequency) signal, the sampling frequency should be twice that
of the bandlimit to guarantee the possibility to perfectly reconstruct the time-
continuous signal (see e.g., Oppenheim et al. (1996, p. 519)). That means that
to obtain a (good) audio recording a sampling frequency of at least 40 kHz is
needed, since our ears are sensitive to frequencies up to 20 kHz. However, MP3
files are often around 3 megabytes, not 30 megabytes (a three minute stereo
recording gives 3 · 60 · 2 · 40 · 103 = 14.4 · 106 samples. A precision of 16 bits gives
28.8 megabytes). Data compression is of course the reason for this storage sav-
ing. A sound is hence sampled, stored and then compressed. In the compression,
about 90% of the storage area is returned.

It may seem meaningless to measure a lot of information if 90% will be thrown
away before someone even listened to the song. Since this thesis is about regu-
larization, you may guess that regularization can help to sample more efficiently.
And yes, a regularization technique called Compressed Sensing (CS, Donoho (2006);
Candès et al. (2006)) is what is needed.

We continue and reveal the details behind compressed sensing in Chapter 4.
An interesting and well written paper on compressed sensing which inspired to
above example is given by Hayes (2009).

1.3 State Estimation

Dynamic systems are characterized by that their output depends on current and
past inputs. The effect that these inputs have had on the system is gathered in the
state. The state contains valuable information for e.g., controllers and for decision
making. The state is however often not directly measurable. It is therefore of
interest to be able to estimate the state using the available measurements. The
theory for doing this is called state estimation.
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The focus of this thesis is not state estimation. A brief description necessary to
understand the paper on state estimation in Part II is therefore only provided. In
particular we discuss state estimation under process noise which is often zero but
occasionally non-zero, leading to so called load disturbances.

1.4 Notation

It is strategic, before readers detach and jump to chapters of their choice, to ex-
plain some notational choices made throughout the thesis. Lower-case letters
will be used for scalars and column vectors, while upper-case letters are used to
denote matrices. “( · )” will be used to pick out elements of vectors or matrices.
x(t) hence denotes the tth element of the vector x. “:” will be used, as in Matlab,
to pick-out a sequence of elements of a matrix or vector. A(1 : 2, :) hence denotes
the two top rows of the matrix A. Calligraphic letters will be used for sets. Mod-
els will be denoted by f (ϕ, θ), ϕ being a regressor and θ the model-parameters.
f0(ϕ) will be used to denote the true system that we try to imitate using a model.

“ˆ” denotes an estimate of some quantity. x̂ therefore denotes an estimate of x. A
subscript will be used to index time or as sample index. xt hence denotes the
variable x at time or index t. In some papers of Part II, “( · )” is used instead of
subscript. Some exceptions to these notational choices exist.

See also listed mathematical symbols and abbreviations on pages xvii and xviii.

1.5 Publications

Published work of relevance to this thesis is listed below in chronological order.
Publications marked with a “∗” are included in Part II of this thesis.

H. Ohlsson, J. Roll, T. Glad, and L. Ljung. Using manifold learn-
ing for nonlinear system identification. In Proceedings of the 7th
IFAC Symposium on Nonlinear Control Systems (NOLCOS), Pretoria,
South Africa, August 2007.

H. Ohlsson. Regression on manifolds with implications for system
identification. Licentiate thesis no. 1382, Department of Electrical En-
gineering, Linköping University, SE-581 83 Linköping, Sweden, De-
cember 2008.

H. Ohlsson, J. Roll, A. Brun, H. Knutsson, M. Andersson, and L. Ljung.
Direct weight optimization applied to discontinuous functions. In
Proceedings of the 47th IEEE Conference on Decision and Control,
Cancun, Mexico, December 2008a.

H. Ohlsson, J. Roll, and L. Ljung. Manifold-constrained regressors in
system identification. In Proceedings of the 47th IEEE Conference on
Decision and Control, Cancun, Mexico, December 2008b.
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∗ H. Ohlsson, J. Rydell, A. Brun, J. Roll, M. Andersson, A. Ynnerman,
and H. Knutsson. Enabling bio-feedback using real-time fMRI. In
Proceedings of the 47th IEEE Conference on Decision and Control,
Cancun, Mexico, December 2008c.

A. Eklund, H. Ohlsson, M. Andersson, J. Rydell, A. Ynnerman, and
H. Knutsson. Using real-time fMRI to control a dynamical system. In
Proceedings of the 17th Meeting of the International Society for Mag-
netic Resonance in Medicine (ISMRM), Honolulu, USA, April 2009a.

M. Bauwens, H. Ohlsson, K. Barbé, V. Beelaerts, J. Schoukens, and
F. Dehairs. Three ways to do temperature reconstruction based on
bivalve-proxy information. In Proceedings of the 28th Benelux Meet-
ing on Systems and Control, Spa, Belgium, March 2009b.

H. Ohlsson and L. Ljung. Gray-box identification for high-
dimensional manifold constrained regression. In Proceedings of the
15th IFAC Symposium on System Identification, SYSID 2009, Saint-
Malo France, July 2009.

M. Bauwens, H. Ohlsson, K. Barbé, V. Beelaerts, F. Dehairs, and
J. Schoukens. On climate reconstruction using bivalve shells: Three
methods to interpret the chemical signature of a shell. In Proceedings
of the 7th IFAC Symposium on Modelling and Control in Biomedical
Systems, Aalborg, Denmark, August 2009a.

A. Eklund, H. Ohlsson, M. Andersson, J. Rydell, A. Ynnerman, and
H. Knutsson. Using real-time fMRI to control a dynamical system
by brain activity classification. In Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted In-
tervention (MICCAI’09), London, UK, September 2009b.

H. Ohlsson, M. Bauwens, and L. Ljung. On manifolds, climate recon-
struction and bivalve shells. In Proceedings of the 48th IEEE Confer-
ence on Decision and Control, Shanghai, China, December 2009.

F. Lindsten, J. Callmer, H. Ohlsson, D. Törnqvist, T. B. Schön, and
F. Gustafsson. Geo-referencing for UAV navigation using environmen-
tal classification. In Proceedings of the 2010 IEEE International Con-
ference on Robotics and Automation (ICRA), Anchorage, Alaska, May
2010.

K. Nguyen, A. Eklund, H. Ohlsson, F. Hernell, P. Ljung, C. Forsell,
M. Andersson, H. Knutsson, and A. Ynnerman. Concurrent volume
visualization of real-time fMRI. In Proceedings of the IEEE Interna-
tional Symposium on Volume Graphics 2010, Norrköping, Sweden,
May 2010.
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∗ H. Ohlsson, L. Ljung, and S. Boyd. Segmentation of ARX-models
using sum-of-norms regularization. Automatica, 46(6):1107–1111,
2010d.

A. Eklund, M. Andersson, H. Ohlsson, A. Ynnerman, and H. Knutsson.
A brain computer interface for communication using real-time fMRI.
In Proceedings of the International Conference on Pattern Recogni-
tion 2010, Istanbul, Turkey, August 2010.

H. Ohlsson and L. Ljung. Semi-supervised regression and system
identification. In X. Hu, U. Jonsson, B. Wahlberg, and B. Ghosh, ed-
itors, Three Decades of Progress in Control Sciences. Springer Verlag,
December 2010a. To appear.

H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd. State smoothing by
sum-of-norms regularization. In Proceedings of the 49th IEEE Con-
ference on Decision and Control, Atlanta, USA, December 2010a. To
appear.

∗ H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd. Trajectory genera-
tion using sum-of-norms regularization. In Proceedings of the 49th
IEEE Conference on Decision and Control, Atlanta, USA, December
2010b. To appear.

T. Chen, T. B. Schön, H. Ohlsson, and L. Ljung. Decentralization of
particle filters using arbitrary state partitioning. In Proceedings of
the 49th IEEE Conference on Decision and Control, Atlanta, USA, De-
cember 2010a. To appear.

M. Bauwens, H. Ohlsson, K. Barbé, V. Beelaerts, F. Dehairs, and
J. Schoukens. On climate reconstruction using bivalves: Three meth-
ods to interpret the chemical signature of a shell. Computer Methods
and Programs in Biomedicine, 2010a. Accepted for publication.

M. Bauwens, H. Ohlsson, K. Barbé, V. Beelaerts, F. Dehairs, and
J. Schoukens. A nonlinear multi-proxy model based on manifold
learning to reconstruct water temperature from high resolution trace
element profiles in biogenic carbonates. Geoscientific Model Devel-
opment, 2010b. Accepted for publication.

T. Chen, T. B. Schön, H. Ohlsson, and L. Ljung. Decentralized particle
filter with arbitrary state partitioning. IEEE Transactions on Signal
Processing, 2010b. Accepted for publication.

∗ H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd. State estimation un-
der abrupt changes using sum-of-norms regularization. Automatica,
2010c. Submitted, under revision.
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∗ H. Ohlsson and L. Ljung. Weight determination by manifold regular-
ization. In Distributed Decision-Making and Control, Lecture Notes
in Control and Information Sciences. Springer Verlag, 2010b. Submit-
ted.

∗ H. Ohlsson and L. Ljung. Piecewise affine system identification using
sum-of-norms regularization. In Proceedings of the 18th IFAC World
Congress, Milano, Italy, 2011. Submitted.

∗ T. Chen, H. Ohlsson, and L. Ljung. On the estimation of transfer func-
tions, regularizations and Gaussian processes – Revisited. In Proceed-
ings of the 18th IFAC World Congress, Milano, Italy, 2011. Submitted.

T. Falck, H. Ohlsson, L. Ljung, J. A.K. Suykens, and B. De Moor. Seg-
mentation of times series from nonlinear dynamical systems. In Pro-
ceedings of the 18th IFAC World Congress, Milano, Italy, 2011. Sub-
mitted.

M. P. Deisenroth and H. Ohlsson. General perspective to Gaussian
filtering and smoothing: Explaining current and deriving new algo-
rithms. In Proceedings of the American Control Conference (ACC),
2011, San Francisco, USA, 2011. Submitted.

1.6 Contributions

Sparseness has had a huge impact on neighboring scientific disciplines, such as
machine learning and signal processing, but has had very little effect on system
identification. One of the major contributions of this thesis is therefore the new
developments in system identification using sparsity. Relevant readings are Pa-
pers A and B in Part II of this thesis. See also related contributions in signal
processing, Papers C and D.

Manifold learning, unsupervised learning and semi-supervised learning are well
establish areas in machine learning. In system identification, these subjects have
hardly been given any consideration at all. A contribution of this thesis is there-
fore the increased understanding for these subjects and how they can be of use in
system identification. Relevant reading is Paper E in Part II of this thesis.

The author of this thesis has also carried out research in functional Magnetic Reso-
nance Imaging (fMRI). This contribution is described in Paper G in Part II of this
thesis.

1.7 Thesis Outline

The thesis is divided into two parts. The first part contains motivations and back-
ground theory and the second part a collection of papers.



1.7 Thesis Outline 11

1.7.1 Outline of Part I

Chapter 2 serves as an introduction to mathematical modeling and regression
and introduces the fundamental knowledge and the necessary notation for the
subsequent chapters. Readers familiar with the subject can skip this chapter.
Chapter 3 gives a brief introduction to state estimation. Chapter 4 discusses reg-
ularization for sparseness and Chapter 5 discusses regularization for smoothness.
The last chapter of Part I gives a conclusion and discusses interesting future re-
search directions.

1.7.2 Outline of Part II

Part II presents a collection of papers that is relevant for the thesis.

The four first papers further develop the theory presented in Chapters 3 and 4.
Paper A,

H. Ohlsson, L. Ljung, and S. Boyd. Segmentation of ARX-models us-
ing sum-of-norms regularization. Automatica, 46(6):1107–1111, 2010d.

discusses what sparseness and segmented ARX models have in common. A new
approach using regularization to estimate segmented ARX models is presented.
The author of this thesis was the major contributor in writing this paper and in
the research prior the paper. The author of this thesis also came up with the
idea of using regularization for sparseness in the estimation of segmented ARX
models. This paper inspired to several other applications of regularization for
sparseness, see e.g., Ohlsson et al. (2010a,b,c); Ohlsson and Ljung (2011); Falck
et al. (2011). This work also initialized collaboration with Professor Stephen Boyd
at Stanford University.

Paper B,

H. Ohlsson and L. Ljung. Piecewise affine system identification using
sum-of-norms regularization. In Proceedings of the 18th IFAC World
Congress, Milano, Italy, 2011. Submitted.

extends the theory presented in Paper A to piecewise affine systems. A regulariza-
tion approach is again taken. The author of this thesis was the major contributor
in writing the paper and in the research prior the paper. The author of this thesis
also came up with the idea of using regularization for sparseness in piecewise
affine system identification.

Paper C,

H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd. State estimation un-
der abrupt changes using sum-of-norms regularization. Automatica,
2010c. Submitted, under revision.

discusses how sparseness can help in state estimation when abrupt changes are
present, e.g., load disturbances. The author of this thesis was the major contrib-
utor in writing the paper and in the research prior the paper. It was Professor



12 1 Introduction

Lennart Ljung’s idea to use regularization for sparseness together with state es-
timation. Parts of the theory presented in this paper have also been presented
in Ohlsson et al. (2010a).

Paper D,

H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd. Trajectory genera-
tion using sum-of-norms regularization. In Proceedings of the 49th
IEEE Conference on Decision and Control, Atlanta, USA, December
2010b. To appear.

presents a model-based trajectory generation scheme. Sparsity and regulariza-
tion are here used to give a compact representation for the trajectory, something
that is desired when communication and storage are limited. The author of this
thesis was the major contributor in writing the paper and in the research prior
the paper. It was Professor Fredrik Gustafsson’s idea to use regularization for
sparseness for trajectory generation.

The fifth paper, Paper E,

H. Ohlsson and L. Ljung. Weight determination by manifold regular-
ization. In Distributed Decision-Making and Control, Lecture Notes
in Control and Information Sciences. Springer Verlag, 2010b. Submit-
ted.

discusses a novel regression method Weight Determination by Manifold Regulariza-
tion (WDMR). The regression method has strong bounds with manifold learning
and has inherited properties thereof. Unlike most methods in system identifica-
tion, WDMR is a semi-supervised regression method. WDMR uses regularization
to control for smoothness and is therefore related to theory developed in Chap-
ter 5. The author of this thesis was the major contributor in writing the paper
and in the research prior the paper. A pre-study was presented in Ohlsson et al.
(2007). WDMR, in its present formulation, was first presented in Ohlsson et al.
(2008b). A number of interesting applications and extensions of WDMR have
also been presented, e.g., Ohlsson (2008); Ohlsson and Ljung (2009). The appli-
cation to temperature reconstruction from bivalves is probably the most exciting,
see e.g., Ohlsson et al. (2009); Bauwens et al. (2009a, 2010a,b). The work behind
WDMR has led an extensive collaboration with researchers at Vrije Universiteit
Brussel. The author of this thesis came up with the idea behind WDMR.

Paper F,

T. Chen, H. Ohlsson, and L. Ljung. On the estimation of transfer func-
tions, regularizations and Gaussian processes – Revisited. In Proceed-
ings of the 18th IFAC World Congress, Milano, Italy, 2011. Submitted.

continues the discussion of regularization for smoothness and examines how reg-
ularization can be used in linear system identification. The theory presented in
Paper F is also related to theory developed in Chapter 5. The author of this thesis
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was an active contributor in the work prior writing the paper and in writing the
paper.

Paper G,

H. Ohlsson, J. Rydell, A. Brun, J. Roll, M. Andersson, A. Ynnerman,
and H. Knutsson. Enabling bio-feedback using real-time fMRI. In
Proceedings of the 47th IEEE Conference on Decision and Control,
Cancun, Mexico, December 2008c.

presents a real-time fMRI bio-feedback setup. fMRI is a method for measuring
brain activity. The conventional use of fMRI is in “batch-mode”. The subject is
first scanned for 30 minutes. Then the data is analyzed and brain activity de-
tected and located using smoothing on the batch of fMRI measurements. The
setup presented here hence presents a real-time fMRI setup i.e., fMRI measure-
ments are analyzed as they are acquired. The setup presented led the way for sev-
eral interesting real-time fMRI studies e.g., Eklund et al. (2009a,b, 2010); Nguyen
et al. (2010) and shows some more applied research conducted by the author of
this thesis. The author of this thesis was the main contributor to the presented
setup.





2
Mathematical Modeling and

Regression

Models summarize available knowledge about the system. Available knowledge
can be physical first principles describing the behavior of the system or it can be
measurements of system specific quantities.

2.1 Types of Models and Modeling

When only physical first principles are used, modeling, or the act of finding a
model, is referred to as white-box modeling. When modeling is solely based on
measurements it is referred to as black-box modeling and when physical principles
are combined with measurements, gray-box modeling.

A model (and also a system) is either dynamic or static. The output of a dynamic
model depends on previous and current system inputs, while a static model only
depends on the system input at the moment. One may say that a static model is
memoryless, while a dynamic model contains a memory in which past inputs are
stored. The words “dynamical” and “dynamic” are used interchangeably in the
literature.

A model is made up of a model structure and a set of model parameters. Model
parameters are quantities that are chosen to make the model imitate the specific
system under consideration. For example, a mass-spring system can readily be
modeled by a second order differential equation

d2xt
dt2

+ a
dxt
dt

+ bxt = c (2.1)

in the position x of the mass. To make the model imitate a specific mass-spring
system, the model parameters a, b and c have to be set. This could e.g., be done

15
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by comparing predicted mass positions of the model with observed positions. A
second order differential equation is the model structure in this case and the co-
efficients a, b and c, the model parameters. For the second order differential
equation model, the number of parameters is fixed and equal to three. That the
number of model parameters is fixed characterizes a parametric model. The num-
ber of parameters of a non-parametric model typically grows with the number of
observations available for estimating the model. It may seem a bit counter intu-
itive that a non-parametric model has parameters and often considerably more
parameters than a parametric model, but that is the convention.

The quantity of interest can either belong to a set of a finite number of elements,
and is then said to be qualitative. When the quantities are qualitative they are
often denoted labels and the act of modeling, classification. Or, if on the other
hand, the quantity of interest can take any value in e.g., an interval, the act of
modeling is referred to as regression. The considered quantities are then said to
be quantitative. This thesis only treats quantitative quantities and the regression
problem.

It is also common to separate a Bayesian approach to modeling from a non-
Bayesian approach, sometimes called a frequentist’s or a classical approach. Sec-
tions 2.4 and 2.5 take a non-Bayesian approach and Section 2.9 discusses a
Bayesian approach to modeling.

2.2 The Regression Problem

Many problems in estimation and identification can be formulated as regression
problems. In a regression problem we are seeking to determine the relationship
between a regression vector ϕ (input, independent variable) and a quantity of inter-
est, a quantitative variable y (output, dependent variable), here called the output.
Basically this means that we would like to find the function f0 that describes the
relationship

y = f0(ϕ). (2.2)

With ϕ ∈ Rnϕ and y ∈ R, f0 is a mapping from Rnϕ → R. For simplicity, y ∈ R
will be assumed throughout the rest of this chapter.

Measuring always introduces some uncertainty, which motives the introduction
of a discrepancy or noise term e,

y = f0(ϕ) + e. (2.3)

This implies that there is no longer a unique y corresponding to a ϕ. We will
assume that the noise sequence {e} obtained as f0 is measured multiple times is
constructed from independent and identically distributed (i.i.d.) zero mean stochas-
tic variables. Let further pe be the probability distribution associated with the
random variable e.

In practice our estimate of f0(ϕ) has to be computed from a limited number of
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observations of (2.3). The problem is hence to observe a number of connected
pairs {ϕ, y}, and then based on this information be able to provide a guess or
estimate for f0 that is related to any given, new, value of ϕ.

The estimate of f0, or the model, that we choose to work with can either be lin-
ear or nonlinear. For a linear model, the model output is a linear function of
the regressors while for a nonlinear model, the model output is allowed to be a
nonlinear function of the regressors.

2.3 Estimation, Validation and Test Data

Given a set of observations, {(ϕt , yt)}t∈No
, No ⊂ Z, it is often a good idea to sepa-

rate the observation data set into three sets:

• The estimation data set is used to compute the model, e.g., to compute the
model parameters in a parametric model. The estimation data set will be
denoted by {(ϕt , yt)}t∈Ne

, Ne ⊆ No. Let also Ne , card(Ne).

• The validation data set is used to examine an estimated model’s ability to
predict the output of a new set of regressor data. Having a number of
prospective models of different structures, the validation data can be uti-
lized to choose the best performing model structure. For example the num-
ber of delayed system inputs and outputs used in the regressors in a para-
metric model could be chosen using the validation data. The validation
data set will be denoted by {(ϕt , yt)}t∈Nv

, Nv ⊆ No, Nv
⋂
Ne = ∅. Let also

Nv , card(Nv). How the validation data is used is discussed in Section 2.5.

• The test data set is used to test the ability of the chosen model (with the
parameter choice from the estimation step and the structure choice from
the validation step) to predict new outputs. The test data set can be used to
gain confidence for the chosen model. The test data set will be denoted by
{(ϕt , yt)}t∈Nt

, Nt ⊆ No, Nt
⋂
Ne = ∅, Nt

⋂
Nv = ∅. Let also Nt , card(Nt).

2.4 Fitting a Model

Having divided the observations into an estimation, validation and test data set,
we are ready to estimate a model. The conventional approach within system
identification is to make use of a parametric model f (ϕt , θ), which is hopefully
flexible enough to imitate the transformation f0 in (2.3). Here θ is used to denote
the model parameters. Examples of structures that will be used in this thesis are:

• The Auto-Regressive with eXogenous variables (ARX) model structure. This
structure leads to a linear model. If we consider a single-input single-
output dynamic system with the input ut and the output yt , the ARX model
takes the form
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f (ϕt , θ) = ϕTt θ, ϕt =
[
−yt−1 . . . −yt−na ut−1 . . . ut−nb

]T
. (2.4)

The quantities na and nb are parameters of the model structure.

• The Finite Impulse Response (FIR) model structure. This structure also leads
to a linear model. If we again let ut be an input of a single-input single-
output dynamic system, the FIR model takes the form

f (ϕt , θ) = ϕTt θ, ϕt =
[
ut−1 . . . ut−nb

]T
. (2.5)

nb is the order of the FIR model.

For more on the model structures briefly introduced above, and several other
model structures used in system identification, see e.g., Ljung (1999, Chap. 4).

f (ϕt , θ) is adjusted to the regressor-output pairs of the estimation data set
{(ϕt , yt)}t∈Ne

by choosing θ as

θ̂ = arg min
θ

∑
t∈Ne

l
(
yt − f (ϕt , θ)

)
, (2.6)

where l : R → R is a function of the prediction error yt − f (ϕt , θ) and typically
chosen as a norm. In system identification, the use of (2.6) to estimate a model
parameter is a special case of the Prediction Error Method (PEM, see e.g., Ljung
(1999, 2002)). Also, if we set l as the negative logarithm of the measurement
noise distribution, i.e., l( · ) = − log pe( · ), then θ̂ of (2.6) equals the Maximum
Likelihood Estimate (MLE) of θ (see e.g., Ljung (2002)).

With measurement noise present, obtaining a perfect fit i.e.,∑
t∈Ne

l
(
yt − f (ϕt , θ̂)

)
= 0, (2.7)

is not desirable and an extreme case of overfitting. Overfitting is a problem that
can occur when fitting a model and means that the model has been adjusted to
the particular measurement noise realization. Overfitting is primarily a problem
for flexible models and to chose a model structure just flexible enough to imitate
f0 (and not flexible enough to be able to imitate the noise) would be ideal.

There are a number of approaches to find what is “just flexible enough”. Most
approaches can be seen belonging to either cross validation or regularization.

2.5 Cross Validation

In Cross Validation (CV) the validation data set {(ϕt , yt)}t∈Nv
is utilized to find

what is “just flexible enough”. Since the measurement noise e of the validation
data set is impossible to predict, the best possible would be to perfectly predict
the outcome of the deterministic part of (2.3) i.e., f0(ϕ). Therefore, for a number
of candidate models fi(ϕ, θ̂i), i = 1, . . . , m (θ̂ found using (2.6)), a model is chosen
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by

arg min
fi (ϕ,θ̂i ),i=1,...,m

∑
t∈Nv

l
(
yt − fi(ϕt , θ̂i)

)
. (2.8)

This type of cross-validation is the most common in system identification. There
are however several other types of cross validation, see e.g., (Hastie et al., 2001,
pp. 214-217).

To evaluate (2.8) we need to evaluate f (ϕ, θ) at the regressors of the validation
data set. To compute predictions for f0 at regressors not included in the esti-
mation data set is called generalization (Bishop, 2006, p. 2). For most practical
purposes it is not enough to find a model f (ϕ, θ̂) that well imitates f0 at the es-
timation data set, generalization is therefore an important property of a model.
This is sometimes referred to as the model’s ability to generalize to unseen data.

2.6 Regularization

Regularization is in general a methodology for making an ill-posed problem well-
posed, but regularization can also be used to control for overfit. We care for both
these applications in this thesis. We however choose to focus on the type of regu-
larization (referred to as a standard regularization method in Poggio et al. (1985))
obtained by adding a penalty term J to the criterion of fit. The penalty J should
be regarded as a means to introduce a priori knowledge.

In particular, given a number of candidate models fi(ϕ, θ̂i), i = 1, . . . , m (θ̂ found
using (2.6)), we can use regularization to select a model “just flexible enough” by
considering a criterion

arg min
fi (ϕ,θ̂i ),i=1,...,m

∑
t∈Ne

l
(
yt − fi(ϕt , θ̂i)

)
+ J(fi). (2.9)

J should then be a flexibility penalty conveying the message that we wish an as
“simple” model as possible that fits the estimation data. Notice that to choose a
model using (2.9) only requires the estimation data set while cross-validation re-
quires both an estimation and a validation data set. Regularization may therefore
be a good choice when the number of observation data is limited.

The Akaike Information Criterion (AIC, Akaike (1973)),

arg min
fi (ϕ,θ̂i ),i=1,...,m

−2
∑
t∈Ne

log pe
(
yt − fi(ϕt , θ̂i)

)
+ 2dim(θ̂i), (2.10)

with θ̂i found using l( · ) = − log pe( · ) in (2.6) (MLE of θ), is an example of this
type of usage of regularization.
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Example 2.1: ARX and Model Selection
Consider a single-input single-output dynamic system with an input ut and an

output yt . Let the candidate models be ARX models with different nb’s (see (2.4)
for ARX and nb). Let e.g.,

f1(ϕt , θ1) =ϕTt θ1, na = 1, nb = 1, (2.11a)

f2(ϕt , θ2) =ϕTt θ2, na = 1, nb = 2, (2.11b)

...

fm(ϕt , θm) =ϕTt θm, na = 1, nb = m, (2.11c)

and compute θ1, θ2, . . . , θm using (2.6). The flexibility of an ARX model grows
with nb, a suitable choice of penalty J in (2.9) could therefore be

J(fi) = nb for fi (2.12)

if an as “simple” model as possible but with a reasonable good fit is sought.

Regularization can also be used to control the regressor parameter value of a
single model. f (ϕt , θ) is then adjusted to the observations by choosing θ as

θ̂ = arg min
θ

∑
t∈Ne

l
(
yt − f (ϕt , θ)

)
+ λJ(θ, ϕt), (2.13)

rather than using (2.6). J(θ, ϕt) again serves as a cost on flexibility and is often
used to penalize non-smooth estimates (this is discussed in Chapter 5). However,
J(θ, ϕt) could also be used to express the prior knowledge of a sparse parameter
vector θ (this is discussed in Chapter 4). λ ∈ R+ is seen as a design parameter and
regulates the trade-off between fit to the estimation data and flexibility. Choosing
the “just flexible enough” model structure is now a matter of choosing the right
λ-value. λ is denoted the regularization parameter or regularization constant and θ̂
as a function of regularization parameter, the regularization path.

An expression of the form (2.13) is of great importance for this thesis and will be
a key ingredient in the theory developed in Chapters 4 and 5 and in several of the
papers of Part II. (2.13) is a type of shrinkage method as it is often used to shrink
regression parameters toward zero (Hastie et al., 2001, p. 59).

Example 2.2: ARX and `2-Regularization
Consider again a single-input single-output dynamic system with an input ut

and an output yt . Let us use an ARX model (2.4) and fix na and nb.

Let l( · ) = ( · )2 in (2.6). For this particular choice, (2.6) is referred to as the Least
Squares (LS) problem. Let {(ϕt , yt)}

Ne
t=1 be a given estimation data set. If we now

define

y ,
[
y1 . . . yNe

]T
, Φ ,

[
ϕ1 . . . ϕNe

]T
, (2.14)
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(2.6) can be written as

θ̂ = arg min
θ

‖y − Φθ‖22 = arg min
θ

(y − Φθ)T (y − Φθ). (2.15)

We can characterize the solution of (2.15) by determining if

y = Φθ (2.16)

is overdetermined, underdetermined or has a unique solution. It is useful to sepa-
rate between the three cases:

(2.16) is overdetermined. In this case there are more observations than model
parameters. This is the most studied case in system identification. If Φ has
full column rank i.e.,

rank(Φ) = dim(θ), (2.17)

then θ̂ in (2.15) can be computed explicitly to

θ̂ = (ΦTΦ)−1ΦT y. (2.18)

(ΦTΦ)−1ΦT is known as the Moore-Penrose pseudoinverse and generally de-
noted by Φ†. Geometrically, Φθ is a linear combination of the columns of Φ.
f (ϕ, θ) is hence restricted to the plane spanned by the columns of Φ. (2.15)
can then be interpreted as the problem of finding the vector in the plane
spanned by the columns of Φ that is the closest, in an Euclidean sense, to
the vector y. The orthogonal projection of y onto the plane spanned by the
columns of Φ,

Φ(ΦTΦ)−1ΦT y, (2.19)

is well known to minimize this distance. (2.18) should therefore be seen as
a projection onto the plane spanned by the columns of Φ. When Φ has full
rank, (2.15) has a unique solution. If Φ does not have full rank, there exits
a lower number columns (< dim(θ)) that span the plane. θ̂ is therefore no
longer unique.

The ARX model f (ϕt , θ̂) does not, in general, perfectly predict the outputs
in the estimation data set, but since measurement noise is present, this is
preferred over an overfit.

(2.16) has a unique solution. Assume Φ is quadratic and has full rank, RNe is
then spanned by the columns of Φ which also make up a basis for RNe . The
task is now to express y in this basis. We hence want to solve the equation
system

y = Φθ. (2.20)

(2.20) is solved by

θ̂ = Φ−1y. (2.21)

The inverse exists since Φ is quadratic and has full rank. For θ̂ = Φ−1y a
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perfect fit is obtained, i.e.,

‖y − Φθ̂‖22 = 0. (2.22)

It is worth notice that the Moore-Penrose pseudoinverse in this case reduces
to the ordinary inverse since

Φ† = (ΦTΦ)−1ΦT = Φ−1Φ−TΦT = Φ−1. (2.23)

(2.18) hence still holds.

(2.16) is underdetermined. In this case, the columns of Φ construct an over com-
plete basis for RNe . There is hence an infinite number of θs that obtain a
perfect fit i.e.,

‖y − Φθ‖22 = 0. (2.24)

(2.15) is hence ill-posed. Regularization can here be used to express which
one of these infinite solutions that is desired.

The Moore-Penrose pseudoinverse is for this case not well defined, since
ΦTΦ is singular.

Remark 2.1. If (2.16) is either overdetermined or has a unique solution, (2.15) is a strictly
convex optimization problem and has therefore a unique solution (see e.g., Bertsekas et al.
(2003, Prop. 2.1.2)). If (2.16) is underdetermined, (2.15) is convex and any minimizing θ̂
is therefore a global minimum (see e.g., Boyd and Vandenberghe (2004, p. 138)). θ̂ may
however not be unique in this case.

Let us assume that we have insight that tells us that θ should be “small”. We
could then use regularization to reduce the flexibility of f (ϕ, θ) = ϕT θ and to
only allow models with a small θ. That would e.g., help us find a unique model if
(2.16) is underdetermined. However, it could also be used to reduce the flexibility
of a model to control for overfit and find a “just flexible enough” model ((2.16)
does not need to be underdetermined to use regularization for this purpose). Let
us say that we would be satisfied if ‖θ‖22 is kept small. Using regularization we
can express this prior knowledge/insight as

θ̂ = arg min
θ

‖y − Φθ‖22 + λ‖θ‖22, λ ∈ R+. (2.25)

(2.25) is an `2-regularized least squares problem, often referred to as ridge regression
or Tikhonov regularization (Hoerl and Kennard (1970), see also Hastie et al. (2001),
p. 59). Since the objective function is quadratic in θ, an explicit expression for
θ̂ can be computed. The gradient with respect to θ of the objective function of
(2.25) becomes

∇θ
(
‖y − Φθ‖22 + λ‖θ‖22

)
= −2ΦT (y − Φθ) + 2λθ. (2.26)

Setting the gradient equal to zero and solve gives

θ̂ = (ΦTΦ + λI)−1ΦT y. (2.27)

(2.27) and (2.18) take a very similar form. And in fact, adding a small diagonal
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matrix λI to ΦTΦ to make the Moore-Penrose pseudoinverse well defined was
the main motivation for ridge regression when it was introduced by Hoerl and
Kennard (1970).

2.7 Bias-Variance Tradeoff

Let us assume that an estimate of f0 at the regressor ϕ∗ is desired. To find what
is “just flexible enough” can then be shown to be a matter of finding a suitable
tradeoff between variance

Eθ̂

[(
Eθ̂[f (ϕ∗, θ̂)] − f (ϕ∗, θ̂)

)2
]

(2.28)

and bias

f0(ϕ∗) − Eθ̂[f (ϕ∗, θ̂)]. (2.29)

This can be understood as follows. Given an estimation data set, we estimate θ.
Since the y-measurements in the estimation data set are noisy, they are inherently
stochastic and so will also θ̂ be. It therefore makes sense to study the quantity

Eθ̂

[(
f0(ϕ∗) − f (ϕ∗, θ̂)

)2
]

(2.30)

as a measure of performance (for estimating f0 at ϕ∗). The expectation is here
taken with respect to θ̂. This quantity is called the Mean Squared Error (MSE). To
minimize the MSE would be ideal and was earlier referred to as finding a model
“just flexible enough”. To see how the bias and variance relate to MSE, add and
subtract Eθ̂[f (ϕ∗, θ̂)] in (2.30). We get

Eθ̂

[(
f0(ϕ∗) − f (ϕ∗, θ̂)

)2
]

= Eθ̂

[(
f0(ϕ∗) − Eθ̂[f (ϕ∗, θ̂)] + Eθ̂[f (ϕ∗, θ̂)] − f (ϕ∗, θ̂)

)2
]

= Eθ̂

[(
f0(ϕ∗) − Eθ̂[f (ϕ∗, θ̂)]

)2
+

(
Eθ̂[f (ϕ∗, θ̂)] − f (ϕ∗, θ̂)

)2

+2
(
f0(ϕ∗) − Eθ̂[f (ϕ∗, θ̂)]

)(
Eθ̂[f (ϕ∗, θ̂)] − f (ϕ∗, θ̂)

)]
=
(
f0(ϕ∗) − Eθ̂[f (ϕ∗, θ̂)]

)2
+Eθ̂

[(
Eθ̂[f (ϕ∗, θ̂)] − f (ϕ∗, θ̂)

)2
]
.

The first term (
f0(ϕ∗) − Eθ̂[f (ϕ∗, θ̂)]

)2
(2.31)

is the squared bias and the second term

Eθ̂

[(
Eθ̂[f (ϕ∗, θ̂)] − f (ϕ∗, θ̂)

)2
]

(2.32)

is the variance. The bias is due to limitations in our model structure and the
variance term is due to the stochastic nature of our estimation data set (the mea-
surement noise). However, both the bias and the variance also depend on the cost
function used to find θ̂.
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Flexible models generally give high variance, but low bias, whereas non-flexible
models give low variance, but high bias.

Example 2.3: Regularization and the Bias-Variance Tradeoff
Consider the single-input single-output system (δ( · ) the Dirac delta function)

yt =
n∑
k=1

g0
k ut−k + et , E[et] = 0, E[etes] = δ(t − s)σ2, ∀t, s ∈ N . (2.33)

The sequence {g0
k }
n
k=1 is the impulse response of the system i.e., the response to an

impulse (ut = δ(t) in (2.33) gives yt = g0
t + et , t = 1, . . . , n, yt = et , t = n + 1, n +

2, . . . ). Let us estimate the impulse response. Assume that we use an nth order
FIR model (see (2.5))

f (ϕt , θ) = ϕTt θ, ϕt =
[
u(t − 1) . . . u(t − n)

]T
, θ ∈ Rn. (2.34)

Let {(ϕt , yt)}
Ne
t=1 be the estimation data set and define

y ,
[
y1 . . . yNe

]T
, Φ ,

[
ϕ1 . . . ϕNe

]T
,

Λ ,
[
e1 . . . eNe

]T
, θ0 ,

[
g0

1 . . . g0
n

]T
.

(2.35)

Consider now the `2-regularized least squares criterion

θ̂ = arg min
θ

‖y − Φθ‖22 + θTDθ, D ∈ Rn×n, D � 0, (2.36)

with a solution (see (2.27))

θ̂ = (ΦTΦ + D)−1ΦT y. (2.37)

The bias for an estimate at ϕ∗ is then readily computed to

ϕT∗ θ0 − Eθ̂[ϕT∗ θ̂] =ϕT∗ θ0 − Ey[ϕT∗ (ΦTΦ + D)−1ΦT y] (2.38a)

=ϕT∗ θ0 − ϕT∗ (ΦTΦ + D)−1ΦT EΛ[Φθ0 + Λ] (2.38b)

=ϕT∗ θ0 − ϕT∗ (ΦTΦ + D)−1ΦTΦθ0 (2.38c)

and the variance to

Eθ̂

[(
Eθ̂[ϕT∗ θ̂] − ϕT∗ θ̂

)2
]

= Ey
[(
ϕT∗ (ΦTΦ + D)−1ΦTΦθ0 − ϕT∗ (ΦTΦ + D)−1ΦT y

)2
]

= EΛ
[(
ϕT∗ (ΦTΦ + D)−1ΦT

(
Φθ0 − (Φθ0 + Λ)

))2]
= EΛ

[(
ϕT∗ (ΦTΦ + D)−1ΦTΛ

)2
]

=ϕT∗ (ΦTΦ + D)−1ΦT EΛ[ΛΛT ]Φ(ΦTΦ + D)−1ϕ∗

=σ2ϕT∗ (ΦTΦ + D)−1ΦTΦ(ΦTΦ + D)−1ϕ∗. (2.39)

Let now D = λIn, λ ≥ 0. Then, if the estimation data input ut is chosen as zero
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mean white noise with variance µ and for a large Ne, it holds that

ΦTΦ ≈ NeµIn. (2.40)

If ΦTΦ = NeµIn is used in (2.38) and (2.39) the bias becomes

ϕT∗ θ0 − Eθ̂[ϕT∗ θ̂] =
(

λ
Neµ + λ

)
ϕT∗ θ0 (2.41)

and the variance

Eθ̂

[(
Eθ̂[ϕT∗ θ̂] − ϕT∗ θ̂

)2
]

= σ2 Neµ

(Neµ + λ)2ϕ
T
∗ ϕ∗. (2.42)

Notice that when λ = 0 we obtain the unbiased least squares estimate. The vari-
ance for the least squares estimate is however larger than the variance of an esti-
mate obtained for a small positive λ. A small positive λ causes a biased estimate
though. Figure 2.1 gives a sketch of how the typical variance and bias depend on
λ.
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Figure 2.1: Bias-variance visualization for regularization. The squared

bias
(
f0(ϕ∗) − Eθ̂[f (ϕ∗, θ̂)]

)2
is showed using the gray line, the variance

Eθ̂

[(
Eθ̂[f (ϕ∗, θ̂)] − f (ϕ∗, θ̂)

)2
]

using the dashed line and the MSE using the

black line.

We will return to impulse response identification in Paper F and explore more
sophisticated choices of D-matrix. In fact, some of the most recent contributions
in impulse response identification use `2-regularization, see e.g., Pillonetto and
De Nicolao (2010).
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2.8 Performance Measures

To evaluate the prediction performance of different models a performance mea-
sure is needed. For a given test data set {(ϕt , yt)}t∈Nt

and a model f (ϕ, θ̂), we
choose to use 1 −

√√√√ ∑
t∈Nt

∣∣∣yt − f (ϕt , θ̂)
∣∣∣2∑

t∈Nt

∣∣∣yt − 1
Nt

∑
s∈Nt ys

∣∣∣2
 × 100 (2.43)

as a performance measure. We will call the computed quantity fit and express us
by saying that a prediction has a certain percentage fit to a set of data.

At some point in the thesis the Mean Absolute Error (MAE)

1
Nt

∑
t∈Nt

∣∣∣yt − f (ϕt , θ̂)
∣∣∣ (2.44)

will also be used.

2.9 Bayesian Modeling

In Bayesian modeling, or Bayesian inference, probability distributions are used to
represent stochasticity and uncertainty. For a parametric model, this implies that
a distribution over parameter-values is computed rather than a single regressor
parameter estimate θ̂. Also the predictions will be distributions over possible
estimates rather than a single function-value for a given ϕ.

A Bayesian practitioner argues that there are two sources of information. The
prior knowledge about the system and the observations. The prior knowledge
or prior believes have to be formulated as a probability distribution, denoted a
prior. The prior believes then get updated using observations to form a posterior,
an updated probability distribution. How to weight together the prior and the
observations is given by Bayes’ theorem (Bayes, 1763):

Theorem 2.1 (Bayes’ Theorem). Let p(θ) be a prior, p
(
{yt}t∈Ne

∣∣∣θ, {ϕt}t∈Ne

)
the

likelihood of observing the outputs {yt}t∈Ne
given {ϕt}t∈Ne

and θ, and
p({yt}t∈Ne

|{ϕt}t∈Ne
) the probability of observing the data {yt}t∈Ne

given {ϕt}t∈Ne
.

The posterior distribution for θ given the observations is then given by

p
(
θ
∣∣∣{(ϕt , yt)}t∈Ne

)
=
p
(
{yt}t∈Ne

∣∣∣θ, {ϕt}t∈Ne

)
p(θ)

p
(
{yt}t∈Ne

∣∣∣{ϕt}t∈Ne

) . (2.45)

The model f (ϕ, θ) is in a Bayesian framework represented by the predictive distri-
bution. Let y∗ be an observation of f0(ϕ∗), p

(
θ
∣∣∣{(ϕt , yt)}t∈Ne

)
the posterior dis-

tribution for θ given the observations (computed using Theorem 2.1) and let
p(y∗|ϕ∗, θ) be the likelihood of observing the output y∗ given ϕ∗ and θ. The pre-
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dictive distribution for y∗ is then given by

p
(
y∗
∣∣∣{(ϕt , yt)}t∈Ne

, ϕ∗
)

=
∫
p
(
y∗
∣∣∣ϕ∗, θ)p(θ∣∣∣{(ϕt , yt)}t∈Ne

)
dθ. (2.46)

The predictive distribution tells us how certain we are that the measured system
response to ϕ∗ takes a certain value.

It is common to let the prior p(θ) depend on a number of hyperparameters, let us
call these θh. The prior hence takes the form p(θ|θh). The hyperparameters are
usually determined from data by maximizing the log marginal likelihood,

log p
(
{yt}t∈Ne

∣∣∣{ϕt}t∈Ne
, θh

)
= log

∫
p
(
{yt}t∈Ne

∣∣∣{ϕt}t∈Ne
, θ

)
p(θ|θh)dθ. (2.47)

This approach to estimating θh is referred to as empirical Bayes (see e.g., Bishop
(2006, p. 165)).

Example 2.4: ARX Cont’d
Consider the ARX-type of system

yt = ϕTt θ + et , et ∼ N (0, σ2), (2.48)

with ϕt containing old system inputs and outputs. Assume that we are given the
observations {(ϕt , yt)}

Ne
t=1, know the (i.i.d.) measurement noise variance σ2 and

that we have reason to believe that θ is small. Taking a Bayesian approach, we
then compute the posterior distribution p

(
θ
∣∣∣{(ϕt , yt)}Ne

t=1

)
as (see Theorem 2.1)

p
(
θ
∣∣∣{(ϕt , yt)}Ne

t=1

)
=
Π
Ne
t=1N (yt ;ϕ

T
t θ, σ

2)p(θ)

p
(
{yt}

Ne
t=1

∣∣∣{ϕt}Ne
t=1

) . (2.49)

p(θ) is here the prior and N (yt ;ϕ
T
t θ, σ

2) is used to denote that yt ∼ N (ϕTt θ, σ
2).

To convey our belief of a small θ, and to get a closed-form expression for the
posterior, we choose to use a Gaussian prior, say N (0, I). If we first introduce

y ,
[
y1 . . . yNe

]T
, Φ ,

[
ϕ1 . . . ϕNe

]T
, (2.50)

the posterior can be computed using standard Gaussian identities, see e.g., Ras-
mussen and Williams (2005, p. 200), to

p
(
θ
∣∣∣{(ϕt , yt)}Ne

t=1

)
=
Π
Ne
t=1N (yt ;ϕ

T
t θ, σ

2)N (θ; 0, I)∫
Π
Ne
t=1N (yt ;ϕ

T
t θ, σ

2)N (θ; 0, I)dθ
(2.51a)

=N (θ; (ΦTΦ + σ2I)−1ΦT y, (σ−2ΦTΦ + I)−1). (2.51b)

The predictive distribution is now readily computed to

p
(
y∗
∣∣∣ϕ∗, {(ϕt , yt)}Ne

t=1

)
=
∫
N (y∗;ϕ

T
∗ θ, σ

2)p
(
θ
∣∣∣{(ϕt , yt)}Ne

t=1

)
dθ (2.52)

=N
(
ϕT∗ (ΦTΦ + σ2I)−1ΦT y, σ2 + ϕT∗ (σ−2ΦTΦ + I)−1ϕ∗

)
,
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with p
(
θ
∣∣∣{(ϕt , yt)}Ne

t=1

)
from (2.51).

Let us now explore what happens if we let the variance of the prior free and
instead uses N (0, θhI), θh ∈ R+, as a prior. We then see θh as a hyperparameter
and compute it by maximizing the log marginal likelihood. Using basic Gaussian
identities (see e.g., Rasmussen and Williams (2005, p. 200)), (2.47) can in this
particular setting be expressed as

log p
(
{yt}

Ne
t=1

∣∣∣{ϕt}Ne
t=1, θh

)
= log

∫
Π
Ne
t=1N (yt ;ϕ

T
t θ, σ

2)N (θ; 0, θhI)dθ (2.53a)

= logZ−1
∫
N

(
θ; σ−2A−1ΦT y, A−1

)
dθ (2.53b)

= logZ−1 (2.53c)

with A and the normalizing constant Z defined as

Z−1 ,
1

θ
dim(θ)/2
h

1
(2πσ2)Ne/2

|A|−1/2e
− 1

2σ2 ‖y−σ
−2ΦA−1ΦT y‖22−

1
2θhσ

4 ‖A
−1ΦT y‖22 (2.54)

A ,θ−1
h I + σ−2ΦTΦ. (2.55)

θh is then chosen according to

θ̂h = arg max
θh

logZ−1. (2.56)

For more details see e.g., Bishop (2006, pp. 152-158 and pp. 165-169).

Remark 2.2. Maximizing the posterior p
(
θ
∣∣∣{(ϕt , yt)}t∈Ne

)
with respect to θ gives the Max-

imum A Posteriori (MAP) estimate for θ. When the posterior is a Gaussian, the MAP is
given by the mean of the Gaussian. In Example 2.4, using N (0, I) as a prior, the MAP
estimate for θ became

(ΦT Φ + σ2I)−1ΦT y. (2.57)

This is the same expression as for ridge regression with λ = σ2, see (2.27). In fact, most
standard regularization methods can be given an interpretation as a MAP estimate.

2.10 High Dimensional Regression and Manifolds

We finish this chapter on mathematical modeling and regression by discussing
high dimensional regression, manifolds and manifold learning. We will return to
these subjects in Paper E.

High-dimensional regressors can lead to ill-posed regression problems. Espe-
cially if the dimension of the regressors exceeds the number of observations, spe-
cial care is needed, as we saw in Example 2.2. There are a number of strategies
for handling high-dimensional regression problems:

• The first strategy is feature selection. Feature selection is used to reduce
the dimension of the high-dimensional regressors by eliminating elements
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having e.g., little correlation with the output. The “new” low-dimensional
regressors are used instead of the original regressors in the regression al-
gorithm. An example is backward stepwise regression (see e.g., Daniel and
Wood (1980, pp. 84-85)). Also many regression methods using regulariza-
tion contain some type of feature selection. Popular regression methods
here include lasso (see e.g., Example 4.1) and ridge regression.

• The second strategy is feature extraction. Feature extraction is also used to
reduce the dimension of the high-dimensional regressors. However, rather
than eliminating elements, elements are combined. Partial Least Squares
(PLS, Wold (1966)) and Principle Component Analysis (PCA, Pearson (1901))
are popular methods used for feature extraction. Also manifold learning dis-
cussed in the next section can be used for feature extraction. The regression
method discussed in Paper E can also be seen using feature extraction.

Both feature selection and extraction are special cases of dimensionality reduction
methods.

Another issue which high-dimensional regression algorithms have to deal with
is the lack of data, commonly termed the curse of dimensionality (Bellman, 1961).
For instance, imagine N samples uniformly distributed in a d-dimensional unit
hypercube [0, 1]d . The N samples could for example be the regressors in the set
of observed data. To include 10% of the samples, we need on average to pick
out a cube with the side 0.1 for d = 1 and a cube with the side 0.8 for d = 10,
Figure 2.2 illustrates this. The data hence easily become sparse with increasing
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Figure 2.2: An illustration of the curse of dimensionality. Assume that the N
regressors are uniformly distributed in a d-dimensional unit cube. On aver-
age we then need to use a cube with a side of 0.1 to include 0.1N regressors
for d = 1, while for d = 10 we will need a cube with a side of 0.8.
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dimensionality. Consequently, given a regressor, the likelihood of finding one
of the estimation regressors close-by, gets smaller and smaller with increasing
dimension. This means that for high-dimensional regression problems, consid-
erably more samples are needed than for low-dimensional regression problems
to make accurate predictions. This also implies that regression methods using
pairwise distances between regressors, such as nearest neighbor (see e.g., Hastie
et al. (2001, p. 14)) and support vector regression (see Section 5.1), suffer. This
follows since, as dimensionality grows the distances between regressors increase,
become more similar and hence less expressive (see Figure 2.3 for an illustration
and Chapelle et al. (2006) and Bengio et al. (2006) for further readings).
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Figure 2.3: As the dimension of the regressor space increases (keeping the
number of regressors fixed) so does the distance from any regressor to all
other regressors. The distance to the closest estimation regressor, d1, of a
regressor is hence increasing with dimension. The distance to the second
closest estimation regressor, d2, is also increasing. A prediction has then
to be made based on more and more distant observations. In addition, the
relative distance, (d2 − d1)/d1, decreases, making the estimation data less
expressive. Rephrased in a somewhat sloppy way, a given point in a high-
dimensional space has many “nearest neighbors”, but all far away.

Very common, however, is that the regressors ϕ ∈ Rnϕ for various reasons are
constrained to lie in a subset Ω ⊂ Rnϕ . A specific example could be a set of
images of human faces. An image of a human face is a p × p matrix, each entry
of the matrix giving the gray tone in a pixel. If we vectorize the image, the image
becomes a point in Rp2

. However, since features, such as eyes, mouth and nose,
will be found in all images, the images will not be uniformly distributed in Rp2

.
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It is of special interest if Ω is a manifold.
Definition 2.1 (Manifold). A space M ⊆ Rnϕ is said to be a nz-dimensional
manifold if there for every point ϕ ∈ M exists an open set O ⊆ M satisfying:

• ϕ ∈ O.

• O is homeomorphic to Rnz , meaning that there exists a one-to-one relation
between O and a set in Rnz .

For details see e.g., Lee (2000, p. 33).

For the set of p × p pixel images of human faces e.g., the constraints implied by
the different features characterizing a human face, make the images reside on
a manifold enclosed in Rp2

, see e.g., Zhang et al. (2004). For fMRI (functional
Magnetic Resonance Imaging) the situation is similar. For further discussions
on fMRI data and manifolds, see Shen and Meyer (2005); Thirion and Faugeras
(2004); Hu et al. (2006). Basically all sets of data for which data points can be
parameterized using a set of parameters (fewer than the number of dimensions of
the data) reside on a manifold. Any algebraic relation between regressor elements
will therefore lead to regressors constrained to a manifold.

It is convenient to introduce the term intrinsic description for a nz-dimensional
parameterization of a manifold M. We will not associate any properties to this
description more than that it is nz-dimensional. An intrinsic description of a one-
dimensional manifold could for example be the distance from a specific point.

Remark 2.3. To express regressors in an intrinsic description is a way of doing feature
extraction. Using an intrinsic description of the regressors instead of the original regres-
sors in the regression algorithm may therefore be a way of making the regression problem
well-posed, see e.g., Ohlsson et al. (2007).

We illustrate the concepts of a manifold and intrinsic description with an
example.

Example 2.5: Manifold and Intrinsic Description
Lines and circles are examples of one-dimensional manifolds. A two-dimensional
manifold could for example be the surface of the earth. An intrinsic description
associated with a manifold is a parametrization of the manifold, for example lati-
tude and longitude for the earth surface manifold. Since the Universal Transverse
Mercator (UTM) coordinate system is another two-dimensional parametrization
of the surface of the earth and an intrinsic description, an intrinsic description is
not unique.

A common assumption in regression is to assume smoothness. We will refer to
the following assumption as the smoothness assumption:

Assumption A1 (The Smoothness Assumption). If two regressors ϕ1, ϕ2 are
close, then so should their corresponding outputs f0(ϕ1), f0(ϕ2) be.
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If regressors are constrained to a manifold there is an alternative to the smooth-
ness assumption, commonly referred to as semi-supervised smoothness assump-
tion. The semi-supervised smoothness assumption reads (Chapelle et al., 2006):

Assumption A2 (The Semi-Supervised Smoothness Assumption). Two out-
puts f0(ϕ1), f0(ϕ2) are assumed close if their corresponding regressors ϕ1, ϕ2
are close on the manifold.

“Close on the manifold” here means that there is a short path included in the
manifold between the two regressors. The concept of geodesic distance is here
useful. The geodesic distance between two points on a manifoldM is the length of
the shortest path included in M between the two points. The geodesic distance
is assumed to be measured in the metric of the space in which the manifold is
embedded. “Close on the manifold” can therefore be replaced by “close in terms
of geodesic distance”.

It should be noticed that the semi-supervised smoothness assumption is less
conservative than the smoothness assumption. Hence, a function satisfying the
semi-supervised smoothness assumption does not necessarily need to satisfy the
smoothness assumption. Assumption A2 is illustrated in Example 2.6.

Example 2.6: The Semi-Supervised Smoothness Assumption
Assume that we are given a set of output-regressor pairs as shown in Figure 2.4.

The regressors contain the position data (latitude, longitude) of an airplane
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e

Figure 2.4: Longitude, latitude and altitude measurement (black dots) of an
airplane shortly after takeoff. Gray dots show the black dots projection onto
the regressor space.
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shortly after takeoff. The output is chosen as the altitude of the airplane. The
regressors thus being in R2 and the regressor/output space is R3. After takeoff
the plane makes a turn during climbing and more or less returns along the same
path in latitude and longitude as it just flown. The flight path becomes a one-
dimensional curve, a manifold, in R3. However, the regressors for this path also
belong to a curve, a manifold, in R2. This is therefore a case where the regres-
sors are constrained to a manifold. The distance between two regressors in the
regressor space can now be measured in two ways: the Euclidean R2 distance be-
tween points, and the geodesic distance measured along the curve, the manifold
path. It is clear that the output, the altitude, is not a smooth function of regres-
sors in the Euclidean space, since the altitudes vary substantially as the airplane
comes back close to the earlier positions during climbing. However, if we use
the geodesic distance in the regressor space, the altitude varies smoothly with
regressor distance.

To see what the consequences are for predicting altitudes, suppose that for some
reason, altitude measurements were lost for 8 consecutive time samples shortly
after takeoff. To find a prediction for the missing measurements, the average
of the three closest (in the regressor space, measured with Euclidean distance)
altitude measurements were computed. The altitude prediction for one of the
regressors is shown in Figure 2.5. The airplane turned and flew back on almost
the same path as it just had flown, the three closest estimation regressors will
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e

Figure 2.5: The prediction of a missing altitude measurement (big filled cir-
cle). The encircled dot shows the position for which the prediction was com-
puted. The three lines show the path to the three closest estimation regres-
sors.
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therefore sometimes come from both before and after the turn. Since the alti-
tude is considerably larger after the turn, the predictions will for some positions
become heavily biased. In this case, it would have been better to use the three
closest measurements along the flown path of the airplane. The example also mo-
tivates the semi-supervised smoothness assumption in regression.

Under the semi-supervised smoothness assumption, regression algorithms can
be aided by incorporating the knowledge of a manifold. High-dimensional re-
gression methods therefore have been modified to make use of the manifold and
to estimate it (Belkin et al., 2006; Yang et al., 2006; Ohlsson et al., 2007). Since
the regressors themselves contain information concerning the manifold, some re-
gression methods use both regression-output pairs and regressors. This type of
method is called semi-supervised regression or semi-supervised modeling methods.
In contrast, in supervised modeling a relation between regressors and outputs is
sought using a number of examples thereof i.e., regression-output pairs. Most re-
gression methods in system identification are supervised modeling methods. In
unsupervised modeling the situation is rather different. Only one quantity is con-
sidered there and the task is rather to find patterns in the set of observations of
this quantity. Semi-supervised modeling can be seen as a combination of super-
vised and unsupervised modeling.

2.11 Manifold Learning

Manifold learning is a fairly new research area aimed at finding, as the name sug-
gests, descriptions of data on manifolds or intrinsic descriptions. The area has
its roots in machine learning, and is a special form of nonlinear dimensionality re-
duction or nonlinear feature extraction. Some of the best known manifold learning
algorithms are isomap (Tenenbaum et al., 2000), Locally Linear Embedding (LLE,
Roweis and Saul (2000), discussed in the following section), Laplacian eigenmaps
(Belkin and Niyogi, 2003) and Hessian eigenmaps (HLLE, Donoho and Grimes
(2003)).

All manifold learning algorithms take as input a set of points sampled from some
unknown manifold. The points are then expressed in a parameterization of the
manifold, an intrinsic description (a set of points of the same dimension as the
manifold), by searching for a set of new points preserving certain properties
of the data. For example, Laplacian eigenmaps tries to preserve the Euclidean
distance between neighboring points. Isomap tries to preserve the geodesic dis-
tances i.e., the distance along the manifold, between points and locally linear
embedding and Hessian eigenmaps make assumptions about local linearity and
point neighborhoods which are aimed to be preserved. Manifold learning algo-
rithms are unsupervised algorithms and most will not give an explicit expression
for the map between high-dimensional points and their associated parameteriza-
tion values.
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2.11.1 Locally Linear Embedding

For finding intrinsic descriptions of data on a manifold, the manifold learning
technique Locally Linear Embedding (LLE) can be used. LLE is a manifold learning
technique which aims at preserving neighbors. In other words, given a set of
points {ϕt}Nt=1 residing on some nz-dimensional manifold in Rnϕ , LLE aims to
find a new set of coordinates {z1, . . . , zN }, zi ∈ Rnz , satisfying the same neighbor-
relations as the original points. The LLE algorithm can be divided into two steps:

Step 1: Define the wijs

Given data consisting of N real-valued vectors ϕi of dimension nϕ , the first step
minimizes the cost function

ε(w) =
N∑
i=1

∥∥∥∥∥∥∥∥ϕi −
N∑
j=1

wijϕj

∥∥∥∥∥∥∥∥
2

2

(2.58a)

with respect to w under the constraints{ ∑N
j=1 wij = 1,

wij = 0 if ‖ϕi − ϕj‖2 > Ci(K) or if i = j.
(2.58b)

Here, Ci(K) is chosen so that only K weights wij become nonzero for every i. In
the basic formulation of LLE, the number K and the choice of lower dimension
nz ≤ nϕ are the only design parameters, but it is also common to add a regular-
ization

Fr (w) ,
r
K

N∑
i=1

[wi1, . . . , wiN ]


wi1
...

wiN


N∑

j:wij,0

‖ϕj − ϕi‖22 (2.59)

to (2.58a), see de Ridder and Duin (2002); Roweis and Saul (2000).

Step 2: Define the zijs

In the second step, w is now fixed. Let zi be of dimension nz and minimize

Φ(z) =
N∑
i=1

∥∥∥∥∥∥∥∥2zi −
N∑
j=1

wijzj

∥∥∥∥∥∥∥∥
2

(2.60a)

with respect to z = [z1, . . . , zN ], and subject to

1
N

N∑
i=1

ziz
T
i = I (2.60b)

using the weights wij computed in the first step. The solution z to this optimiza-
tion problem is the desired set of nz-dimensional coordinates which will work as
an intrinsic description of the manifold. By expanding the squares we can rewrite
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Φ(z) as

Φ(z) =
N∑
i,j

(δij − wij − wji +
N∑
l

wliwlj )z
T
i zj (2.61a)

,
N∑
i,j

Mijz
T
i zj =

nz∑
k

N∑
i,j

Mijzkizkj = T r(zMzT ) (2.61b)

with M a symmetric N × N matrix with the ijth element

Mij = δij − wij − wji +
N∑
l

wliwlj . (2.62)

The solution to (2.60) is obtained by using Rayleigh-Ritz theorem, see e.g., Horn
and Johnson (1990, p. 176).

Theorem 2.2. With Φ given by (2.61), M by (2.62) and with νi the unit length
eigenvector of M associated with the ith smallest eigenvalue,[

ν1, . . . , νnz
]T

= arg min
z

Φ(z) s.t. zzT = NI. (2.63)

Remark 2.4. Notice that no explicit mapping is given, but more so an algorithm for com-
puting an intrinsic description. If new points are introduced, the algorithm has to be rerun
causing the intrinsic description for the old points to change.

The following example demonstrates how manifold learning or nonlinear feature
extraction can be used in regression.

Example 2.7: Climate Reconstruction Cont’d
Let us now return to the climate reconstruction example in the introductory

chapter, Example 1.1. Let us consider 10 shells grown in Belgium (see Ohlsson
et al. (2009) for details). Since the temperature in the water had been moni-
tored for these shells, this data set provides excellent means to test the ability to
predict water temperature from chemical composition measurements. For these
shells, the chemical composition measurements had been taken along the growth
axis of the shells and paired up with temperature measurements. Between 30
and 52 chronologically ordered measurement were provided from each shell, cor-
responding to a time period of a couple of months.

Measurements from five of these shells are shown in Figure 2.6. The figure shows
measurements of the relative concentrations of Sr/Ca, Mg/Ca and Ba/Ca (Pb/Ca
is also measured, but not shown in the figure). The line shown between mea-
surements connects the measurements coming from a shell and gives the chrono-
logical order of the measurements (two in time following measurements are con-
nected by a line). As seen in the figure, measurements are highly restricted to
a small region in the measurement space. Also, the water temperature (gray
level coded in Figure 2.6) varies smoothly in the high-density regions. This to-
gether with that it is a biological process generating data, motivates the semi-
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Figure 2.6: A plot of the Sr/Ca, Mg/Ca and Ba/Ca concentration ratio mea-
surements from five shells. Lines connects measurements (ordered chrono-
logically) coming from the same shell. The temperatures associated with the
measurements were color coded and are shown as different gray scales on
the measurement points.

supervised smoothness assumption when trying to estimate water temperature
(outputs) from chemical composition measurements (4-dimensional regressors).
Let us assume that the regressors are constrained to a one-dimensional manifold.
LLE can then be applied to the regressors of the 10 shells to give a parameteri-
zation of the assumed one-dimensional manifold, an intrinsic description. This
intrinsic description plotted against the measured water temperature is shown in
Figure 2.7.
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Figure 2.7: The regressors (expressed using an intrinsic description) plot-
ted against the measured water temperature. The intrinsic description was
computed by using LLE.
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As seen in Figure 2.7, a linear estimate in the LLE parameterization would achieve
a reasonably good estimate of the temperature.

2.12 Conclusion

This chapter served as an introduction to mathematical modeling and regression
and introduced the fundamental knowledge and the necessary notation for the
subsequent chapters. Several of the topics discussed are further discussed in
papers of Part II. For example, impulse response identification discussed in Ex-
ample 2.3 is the topic of Paper F and high dimensional regression, manifolds and
manifold learning are discussed in Paper E.



3
State Estimation

Dynamic systems are characterized by that their output depends on current and
past inputs. The effect that these inputs have had on the system is gathered in the
state, which contains valuable information for e.g., controllers and for decision
making. It is a common situation that only parts of the state can be measured.
Methods for recovering the full state of a dynamic system from these measure-
ments are referred to as state estimation techniques. State estimation techniques
use models to interpret the measured information.

3.1 The Standard Linear State-Space Model

The discrete-time standard linear state-space model with stochastic disturbances
(see e.g., Kailath et al. (2000, p. 161)) is given by

xt+1 = Atxt + Btut + Gtvt ,

yt = Ctxt + et ,
(3.1a)

where x is the state, u a known input, v process noise, y the output and e the
measurement noise. t index time. The process noise v and measurement noise e
are here assumed to be zero mean white noises (see e.g., Kailath et al. (2000, p. 4)):
sequences of independent random vectors

E[vt] = 0, E[et] = 0 ∀t
E[vtv

T
s ] = 0, E[ete

T
s ] = 0 if t , s

E[vtv
T
t ] = Qt , E[ete

T
t ] = Rt .

(3.1b)

The independence of the noise sequences is required in order to make xt a Markov
process.

39
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The model (3.1) with the process noise v being Gaussian is a standard model
for control applications. v then represents the combined effect of all those non-
measurable inputs that in addition to u affect the states. However, an equally
common situation is that v corresponds to an unknown input. It could be

• a load disturbance e.g., a step change in moment load of an electric motor,
a (up or down) hill for a vehicle, etc. (Sometimes, the term load disturbance
is used only for the case Bt = Gt .)

• an event that causes the state to jump, a change, see e.g., Gustafsson (2001).

Such unknown inputs are not naturally modeled as Gaussian noise. Instead it is
convenient to capture their unpredictable nature by (cf. eq (2.10)-(2.11) in Ljung
(1999))

vt = δtηt , (3.2)

where (not to be confused with the Dirac delta function denoted by δ( · ))

δt ,

0 with probability 1 − µ,
1 with probability µ,

ηt ∼ N (0, Q). (3.3)

This makes Qt = µQ in (3.1b). The matrices At and Gt in (3.1a) may further
model the waveform of the disturbance as a response to the pulse in v. Notice
that if δt is known, vt is Gaussian while an unknown δt leads to a non-Gaussian
distributed vt .

Example 3.1: DC Motor with Unknown Torque Load
Consider the discrete time model of a DC motor (see e.g., Ljung (1999, pp. 95-97),
Ts = 0.1 s, τ = 0.286, β = 40)

xt+1 =
[

0.7047 0
0.08437 1

]
xt +

[
11.81

0.6250

]
(ut + vt),

yt =
[
0 1

]
xt + et .

(3.4)

Here, x contains the angle and angular velocity of the motor shaft, y is noisy
measurements of the motor shaft angle and u the applied voltage. The process
noise v models a torque disturbance or an unknown torque load. Assuming that
v is Gaussian is probably a bad assumption and in most applications a more
sound assumption for v would probably be to model the process noise as in (3.2).
The process noise v could also be set to pass through an integrator to model step
changes.

We will get back to this example in Paper C and estimate the state x from the
observed output y.
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Example 3.2: Target Tracking
In target tracking, the goal is to estimate the state of a object given a number of
sensor measurement. The object could be an airplane and the measurements,
radar measurements, or it could be magnetometers placed in a crossing to track
cars passing.

It is common to assume a dynamic motion model to model the kinematics of the
object. The continuous-time constant acceleration model (see Chapter 13 in Gustafs-
son (2010)),

ẋt =

0 In 0
0 0 In
0 0 0

 xt +

 0
0
In

 vt ,
yt =

[
In 0 0

]
xt + et ,

(3.5)

is a common choice. The state x contains the position, velocity and acceleration in
n dimensions. The output y contains position measurements. The process noise
v, the jerk (the derivative of the acceleration), is unknown and models the com-
bined effect of all inputs that affect the state. e is the measurement noise of the
sensor. The measurement noise e may very well be modeled by a Gaussian ran-
dom variable. The lumped unknown inputs of the object gathered in v, however,
is probably better modeled by e.g., a piecewise constant signal. A piecewise con-
stant signal is obtained by integrating a sequence of Dirac delta functions, this is
illustrated in Figure 3.1.

∫ ∑
k v̄kδ(t− tk)dt

tktk−1 tk+1 tk+2

v̄k
v̄k+1

t

Figure 3.1: Illustration of how a piecewise constant signal is obtained by
integrating a sequence of Dirac delta functions. In this particular example
there are impulses at tk and tk+1 of sizes v̄k and v̄k+1. These cause shifts of v̄k
and v̄k+1 at tk and tk+1.
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We can formulate this as

ẋt =


0 In 0 0
0 0 In 0
0 0 0 In
0 0 0 0

 xt +


0
0
0
In


∑
k

v̄kδ(t − tk),

yt =
[
In 0 0 0

]
xt + et .

(3.6)

Discretizing (3.6) with a sampling time Ts = 0.1 and under the assumption that
tk = rkTs, rk ∈ Z, give the discrete-time model (use e.g., sysd=c2d(sysc,Ts,
’imp’) in Matlab)

xkTs+Ts =


In 0.1In 0.005In 0.0002In
0 In 0.1In 0.005I2
0 0 In 0.1In
0 0 0 In

 xkTs +


0.0002In
0.005In

0.1In
In

 v̄k ,
ykTs =

[
In 0 0 0

]
xkTs .

(3.7)

To model v̄k using the distribution given in (3.2) is now a good choice.

The relation between the ARX model (see (2.4)) and the state space model should
be made clear. If we identify

xt ↔ θt , Ct ↔ ϕTt , At ↔ I, Bt ↔ 0, Gt ↔ I, (3.8)

the state space equation (3.1a) takes the form

θt+1 = θt + vt ,

yt = ϕTt θt + et ,
(3.9)

which is an ARX model with time varying parameters. This link between linear
regression and state-space models is very well known, and described e.g., in the
classical survey by Åström and Eykhoff (1971). Possible knowledge of the param-
eter variations can be captured in more refined choices of At and Gt . θ is in (3.9)
a random walk. If v is Gaussian, a (slowly) drifting model is described. For Gaus-
sian noise v, the model (3.9) has been used to devise good tracking algorithms,
e.g., Section 11.6 in Ljung (1999). A piece-wise constant θ corresponds to a v as
in (3.2) and that will be further discussed in Paper A.

3.2 State Estimation

Let us consider the estimation of xt based on a set Y of the observations {yt}Nt=1.
Write the estimate as

x̂t = F(Y ). (3.10)

There are two conceptually different cases:

• x̂t is restricted to be a function of measurement up to and including time
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t i.e., Y = {yt , yt−1, yt−2, . . . }. The estimation process is then referred to as
filtering.

• x̂t is based on measurements taken up to, including and later than time t
i.e., Y = {y1, . . . , yt+1, yt , yt−1, . . . , yN }. The process of estimating xt is then
referred to as smoothing.

It is also common to distinguish between linear and nonlinear filters and smoothers.
In linear filtering and smoothing F is a linear function of the elements in Y (and
the initial state estimate). For a nonlinear filtering and smoothing algorithm, F is
nonlinear in the elements of Y .

Two useful quantities when discussing filtering and smoothing are bias and vari-
ance of the estimate. A state estimate is said to be conditionally unbiased if

Ext [x̂t − xt |Y ] = 0 (3.11)

and otherwise conditionally biased. Note that this is equivalent to Ext [xt |Y ] = x̂t .
The conditional covariance of the estimate is given by

Ext

[(
x̂t − xt

)(
x̂t − xt

)T ∣∣∣Y ]
. (3.12)

Alternatively, Y could be considered unknown and the expectations carried out
over this quantity also. The state estimate is then said to be (unconditionally)
unbiased if

Ext ,Y [x̂t − xt] = 0. (3.13)

The (unconditioned) covariance of the estimate is

Ext ,Y
[(
x̂t − xt

)(
x̂t − xt

)T ]
. (3.14)

For the discrete-time standard linear state-space model with stochastic distur-
bances (3.1), the Best Linear Unbiased Estimator (BLUE) is given by the Kalman
Filter (KF, Kalman (1960)) or smoother (e.g., Kailath et al. (2000, p. 387)). We next
give an introduction to the Kalman smoother and explain what “best” in “best
linear unbiased estimator” refers to. We will only handle the smoothing case and
not discuss filtering.

3.3 Kalman Smoother

In this thesis it is of interest to view the Kalman smoother as an explicit minimiza-
tion problem. To arrive at the optimization formulation of the Kalman smoother,
let first {yt}Nt=1 be a given set of observations satisfying (3.1) and let the initial
state x0 be a random variable independent of the noises e and v. Then, from
(3.1b) it follows that the joint probability distribution can be written as

p
(
{et}Nt=1, {vt}

N
t=1, x0

)
= p(x0)ΠNt=1pe(et)pv(vt). (3.15)
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Assume now that x0 ∼ N (0, Γ ) and that et , vt , t = 1, . . . , N are Gaussian dis-
tributed. Then (3.15) can be rewritten as

p
(
{et}Nt=1, {vt}

N
t=1, x0

)
∝ e−

1
2 ‖Γ
−1/2x0‖22e−

1
2
∑N
t=1 ‖Q

−1/2
t et‖22e−

1
2
∑N
t=1 ‖R

−1/2
t vt‖22 . (3.16)

Since, for t = 1, . . . , N ,

vt = xt+1 − Atxt − Btut , et = yt − Ctxt , (3.17)

(3.16) can be rewritten in terms of {xt}Nt=0 and {yt}Nt=1 as

log p
(
{yt}Nt=1

∣∣∣{xt}Nt=0

)
∝ −

∥∥∥Γ −1/2x0

∥∥∥2
2
−

N∑
t=1

∥∥∥R−1/2
t (yt − Ctxt)

∥∥∥2
2

−
∥∥∥Q−1/2

t−1 (xt − Axt−1 − But−1)
∥∥∥2

2
. (3.18)

Maximizing this quantity with respect to {xt}Nt=0 leads to the maximum likelihood
estimate (MLE) for {xt}Nt=0. The MLE for {xt}Nt=0 can equivalently be written as

arg min
xt ,t=0,...,N

‖Γ −1/2x0‖22 +
N∑
t=1

∥∥∥R−1/2
t (yt − Ctxt)

∥∥∥2
2

+
∥∥∥Q−1/2

t−1 (xt − At−1xt−1 − Bt−1ut−1)
∥∥∥2

2

(3.19)
which is recognized as the classical Kalman smoothing estimate, e.g., Kailath et al.
(2000, p. 387). Note that (3.19) is a (`2-regularized) least squares problem. The
solution can therefore be shown to be linear in {y}Nt=1 (and x0). The solution is
usually given in various recursive filter forms, see e.g., Ljung and Kailath (1976).

When all densities are Gaussian (et , vt , x0 Gaussian), (3.19) gives the best unbi-
ased estimate (among both linear and nonlinear estimators) since no other un-
biased estimator can obtain a smaller variance. That is, let x̂t be the Kalman
estimate and let x̄t be any other unbiased state estimate. Then, with expectation
over both xt and Y ,

Ext ,Y
[
(x̄t − xt)(x̄t − xt)T

]
− Ext ,Y

[
(x̂t − xt)(x̂t − xt)T

]
� 0. (3.20)

This also implies that no other unbiased estimator can obtain a lower MSE i.e.,

tr Ext ,Y
[
(x̂t − xt)(x̂t − xt)T

]
= Ext ,Y

[
(x̂t − xt)T (x̂t − xt)

]
. (3.21)

(3.20) and (3.21) also hold if the expectations is taken w.r.t xt and conditional on
Y . It further holds that xt given {yt}Nt=1 is Gaussian (the mean given by x̂t , i.e.,
x̂t = E[xt |y1, . . . , yN ]).

If et , vt or x0 is not Gaussian, the Kalman smoother is still the best unbiased
linear estimator. That means that we can not do better than using a Kalman
smoother if v is distributed as (3.2), the sequence δt is unknown and the smoother
is restricted to be linear. If we knew the δt-sequence (and the measurement noise
was Gaussian), the Kalman smoother would be the best estimator among both
linear and nonlinear estimators, since all noises would be Gaussian (with time
varying noise covariance).
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See Anderson and Moore (1979, Chap. 7) for more on the Kalman smoother and
its properties.

3.4 Kalman Filter (Smoother) Banks

Based on the process noise model (3.2), a number of nonlinear methods have been
developed. If δt is unknown, we could hypothesize in each time step that it is
either 0 or 1. This leads to a large bank (2N ) of Kalman smoothers as the optimal
solution. The posterior probability of each smoother can be estimated from this
bank, which consists of a weighted sum of the state estimates from each smoother.
See Chapter 10 in Gustafsson (2010) for more on smoother banks.

In practice, the number of smoothers in the bank must be limited due to computa-
tional limitations, and there are two main options (see Chapter 10 in Gustafsson
(2010)):

• Merging trajectories of different δt sequences. This includes the well known
Interacting Multiple Model filter (IMM filter, Blom and Bar-Shalom (1988)).

• Pruning, where unlikely sequences are deleted from the filter bank.

3.5 Conclusion

This chapter gave a brief introduction to filtering and smoothing. We continue
the discussion on smoothing and impulsive process noise in Paper C. In particu-
lar we explore the fact that the sequence generated by (3.2), arranged as a vector,
contains elements identical to zero, it will be a sparse vector. This leads us to the
concept of sparseness and regularization for sparseness. Sparseness and regular-
ization for sparseness are discussed in the next chapter, Chapter 4.





4
Regularization for Sparseness

Sparseness is all about zeros. A matrix or vector is said to be sparse if it contains
a relatively large number of zeros. If a quantity is given to be sparse, it is often
a computational remedy e.g., when solving equation systems or in optimization.
However, sparsity has also shown great importance for other reasons, in e.g., sta-
tistical learning and signal processing. The hype around sparsity in statistical
learning is mostly due to the success of lasso (least absolute shrinkage and selec-
tion operator, Tibsharani (1996); Chen et al. (1998), see also Hastie et al. (2001,
p. 64)) and in signal processing sparsity has got attention due to the sampling
protocol Compressed Sensing (CS, Donoho (2006); Candès et al. (2006)).

Formally, sparse is defined as (see e.g., Zibulevsky and Elad (2010)):
Definition 4.1 (Sparse). A vector z ∈ Rn is said to be sparse if

‖z‖0 � n. (4.1)

‖ · ‖0 here denotes the zero (quasi-)norm. The zero norm is the number of nonzero
elements of a vector (see Appendix A).

4.1 When is Sparsity a Desirable Property?

Sparsity is wanted in various situations. Sparsity can e.g., be used for variable se-
lection, as in lasso, for image denoising and filter design as in Starck et al. (2002);
Bioucas-Dias (2006) or as a sample protocol, as in compressed sensing. What the
above applications have in common is that the underlying problem has a combi-
natorial nature. The problem could e.g., be to select a subset of variables, basis

47
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functions, times instances etc. that solves some problem in an optimal manner.

The following three examples give a flavor for when, where and how sparseness
can be used. We will revisit these examples at later points of the chapter as well.

Example 4.1: Lasso
Consider the task of estimating a linear regression model

f (ϕ, θ) = ϕT θ. (4.2)

Assume that an estimation data set {(ϕt , yt)}
Ne
t=1, yt ∈ R, ϕt ∈ R

nϕ is given for this
purpose. Also assume that nϕ > Ne. Minimizing the sum of squared residuals

Ne∑
t=1

(yt − ϕTt θ)2 (4.3)

to determine θ leads to an ill-posed problem (see Example 2.2). In particular,
the solution will not be unique. We saw previously how `2-regularization (see
Example 2.2) can be used to transform (4.3) into a well-posed problem

min
θ

Ne∑
t=1

(yt − ϕTt θ)2 + λ‖θ‖22, λ ∈ R+. (4.4)

The `2-regularization added in (4.4) favors small ‖θ‖22. However, typically all θ-
elements turn out non-zero and it may therefore be difficult to understand which
regressor elements that are meaningful. Besides, one also needs to continue to
acquire the whole regressor vector ϕ to use the model. If each element in ϕt
requires a measurement to be done, acquiring the whole regressor vector may be
impractical if nϕ is large.

The idea of lasso is to find a regression parameter θ so that the model (4.2) gives
a good fit to the estimation data i.e., makes

Ne∑
t=1

(yt − ϕTt θ)2 (4.5)

small and at the same time obtain a θ which is sparse. The sparsity constraint
will cause a large number of θ-elements to be zero. Lasso therefore gives the
possibility to interpret and say what regression elements that are meaningful for
a good prediction result. Zeros in θ mean that the associated regressor elements
are not needed, time and money can therefore be saved by only measuring the
ϕ-elements associated with non-zero θ-elements. The idea of lasso leads to a
criterion

min
θ

Ne∑
t=1

(yt − ϕTt θ)2 + λ‖θ‖0, λ ∈ R+. (4.6)

We will come back to lasso and the mathematical details in Example 4.4.
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Example 4.2: Compressed Sensing Cont’d
Let us return to the discussion of audio compression and sampling given in the

introductory part of the thesis, Example 1.3. We there argued that it was rather
meaningless to measure a lot of information if 90% will be thrown away before
someone even listened to the song, or as Donoho (2006) wrote,

“Why go to so much effort to acquire all the data when most of what
we get will be thrown away? Can we not just directly measure the part
that will not end up being thrown away?”

In an MP3 encoder, the audio stream is divided into several frequency bands.
The audio of a frequency band is then discarded if it is weaker than some certain
threshold (Brandenburg, 1999; Hayes, 2009). The problem is that even though
an audio recording can well be represented using the audio in a small number
of frequency bands, we do not know what bands that are going to be discarded
before we start sample. We therefore need to sample all frequency bands and
then compress and throw away a major part of our sampled data. This was what
many thought before compressed sensing was introduced in 2006.

Let x ∈ Rnx be a quantity that we are interested in. In compressed sensing (also
known as compressive sensing, compressive sampling, compressed sampling) it is as-
sumed that the signal x is composed of a very limited number of atoms from a
dictionary containing a large number of typical signal shapes or basis functions.
Let these signal shapes be columns in the matrix A ∈ Rnx×nz , typically nz � nx.
The signal x is hence assumed to have the property

x = Az, z ∈ Rnz sparse. (4.7)

A dictionary, or A, that has these properties is in compressed sensing assumed
known. It could e.g., be suitable to chose a dictionary containing sampled sine
and cosine signals of difference frequencies if x contains a sequence of audio
samples.

Remark 4.1. All signals that people find meaningful can be decomposed as in (4.7) (Hayes,
2009). A sequence of independent random numbers is an example of a signal that can not
be decomposed using a sparse z.

Let M ∈ Rny×nx , nx � ny and define y ∈ Rny by

y , Mx = MAz. (4.8)

What is important is that y has considerably lower dimmension than x. Hence, y
can be seen as a compressed version of x. The idea of compressed sensing is now
to measure y rather than x. That is, to measure a few linear combinations of the
elements in x rather than x directly. This means that we should construct a num-
ber (ny) of microphones that each give a sample which e.g., is a weighted average
of sounds during the last second. The microphones should not be identical, they
all need to form different weighted averages. Assume also that the weights used
to form these averages are known, that is, we know M.

We now have y, which we have acquired using less sampling and can store using
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less memory space than x would have needed. How do we recover x so to be able
to listen to the second of audio?

Since M, A and y are all known and z was assumed sparse, it is natural to seek
for an estimate ẑ using

ẑ = arg min
z

‖z‖0 s.t. y = MAz. (4.9)

We can then obtain x̂ as x̂ = Aẑ. What is remarkable is that under certain rather
mild assumptions on the matrices A and M and if z satisfies (4.7) and is suffi-
ciently sparse, x̂ = x (see e.g., Bruckstein et al. (2009)). The audio can hence be
perfectly recovered even though nx � ny !

We will return to compressed sensing in Example 4.5 and there present the math-
ematical details.

Remark 4.2 (Nyquist-Shannon Sampling Criterion and Compressed Sensing). The Nyquist-
Shannon sampling criterion states that for a bandlimited signal (no energy above some cer-
tain frequency) the sampling frequency should be twice that of the bandlimit to guarantee
the possibility to perfectly reconstruct the time-continuous signal (see e.g., Oppenheim
et al. (1996, p. 519)). With no further information, to use a sample frequency twice that of
the bandlimit is actually the best thing to do (Tropp et al., 2010). However, if the signal is
known to be e.g., a combination of a few basis functions, a perfect reconstruction can be
obtained at a lot lower sampling frequencies.

Example 4.3: The Huber Loss Function
Consider the following setup

yt = ϕTt θ0 + et + τt , yt ∈ R, et ∼ N (0, σ2), (4.10)

where θ0 ∈ Rnθ is an unknown vector and et the measurement noise. The scalar
variable τt models an outlier and will therefore be zero for most t but occasionally
non zero. Let {(ϕt , yt)}

Ne
t=1 be a given estimation data set.

Desiring an estimate of θ0, we can use the least squares estimate,

θ̂ls = arg min
θ

Ne∑
t=1

(yt − ϕTt θ)2 (4.11a)

= arg min
θ

Ne∑
t=1

(ϕTt θ0 + et + τt − ϕTt θ)2. (4.11b)

If τt , 0 for some t = 1, . . . , Ne, it is likely that the estimate of θ0 is adjusted to fit
these fluctuations in τt . We can try to get around this by estimating τt and then
subtract the estimate from our measurements yt .

As outliers, by definition, appear seldom, a realization of the time series {τt}
Ne
t=1



4.2 Methods for Obtaining Sparsity 51

arranged as a vector, will be a sparse vector. We are therefore led to consider

min
θ,η1,η2,...,ηNe

Ne∑
t=1

(yt − ϕTt θ − ηt)2 + λ
∥∥∥[η1 η2 . . . ηNe

]T
∥∥∥

0
, (4.12)

for some λ ∈ R+. Here, {ηt}
Ne
t=1 serves as an estimate of the realization of {τt}

Ne
t=1 as-

sociated with estimation data {(ϕt , yt)}
Ne
t=1. We return to this example in

Example 4.6.

Bruckstein et al. (2009); Zibulevsky and Elad (2010) further exemplify and moti-
vate sparsity in signal processing and modeling.

4.2 Methods for Obtaining Sparsity

The `0-norm causes optimization problems to be non-convex and combinatorial.
Solving the optimization problem (4.9)

min
z
‖z‖0, s.t. y = MAz, (4.13)

e.g., boils down to an exhaustive combinatorial search: Fix all element in z except
the first to zero and check if there is a z satisfying y = MAz. If not, continue by
fixing all except the second element to zero and check if there is a z satisfying
y = MAz. Go through the whole vector z if necessary, letting one element free
and fixing all other to zero, one by one. If no z satisfying y = MAz is found,
go through different combinations of two nonzero elements in a search for a z
satisfying y = MAz. And so on. See e.g., Bruckstein et al. (2009). Not very
surprising, (4.13) can actually be shown to be NP-hard (Natarajan, 1995).

The optimization problems (4.6) and (4.12) are of the form

min
θ
‖y − Φθ‖22 + λ‖θ‖0, λ ∈ R+, (4.14)

and are also in general NP-hard (Huo and Ni, 2007). If the measurements (4.8)
in compressed sensing are noisy, an optimization problem of the form (4.14) re-
places (4.9), see Candès et al. (2006). Note that many model selection criteria e.g.,
AIC (see (2.10) for AIC) has also the form (4.14) for a linear regression model, see
e.g., Huo and Ni (2007).

The combinatorial optimization problem that (4.13) and (4.14) lead to is often
impractical to solve and several approximation techniques have therefore been
proposed.

Greedy algorithms (see e.g., Tropp (2004); Bruckstein et al. (2009)) start with a z
identical to zero (or θ identical to zero if (4.14) is considered). Greedy algorithms
then let the element in z which e.g., increases the fit the most free and estimate
z. The greedy algorithm then continues by, one by one, letting the z element
that leads to the best fit free and re-estimating z. The algorithm terminates when
a good enough fit has been obtained. Under the assumption that the z solving
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Figure 4.1: For a one-dimensional variable, the (squared) `2-norm, ( · )2, with
solid black thick line, the `1-norm, | · |, showed with dashed black line, | · |1/2
with gray line and | · |1/10 with solid thin black line.

(4.13) is sufficiently sparse and MA sufficiently incoherent (see e.g., Candès et al.
(2010)) i.e.,

max
j<k

|(MA)(:, j)T (MA)(:, k)|
‖(MA)(:, j)‖2‖(MA)(:, k)‖2

� 1, (4.15)

some greedy algorithms give the same solution as that of (4.13), see e.g., Bruck-
stein et al. (2009). For the problem (4.14) the correct support can be guaranteed if
the solution of (4.14) is sufficiently sparse, the signal to noise ratio is sufficiently
good and Φ sufficiently incoherent, see e.g., Bruckstein et al. (2009). Many vari-
ants of greedy algorithms exist. Forward stepwise regression (see e.g., Daniel and
Wood (1980, pp. 84-85), known as matching pursuit in signal processing, see e.g.,
Mallat and Zhang (1993)) may be the one most known to the system identifica-
tion community. However, also e.g., Least Angle Regression (LARS, Efron et al.
(2004)) is a variant of greedy algorithm.

The FOCUSS (FOCal Underdetermined System Solver, see e.g., Bruckstein et al.
(2009)) method is another approximation method. In FOCUSS an approximation
to (4.13) is sought by searching for a local minimum of the `p, 0 < p < 1, regular-
ized problem

min
z
‖z‖p, s.t. y = MAz. (4.16)

This is an non-convex problems.

The “closest” convex problem to (4.13) and (4.14) is obtained by replacing the `0-
norm with the `1-norm, see Figure 4.1. This is a convex relaxation of the problem.
If (4.13) is relaxed by replacing the zero-norm with the `1-norm,

min
z
‖z‖1, s.t. y = MAz, (4.17)
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we obtain what is referred to as the basis pursuit (Chen et al., 1998). This problem
can be solved using linear programming (see e.g., Donoho (2006)).

If (4.14) is relaxed by replacing the zero-norm with the `1-norm,

min
θ
‖y − Φθ‖22 + λ‖θ‖1, λ ∈ R+, (4.18)

we obtain what is referred to as the basis pursuit denoise (Chen et al. (1998)) in the
signal processing community and lasso in the statistical community. The prob-
lem given in (4.18) is a `1-regularized least squares problems. The next section
discusses the usage of `1 regularization for obtaining sparsity.

4.3 `1-Regularization

`1-regularization is by no means a new concept (see Appendix I of Tropp (2006)
for a historical review). In fact, it has been a regularization technique and a
known way to obtain sparsity since the 1970s. It has gained a lot of popularity
and publicity lately though.

A `1-regularized problem has the form

min
θ
V (θ) + λ‖θ‖1, λ ∈ R+, (4.19)

where V is the criterion of fit, ‖ · ‖1 the `1-norm and λ is the regularization param-
eter. The criterion of fit V (θ) is often the least squares criterion ‖y − Φθ‖22, as in
(4.18), but there are many other interesting choices, e.g., Riezler and Vasserman
(2004); Chen et al. (2009).

For the `1-regularized least squares procedure (V (θ) = ‖y − Φθ‖22 in (4.19))

min
θ
‖y − Φθ‖22 + λ‖θ‖1, (4.20)

it has been shown that the solution (for a proper value for λ) has the same zero
elements (but possibly more) as the solution of

min
θ
‖y − Φθ‖22 + λ‖θ‖0, (4.21)

if Φ is sufficiently incoherent (see (4.15)) and the measurement noise weakly cor-
related with Φ (Tropp, 2006). The solution may however not be unique, since
(4.20) is not necessarily strictly convex, see e.g., Bertsekas et al. (2003, Prop. 2.1.2)).

Example 4.4: Lasso Cont’d
Let us return to Example 4.1 and lasso. The idea in lasso is to find a θ so that

the a linear model (4.2) gives a good fit to the estimation outputs and at the same
time obtains a θ which is sparse. We formulated this as

min
θ

Ne∑
t=1

(yt − ϕTt θ)2 + λ‖θ‖0, (4.22)
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for some λ ∈ R+. This problem is combinatorial and a convex relaxation is there-
fore used to obtain the `1-regularized least squares, or the lasso, criterion

min
θ

Ne∑
t=1

(yt − ϕTt θ)2 + λ‖θ‖1. (4.23)

The `1-regularization in lasso penalizes elements of θ different than zero and
therefore causes elements of θ that do not provide a significant decrease of the
fit term to be zero. The property of the `1-regularization that causes elements
to become identical to zero, and not only small as in the `2-regularization, is
discussed in Section 4.3.1.

The θ resulting from solving (4.23), let us say θ̂, will be biased since terms that
do provide a better fit also are being penalized and dragged towards zero. The
bias is often adjusted for by re-estimating the regression parameters according to

min
θ

Ne∑
t=1

(yt − ϕTt θ)2 s.t. θ(i) = 0 if θ̂(i) = 0, i = 1, . . . , dim(θ̂), (4.24)

with θ̂ from (4.23). This makes the regression parameter unbiased if lasso cor-
rectly identified the zero elements in θ.

Example 4.5: Compressed Sensing Cont’d
We now return to Example 4.2 to carry out the mathematical details. We argued
that to reconstruct x it was natural to seek for an estimate ẑ using

ẑ = arg min
z

‖z‖0 s.t. y = MAz, (4.25)

and then obtain x̂ as x̂ = Aẑ. Due to the combinatorial complexity of (4.25) we
are led to consider e.g., a convex relaxation, such as replacing the `0-norm with
the `1-norm. If the measurements y are noisy, the equality constraint in (4.25) is
removed and ‖y −MAz‖22 added to the objective function. We are led to consider
the `1-regularized least-squares problem

ẑ = arg min
z

‖y −MAz‖22 + λ‖z‖1, λ ∈ R+. (4.26)

What is remarkable is that with considerably fewer samples than what the Nyquist-
Shannon sampling criterion would have told you to use and with the relaxed `0-
norm, a close to perfect reconstruction of x can be obtained, see e.g., Candès and
Wakin (2008). In fact, it has been shown that compressed sensing is nearly as
effective as if having an oracle telling us what elements of z that are nonzero and
we would have measured only those (Candès and Wakin, 2008).
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Example 4.6: The Huber Loss Function Cont’d
Let use finally return to Example 4.3. We there assumed that we got measure-

ments {(ϕt , yt)}
Ne
t=1 from

yt = ϕTt θ0 + vt + τt , vt ∼ N (0, σ2), (4.27)

where τt modeled outliers and was assumed to be an in time sparse variable. The
model parameter θ0 is an unknown vector. Desiring an estimate of θ0, we can
use the least squares estimate,

θls = arg min
θ

Ne∑
t=1

(yt − ϕTt θ)2 (4.28a)

= arg min
θ

Ne∑
t=1

(ϕTt θ0 + et + τt − ϕTt θ)2. (4.28b)

If τt , 0 for some t = 1, . . . , Ne, it is likely that the estimate of θ0 is adjusted to fit
these fluctuations in τt . We can try to get around this by estimating τt and then
subtract the estimate from our measurements yt . As we have assumed that τt is
sparse, it is motivated to minimize

Ne∑
t=1

(yt − ϕTt θ − ηt)2 + λ
∥∥∥∥ [
η1 η2 . . . ηNe

] ∥∥∥∥
0
, λ ∈ R+, (4.29)

with respect to the outlier estimate η and θ. Here, λ is seen as a design parameter
that controls the sparsity of η. Using a convex relaxation, we arrive at the less
computationally intensive `1-regularized least squares problem

Ne∑
t=1

(yt − ϕTt θ − ηt)2 + λ
∥∥∥∥ [
η1 η2 . . . ηNe

] ∥∥∥∥
1
. (4.30)

As shown in Appendix B, (4.30) is equivalent to

Ne∑
t=1

ψ
(
yt − ϕTt θ

)
(4.31)

with

ψ(x) ,
{
|x|2, if |x| < λ/2,
λ|x| − λ2/4 otherwise.

(4.32)

The function ψ( · ) is called the Huber loss function or the Huber norm (Huber,
1973). The Huber loss function has been applied frequently within regression
and classification since its introduction in the 1970s by Huber. Its popularity is
due to its ability to reduce the affect of an outlier and thereby gain robustness to
the algorithm. The Huber loss function, ψ( · ), shown in Figure 4.2, is a hybrid
between the `1 and the `2-norm. That the assumption of a sparse outlier τ here
leads to the Huber loss function is rather intuitive but still illustrative.
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Figure 4.2: The Huber loss function ψ(x) plotted with thick solid black line
for a one-dimensional x. The `1 and squared `2-norm are also shown, dashed
and solid gray line, respectively.

It is interesting to notice that minimizing

Ne∑
t=1

(yt − ϕTt θ)2 + λ‖θ‖1, (4.33)

λ ∈ R+, can be interpreted as a MAP estimate of a posterior distribution propor-
tional to

e−
∑Ne
t=1(yt−ϕTt θ)2/2σ2

e−λ‖θ‖1/2σ
2
. (4.34)

Using Bayes’ theorem, see Theorem 2.1 on page 26, the first term in (4.34) can be
interpreted as the likelihood

p
(
{yt}

Ne
t=1

∣∣∣θ, {ϕt}Ne
t=1

)
=

1

σ
√

2π
e−

∑Ne
t=1(yt−ϕTt θ)2/2σ2

(4.35)

associated with

yt = ϕTt θ0 + et , et ∼ N (0, σ2). (4.36)

The second term in (4.34) can be interpreted as a prior p(θ) = 1
4σ2 e

−λ‖θ‖1/2σ2
. The

prior associated with the `1-regularization is hence p(θ) = 1
4σ2 e

−λ‖θ‖1/2σ2
. In the

literature this is referred to as a Laplace or an independent double exponential prior
(see e.g., Hastie et al. (2001, p. 72)).
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4.3.1 What Property of the `1-Regularization Causes
Sparseness?

Let us investigate why `1-regularization causes sparseness. Consider

min
θ
‖y − Φθ‖22 s.t. ‖θ‖1 ≤ η. (4.37)

This problem is identical to that of (4.20) in the sense that, for any λ ∈ R+, there
exists a η (= ‖θ∗‖1, where θ∗ minimizes (4.20)) so that the minimizing θ is the
same for (4.20) and (4.37). The Karush-Kuhn-Tucker (KKT, see e.g., Boyd and
Vandenberghe (2004, p. 244)) conditions can be used to show this.

Consider now the left of Figure 4.3. The gray square at the origin shows the

Figure 4.3: Left figure: An illustration of ‖θ‖1 ≤ η (gray area) and the level-
curves of ‖y −Φθ‖22. Right figure: An illustration of ‖θ‖22 ≤ η (gray area) and
the level-curves of ‖y −Φθ‖22. In both the right and the left figure, ‖y −Φθ‖22
is assumed to have a unique minimum. If ‖y − Φθ‖22 does not have a unique
minimum, there will be a continuum of points, on a line, minimizing ‖y −
Φθ‖22 and the level curves would be parallel to that line.

neighborhood ‖θ‖1 ≤ η for a two dimensional regressor (i.e., dim(θ) = 2). The
level-curves of ‖y − Φθ‖22 are also shown. These are depicted as circles (generally
these level curves are ellipses) centered at arg minθ ‖y − Φθ‖

2
2. From the illustra-

tion it is seen that the θ minimizing (4.37) must be the θ-value at the intersection
between the square and one of the level-curves. Note now that when this inter-
section happens on one of the axis, the optimal θ get one zero element. Try to
move around the level-curves of ‖y − Φθ‖22. Most choices gives an intersection at
an axis. For a higher dimensional case (dim(θ) large), the gray square turns into a
hyper-cube. When intersection happens on e.g., one of the vertexes, the optimal
θ has elements equal to zero and therefore turns out as sparse.

Consider now the right part of Figure 4.3. The right part illustrates what happens
if the regularization is chosen as ‖ · ‖22 (ridge regression, see Example 2.2) instead
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of ‖ · ‖1 as in the `1-regularization. Consider

min
θ
‖y − Φθ‖22 s.t. ‖θ‖22 ≤ η, (4.38)

which for a particular choice of η gives the same solution as

min
θ
‖y − Φθ‖22 + λ‖θ‖22. (4.39)

The gray circle now illustrates ‖θ‖22 ≤ η which is a disc centered at the origin.
The level-curves of ‖y −Φθ‖22 are also shown, just as in the left of Figure 4.3. The
solution to (4.38) can now be seen given by the intersection between the disc and
a level-curve. Try to move the level-curves around, the intersection is this time
very seldom on an axis. The minimizing θ will therefore generally not be sparse.

An Explicit Solution

For illustration, let us consider a special case which has an explicit solution. Con-
sider

min
θ
‖y − Φθ‖22 + λ‖θ‖1, (4.40)

where λ ∈ R+, θ ∈ Rnθ , and assume that Φ is orthonormal, i.e., ΦTΦ = ΦΦT = I .
Equation (4.40) can then be rewritten as

min
θ

∥∥∥Φ(ΦT y − θ)
∥∥∥2

2
+ λ‖θ‖1, (4.41)

and since Φ can be seen as a rotation, which does not change the Euclidean length,

of the vector (ΦT y − θ),
∥∥∥Φ(ΦT y − θ)

∥∥∥2
2

=
∥∥∥ΦT y − θ∥∥∥2

2
. We can further rewrite

‖ΦT y − θ‖22 using that ΦTΦ = I so that ‖ΦT y − θ‖22 =
∥∥∥(ΦTΦ)−1ΦT y − θ

∥∥∥2
2
. If we

notice that (ΦTΦ)−1ΦT y is the least squares solution i.e.,

θls = arg min
θ

‖y − Φθ‖22 = (ΦTΦ)−1ΦT y, (4.42)

the solution of (4.40) can be written as

min
θ
‖θls − θ‖22 + λ‖θ‖1 = min

θ

nθ∑
i=1

(
θls(i) − θ(i)

)2
+ λ|θ(i)|. (4.43)

We can now consider the estimate of each of the elements of θ separately. Let us
consider θ(i). Taking the derivative w.r.t. θ(i) of(

θls(i) − θ(i)
)2

+ λ|θ(i)| (4.44)

gives

− 2
(
θls(i) − θ(i)

)
+ λ sign

(
θ(i)

)
, θ(i) , 0. (4.45)
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We have to handle θ(i) = 0 separately. Setting the derivative equal to zero and
solving gives

θ(i) =

θls(i) − λ/2 if θls(i) − λ/2 > 0
θls(i) + λ/2 if θls(i) + λ/2 < 0

(4.46)

or

θ(i) = sign
(
θls(i)

)(
|θls(i)| − λ/2

)
. (4.47)

For |θls(i)| < λ/2, θ(i) = 0. The θ(i) minimizing (4.44) is hence

θ(i) = sign
(
θls(i)

)
min

(
0, |θls(i)| − λ/2

)
. (4.48)

Note that (4.48) holds for i = 1, . . . , nθ . The relation, for this special case, be-
tween the least squares estimate θls and the estimate from lasso is visualized in
Figure 4.4. We see that lasso shrinks the least squares estimate and if the least
squares parameter estimate is close enough to zero, lasso gives a parameter esti-
mate identical to zero.
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−1.5
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Figure 4.4: The relation between the least squares estimate θls and the esti-
mate from lasso θlasso in the case where ΦTΦ = I .

4.3.2 Critical Parameter Value

Let us consider the `1-regularized least squares problem (4.20). A basic result
from convex analysis tells us that there is a value λmax for which the solution of
the problem is equal to zero, if and only if λ ≥ λmax. In other words, λmax gives
the threshold above which θ ≡ 0. The critical parameter value λmax is very useful
in practice, since it gives a very good starting point in finding a suitable value of
λ.
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Proposition 4.1 (Critical Parameter Value λmax). Let Φ ∈ RNe×n and y ∈ RNe

be given. Let λmax be such that θ minimizing

‖y − Φθ‖22 + λ‖θ‖1 (4.49)

is zero if and only if λ ≥ λmax. It holds that

λmax =
∥∥∥2ΦT y

∥∥∥∞. (4.50)

The infinity-norm ‖ · ‖∞ is defined in Appendix A.

Proof: Define ēi as the n-dimensional row-vector with the ith element as one and
the rest equal to zero. The subdifferential at θ = 0 is readily computed to

∂θ(i)

(
‖y − Φθ‖22 + λ‖θ‖1

)∣∣∣∣
θ=0

=
[
− 2ēiΦ

T y − λ,−2ēiΦ
T y + λ

]
. (4.51)

For θ = 0 to be an optima, it is necessary and sufficient (see e.g., (Bertsekas et al.,
2003, Prop. 4.7.2)) that

0 ∈
[
− 2ēiΦ

T y − λ,−2ēiΦ
T y + λ

]
, ∀i = 1, . . . , n, (4.52)

which is equivalent to

λ ≥
∥∥∥2ΦT y

∥∥∥∞. (4.53)

(4.50) follows since λmax is the smallest λ-value that makes θ = 0 an optima.

4.3.3 Sum-of-Norms Regularization

A `1-related regularization is the sum-of-norms regularization. A sum-of-norms
regularized problem takes the form

min
θ
V (θ) + λ

s∑
i=1

‖Γ (i, :)θ‖p, (4.54)

with s ∈ N , Γ an s × dim(ϕ) (0, 1)-matrix and λ ∈ R+. The matrix Γ picks out
groups of θ-elements. With V (θ) = ‖y − Φθ‖22 and p = 2 in (4.54),

min
θ
‖y − Φθ‖22 + λ

s∑
i=1

‖Γ (i, :)θ‖2, (4.55)

the formulation is often referred to as group-lasso (Yuan and Lin, 2006) in statis-
tics. Note that the sum-of-norms regularization reduces to a `1-regularization if
Γ = I and p = 1 in (4.54).

We should comment on the difference between using an `1-regularization and
some other type of sum-of-norms regularization, such as sum-of-Euclidean norms
with Γ , I . When we use sum-of-norms regularization, the vector Γ θ will be
sparse and when an element of the vector Γ θ is non-zero, say element i, then in
general most of the θ-elements picked out by Γ (i, :) are non-zero. The sum-of
norms regularization hence makes sure that θ is sparse on a group-level, rather
than an individual level.
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Remark 4.3. Notice that (4.54) can be rewritten as

min
θ
V (θ) + λ‖θ̄‖1, θ̄(i) , ‖Γ (i, :)θ‖p, i = 1, . . . , s. (4.56)

This clarifies the relation to the `1-regularization and provides an intuition for why groups
of θ-elements (Γ (i, :)θ, i = 1, . . . , s) come out as zero or non-zero.

We continue the discussion on sum-of-norms regularization in Paper A, B, C
and D.

4.3.4 Solution Methods

Many standard methods of convex optimization can be used to solve the prob-
lems (4.20) and (4.55). Software packages such as CVX (Grant and Boyd, 2010,
2008) or YALMIP (Löfberg, 2004) can readily handle the sum-of-norms regular-
ization, by converting the problem to a cone problem and calling a standard
interior-point cone solver. For the special case when the `1 norm is used as the
regularization norm, more efficient special purpose algorithms and software can
be used, such as l1_ls (Kim et al., 2007).

Recently many authors have developed fast first order methods for solving `1-
regularized problems, and these methods can be extended to handle the sum-of-
norms regularization, see e.g., Roll (2008§2.2). Both interior-point and first-order
methods have a complexity that scales linearly with N (= dim(y) in (4.20)).

It has also been shown how solving `1-regularized problems can considerably
be speeded up by pre-computing certain quantities (Mattingley and Boyd, 2010).
It was shown how real-time performance can be met in many scenarios where
`1-regularization previously was considered to be computationally too heavy.

CVX, YALMIP and l1_ls

CVX and YALMIP are very useful tools for solving `1 and sum-of-norms regular-
ized (convex) problems. Both CVX and YALMIP are integrated with Matlab. If
we let

y =
[
y1 y2 . . . yNe

]T
, Φ =

[
ϕ1 ϕ2 . . . ϕNe

]T
, Φ ∈ RNe×n, λ ∈ R+,

(4.57)
the `1-regularized least squares problem

min
θ
‖y − Φθ‖22 + λ‖θ‖1 (4.58)

can be solved using the CVX code given in Listing 4.1 and the YALMIP code given
in Listing 4.2, assuming that the CVX respectively the YALMIP code package has
been downloaded and installed. “y”, “Phi”, “n” and “lambda” also need to be
available in the Matlab workspace according to (4.57).



62 4 Regularization for Sparseness

Listing 4.1: CVX code for solving (4.58)

cvx_begin
variable theta(n)
minimize((y-Phi*theta)’*(y-Phi*theta) ...

+lambda*norm(theta,1))
cvx_end

Listing 4.2: YALMIP code for solving (4.58)

theta=sdpvar(n,1);
ops=sdpsettings(’verbose’,0);
solvesdp([],(y-Phi*theta)’*(y-Phi*theta) ...

+lambda*norm(theta,1),ops)

A Matlab package dedicated to `1-regularized least squares problems is l1_ls.
With “y”, “Phi” and “lambda” available in the Matlab workspace according to
(4.57) and the l1_ls package downloaded and installed, (4.58) can be solved as
shown in Listings 4.3.

Listing 4.3: l1_ls code for solving (4.58)

rel_tol = 0.01; % relative target duality gap
theta=l1_ls(Phi,y,lambda,rel_tol)

4.4 Conclusion

This chapter has demonstrated how regularization can be used to obtain sparsity.
There are a number of problems in system identification and signal processing
that well fit into the framework developed. We therefore return to sparsity and
regularization in Paper A, B, C and D.



5
Regularization for Smoothness

Regularization can be used to obtain meaningful results from ill-posed problems
and to control for overfit. We care for both these applications in this thesis. How-
ever, we chose to focus on the type of regularization (referred to as a standard
regularization method in Poggio et al. (1985)) obtained by adding a penalty term J
to the criterion of fit,

θ̂ = arg min
θ

∑
t∈Ne

l
(
yt − f (ϕt , θ)

)
+ λJ(ϕt , θ), λ ∈ R+. (5.1)

The penalty J should be regarded as a means to introduce a priori knowledge
and can be used to impose signal and model properties such as sparsity (dis-
cussed in Chapter 4) and smoothness. We discuss regularization for smoothness
in this chapter. Geometrically, regularization for smoothness means that we seek
the least rough function that gives a certain degree of fit to the observed data.
Smoothness is in the regularization-literature used interchangeably with curva-
ture, non-rough, simplest and least complex. The regularization parameter λ is
used to control the trade-off between fit and smoothness.

Examples of regression methods that can be interpreted as regression methods
that use regularization for smoothness are support vector regression and Gaussian
processes. We give an introduction to these two methods in the following two
sections.

5.1 Support Vector Regression

Let {(ϕt , yt)}
Ne
t=1, yt ∈ R, ϕt ∈ R

nϕ , be a given estimation data set and let {hk( · ) :
Rnϕ → R, k = 1, . . . , n} be a set of basis functions. It could e.g., be the n first basis

63
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functions of a Fourier series expansion. Consider now the task of estimating the
basis function coefficients θk ∈ R, k = 1, . . . , n, in the basis function expansion
model

f (ϕ, θ) =
n∑
k=1

hk(ϕ)θk . (5.2)

Assume that n > Ne. Seeking the model parameters that minimize the sum of
squared residuals

Ne∑
t=1

(
yt −

n∑
k=1

hk(ϕt)θk
)2

(5.3)

leads to an ill-posed problem since n > Ne (see Example 2.2). In particular, the
solution will generally not be unique. We saw previously, see Example 2.2, how
`2-regularization can be used to transform (5.3) into a well-posed problem. If we
introduce

y ,
[
y1 . . . yNe

]T
, θ ,

[
θ1 . . . θn

]T
, h(ϕt) ,

[
h1(ϕt) . . . hn(ϕt)

]T
(5.4)

and the matrix H ∈ RNe×n

H ,
[
h(ϕ1) . . . h(ϕNe

)
]T
, (5.5)

the `2-regularized least-squares criterion can be written as

min
θ
‖y − Hθ‖2 + λ‖θ‖2, λ ∈ R+. (5.6)

The minimizing θ is then readily computed as (see e.g., (2.27))

θ̂ = (HTH + λIn)−1HT y. (5.7)

Let now ϕ∗ be a given new regressor. The basis function model (5.2) evaluated at
ϕ∗ takes the form

f (ϕ∗, θ̂) = h(ϕ∗)
T θ̂ = h(ϕ∗)

T
(
HTH + λIn

)−1
HT y (5.8)

or equivalently

f (ϕ∗, θ̂) = h(ϕ∗)
THT

(
HHT + λINe

)−1
y. (5.9)

We could be satisfied and stop here. The sought basis function coefficients are
provided by (5.7) and (5.9) gives a formula for the basis function expansion eval-
uated at a new regressor ϕ∗. Let us continue and consider what happens when n
gets very large. It can then become computationally impossible to evaluate (5.8)
and (5.9). To be able to handle large n, define k(ϕi , ϕj ) : Rnϕ×nϕ → R as

k(ϕi , ϕj ) , h(ϕi)
T h(ϕj ). (5.10)

(5.9) can then be rewritten as

f (ϕ∗, θ̂) = k(ϕ∗,Φ)
(
k(Φ,Φ) + λINe

)−1
y (5.11)
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where

Φ =
[
ϕ1 . . . ϕNe

]T
, (5.12)

k(ϕ∗,Φ) =
[
k(ϕ∗, ϕ1) . . . k(ϕ∗, ϕNe

)
]
, (5.13)

k(Φ,Φ) =


k(ϕ1, ϕ1) k(ϕ1, ϕ2) . . . k(ϕ1, ϕNe

)
k(ϕ2, ϕ1) k(ϕ2, ϕ2) k(ϕ2, ϕNe

)
...

. . .
...

k(ϕNe
, ϕ1) k(ϕNe

, ϕ2) . . . k(ϕNe
, ϕNe

)

 . (5.14)

In this way, we have avoided the basis functions hk , k = 1, . . . , n, but anyway
found a way to evaluate the model (5.2). Also when n is infinite the solution
is given by (5.11), as shown by the representer theorem (see e.g., Kimeldorf and
Wahba (1971)). This is useful! This means that we can replace the computa-
tion of an infinite number of basis function coefficients with N2

e + Ne evalua-
tions of k( · , · ). One may wonder when it is possible to rewrite the dot-product
h(ϕi)T h(ϕj ) as in (5.10). And also, when is it possible to rewrite a function
k(ϕi , ϕj ) as a dot-product between basis functions? In fact, in practice the func-
tion k(ϕi , ϕj ) is chosen and the particular form of the basis functions often not
derived or thought of. To guarantee that k(ϕi , ϕj ) can be written as a dot-product
between basis functions, k(ϕi , ϕj ) should be chosen as a symmetric, positive semi-
definite kernel (see Mercer’s theorem e.g., Evgeniou et al. (2000) or Schölkopf and
Smola (2001, p. 37), see also Appendix A). The squared exponential kernel has
these properties (see Appendix A for definition and examples of more kernels).

The kernel can here be seen as a way to redefine the dot-product in the regressor
space. This trick of redefining the dot-product can be used in regression methods
where regressors only enter as products. These types of methods are surprisingly
many and the usage of this trick results in the kernelized, or simply kernel, version
of the method. (5.11) is a special case of Least Squares Support Vector Machines
regression (LS-SVM regression or LS-SVR, see e.g., Saunders et al. (1998); Suykens
and Vandewalle (1999)).

By kernelizing a regression method, the regressor space is transformed by h to
a possibly infinite dimensional new space in which the regression takes place.
The transformation of the regression problem to a new high-dimensional space
is commonly referred to as the kernel trick (Boser et al., 1992).

Example 5.1: Illustration of the Kernel Trick
Let ϕ1 =

[
ϕ1(1) ϕ1(2)

]T
, ϕ2 =

[
ϕ2(1) ϕ2(2)

]T
and ϕ∗ =

[
ϕ∗(1) ϕ∗(2)

]T
be

three regressors in R2. Observe that if we use

k(ϕ1, ϕ2) = ϕT1 ϕ2 = ϕ1(1)ϕ2(1) + ϕ1(2)ϕ2(2) (5.15)

in (5.11) we get exactly the same expression as in (2.27) i.e., ridge regression. Let
us now use the kernel (polynomial (inhomogeneous) kernel, see Appendix A)

k̃(ϕ1, ϕ2) = (1 + ϕT1 ϕ2)2. (5.16)
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This could also be thought of as changing the definition of the dot-product be-
tween two regression vectors. We see that the regressors now affect the regression
algorithm through

k̃(ϕ1, ϕ2) =(1 + ϕT1 ϕ2)2 (5.17a)

=1 + 2ϕ1(1)ϕ2(1) + 2ϕ1(2)ϕ2(2) + ϕ1(1)2ϕ2(1)2

+ϕ1(2)2ϕ2(2)2 + 2ϕ1(1)ϕ1(2)ϕ2(1)ϕ2(2). (5.17b)

We can rewrite this as the dot-product between the vector valued function h( · )
evaluated at ϕ1 and ϕ2

k̃(ϕ1, ϕ2) = h(ϕ1)T h(ϕ2) (5.18)

with

h(ϕ1) =
[
1
√

2ϕ1(1)
√

2ϕ1(2) ϕ1(1)2 ϕ1(2)2
√

2ϕ1(1)ϕ1(2)
]T

(5.19)

and h(ϕ2) accordingly. The polynomial (inhomogeneous) kernel hence transform
the regressor space into a 6-dimensional space. If we now assume that an esti-
mation data set {(ϕt , yt)}

Ne
t=1 is given. Then in the particular case of LS-SVR, a

linear model in R6 would be estimated to fit the transformed estimation data
{(h(ϕt), yt)}

Ne
t=1 using ridge regression. Reformulated in terms of the original re-

gressors, the model evaluated at ϕ∗ becomes

f (ϕ∗, θ) =θ1 +
√

2θ2ϕ∗(1) +
√

2θ3ϕ∗(2) + θ4ϕ∗(1)2 + θ5ϕ∗(2)2

+
√

2θ6ϕ∗(1)ϕ∗(2). (5.20)

We see that by using this modified definition of the dot-product in LS-SVR we
obtain a, in the regressors, polynomial predictor. We can hence compute nonlin-
ear predictors by simply redefining the dot-product used in the regression algo-
rithms.

We return to LS-SVR in Example 5.2.

5.2 Gaussian Process Regression

Consider the setup

yt = f0(ϕt) + et , et ∼ N (0, σ2), ϕt ∈ Rnϕ , yt ∈ R. (5.21)

Let {(ϕt , yt)}
Ne
t=1 be a given estimation data set and consider the task of finding an

estimate for f0 at a regressor ϕ∗. In Gaussian Process Regression (GPR, see e.g., Ras-
mussen and Williams (2005), also called Kriging, see e.g., Matheron (1973)) the
output f0(ϕ) is assumed to be a stochastic process, a Gaussian Process (GP). Any
samples taken from a (zero-mean) Gaussian process are by definition related by
a (zero-mean) Gaussian probability distribution. In particular, f0(ϕi) and f0(ϕj )
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will be related by [
f0(ϕi)
f0(ϕj )

]
∼ N

(
02×1,

[
k(ϕi , ϕi) k(ϕi , ϕj )
k(ϕj , ϕi) k(ϕj , ϕj )

])
(5.22)

for some kernel k. Let now Φ ∈ RNe×nϕ contain the estimation regressors

Φ ,
[
ϕ1 . . . ϕNe

]T
, (5.23)

ϕ∗ be a new regressor and let k(ϕ∗,Φ) and k(Φ,Φ) be as in (5.13) and (5.14). Then,
using (5.22) we have that[
f0(ϕ1) f0(ϕ2) . . . f0(ϕNe

) f0(ϕ∗)
]T
∼ N

(
0Ne+1×1,

[
k(Φ,Φ) k(ϕ∗,Φ)T

k(ϕ∗,Φ) k(ϕ∗, ϕ∗)

])
.

If we let y denote the estimation outputs, y ,
[
y1 . . . yNe

]T
, then y and f0(ϕ∗)

are related by[
yT f0(ϕ∗)

]T
∼ N

(
0Ne+1×1,

[
k(Φ,Φ) + σ2INe

k(ϕ∗,Φ)T

k(ϕ∗,Φ) k(ϕ∗, ϕ∗)

])
. (5.24)

The predictive (or conditional) distribution for the stochastic variable f0(ϕ∗) given
the estimation data can then be expressed as

p
(
f0(ϕ∗)

∣∣∣{(ϕt , yt)}Ne
t=1

)
= N

(
k(ϕ∗,Φ)(k(Φ,Φ) + σ2INe

)−1y,

k(ϕ∗, ϕ∗) − k(ϕ∗,Φ)(k(Φ,Φ) + σ2INe
)−1k(ϕ∗,Φ)T

)
(5.25)

using identities for Gaussian distributions, see e.g., (Rasmussen and Williams,
2005, p. 200). Notice that the (5.25) gives the distribution for the value of f0(ϕ∗)
and not a measurement of f0 at ϕ∗. To get the distribution for a measurement of
f0 at ϕ∗, σ2 should be added to the covariance in (5.25). The kernel k defines the
correlation between f0(ϕi) and f0(ϕj ). This correlation is most often unknown
and seen as a design choice in GPR. A popular choice is the squared exponential
kernel, see Appendix A.

The predictive mean (mean of the distribution in (5.25)) takes exactly the same
form as the prediction in least squares support vector regression, see (5.11). Gaus-
sian process regression can hence also be given an interpretation as a regulariza-
tion method.

Example 5.2: Gaussian Processes Regression (and LS-SVR)
Let {(ϕt , yt)}

Ne
t=1, Ne = 10, be generated by

yt = 5 sinϕt + et , et ∼ N (0, 1), ϕt ∼ U (0, 5). (5.26)

The estimation data are shown with ’+’-marks in Figure 5.1. If Gaussian process
regression with k as a scaled squared exponential kernel

k(ϕi , ϕj ) = γ2e−‖ϕi−ϕj‖
2
2/2`

2
, (5.27)
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with a length scale ` = 1, γ = 5 and noise standard deviations σ = 0.1, 1, 5 and 20
are used, the predictive distributions (for noisy measurements of f0) visualized
in Figure 5.1 are obtained.

The predictive mean (mean of the distribution in (5.25)) takes exactly the same
form as the prediction in least squares support vector regression, see (5.11).
Hence, the solid line in Figure 5.1 could equally well have been the result from
LS-SVR with the kernel (5.27) and λ = σ2. As seen in Figure 5.1, σ2, or the regu-
larization parameter, controls the smoothness of the predictive mean. If we let σ2

go to infinity, the function-estimate will approach zero and a very smooth func-
tion. If we instead let σ2 go to zero, the function estimate will become more and
more non-smooth. This behavior is rather intuitive since σ2 has an interpretation
as the measurement noise covariance.
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Figure 5.1: Posterior (or predictive) distributions for a Gaussian process with
` = 1, γ = 5 and σ = 0.1 (left top plot), 1 (right top plot), 5 (left bottom
plot) and 20 (right bottom plot). The estimation data are shown with ’+’-
marks, the dashed line shows 5 sin( · ) and the solid line shows the mean of
the predictive distribution or the LS-SVR estimate. The gray area shows the
two standard deviations confidence interval for noisy measurements of f0.
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Smoothness of the mean of the predictive distribution (5.25) is highly dependent
on σ2 (the regularization parameter). Parameters, such as σ and possible parame-
ters of the kernel, that have to be set, are denoted hyperparameters (see Section 2.9
for hyperparmeters). The hyperparameters could be chosen using cross valida-
tion, but if few observations are available, maximizing the marginal likelihood is
a good alternative (see Section 2.9).

Example 5.3: Gaussian Processes Regression Cont’d
Let us return to Example 5.2 and find the hyperparameters ` and γ of the scaled
squared exponential kernel

k(ϕi , ϕj ) = γ2e−‖ϕi−ϕj‖
2
2/2`

2
(5.28)

and the measurement noise variance σ2 by maximizing the marginal likelihood.
The parameters were estimated to

` = 1.4, γ = 4.2, σ = 1.6, (5.29)

using GPML (Rasmussen and Nickisch, 2010). GPML is a Matlab toolbox for GPR.
The code for estimating the hyperparameters using GPML are given in Listing 5.1.

Listing 5.1: Estimation of hyperparameters `, γ and σ using GPML.

covfunc={’covSum’,{’covSEard’,’covNoise’}};
loghyper=minimize([-1;-1;-1],’gpr’,-100,covfunc,Phi,y);
[l gamma sigma]=exp(loghyper);

The resulting predictive distribution for noisy measurements of f0 is visualized
in Figure 5.2.
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Figure 5.2: The predictive distribution for noisy measurements of f0. Mean
given as a solid line and the gray area shows the two standard deviations
confidence interval. The ’+’-marks show the estimation data and the dashed
line 5 sin( · ).
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5.3 Conclusion

Regularization for smoothness is essential in the estimation of many nonpara-
metric models to obtain smooth estimates and control for overfitting. We have
seen how both least squares support vector machines and Gaussian processes
regression use regularization and how the regularization controlled the smooth-
ness of the estimated model. We will continue the discussion on regularization
and smoothness in Paper E and derive a novel regularization method, Weight De-
termination by Manifold Regularization (WDMR). Also Paper F discusses regular-
ization for smoothness and in particular how it can be used to estimate impulse
responses.



6
Concluding Remarks

6.1 Conclusion

The introductory part of this thesis was aimed to motivate and give a background
to the papers of Part II. The focus was regularization and in particular, regular-
ization for sparseness and smoothness. A number of examples of previous usages
of regularization for sparseness and smoothness was given along with illustrative
applications.

Part II of this thesis consists of a collection of papers. The first four papers uti-
lize regularization for sparseness. First out is a novel optimization formulation
for the identification of segmented ARX models, Paper A. Regularization for spar-
sity is there applied to control for overfitting. Paper B provides a novel system
identification approach to piecewise affine systems. Regularization for sparsity
is utilized to control for overfitting. Paper C discusses state estimation and pro-
vides a novel nonlinear smoother. The smoother works under the assumption
that the process noise is impulsive, that is, often zero but occasionally nonzero.
Regularization for sparsity again plays an important role to control for overfit-
ting. The theory presented in this paper could be suitable in e.g., target tracking
applications. Paper D presents a novel model-based approach to trajectory gen-
eration. Regularization for sparsity is here used to find trajectories with compact
representations. Paper E discusses regularization for smoothness. A novel reg-
ularization method Weight Determination by Manifold Regularization (WDMR) is
presented. WDMR is inspired by manifold learning and applications in biology
and has inherited properties thereof. WDMR uses regularization for smoothness
to obtain smooth estimates. Paper F applies regularization for smoothness to lin-
ear system identification. In particular, high order FIR models are studied. Last,
Paper G presents a real-time fMRI bio-feedback setup. The setup has served as a
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proof of concept and shows that useful information can be read out, in real-time,
from the brain activity measurements.

6.2 Future Research

It would be interesting to look at some more theoretical questions concerning
the regularization methods and techniques developed in this thesis. A rather
extensive theory has been developed around compressed sensing. This theory
is not directly applicable to the methods presented in the papers of Part II on
regularization for sparsity. It however provides tools for developing a deeper
theoretical understanding. Interesting theoretical questions are:

• Under what assumptions can the correct sparsity pattern be found?

• How sensitive are the methods using regularization for sparsity for mea-
surement noise? For example, how sensitive are the segmentation algo-
rithm presented in Paper A to measurement noise?

• What happens if the number of estimation data samples goes to infinity?
What is the asymptotic behavior?

There are also several possible application areas for regularization for sparseness
which have not been explored. Multi-target tracking and event based sampling
and control may for example be interesting areas for further research using regu-
larization for sparseness.

It would also be interesting to investigate what techniques, such as, General Prin-
cipal Component Analysis (GPCA, Vidal et al. (2003a,b, 2005)) can do for system
identification and signal processing. GPCA has relations to sparsity techniques
and has e.g., been used in the identification of segmented ARX models, see e.g.,
Vidal et al. (2003b). In particular, GPCA can be used to ensure that at least one
element of a quantity is zero.

Interesting is also the development of new techniques and theories in machine
learning. Many machine learning techniques are not directly applicable to dy-
namic systems, but they give a suitable foundation for the development of algo-
rithms for dynamic systems. WDMR, presented in Paper E, is one example of
such development. WDMR has shown useful in several applications, and there
are for sure many interesting suitable applications as well as theoretical findings
to be explored.

The last paper of this thesis, Paper G, discusses a real-time fMRI biofeedback
setup. The potential of real-time fMRI is very exciting and applications of fMRI
biofeedback have recently attract quite some attention in media and literature.
It has e.g., been shown how subjects can be trained to control their own pain
using fMRI biofeedback (DeCharms et al., 2005). Our setup has been used as
a communication interface (Eklund et al., 2010) and for real-time brain activity
visualization (Nguyen et al., 2010). Many exciting applications remain to be ex-
plored, however.
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6.3 Further Readings

For readers familiar with system identification that would like to read more about
the mathematical background on underdetermined systems, sparseness and regu-
larization, a very nice reading is Bruckstein et al. (2009). The paper by Zibulevsky
and Elad (2010) also gives a nice introduction to sparsity. For a nice book that
discusses several different regularization methods, Hastie et al. (2001) is to rec-
ommend. For the reader interested in machine learning and Bayesian modeling,
Bishop (2006) is a good reference. Gaussian processes are nicely presented in
Rasmussen and Williams (2005).





A
Kernels and Norms

This appendix lists a number of kernels and norms used in this thesis. Some
properties of kernels are also discussed.

A.1 Kernels

In machine learning, a kernel k : X × X → R is a general name for a function
of two arguments mapping to R. A kernel is said to be symmetric (see e.g., Ras-
mussen and Williams (2005, p. 80)) if

k(ϕi , ϕj ) = k(ϕj , ϕi), (A.1)

for any two ϕi , ϕj ∈ X . If the kernel is going to be used in GPR as a covariance
function, it needs to be symmetric. A kernel is said to be stationary (see e.g.,
Rasmussen and Williams (2005, p. 79)) if k(ϕi , ϕj ) can be written as

k(ϕi , ϕj ) = k̄(ϕi − ϕj ), ϕi , ϕj ∈ X , (A.2)

for some function k̄ : X → R. It is non-stationary if not stationary. Last, a kernel
is said to be positive semi-definite (see e.g., Rasmussen and Williams (2005, p. 80))
if for any number of inputs ϕ1, . . . , ϕN in X , the Gram matrix K with element ij
given by k(ϕi , ϕj ) is positive semi-definite.

A symmetric positive semi-definite kernel k can be written as a dot-product

k(ϕi , ϕj ) = hT (ϕi)h(ϕj ), ϕi , ϕj ∈ X . (A.3)

This follows from Mercer’s theorem (see e.g., Schölkopf and Smola (2001, pp. 37-
38)). h( · ) is called a feature map.
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See Rasmussen and Williams (2005, Chap. 4) or Schölkopf and Smola (2001,
Chap. 2) for further discussions on kernels and their properties.

Remark A.1. The precise mathematical definition of a kernel states that a kernel is a
function k : X × X → R that is both symmetric and positive semi-definite. We use the
more liberal definition of machine learning.

A.1.1 Squared Exponential Kernel

For two vectors ϕi , ϕj ∈ Rn, define the squared exponential kernel (sometimes
called a Gaussian kernel or Gaussian radial basis kernel) as

k(ϕi , ϕj ) , e
−‖ϕi−ϕj‖22/2`

2
, (A.4)

where ` is a parameter of the kernel and denoted the length scale. The squared ex-
ponential kernel is symmetric, stationary and positive definite (Micchelli, 1986).

A.1.2 Polynomial Kernel

For two vectors ϕi , ϕj ∈ Rn, define the polynomial (inhomogeneous) kernel as

k(ϕi , ϕj ) , (ϕTi ϕj + 1)d , d ∈ N . (A.5)

The feature map, or h, associated with the polynomial (inhomogeneous) kernel
contains all monomials of order up to d (e.g., Schölkopf et al. (2001, Prop. 2.17)).
The polynomial kernel is symmetric, non-stationary and positive definite (see
e.g., Vapnik (1995, p. 460)).

A.2 Norms

A.2.1 Infinity Norm

For a vector x ∈ Rn, define the infinity-norm as

‖x‖∞ , max
i=1,...,n

|x(i)|. (A.6)

A.2.2 `0-Norm

For a vector x ∈ Rn, define the zero (quasi-)norm as

‖x‖0 , card
({
i
∣∣∣x(i) , 0

})
. (A.7)

The zero norm is the number of nonzero elements of the vector x. The zero norm
is a quasi-norm since it is not positive homogeneous. That is, the zero norm does
not satisfy

‖αx‖0 , |α|‖x‖0, α ∈ R, (A.8)

which all norms should.
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A.2.3 `p-Norm (0 < p < ∞)

For a vector x ∈ Rn, define the `p-norm, 0 < p < ∞, as

‖x‖p ,
( n∑
i=1

|x(i)|p
)1/p

. (A.9)

The `2-norm is referred to as the Euclidean norm. See Figure 4.1, p. 52, for a
visualization of some different `p-norms.





B
Huber Cost Function as a

`1-Regularized Least Squares
Problem

We use this appendix to show that the `1-regularized least squares formulation

min
θ,η1,...,ηN

Ne∑
t=1

(yt − ϕTt θ − ηt)2 + λ
∥∥∥∥ [
η1 η2 . . . ηNe

] ∥∥∥∥
1
. (B.1)

derived in Examples 4.3 and 4.6 is minimized by the same θ as

min
θ

Ne∑
t=1

ψ
(
yt − ϕTt θ

)
(B.2)

with

ψ(x) ,
{
|x|2, if |x| < λ/2,
λ|x| − λ2/4 otherwise.

(B.3)

First notice that (B.1) is equivalent to

min
θ,η1,...,ηN

Ne∑
t=1

(
(yt − ϕTt θ − ηt)2 + λ|ηt |

)
. (B.4)

We now aim to show that

min
ηt

(yt − ϕTt θ − ηt)2 + λ|ηt | = ψ(yt − ϕTt θ). (B.5)

Let us consider the left hand side of (B.5) and step-by-step derive the right hand
side. First, notice that |ηt | = sign(ηt)ηt and

d
dηt
|ηt | =

d
dηt

sign(ηt)ηt = 2δ(ηt)ηt + sign(ηt), (B.6)
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the function δ( · ) denoting the Dirac delta function. Then

d
dηt

(
(yt − ϕTt θ − ηt)2 + λ|ηt |

)
= −2(yt − ϕTt θ − ηt) + 2λδ(ηt)ηt + λ sign(ηt).

Equating the derivative to zero and solve for ηt gives

η∗t = yt − ϕTt θ − λδ(η∗t )η
∗
t − λ/2 sign(η∗t ), (B.7)

which is implicit in η∗t . For a η∗t > 0, (B.7) reduces to

η∗t = yt − ϕTt θ − λ/2 (B.8)

which implies that yt − ϕTt θ > λ/2. Equivalent, a η∗t < 0 implies that η∗t = yt −
ϕTt θ + λ/2 and yt − ϕTt θ < −λ/2. Now, if λ/2 ≥ yt − ϕTt θ ≥ 0, then ηt ≥ 0, since
otherwise it dose not counteract on the positive yt − ϕTt θ in the left hand side of
(B.5). Using this, the left hand side of (B.5) becomes

min
ηt :ηt≥0

(yt − ϕTt θ − ηt)2 + ληt = min
ηt :ηt≥0

ηt(ηt + 2(λ/2 − (yt − ϕTt θ))). (B.9)

Since λ/2− (yt −ϕTt θ) ≥ 0, η∗t = 0 minimizes (B.9). Similarly, if −λ/2 ≤ yt −ϕTt θ ≤
0, then ηt ≤ 0 which leads to

min
ηt :ηt≤0

(yt − ϕTt θ − ηt)2 − ληt = min
ηt :ηt≤0

ηt(ηt − 2(λ/2 + yt − ϕTt θ)) (B.10)

and again the same solution, η∗t = 0. All together

η∗t =


yt − ϕTt θ − λ/2, yt − ϕTt θ > λ/2,
0, |yt − ϕTt θ| < λ/2,
yt − ϕTt θ + λ/2, yt − ϕTt θ < −λ/2.

(B.11)

(B.11) inserted in (yt − ϕTt θ − ηt)2 + λ|ηt | gives

min
ηt

(yt − ϕTt θ − ηt)2 + λ|ηt | (B.12a)

=(yt − ϕTt θ − η∗t )2 + λ|η∗t | (B.12b)

=


λ2/4 + λ|yt − ϕTt θ − λ/2|, if yt − ϕTt θ > λ/2
(yt − ϕTt θ)2, |yt − ϕTt θ| < λ/2
λ2/4 + λ|yt − ϕTt θ + λ/2|, yt − ϕTt θ < −λ/2

(B.12c)

=


λ(yt − ϕTt θ) − λ2/4, if yt − ϕTt θ > λ/2
(yt − ϕTt θ)2, |yt − ϕTt θ| < λ/2
−λ(yt − ϕTt θ) − λ2/4, yt − ϕTt θ < −λ/2

(B.12d)

=ψ
(
yt − ϕTt θ

)
(B.12e)

where the last equality holds from the definition (B.3) of the Huber loss function.
Since (B.5) holds for any θ, it follows that θ minimizing (B.1) also minimizes
(B.2).
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Abstract

Segmentation of time-varying systems and signals into models whose
parameters are piecewise constant in time is an important and well
studied problem. It is here formulated as a least-squares problem
with sum-of-norms regularization over the state parameter jumps, a
generalization of `1-regularization. A nice property of the suggested
formulation is that it only has one tuning parameter, the regulariza-
tion constant which is used to trade off fit and the number of seg-
ments.

1 Model Segmentation

Estimating linear regression models

y(t) = ϕT (t)θ (1)

is probably the most common task in system identification. It is well known how
ARX-models

y(t) + a1y(t − 1) + · · · + any(t − n)

= b1u(t − nk − 1) + · · · + bmu(t − nk −m)
(2)

with inputs u and outputs y can be cast in the form (1). Time-series AR models,
without an input u are equally common.

The typical estimation method is least-squares,

θ̂(N ) = arg min
θ

N∑
t=1

∥∥∥y(t) − ϕT (t)θ
∥∥∥2
, (3)

where ‖ · ‖ denotes the Euclidean or `2 norm.

A common case is that the system (model) is time-varying:

y(t) = ϕT (t)θ(t). (4)
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A time-varying parameter estimate θ̂ can be provided by various tracking (on-
line, recursive, adaptive) algorithms. A special situation is when the system pa-
rameters are piecewise constant, and change only at certain time instants tk that
are more or less rare:

θ(t) = θk , tk < t ≤ tk+1. (5)

This is known as model or signal segmentation and is common in e.g., signal anal-
ysis (like speech and seismic data), failure detection and diagnosis. There is of
course a considerable literature around all this and its ramifications, e.g., Ljung
(1999), Gustafsson (2001), Basseville and Nikiforov (1993).

The segmentation problem is often addressed using multiple detection
techniques, multiple models and/or Markov models with switching regression,
see, e.g., Lindgren (1978), Tugnait (1982), Bodenstein and Praetorius (1977). The
function segment for the segmentation problem in the System Identification
Toolbox (Ljung, 2007), is based on a multiple model technique (Andersson, 1985).

2 Our Method

We shall in this contribution study the segmentation problem from a slightly
different perspective. If we allow all the parameter values in (4) to be free in a
least-squares criterion we would get

min
θ(t), t=1,...,N

N∑
t=1

∥∥∥y(t) − ϕT (t)θ(t)
∥∥∥2
. (6)

Since the number of parameters then exceeds or equals the number of observa-
tions we would get a perfect fit, at the price of models that adjust in every time
step, following any momentary noise influence. Such a grossly over-fit model
would have no generalization ability, and so would not be very useful.

2.1 Sum-of-Norms Regularization

To penalize model parameter changes over time, we add a penalty or regulariza-
tion term (see e.g., Boyd and Vandenberghe (2004, p. 308)) that is a sum of norms
of the parameter changes:

min
θ(t), t=1,...,N

N∑
t=1

∥∥∥y(t) − ϕT (t)θ(t)
∥∥∥2

+ λ
N∑
t=2

∥∥∥θ(t) − θ(t − 1)
∥∥∥

reg
, (7)

where ‖ · ‖reg is the norm used for regularization, and λ is a positive constant
that is used to control the trade-off between model fit (the first term) and time
variation of the model parameters (the second term). The regularization norm
‖ · ‖reg could be any vector norm, like `1 or `p, but it is crucial that it is a sum
of norms, and not a sum of squared norms, which is the more usual Tikhonov
regularization.

When the regularization norm is taken to be the `1 norm, i.e., ‖z‖1 =
∑n
k=1 |zk |,
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the regularization in (7) is standard `1 regularization of the least-squares crite-
rion. Such regularization has been very popular recently, e.g., in the much used
lasso method (Tibsharani, 1996) or compressed sensing (Donoho, 2006; Candès
et al., 2006). There are two key reasons why the parameter fitting problem (7) is
attractive:

• It is a convex optimization problem, so the global solution can be computed
efficiently. In fact, its special structure allows it to be solved in O(N ) oper-
ations, so it is quite practical to solve it for a range of values of λ, even for
large values of N .

• The sum-of-norms form of the regularization favors solutions where “many”
(depending on λ) of the regularized variables come out as exactly zero in
the solution. In this case, this means estimated parameters that change
infrequently (with the frequency of changes controlled roughly by λ).

We should comment on the difference between using an `1 regularization and
some other type of sum-of-norms regularization, such as sum-of-Euclidean norms.
With `1 regularization, we obtain a time-varying model in which individual ele-
ments of the θ(t) change infrequently. When we use sum-of-norms regularization,
the whole vector θ(t) changes infrequently; but when it does change, typically all
its elements change. In a statistical linear regression framework, sum-of-norms
regularization is called group-lasso (Yuan and Lin, 2006), since it results in esti-
mates in which many groups of variables (in this case, all elements of the param-
eter change θ(t) − θ(t − 1)) are zero.

2.2 Regularization Path and Critical Parameter Value

The estimated parameter sequence θ(t) as a function of the regularization param-
eter λ is called the regularization path for the problem. Roughly, larger values of
λ correspond to estimated θ(t) with worse fit, but fewer segments. A basic result
from convex analysis tells us that there is a value λmax for which the solution of
the problem is constant, i.e., θ(t) does not vary with t, if and only if λ ≥ λmax. In
other words, λmax gives the threshold above which there is only one segment in
θ(t). The critical parameter value λmax is very useful in practice, since it gives a
very good starting point in finding a suitable value of λ. Reasonable values are
typically on the order of 0.01λmax to λmax (which results in no segmentation).

Let θconst be the optimal constant parameter vector, i.e., the solution of the nor-
mal equations

N∑
t=1

(
y(t) − ϕT (t)θconst

)
ϕT (t) = 0. (8)

Then we can express λmax as

λmax = max
t=1,...,N−1

∥∥∥∥∥∥∥
t∑

τ=1

2
(
y(τ) − ϕT (τ)θconst

)
ϕT (τ)

∥∥∥∥∥∥∥
reg∗

, (9)

where ‖ · ‖reg∗ is the dual norm associated with ‖ · ‖reg. This is readily computed.
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To verify our formula for λmax we use convex analysis (Rockafellar, 1996; Bert-
sekas et al., 2003; Borwein and Lewis, 2000). The constant parameter θ(t) =
θconst solves the problem (7) if and only 0 is in its subdifferential. The fitting
term is differentiable, with gradient w.r.t. θ(t) equal to

2
(
y(t) − ϕT (t)θconst

)
ϕT (t). (10)

Now we work out the subdifferential of the regularization term. The subdifferen-
tial of ‖ · ‖reg at 0 is the unit ball in the dual norm ‖ · ‖reg∗. Therefore the subdiffer-
ential of the regularization term is any vector sequence of the form

g(1) = − z(2), (11a)

g(2) = z(2) − z(3), (11b)

...

g(N − 1) = z(N − 1) − z(N ), (11c)

g(N ) = − z(N ), (11d)

where z(2), . . . , z(N ) satisfy ‖z(t)‖reg∗ ≤ λ. We solve these to get

z(t) = −
t−1∑
τ=1

g(τ), t = 2, . . . , N . (12)

The optimality condition is

g(t) + 2
(
y(t) − ϕT (t)θconst

)
ϕT (t) = 0, t = 1, . . . , N . (13)

Combining this with the formula above yields our condition for optimality of
θ(t) = θconst as λ ≥ λmax.

2.3 Iterative Refinement

To (possibly) get even fewer changes in the parameter θ(t), with no or small in-
crease in the fitting term, iterative re-weighting can be used (Candès et al., 2008).
We replace the regularization term in (7) with

λ
N∑
t=2

w(t)
∥∥∥θ(t) − θ(t − 1)

∥∥∥
reg
, (14)

where w(2), . . . , w(N ) are positive weights used to vary the regularization over
time. Iterative refinement proceeds as follows. We start with all weights equal
to one, i.e., w(0)(t) = 1. Then for i = 0, 1, . . . we carry out the following iteration
until convergence (which is typically in just a few steps).

1. Find the parameter estimate.
Compute the optimal θ(i)(t) with weighted regularization using weights
w(i).

2. Update the weights.
Set w(i+1)(t) = 1

/(
ε +

∥∥∥θ(i)(t) − θ(i)(t − 1)
∥∥∥

reg

)
.
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Here ε is a positive parameter that sets the maximum weight that can occur.

One final step is also useful. From our final estimate of θ(t), we simply use the set
of times at which a model change occurs (i.e., for which θ(t)−θ(t −1) is nonzero),
and carry out a final least-squares fit over the parameters, which we now require
to be piecewise constant over the fixed intervals. This typically gives a small
improvement in fitting, for the same number of segments.

2.4 Solution Algorithms and Software

Many standard methods of convex optimization can be used to solve the problem
(7) (code used by the authors can be found on http://www.rt.isy.liu.se/
~ohlsson/code.html). Systems such as CVX (Grant and Boyd, 2010, 2008) or
YALMIP (Löfberg, 2004) can readily handle the sum-of-norms regularization, by
converting the problem to a cone problem and calling a standard interior-point
cone solver. For the special case when the `1 norm is used as the regularization
norm, more efficient special purpose algorithms and software can be used, such
as l1_ls (Kim et al., 2007). Recently many authors have developed fast first
order methods for solving `1 regularized problems, and these methods can be
extended to handle the sum-of-norms regularization used here; see, for example,
Roll (2008§2.2). Both interior-point and first-order methods have a complexity
that scales linearly with N .

3 Numerical Illustration

We illustrate our method by applying it to a number of segmentation problems.
We take ε = 0.01 and use the Euclidean norm for regularization throughout the
examples. The refinement technique described in Section 2.3 was applied with
two refinement iterations and a final refinement by applying least-squares on
segments without changes.

Example 1: Changing Time Delay
This example is from iddemo11 in the System Identification Toolbox, (Ljung,

2007). Consider the system

y(t) + 0.9y(t − 1) = u(t − nk) + e(t). (15)

The input u is a ±1 PRBS (Pseudo-Random Binary Sequence) signal and the addi-
tive noise has variance 0.1. At time t = 20 the time delay nk changes from 2 to 1.
The data are shown in Figure 1. An ARX-model

y(t) + ay(t − 1) = b1u(t − 1) + b2u(t − 2) (16)

is used to estimate a, b1, b2 with the method described in the previous section.
The resulting estimates using λ = 0.1λmax are shown in Figure 2. The solid lines
show the estimate and dashed the true parameter values. We clearly see that b1
jumps from 0 to 1, to “take over” to be the leading term around sample 20. The
estimate of the parameter a (correctly) does not change notably.

http://www.rt.isy.liu.se/~ohlsson/code.html
http://www.rt.isy.liu.se/~ohlsson/code.html
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Figure 1: The data used in Example 1.
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Figure 2: The parameter estimates in Example 1. Solid lines show the pa-
rameter estimates and dashed lines the true parameter values.
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Example 2: Changing Time Series Dynamics
Consider the time series

y(t) + ay(t − 1) + 0.7y(t − 2) = e(t) (17)

with e(t) ∼ N (0, 1). At time t = 100 the value of a changes from −1.5 to −1.3. The
output data and the estimate of a are shown in Figure 3. λ = 0.01λmax was used.
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Figure 3: The time series data (upper plot) and the estimate of a (lower plot)
of Example 2.

To motivate the iterative refinement procedure suggested in Section 2.3, let us
see what happens if it is removed. Figure 4 shows the estimate of a (around
t = 100) with and without the refinement iteration. As shown by the figure, (7)
incorrectly estimates the change at t = 100 and gives an estimate having a change
both at t = 100 and t = 101. Using iterative refinement, however, this does not
occur. Without iterative refinement, a is estimated to −5.1 at t = 100.

Example 3: Seismic Signal Segmentation
Let us study the seismic data from the October 17, 1989, Loma Prieta earthquake
in the Santa Cruz mountains. (This data is provided with Matlab as quake.mat
and discussed in the command quake.m). We choose to decimate the 200 Hz
measurements of acceleration in the east-west direction (“e”) by a factor of 100
and segment the resulting signal modeled as an AR process of second order. Here,
the regularization constant λ in (7) will really act as a design parameter that
controls how many segments will be chosen. For example, λ = 0.15λmax gives
two segments, λ = 0.12λmax gives three segments and λ = 0.1λmax gives four
segments. The result for λ = 0.15λmax is shown in Figure 5.
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Figure 4: Estimates of a in Example 2 with (top plot) and without (bottom
plot) iterative refinement. Thick black line, estimate after least-squares has
been applied to segments without changes in a and light-gray thick line, es-
timate given by (7). In the top plot, the gray thin lines show estimates of
a after one and two iterative refinements (the two lines are not distinguish-
able). Without iterative refinement (bottom plot) a is estimated to −5.1 at
t = 100.
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Figure 5: The seismic signal used in Example 3 is shown in the upper plot.
a1 is shown in the lower plot.
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4 Comparisons with Other Methods for Segmentation

Several methods for model segmentation have been suggested earlier, see e.g.,
Gustafsson (1992, Chap. 5), Gustafsson (2001), Basseville and Nikiforov (1993).
They typically employ either multiple detection algorithms (Segen and Sander-
son, 1980), hidden Markov models (HMM) (Blom and Bar-Shalom, 1988) or ex-
plicit management of multiple models, AFMM (Adaptive Forgetting by Multiple
Models, Andersson (1985)). The latter algorithm is implemented as the method
segment in the System Identification Toolbox and as the routine detectM in the
software package adfilt, accompanying the book Gustafsson (2001). The idea
is to let M Kalman filters for a stochastic system live in parallel. At each sample
the M different predictions from the filters are evaluated. The worst performing
filter is killed and a new filter is started. The segmentation is formed by the final
estimate of each best performing filter. It should also be mentioned that a similar
method to the one proposed in this paper has been discussed for set membership
identification, and image segmentation, in Ozay et al. (2008).

All algorithms for tracking time-varying systems must have a trade-off between
assumed noise level (e) and the tendency and size of system variations, and that
may be reflected in the choice of several tuning parameters. In the segment
algorithm, the user has to select 8 parameters (assumed noise variance R2, proba-
bility of a jump, the process noise covariance matrix R1, the initial parameter es-
timates, along with their covariance matrices, the guaranteed life length of each
filter, and, if R2 is estimated, the forgetting factor for estimating it). Even though
several parameters can be given default values, it may be tedious work to tune
the segmented regression algorithm. At the same time it leads to considerable
flexibility. For good choices of these parameters, segment often gives perfor-
mance comparable in quality to the algorithm suggested here. The big advantage
of the proposed method is that it has only one scalar design parameter, λ, with
the number of segments controlled by λ. Moreover, reasonable starting values of
the parameter can be found from λmax, which is easily computed.

Most existing methods are local in nature: A jump is hypothesized at each time
instant, and the ensuing samples are used to test this hypothesis. In contrast, our
method is indeed global in nature: For a given λ (corresponding to a certain num-
ber of jumps), the positions of these jumps are determined as those that globally
minimize (7). Still, the complexity of the algorithm is linear in the length of the
data record. It seems that this should be an advantage for situations with infre-
quent jumps in noisy environments. That this indeed is the case is illustrated in
the following example.

Example 4: Comparison Between segment and (7)
Let us compare our method with segment in the System Identification Toolbox

(Ljung, 2007). Consider the system

y(t) + a1y(t − 1) + 0.7y(t − 2) = u(t − 1) + 0.5u(t − 2) + e(t) (18)

with u(t) ∼ N (0, 1) and e(t) ∼ N (0, 9). At t = 400, a1 changes from −1.5 to −1.3
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Figure 6: Estimates of a1 in the ARX-model used in Example 4 using our
method (solid) and segment (dashed).

and at t = 1500 a1 returns to −1.5. Both segment and our method are pro-
vided with the correct ARX structure and asked to estimate all ARX parameters
(a1, a2, b1, b2). With the same design parameters as used to generate the data
(the true equation error variance, jump probability, initial ARX parameters and
covariance matrix of the parameter jumps) segment does not find any changes
at all in the ARX parameters. Tuning the design variable R2 in segment so it
finds three segments gives the estimate of a1 shown in Figure 6. It does not seem
possible to find values of all the design variables in segment that give the correct
jump instants.

Using our method with the same choices as in Section 3 and tuning λ so as to
obtain three segments gives directly the correct change times. The parameter
estimate of our method using λ = 0.025λmax is also shown in Figure 6.

5 Ramifications and Conclusions

5.1 Akaike’s Criterion and Hypothesis Testing

Model segmentation is really a problem of selecting the number of parameters to
describe the data. If the ARX model has n parameters and uses R segments, the
segmented model uses d = Rn parameters. The Akaike criterion (AIC), (Akaike,
1973) is a well known way to balance the model fit against the model complexity:

min
d,Θ

[
V (ZN ,Θ) +

2d
N

]
(19)

d = dim(Θ) (20)

where V is 2/N times the negative log likelihood function and ZN is the data
record with N observations. Comparing with (7), V is the log of 1/N times
the first term (if the innovations are Gaussian, see e.g., Ljung (1999, p. 506)),
and the regularization term corresponds to the model cardinality term 2d/N . In
fact, sum-of-norms regularization is a common way to approximate cardinality
constraints, e.g., Boyd and Vandenberghe (2004). The link to cardinality penal-
ties becomes even more pronounced with the iterative refinement procedure of
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Section 2.3. It aims, with iterative replacement of the weights, at a regularization
term

λ
N∑
t=2

‖θ(t) − θ(t − 1)‖reg

ε + ‖θ(t) − θ(t − 1)‖reg
, (21)

which essentially counts the number of nonzero terms, i.e., the number of jumps
and hence the number of parameters.

A common statistical approach to selecting model size is to use hypothesis testing,
e.g., Ljung (1999, p. 507), where the simpler model is the null hypothesis. Using
the optimal test, likelihood ratios, is known to correspond to the Akaike criterion
at a certain test level (Söderström, 1977). The criterion (7) can thus be interpreted
as a simplified likelihood ratio test, where λ sets the test levels.

5.2 General State Space Models

It is well known that ARX-model estimation with varying parameters can be seen
as state estimation in a general state space model, see e.g., Ljung (1999, p. 367).
Applying the Kalman filter to this time-varying ARX-model gives the recursive
least squares algorithm. It works well if the time variation is well described as a
Gaussian white noise process. The segmentation problem (5) rather correspond
to an assumption that the parameter changes at rare instants, i.e., a “process
noise” that as zero most of the time, and nonzero at random time instants with a
random amplitude. Our method can therefore also be used for state smoothing
for general state space models with such process noise. This includes problems
of abrupt change detection, and processes with load disturbances (cf. equations
(2.10)-(2.11) in Ljung (1999).)

5.3 Summary

We have studied the model segmentation problem and suggested to treat it as
least-squares problem with sum-of-norms regularization of the parameter
changes. We do not claim that the suggested method necessarily outperforms
existing approaches; but being a global method, it certainly has an edge in cases
with considerable noise and infrequent jumps. An important benefit is also that
it has just one scalar design variable, whose influence on the parameter fit and
number of segments is easily understood, and for which a reasonable starting
value is readily found.
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Abstract

Piecewise affine systems serve as an important approximation of non-
linear systems. The identification of piecewise affine systems is here
tackled by overparametrizing and assigning a regressor-parameter to
each of the observations. Regressor parameters are then forced to be
the same if that not causes a major increase in the fit term. The formu-
lation takes the shape of a least-squares problem with sum-of-norms
regularization over regressor parameter differences, a generalization
of the `1-regularization. The regularization constant is used to trade
off fit and the number of partitions.

1 Introduction

Hybrid systems is a class of systems having both continuous and discrete dynam-
ics. The continuous dynamics are often ruled by physical principles and the dis-
crete due to discrete decisions or logic devices. But hybrid systems have also
proven to be handy approximations of nonlinear continuous systems.

A type of hybrid systems is systems which can be described by a piecewise affine
function, denoted piecewise affine systems. A piecewise affine (PWA) function f :
Rnx → R can be written on the form

f (x) =



θT1

x1
 , if x ∈ H1,

...

θTs

x1
 , if x ∈ Hs,

(1)

where θk ∈ Rnx+1, k = 1, . . . , s, define the submodels on the partitions Hk , k =
1, . . . , s. The partitions are often assumed to be polyhedral. Measurements, or
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observations, are noisy versions of f (x) according to

y = f (x) + e, E[e] = 0, E[eeT ] = Γ . (2)

A subclass of PWA functions is piecewise ARX (PWARX). For a PWARX, x is com-
posed of past system inputs u and outputs y.

1.1 Problem Formulation

Given the observations {(yk , xk)}Nk=1, y ∈ R, x ∈ R
nx , estimate a piecewise affine

function of the form (1). The number of partitions, s, is a priori unknown. Esti-
mation of the shape of the partitions is not treated in this contribution but can be
handled by e.g., applying a classification algorithm to the output of the proposed
algorithm (see e.g., Bemporad et al. (2005)).

1.2 Background

It is clear that if the partitions, i.e.,Hi , i = 1, . . . , s, are known, it is easy to find the
regressor parameters of the subsystems. PWA system identification approaches
can therefore be classified into groups according to how they find the partitions.
Five techniques stand out:

• The parameters giving the partitions and the subsystem models are esti-
mated simultaneously.

• Simple partitions and subsystem models are estimate simultaneously and
repeatedly. See e.g., Roll et al. (2004).

• The partitions and submodels are iteratively estimated, alternating between
estimating partitions and submodels. See e.g., Bemporad et al. (2003).

• The partitions are first estimated and then the submodels.

• The submodels are estimated and then the partitions (see e.g., Vidal et al.
(2003); Bemporad et al. (2005)).

The proposed method belongs to the last category. The underlying idea of meth-
ods of the last item is to simultaneously cluster the observed data and fit an affine
model to the data of each cluster. It is essential that the clustering and regres-
sion are done simultaneously (or possibly alternating between the two) since the
distance measure used in the clustering can not only be based on the distance
between regressors. It must also depend on how well the measured output fit
to the estimated submodels. Having clustered and estimated the submodels, the
partitions are estimated.

In this contribution we pose the identification of piecewise affine systems as a
sum-of-norms regularized least squares problem. The regularization constant is
used to trade off fit and the number of partitions i.e., s, and could preferably
be found using cross validation (see e.g., Hastie et al. (2001, pp. 214-217) for
different types of cross validation). The proposed formulation takes the form of a
convex optimization problem, so the global solution can be computed efficiently.
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Relevant previous contributions using the sum-of-norms regularization are given
by Kim et al. (2009); Ohlsson et al. (2010c,a,b). See also Ozay et al. (2008).

2 Proposed Method

2.1 Informal Preview

Assume that we are given a data set ZN = {yk , xk , k = 1, . . . , N } generated by a
piecewise function (1), with s partitions Hk , k = 1, . . . , s, and submodels defined
by θ0

k , k = 1, . . . , s.

1. In a first round we associate each measurement k with a parameter vec-
tor θk ∈ Rnx+1. The goal of the proposed algorithm is to estimate θk , k =
1, . . . , N , so that if xk ∈ Hr then θk = θ0

r .

2. Next we cluster the x’s into s subsets Hr , r = 1, . . . , s, that are suitable to
associate with the same vector θ̄r i.e., Hr , {xk |θk = θ̄r }. This is done by
checking which parameter vectors θk , θj that can be merged. Essentially
we should check how much the criterion of fit

min
θk ,k=1,...,N

N∑
k=1

∥∥∥∥∥∥Γ −1/2
(
yk − θTk

[
xk
1

])∥∥∥∥∥∥2

2

(3)

increases by setting θk = θj = θ̄r and merge if the increase is small enough.
Then check if any of the θ̄rs can be merged. And so on. This combinato-
rial problem is impractical to solve and we will here find an approximative
solution using an optimization formulation. Note that we simultaneously
estimate the submodels defined by θ̄r , r = 1, . . . , s and cluster the observa-
tion data (or the θks).

3. The point sets Hr can now be used to partition the x-space into s parti-
tions Hr . This is a standard pattern recognition/classification problem that
can be solved by several established technique (e.g., support vector ma-
chines (Vapnik, 1995)) and will not be discussed here. See also Bemporad
et al. (2005) for a discusses of this problem for a PWA system identification
setting.

2.2 Clustering and Estimation Algorithm

We solve step (2) by the following technique: Let

K(xk , xj ) : Rnx × Rnx → R (4)

be a kernel. We will give some examples of suitable choices of K shortly.

Given a data set ZN , a choice of kernel K , p and λ, minimize

N∑
k=1

∥∥∥∥∥∥Γ −1/2
(
yk − θTk

[
xk
1

])∥∥∥∥∥∥2

2

+ λ
N∑

k,j=1

K(xk , xj )‖θk − θj‖p (5)
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with respect to θk , k = 1, . . . , N , where Γ is defined in (2).

The first term of (5),
N∑
k=1

∥∥∥∥∥∥Γ −1/2
(
yk − θTk

[
xk
1

])∥∥∥∥∥∥2

2

(6)

measures the fit to observations. The second term
N∑
k=1

N∑
j=1

K(xk , xj )‖θk − θj‖p (7)

is a regularization term, a sum-of-norms regularization. The sum-of-norms reg-
ularization has strong similarities to the `1-regularization, which has been very
popular recently, e.g., in the much used lasso method (Tibsharani, 1996) or com-
pressed sensing (Donoho, 2006; Candès et al., 2006). In fact, if we define ∆θ as the
vector in RN2

of stacked terms K(xk , xj )‖θk − θj‖p, k, j = 1 . . . , N ,

∆θ ,
[
K(x1, x1)‖θ1 − θ1‖p K(x1, x2)‖θ1 − θ2‖p . . .

K(xN , xN−1)‖θN − θN−1‖p K(xN , xN )‖θN − θN ‖p
]T
, (8)

one could see (5) as a `1-regularized problem with the `1 regularization acting
on the vector ∆θ. The `1-regularization makes sure that the vector ∆θ becomes
sparse. We will in general use p = 2, but other choices are of course possible.
However, to get the properties discussed below, p should be chosen greater than
one. We will come back to this shortly.

There are three key reasons why the criterion (5) is attractive:

• It is a convex optimization problem, so the global solution can be computed
efficiently.

• The sum-of-norms-regularization will cause θk to be identical to θj , if that
not causes a major increase in the fit term (6). In this case, this implies that
many of the regularized variables come out as exactly zero. λ is a design
parameter which regulates the number of clusters or partitions found.

• It is easy to include constraints without destroying convexity.

The kernel can be used to stress that θ’s associated with closed-by x’s are more
probable to have identical θ-values. It can be seen as a prior for the clustering.
We will use the following kernel in our examples:

K(xk , xj ) ,

1
if xj is one of the 9 closest neighbors
of xk among all the observations,

0 otherwise.

(9)

Since the number of parameters in (5) equals the number of observations, the reg-
ularization is necessary to prevent overfitting to the noisy observations. Using (7)
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we prevent overfitting by penalizing the number of distinct θ-values, essentially
s, used in in (5).

Remark 1. Undesirable, also the cardinalities of Hr , r = 1, . . . , s, play a role in the regu-
larization (7). Our experience is that this effect is minor and that λ controls the trade-off
between fit and the number of partitions s.

We should comment on the difference between using p = 1 and some p > 1 in
(5). With p = 1, we obtain an estimate of the regularization variable having many
of its elements equal to zero, we obtain a sparse vector. When we use p > 1, the
whole estimated regularization variable vector often becomes zero; but when it
is nonzero, typically all its elements are nonzero. p > 1 is clearly to be preferred
here since we desire the whole parameter vectors θ to be the same if they are not
needed to be different. In a statistical linear regression framework, sum-of-norms
regularization (p > 1) is called group-lasso (Yuan and Lin, 2006), since it results
in estimates in which many groups of variables are zero.

We can now define (with θk , k = 1, . . . , N , minimizing (5)):

• s as the number of distinct θ-values in {θk , k = 1, . . . , N }.
• θ̄r , r = 1, . . . , s, to be the s distinct θ-values of {θk , k = 1, . . . , N }.
• Hr , r = 1, . . . , s, as Hr , {xk |θk = θ̄r }.
• r(k) as the function

r(k) , r |k ∈ Hr . (10)

2.3 Iterative Refinement

To (possibly) get even more zeros in the estimate of the regularized variables,
with no or small increase in the fitting term, iterative re-weighting can be used
(Candès et al., 2008). We modify the regularization term in (5) and consider

N∑
k=1

∥∥∥∥∥∥Γ −1/2
(
yk − θTk

[
xk
1

])∥∥∥∥∥∥2

2

+ λ
N∑
k=1

N∑
j=1

α(k, j)K(xk , xj )‖θk − θj‖p (11)

where α(1, 1), . . . , α(N,N ) are positive weights used to vary the regularization
over indices k and j. Iterative refinement proceeds as follows. We start with all
weights equal to one i.e., α(0)(k, j) = 1, k, j = 1, . . . , N . Then for i = 0, 1, . . . we
carry out the following iteration until convergence (which is typically in just a
few steps).

1. Find the θ estimates.
Compute the optimal θ(i)

k using (11) with the weighted regularization using
weights α(i).

2. Update the weights.
For j = 1, . . . , N , set α(i+1)(k, j) = 1/(ε + K(xk , xj )‖θk − θj‖p).

Here ε is a positive parameter that sets the maximum weight that can occur.
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One final step is also useful. From our final estimate of θ̄, we simply define the
mapping r(k) (see (10)) from the last iteration. Then carry out a constrained least
squares optimization over θ̄r

min
θ̄r ,r=1,...,s

N∑
k=1

∥∥∥∥∥∥Γ −1/2
(
yk − θ̄Tr(k)

[
xk
1

])∥∥∥∥∥∥2

2

. (12)

The algorithm is summarized in Algorithm 1.

Algorithm 1 PWA System Identification Using Sum-of-Norms Regularization
(PWASON)

Given {(yt , xt)}Nt=1. Let ε be a positive parameter, set α(0)(k, j) = 1 for k, j =
1, . . . , N and i = 0. Then, for a chosen kernel K , p > 1 and regularization pa-
rameter λ:

1. Compute the optimal θ(i)
k using (11) with α = α(i).

2. Set α(i+1)(k, j) = 1/(ε + K(xk , xj )‖θk − θj‖p).
3. If convergence, go to the next step, otherwise set i = i + 1 and return to (1).
4. Compute a final estimate of θ̄r using (12).

2.4 Solution Algorithms and Software

Many standard methods of convex optimization can be used to solve the prob-
lem (5). Systems such as CVX (Grant and Boyd, 2010, 2008) or YALMIP (Löf-
berg, 2004) can readily handle the sum-of-norms regularization, by converting
the problem to a cone problem and calling a standard interior-point method. For
the special case when the `1 norm is used as the regularization norm, more effi-
cient special purpose algorithms and software can be used, such as l1_ls (Kim
et al., 2007). Recently many authors have developed fast first order methods for
solving `1 regularized problems, and these methods can be extended to handle
the sum-of-norms regularization used here; see, for example, Roll (2008§2.2).

3 Numerical Illustrations

Example 1: A One Dimensional Example
Consider the one-dimensional PWARX system (introduced in Ferrari-Trecate

et al. (2003))

yk =


uk−1 + 2 + ek , −4 ≤ uk−1 ≤ −1,
−uk−1 + ek , −1 < uk−1 < 2,
uk−1 + 2 + ek , 2 ≤ uk−1 ≤ 4.

(13)

Generate {uk}50
k=1 by sample a uniform distribution U (−4, 4). Let ek ∼ N (0, 0.05).

Figure 1 shows the dataset {(yk , uk)}50
k=1. Let the kernel K be defined by (9), set
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Figure 1: Data used in Example 1. Solid line shows the true PWA function
of the PWARX system.
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Figure 2: Top plot, true (thin black line) and estimated (thick gray line) y
(underneath the black line so hardly visible) for k = 1, . . . , 50. Bottom plot,
true (thin black line) and estimated (thick gray line) θ for k = 1, . . . , 50.

xk = uk−1, Γ = 1 and chose p = 2. λ = 2 then produces the result shown in
Figure 2. The obtained θ̄-values were:[

−1.0
0.1

]
,

[
1.0
2.2

]
,

[
1.0
2.1

]
. (14)

The results compare well with the result reported in Ferrari-Trecate et al. (2003).
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Example 2: A Multi-Dimensional Example
Consider the multi-dimensional PWARX system (introduced in Bemporad et al.

(2003), see also Nakada et al. (2005); Bemporad et al. (2005))

yk =


−0.4yk−1 + uk−1 + 1.5 + ek , if 4yk−1 − uk−1 + 10 < 0
0.5yk−1 − uk−1 − 0.5 + ek , if 4yk−1 − uk−1 + 10 ≥ 0 and

5yk−1 + uk−1 − 6 < 0
−0.3yk−1 + 0.5uk−1 − 1.7 + ek , if 5yk−1 + uk−1 − 6 ≥ 0.

(15)

Generate {uk}200
k=1 by sample a uniform distribution U (−5, 5) and let ek ∼

U (−0.1, 0.1). Figure 3, left plot, shows the dataset {(yk , uk)}200
k=1. Define the ker-

nel K as in (9), set xk = [yk−1 uk−1]T , Γ = 1, p = 2 and λ = 1. The obtained
θ̄-values were: −0.40

1
1.50

 ,
 0.50
−1
−0.50

 ,
 0.57
−1
−0.50

 ,
−0.30

0.50
−1.7

 ,
−1.60

1.92
−4.7

 . (16)

Most of the observations obtained a θ equal to one of the four first θ̄-values
in (16). Three observations got a θ-estimate equal to the fifth θ̄-value. Increas-
ing λ (λ = 1.2) causes the third θ-estimate to disappear and the observations
previously associated with it to change to the second θ̄-value. The estimate for
λ = 1.2 is visualized in the right of Figure 3, Figures 4, 5, 6 and 7. s is 4. Setting
λ = 1.5 makes s = 3 and by that, all observations were correctly assigned to their
partitions.

Figure 3: Left plot, generated data (’o’, ’+’ and ’�’-symbols are used to show
Hr , r = 1, . . . , 3). Right plot, estimated clusters (’o’, ’+’, ’�’ and ’?’-symbols
are used to show Hr , r = 1, . . . , 4).
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Figure 4: Noise-free y (black thin) and estimated y (thick gray line) for k =
1, . . . , 200. The black line is on top of the gray line. See Figure 6 for the
difference between noise-free and estimated y.
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Figure 5: True θ (black thin) and estimated θ (thick gray line) for k =
1, . . . , 200.
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Figure 6: Difference between noise-free y and estimated y for k = 1, . . . , 200.
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Figure 7: Difference between true θ and estimated θ for k = 1, . . . , 200.
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Example 3: Approximation of a Nonlinear Function
Consider

yt = f (ut) + et , f (ut) = e−ut , et ∼ N (0, 0.001). (17)

Generate 100 observations by letting u ∼ U (0, 5). The observations are shown
in Figure 8. Let us use the proposed method to generate a piecewise affine ap-
proximation of f (ut) = e−ut . λ here controls the trade-off between the fit and the
number of segments. λ = 0.01 gives the result given in the left of Figure 9 and
λ = 0.05 gives the result given in the right of Figure 9. In both cases, the kernel
defined by (9), Γ = 1 and p = 2 were used.
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Figure 8: Observed y’s and f (thin gray line).
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Figure 9: Approximated f (thick black line) and f (thin gray line). In the
left plot λ = 0.01 and in the right plot λ = 0.05.
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4 Conclusion

A method for piecewise affine system identification has been presented. The for-
mulation takes the shape of a least-squares problem with sum-of-norms regular-
ization over regressor parameter differences, a generalization of `1-regularization.
The regularization constant is used to trade off fit and the number of partitions.
Numerical illustrations on previously known examples from the literature shows
that the proposed method performs well in comparison to know piecewise affine
systems identification methods.

There are several interesting extensions of proposed scheme. For example, a
piecewise nonlinear function could be estimated by applying a regularization as
in (7) to Support Vector Regression (SVR, see e.g., Suykens and Vandewalle (1999)).
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Abstract

The presence of abrupt changes, such as impulsive disturbances and
load disturbances, make state estimation considerably more difficult
than the standard setting with Gaussian process noise. Nevertheless,
this type of disturbances is commonly occurring in applications which
makes it an important problem. An abrupt change often introduces
a jump in the state and the problem is therefore readily treated by
change detection techniques. In this paper, we take a rather different
approach. The state smoothing problem for linear state space models
is here formulated as a least-squares problem with sum-of-norms reg-
ularization, a generalization of the `1-regularization. A nice property
of the suggested formulation is that it only has one tuning parameter,
the regularization constant which is used to trade off fit and the num-
ber of jumps. An extension to nonlinear state space models is also
given.

1 Introduction

We consider the problem of state estimation in linear state space models, where
impulsive disturbances occur in the process model. There are several conceptu-
ally different ways to handle disturbances in state estimation. One possibility
is to model the disturbance as a sequence of Gaussian random variables with
known second order moment, so the optimal solution is provided by the Kalman
filter (KF, Kalman (1960), see also Kailath et al. (2000)). Another, quite different,
possibility is to assume that the disturbance is a deterministic arbitrary sequence,
and apply subspace projections. See Hui and Zak (2005) for details and more ref-
erences on that approch. The case of impulsive process noise occurs frequently
in at least three different application areas:

127
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• In automatic control, impulsive noise is often used to model load distur-
bances.

• In target tracking, impulsive noise is used to model force disturbances, cor-
responding to maneuvers for the tracked object.

• In fault detection and isolation (FDI) literature impulsive noise is used to
model additive faults. Usually, this is done in a deterministic setting (Patton
et al., 1989), but a stochastic framework is also common (Basseville and
Nikiforov, 1993; Gustafsson, 2001).

We formulate the problem in a probabilistic framework where the KF is the
best linear unbiased estimator (BLUE), and the interacting multiple model (IMM,
Blom and Bar-Shalom (1988)) algorithm provides an approximation to the exact
problem. In contrast to IMM, we here propose a method that solves an approxi-
mate problem in an optimal way.

Our approach is based on convex optimization. It is well-known that the KF
solves an optimization problem where the sum of squared two-norms of the pro-
cess and measurement noises is minimized. Inspired by the recent progress of
sum-of-norms regularization in the statistical literature (Kim et al. (2009), see
also related contribution in the control community, Ohlsson et al. (2010c)), we
suggest to change the squared two-norm of the process noise to a sum-of-norms,
to capture the impulse character of the process disturbance. The consequence of
this is that a sparse sequence of process noise is automatically obtained in con-
trast to the KF. The algorithm solves the smoothing problem in linear complexity,
and a further advantage compared to KF and IMM algorithms is that convex con-
straints of the state sequence are easily handled in the same framework.

We start with a brief introduction to dynamical systems and stochastic distur-
bances. This is followed up by a discussion on the smoothing problem in Sec-
tion 3. In particular, we care about the optimization formulation of the Kalman
smoother. Section 4 contains the main contribution of the paper, the proposed
method for state smoothing with impulsive process disturbances. We call the
method state smoothing by sum-of-norms regularization (STATESON). In Sec-
tion 5 a comparison with popular methods for state smoothing with impulsive
process noise is given. A justification by some numerical illustrations is given in
Section 6. Section 7 presents an extension of the presented framework to nonlin-
ear models. The paper is ended by a conclusion in Section 8.

2 Introduction: Dynamic Systems with Stochastic
Disturbances

The standard linear state space model with stochastic disturbances is well known
to be

x(t + 1) = Atx(t) + Btu(t) + Gtv(t)

y(t) = Ctx(t) + e(t).
(1a)
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Here, v and e are white noises: sequences of independent random vectors

E[v(t)] = 0, E[e(t)] = 0 ∀t
E[v(t)vT (s)] = 0, E[e(t)eT (s)] = 0 if t , s

E[v(t)vT (t)] = R1(t), E[e(t)eT (t)] = R2(t).

(1b)

The independence of the noise sequences is required in order to make x(t) a
Markov process.

The model (1) with the “process noise” v being Gaussian is a standard model
for control applications. v then represents the combined effect of all those non-
measurable inputs that in addition to u affect the states. This is the common
model used both for state estimation and control design based on LQG (linear
quadratic Gaussian).

But, an equally common situation is that v corresponds to an unknown input. It
could be

• a load disturbance e.g., a step change in moment load in an electric motor,
a (up or down) hill for a vehicle, etc. (Sometimes, the term load disturbance
is used only for the case Bt = Gt .)

• an event that causes the state to jump, a change, see e.g., Gustafsson (2001).

Such unknown inputs are not naturally modeled as Gaussian noise. Instead it
is convenient to capture their unpredictable nature by the distribution (cf. eq
(2.10)-(2.11) in Ljung (1999).)

v(t) = δ(t)η(t), (2a)

where

δ(t) =

0 with probability 1 − µ
1 with probability µ

η(t) ∼ N (0, Q) (2b)

This makes R1(t) = µQ. The matrices At and Gt may further model the waveform
of the disturbance as a response to the pulse in v.

We shall in this contribution discuss efficient ways of estimating the states under
this assumption of the process noise v.

3 State Estimation (Smoothing)

A natural and common problem is to estimate the states x(t) of the system (1)
from measurements of u and y. For the case of Gaussian noise sources, this
problem is of course solved by the Kalman filter and the Kalman smoother, e.g.,
Kailath et al. (2000). For our current purpose it is of interest to view this as an
explicit minimization problem. For given x(1) the states x(t), t = 2, . . . , N can be
computed from v(t), t = 1, . . . , N − 1. The quality of these state estimates could
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be measured by the criterion of fit to observations:

N∑
t=1

∥∥∥R−1/2
2 (t)

(
y(t) − Ctx(t)

)∥∥∥2
2

(3)

where, for a vector z = [z1 z2 . . . znz ]
T , ‖z‖p , (

∑nz
i=1 |zi |

p)1/p. This should be
minimized w.r.t. x(1), v(t); t = 1, . . . , N − 1. At the same time, the use of jumps in
the states, corresponding to v should be constrained in some sense, so as to avoid
over-fitting to the noisy y-measurements.

The most common way is to use a quadratic regularization

min
x(1),v(t),1≤t≤N−1

N∑
t=1

∥∥∥R−1/2
2 (t)

(
y(t) − Ctx(t)

)∥∥∥2
2

+
N−1∑
t=1

∥∥∥R−1/2
1 (t)v(t)

∥∥∥2
2

(4)

which gives the classical Kalman smoothing estimate, e.g., Kailath et al. (2000).
In the case of Gaussian process noise v, this is also the maximum likelihood esti-
mate and gives the conditional mean of x(t) given the observations. It is a pure
least squares problem, and the solution is usually given in various recursive filter
forms, see e.g., Ljung and Kailath (1976).

Since x(t) is a given function of x(1), v(t) and the known sequence u(t), it may
seem natural to do the minimization directly over x(t), i.e., to write

min
x(t),1≤t≤N

N∑
t=1

∥∥∥R−1/2
2 (t)

(
y(t) − Ctx(t)

)∥∥∥2
2

+
N−1∑
t=1

∥∥∥R−1/2
1 (t)G†t

(
x(t + 1) − Atx(t) − Btu(t)

)∥∥∥2
2

(5a)

where G† is the pseudo inverse of G. However, if G is not full rank, nothing con-
strains the state evolution in the null space of G, so (5a) must be complemented
with the constraint

G⊥t (x(t + 1) − Atx(t) − Btu(t)) = 0 (5b)

where G⊥ is the projection onto the null-space of G,

G⊥ , I − GG†. (6)

However, since several approaches can be interpreted as explicit methods to esti-
mate v(t) (or δ(t) in (2)), we shall adhere to the (equivalent) formulation (4).

4 The Proposed Method: State Smoothing by
Sum-of-Norms Regularization

The type of process noise that we are interested in (see (2)) motivates a rather
different regularization term than the one used in (5a).
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4.1 Sum-of-Norms Regularization

To penalize state changes over time, we use a penalty or regularization term (see
e.g., Boyd and Vandenberghe (2004, p. 308)) that is a sum of norms of the esti-
mated extra inputs v(t):

min
x(1),v(t),1≤t≤N−1

N∑
t=1

∥∥∥R−1/2
2 (t)

(
y(t) − Ctx(t)

)∥∥∥2
2

+ λ
N−1∑
t=1

∥∥∥Q−1/2v(t)
∥∥∥
p

(7a)

subject to

x(t + 1) = Atx(t) + Btu(t) + Gtv(t) (7b)

where the `p-norm is used for regularization, and λ is a positive constant that
is used to control the trade-off between the fit to the observations y(t) (the first
term) and the size of the state changes caused by v(t) (the second term). The
regularization norm could be any `p-norm, like `1 or `2, but it is crucial that it is
a sum of norms, and not a sum of squared norms, which was used in (5a).

When the regularization norm is taken to be the `1 norm, i.e., ‖z‖1 =
∑nz
i=1 |zi |, the

regularization in (7a) is a standard `1 regularization of the least-squares criterion.
Such regularization has been very popular recently, e.g., in the much used lasso
method (Tibsharani, 1996) or compressed sensing (Donoho, 2006; Candès et al.,
2006).

There are two key reasons why the criterion (7a) is attractive:

• It is a convex optimization problem, so the global solution can be computed
efficiently. In fact, its special structure allows it to be solved in O(N ) oper-
ations, so it is quite practical to solve it for a range of values of λ, even for
large values of N .

• The sum-of-norms form of the regularization favors solutions where “many”
(depending on λ) of the regularized variables come out as exactly zero in
the solution. In this case, this implies that many of the estimates of v(t)
become zero (with the number of v(t)s becoming zero controlled roughly
by λ).

A third advantage is that

• It is easy to include realistic convex state constraints without destroying
convexity.

We should comment on the difference between using an `1 regularization and
some other type of sum-of-norms regularization, such as sum-of-Euclidean norms.
With `1 regularization, we obtain an estimate of v having many of its elements
equal to zero. When we use sum-of-norms regularization, the whole estimated
vector v(t) often becomes zero; but when it is nonzero, typically all its elements
are nonzero. In a statistical linear regression framework, sum-of-norms regular-
ization is called group-lasso (Yuan and Lin, 2006), since it results in estimates in
which many groups of variables are zero.
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Remark 1. A criterion (7a) handles the process noise as described in (2) well. In some
situations it may however be more accurate to assume a Gaussian noise component in the
process noise as well, i.e.,

x(t + 1) = Atx(t) + Btu(t) + Gtv(t) + Htw(t)

y(t) = Ctx(t) + e(t)
(8)

with w ∼ N (0, S) and v as defined in (2). It is then motivated to use a criterion

min
x(1),v(t),w(t)

1≤t≤N−1

N∑
t=1

∥∥∥R−1/2
2 (t)

(
y(t) − Ctx(t)

)∥∥∥2
2 +

N−1∑
t=1

λ
∥∥∥Q−1/2v(t)

∥∥∥
p

+
∥∥∥S−1/2w(t)

∥∥∥2
2 (9a)

s.t. x(t + 1) =Atx(t) + Btu(t) + Gtv(t) + Htw(t) (9b)

rather than (7).

4.2 Regularization Path and Critical Parameter Value

The estimated sequence v(t) as a function of the regularization parameter λ is
called the regularization path for the problem. Roughly, larger values of λ cor-
respond to estimated x(t) with worse fit, but an estimate of v(t) with many zero
elements. A basic result from convex analysis tells us that there is a value λmax

for which the estimated v(t) is identically zero if and only if λ ≥ λmax. In other
words, λmax gives the threshold above which v(t) = 0, t = 1, ..., N . The critical
parameter value λmax is very useful in practice, since it gives a very good starting
point in finding a suitable value of λ. Reasonable values are typically in the order
of 0.01λmax to λmax.

Proposition 1. Introduce εt for the (process) noise free residual

εt , y(t) − Ct
( t−1∑
r=1

t−1∏
s=r+1

AsBru(r) +

 t−1∏
s=1

As

 x(1)
)

(10)

and take ε̄t to be εt evaluated at

x(1) = arg min
x(1)

N∑
t=1

∥∥∥R−1/2
2 (t)εt

∥∥∥2

2
. (11)

We can then express λmax as

λmax = max
k=1,...,N−1

∥∥∥∥∥∥∥∥2
N∑

t=k+1

R−1/2
2 (t)Ct

 t−1∏
s=k+1

As

GkQ1/2


T

R−1/2
2 (t)ε̄t

∥∥∥∥∥∥∥∥
q

. (12)

with ‖ · ‖q the dual norm ( 1
p + 1

q = 1) associated with ‖ · ‖p used in (7a).

The proof is given in the appendix.



4 The Proposed Method: State Smoothing by Sum-of-Norms Regularization 133

4.3 Iterative Refinement

To (possibly) get even more zeros in the estimate of v(t), with no or small increase
in the fitting term, iterative re-weighting can be used (Candès et al., 2008). We
modify the regularization term in (7a) and consider

min
x(1),v(t),1≤t≤N−1

N∑
t=1

∥∥∥R−1/2
2 (t)

(
y(t) − Ctx(t)

)∥∥∥2
2

+ λ
N−1∑
t=1

α(t)
∥∥∥Q−1/2v(t)

∥∥∥
p

(13)

where α(1), . . . , α(N − 1) are positive weights used to vary the regularization over
time. Iterative refinement proceeds as follows. We start with all weights equal
to one i.e., α(0)(t) = 1. Then for i = 0, 1, . . . we carry out the following iteration
until convergence (which is typically in just a few steps).

1. Find the state estimate.
Compute the optimal v(i)(t) using (13) with the weighted regularization
using weights α(i).

2. Update the weights.
For t = 1, . . . , N − 1, set α(i+1)(t) = 1/(ε + ‖Q−1/2v(i)‖p).

Here ε is a positive parameter that sets the maximum weight that can occur.

One final step is also useful. From our final estimate of v(t), we simply define set
of times T at which an estimated load disturbance occurs (i.e., T = {t|v(t) , 0})
and carry out a final optimization over just v(t), t ∈ T . The algorithm is summa-
rized in Algorithm 1.

Algorithm 1 State Estimation by Sum-of-Norms Regularization (STATESON)

Given At , Bt , Ct , Gt , Q, R2(t) and {(y(t), u(t))}Nt=1. Let ε be a positive parameter,
set α(0)(t) = 1 for t = 1, . . . , N − 1 and i = 0. Then, for a chosen λ:

1. Compute the optimal v(i)(t) using (13) with α = α(i).
2. Set α(i+1)(t) = 1/(ε + ‖Q−1/2v(i)‖p).
3. If convergence, go to the next step, otherwise set i = i + 1 and return to (1).
4. Compute a final estimate of v(t) using (13) by just performing the miniza-

tion over those v(t) for which v(i+1)(t) is non-zero.

Remark 2. If the jump covariance Q in (2) is known or can be given a good value, the final
optimization step (step (4) in Algorithm 1) should be replaced by a Kalman smoother with
the time-varying process noise

R1(t) =

0 for t such that v(t) = 0
Q otherwise.

It should be noticed that if the correct jump-times and Q have been found, this is actually
optimal in the sense that no other smoother (linear or nonlinear) can achieve an unbiased
estimate with a lower error covariance.
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4.4 Solution Algorithms and Software

Many standard methods of convex optimization can be used to solve the prob-
lem (7a). Systems such as CVX (Grant and Boyd, 2010, 2008) or YALMIP (Löf-
berg, 2004) can readily handle the sum-of-norms regularization, by converting
the problem to a cone problem and calling a standard interior-point method. For
the special case when the `1 norm is used as the regularization norm, more effi-
cient special purpose algorithms and software can be used, such as l1_ls (Kim
et al., 2007). Recently many authors have developed fast first order methods
for solving `1 regularized problems, and these methods can be extended to han-
dle the sum-of-norms regularization used here; see, for example, Roll (2008§2.2).
Both interior-point and first-order methods have a complexity that scales linearly
with N .

5 Other Approaches

Many methods for state estimation with non-Gaussian noise as in (2) are sug-
gested in the literature, both in connection with change detection, e.g., Gustafs-
son (2001), and target tracking, e.g., Bar-Shalom et al. (2001). Many of them can
be seen as ways to explicitly estimate v(t) or δ(t) in (2).

If the δ-sequence was known, the problem could be treated as a Kalman smoother
with known, time varying R1(t) (R1(tk) = Q for those tk with δ(tk) = 1 and
R1(t`) = 0 otherwise.) This is sometimes known as the clairvoyant filter (or fil-
ter with an oracle). The (time-varying) smoothed state error covariance matrix
can readily be computed for this case. Clearly this gives a lower bound for any
possible estimate, which no other (linear or nonlinear) filter can beat.

Based on the model (2), a number of approximative methods have been devel-
oped. If δ(t) is not known, we could hypothesize in each time step that it is either
0 or 1. This leads to a large bank (2N ) of Kalman filters as the optimal solution.
The posterior probability of each filter can be estimated from this bank, which
consists of a weighted sum of the state estimates from each filter. In practice, the
number of filters in the bank must be limited, and there are two main options
(see Chapter 10 in Gustafsson (2010)):

• Merging trajectories of different δ(t) sequences. This includes the well-
known IMM filter, see Blom and Bar-Shalom (1988).

• Pruning, where unlikely sequences are deleted from the filter bank.

Change detection techniques can also be used to detect the time instances when
δ(t) = 1. In the linear case, e.g., a change detection algorithm can be applied
to the innovations of a Kalman filter to detect jumps in the process noise. If a
jump is detected, the process noise covariance in the Kalman filter is made e.g.,
10 times larger to adapt to the abrupt state change.
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6 Numerical Illustration

Consider the discrete time model of a DC motor (see e.g., Ljung (1999, pp. 95-97),
Ts = 0.1 s, τ = 0.286, β = 40)

x(t + 1) =
[

0.7047 0
0.08437 1

]
x(t) +

[
11.81

0.6250

] (
u(t) + v(t)

)
s(t) =

[
0 1

]
x(t)

y(t) = s(t) + e(t),

(14)

with u(t) a ±0.1 PRBS signal (pseudo-random binary sequence), e(t) ∼ N (0, 1)
and x(1) ∼ N (0, I). The system was simulated with v(t) distributed according
to (2) with µ = 0.015 and Q = 0.5, which gave the particular load disturbance
sequence

v(t) =

−0.6 for t = 55,
0 otherwise

(15)

and y(t), t = 1, . . . , 100, was observed. The resulting estimate of the angle s(t)
using λ = 0.1λmax, two refinement iterations, Q = 0.5, R2 = 1 and an Euclidean
norm in the regularization is shown in Figure 1. Figure 1 also shows the measure-
ment y(t) and the true sequence s(t) that was used to generate the y(t) measure-
ments. v(t) was estimated to

v(t) =

−0.55 for t = 55,
0 otherwise.

(16)

The mean squared error (MSE) for the state estimate was for this particular setup
0.28. Since the jump-time was correctly found, the estimate almost coincide with
the estimate of the clairvoyant estimator. If a Kalman smoother is applied with
the true measurement and process noise variances (R1 = µQ = 0.0075, R2 = 1) a
MSE of 1.0 was obtained. The result is summarized in Table 1.

Table 1: MSE for the state estimate obtained by the Kalman smoother
(BLUE), state estimation by sum-of-norms regularization (STATESON) and
clairvoyant smoother.

Algorithm MSE
BLUE 1.0

STATESON 0.28
Clairvoyant smoother 0.12

Let us now compare the state smoothing by sum-of-norms regularization (7) with
some other methods that have been suggested in the literature.

For the same sequence v(t) we run Monte-Carlo simulations over realizations of
the measurement noise e(t) with R2 = 1. We run 2000 simulations and compute
the smoothed state squared error over the runs.
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Figure 1: The resulting estimate of s(t) showed with a solid thick line; dashed
line, true sequence s(t); solid thin black line, measurements y(t). The jump
in v(t) at t = 55 is hardly visible.

We compare:

1. The proposed method state smoothing by sum-of-norms regularization.

2. Conventional Kalman smoother with R1 = 0.0075 and R2 = 1.

3. Kalman smoother together with CUSUM (cumulative sum, Page (1954), see
also Algorithm 2). First, CUSUM was applied to both the whitened innova-
tions and the negative whitened innovations of a Kalman filter with R2 = 1.
R1 was set to 0.5 when g(t + 1) exceeded h but was otherwise 0. In a second
step, a Kalman smoother was applied with R1 = 0.5 at the time instances
of detected changes and R1 = 0 otherwise. h = 10 and γ = 1 gave good
performance.

4. IMM smoother with two modes, R2 = 1 for both and R1 = 0 and 0.5, respec-
tively, with probabilities 0.985 and 0.015. The IMM smoothing implemen-
tation of Särkkä and Hartikainen (2007) was used.

5. The lower bound according to the clairvoyant smoother.

Algorithm 2 CUSUM
Set g(1) = 0. For a chosen γ and h, a change in the signal r(t) is detected by
observing when

g(t + 1) = max(g(t) + r(t) − γ, 0) (17)
exceeds h. After a change has been detected, g is reset to zero. The time of the
change is taken as the previous time instance for which g(t) = 0.
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Figure 2: Mean (over Monte Carlo runs) squared errors (SE) versus time. All
the sample SE means were taken over Monte Carlo runs and not time. 2000
Monte Carlo runs were used.

See Figure 2. We see that state smoothing by sum-of-norms regularization outper-
forms the Kalman smoother and the IMM smoother and that it gets fairly close to
the lower bound given by the clairvoyant smoother. Kalman smoother together
with CUSUM does almost as good as state smoothing by sum-of-norms regulariza-
tion. Figure 3 shows a plot of estimated v values by STATESON for the 2000 runs.
Figure 4 shows the estimated v by the Kalman smoother together with CUSUM.

Let us also investigate how the methods perform under varying signal-to-noise
conditions (the design parameters held fixed over the different SNRs, tuned for
a SNR of 5.7). 200 Monte Carlo runs were performed for a number of different
R2 to produce the plot shown in Figure 5. The mean of the squared errors were
taken both over time and the 200 Monte Carlo runs with the same signal-to-noise
ration (SNR). The SNR was computed as

SNR =
(∑N

t=1 |s(t)|∑N
t=1 |e(t)|

)2

(18)

where s(t) is the signal given in (14) if u(t) ≡ 0 is feeding (14) and e(t) is the
measurement noise. The plot shows that state smoothing by sum-of-norms reg-
ularization does well in comparison with the compared methods. It may seem
surprising that the Kalman smoother together with CUSUM dose not do better.
CUSUM detects the changes in most cases, however, it does not give an accurate
estimate of the time of the changes (not even in high SNR). CUSUM also suffers
of varying SNR and would do better if it was retuned for each new SNR value.
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Figure 3: The STATESON estimates of v that gave the squared errors in Fig-
ure 2.
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Figure 4: The estimates of v that gave the squared errors in Figure 2 for the
Kalman smoother together with CUSUM.



7 Extension to Nonlinear Models 139

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

SNR

M
S

E

 

 

STATESON
BLUE
IMM
Clairvoyant
CUSUM

5.7

Figure 5: MSE versus SNR. All the means were taken over Monte Carlo runs
and time. 200 Monte Carlo runs were used for each SNR value. The simula-
tions shown in Figure 2 had a SNR of 5.7 (in average).

7 Extension to Nonlinear Models

An extension to nonlinear systems is of interest since many systems are poorly
described by linear approximations. We do this in an extended-Kalman-filter-like
fashion and approximate the nonlinear system by a time-varying linear model.
To get an initial state trajectory estimate, we use an extended Kalman filter. The
algorithm is summarized in Algorithm 3.

Algorithm 3 State Estimation by Sum-of-Norms Regularization Using Nonlinear
Models
Given a nonlinear state space model and {(y(t), u(t))}Nt=1.

1. Find an initial state trajectory estimate by applying an extended Kalman
filter.

2. Create a time-varying approximation of the nonlinear system by linearizing
around the computed state trajectory.

3. Apply Algorithm 1 to obtain a new state estimate.
4. Return to step (2) if necessary.

Example 1: A Nonlinear Example – A Pendulum
Consider the pendulum shown in Figure 6. Its dynamical behavior using a mass
m = 1 and a pole length L = 1 is described by the nonlinear relation

d
dt

[
θ

dθ/dt

]
=

[
dθ/dt
−g sin θ

]
+

[
0
F

]
. (19)

g is the gravitational constant (g = 9.81 was used in the simulations). Using Euler



140
Paper C Smoothed State Estimates Under Abrupt Changes Using Sum-of-Norms

Regularization

m
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Figure 6: Notation for the Pendulum in Example 1.

integration with a time step of 0.05, we obtain the time-discrete representation
(x1 = θ, x2 = dθ/dt)[

x1(t)
x2(t)

]
=

[
x1(t − 1) + 0.05x2(t − 1)

x2(t − 1) − 0.05g sin x1(t − 1)

]
+

[
0
F(t)

]
. (20)

Let us assume that we can measure the quantity

y(t) = sin x1(t) + e(t), e(t) ∼ N (0, 0.05) (21)

and that the system is driven by the process noise F(t) = w(t) + v(t), w(t) ∼
N (0, 0.0005) and

v(t) =

1 for t = 500,
0 otherwise.

(22)

A realization of y(t) is given in Figure 7. x1(1) = π/3 and x2(1) = 0 were used
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Figure 7: A plot of the data (top figure) and the initial estimate obtained
from the EKF (bottom figure).
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to initialize the system. The result obtained by applying an EKF is also given in
Figure 7. We now proceed as described in Algorithm 3 (the criterion (9) was used,
see Remark 1, due to the Gaussian component in the process noise) and use the
EKF estimate to obtain an initial linear time-varying representation of the pen-
dulum around the trajectory. Using λ = 0.05 and two iterations in Algorithm 3,
the result given in Figure 8 was obtained. As seen, the impulse at t = 500 was
correctly detected.
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Figure 8: Estimates of v. Top plot, iteration 1 and bottom plot, iteration 2.

8 Conclusion

A novel formulation of the state estimation problem in the presence of abrupt
changes has been presented. The proposed approach treats the state smoothing
problem as a constrained least-squares problem with a sum-of-norms regulariza-
tion. Some numerical illustrations have been given. The approach can be seen
an an extension of the technique used for segmentation of ARX-models in Ohls-
son et al. (2010c). The extension to nonlinear models was also discussed and
exemplified.
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A Appendix

A.1 Proof of Proposition 1

To verify our formula for λmax we use convex analysis (Rockafellar, 1996; Bert-
sekas et al., 2003; Borwein and Lewis, 2000). Fist note that

x(t) =Gt−1v(t − 1) + At−1x(t − 1) + Bt−1u(t − 1) (23a)

=
t−1∑
r=1

 t−1∏
s=r+1

As

 (Grv(r) + Bru(r)
)

+

 t−1∏
s=1

As

 x(1). (23b)

Introduce

εt , y(t) − Ct
( t−1∑
r=1

t−1∏
s=r+1

AsBru(r) +

 t−1∏
s=1

As

 x(1)
)

(24)

and let ε̄t be εt evaluated at the x(1) minimizing

min
x(1)

N∑
t=1

∥∥∥R−1/2
2 (t)εt

∥∥∥2

2
. (25)

(7) can then be written as

min
x(1),v̄(t),t=1,...,N−1

N∑
t=1

∥∥∥∥∥∥∥R−1/2
2 (t)

εt − Ct t−1∑
r=1

 t−1∏
s=r+1

As

GrQ1/2v̄(r)


∥∥∥∥∥∥∥

2

+ λ
N−1∑
t=1

‖v̄(t)‖p

(26)

with v̄(t) , Q−1/2v(t) and using (24). It is clear that the subdifferential of ‖v̄(t)‖p
evaluated at v̄(t) = 0 is the unit ball in the dual norm ‖ · ‖q, 1/p + 1/q = 1. λmax

must therefore satisfy

λmax = max
k

∥∥∥∥∥∥∥∥∇v̄(k)

N∑
t=1

∥∥∥∥∥∥∥R−1/2
2 (t)

ε̄t − Ct t−1∑
r=1

 t−1∏
s=r+1

As

GrQ1/2v̄(r)


∥∥∥∥∥∥∥

2 ∣∣∣∣∣∣
v̄≡0

∥∥∥∥∥∥∥∥
q

(27a)

= max
k

∥∥∥∥∥∥∥∥2
N∑

t=k+1

R−1/2
2 (t)Ct

 t−1∏
s=k+1

As

GkQ1/2


T

R−1/2
2 (t)ε̄t

∥∥∥∥∥∥∥∥
q

. (27b)
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Abstract

Many tracking problems are split into two sub-problems, first a
smooth reference trajectory is generated that meet the control design
objectives, and then a closed loop control system is designed to fol-
low this reference trajectory as well as possible. Applications of this
kind include (autonomous) vehicle navigation systems and robotics.
Typically, a spline model is used for trajectory generation and another
physical and dynamical model is used for the control design. Here
we propose a direct approach where the dynamical model is used to
generate a control signal that takes the state trajectory through the
waypoints specified in the design goals. The strength of the proposed
formulation is the methodology to obtain a control signal with com-
pact representation and that changes only when needed, something
often wanted in tracking. The formulation takes the shape of a con-
strained least-squares problem with sum-of-norms regularization, a
generalization of the `1-regularization. The formulation also gives a
tool to, e.g., in model predictive control, prevent chatter in the input
signal, and also select the most suitable instances for applying the
control inputs.

1 Introduction

Consider a dynamic system with output y(t) where the design objectives can be
formulated as

y(tk) ≈ W (tk), tk ∈ T . (1)

These points, W (tk), will be referred to as waypoints. The conventional approach
is based on the following two steps:

1. Generate spline functions between the waypoints to get a smooth trajectory
yref (t).
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2. Design a control system that generates a control input u(t) that makes the
system output as close as possible to yref (t).

A potential problem is that the reference trajectory yref (t) may not be feasible
for the system in that it varies too fast to allow the dynamics to follow the tra-
jectory with given input saturations. Conversely, it may vary too slowly, giving a
conservative control performance.

The suggested approach circumvents this problem by generating the reference
trajectory based on the system dynamics, rather than spline functions. The result
is an input sequence {u(t)}, with a compact representation, that gives the output
sequence {y(t)} that passes (within a given distance to) the waypoints. In the
presence of disturbances and process noise, a feedback control is still necessary,
but this provide small corrections to the already computed input sequence.

The advantages of the method include:

• The complexity is linear in time.

• Control signal saturations can be incorporated.

• Different constraints on input smoothness can be incorporated, as piecewise
linear or constant inputs. This is relevant in applications for which a change
in control signal is associated with a cost (maybe communicating a change
is costly) or the storage is limited.

• State constraints can be added for forbidden regions in the state space.

• The trajectory can be forced to pass the waypoints or any specified distance
to them.

Example 1: Two Dimensional Tracking Problem
Considering a two dimensional tracking problem. Assume that we would like

the system output to take the values[
0
0

]
,

[
10
−10

]
,

[
20
0

]
,

[
30
0

]
,

[
30
10

]
,

[
20
10

]
,

[
10
10

]
,

[
0
0

]
(2)

at

t = 0, 1, 2, 3, 4, 4.5, 5, 6. (3)

(2) and (3) here define our waypoints. Assume a linear state space description of
our system and a limitation on the control signal ‖u‖22 < 40. We may also assume
that its impractical to communicate or to store an output reference as a look-up
table with a value for each sample time. This is often the case for industrial robots
and autonomous vehicle navigation systems. The solution is to fit a spline to the
waypoints and use this as a reference trajectory. In this particular example, the
spline would have 8 breakpoints (one for each waypoint). A feedback controller
is then applied to follow the spline reference trajectory. Since the spline fitting
problem is commonly seen only as a geometrical task and no consideration to the
dynamical system and input constraint are taken, the spline reference may be
impossible to follow. We will come back to this problem later, in Section 4.



2 Problem Formulation 149

2 Problem Formulation

Given a system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(4)

x ∈ Rn, u ∈ Rm and a set of so called waypoints

W = {W (t), t ∈ T }, T = {tk , k = 1, . . . , M}. (5)

The problem is to find u so that the output of (4) closely follows the waypoints:

y(tk) ≈ W (tk), tk ∈ T (6)

This should be solved under a number of constraints:

• Given a time grid Tgrid , based on the sampling time Ts : Tgrid = {ts = sTs,
s = 1, . . . , N }. Assume that T is a subset of Tgrid .

• The pth derivative of u is an impulse train on the grid Tgrid :

u(p)(t) =
N∑
k=1

vkδ(t − kTs), vk ∈ Rnu (7)

• As many as possible of the terms vk in (7) should be zero.

• There are input and state constraints (on the grid Tgrid):

x(kTs) ∈ K
u(kTs) ∈ U

(8)

We should comment on (7). The common way to impose a smooth output, which
often is desirable (see e.g., Gulati and Kuipers (2008), Teruya et al. (2008)), is
by using a smooth spline as a reference. By using (7) we impose a smoothness
constrain on the control input and also implicitly on the output.

That many of the vks are zero imply a compact representation of the input signal.
This may be advantageous when storage is limited. It also means few changes in
the control signal. This may save money by reduced communication but may also
save actuators (see discussions on chattering in model predictive control (MPC),
see e.g., Wojsznis et al. (2003) or Naus et al. (2008)).

3 Proposed Method

Let the upper part of the extended vector X(t) be the state x(t) of (4), while the
lower part is made up of the p − 1 derivatives of u,

X(t) =
[
x(t) u(t) u̇(t) ü(t) . . . u(p−1)(t)

]T
. (9)



150 Paper D Trajectory Generation Using Sum-of-Norms Regularization

Let us accordingly extend the model (4) by (Ir is the r × r unit matrix):

Ẋ(t) =ĀX(t) + B̄u(p)(t) (10a)

y(t) =C̄X(t) (10b)

Ā =



A B 0 0 . . . 0
0 0 Im 0 . . . 0
0 0 0 0
...

...
...

. . .
. . .

. . .
...
0

0 Im
0 0 0 . . . 0 0


(10c)

B̄ =
[
0 . . . 0 Im

]T
(10d)

C̄ =
[
C 0 . . . 0

]
(10e)

Then by sampling this system with a pulse-train as input (c2d(syst,Ts,’imp’)
in Matlab) we obtain

X(kTs + Ts) = FX(kTs) + Gvk (11a)

x(kTs) = P X(kTs) (11b)

y(kTs) = HX(kTs) (11c)

u(kTs) = RX(kTs) (11d)

with

F =eĀTs (12a)

G =FB̄ (12b)

H =C̄ (12c)

P =
[
In 0 0 . . . 0

]
(12d)

R =
[
0 Im 0 . . . 0

]
(12e)

Let us assume that x(0) is known and u(0) = u̇(0) = · · · = u(p−1)(0) = 0 for simplic-
ity. We can now phrase the problem as

min
∑
t∈T

∥∥∥y(t) −W (t)
∥∥∥2

2
(13)

w.r.t. vk under the constraints (11a), (8) and trying to have as many vk as possible
equal to zero. To capture the latter we wish to use sum-of-norms regularization:

min
vk ,k=1,...,N

∑
t∈T

∥∥∥y(t) −W (t)
∥∥∥2

2
+ λ

N∑
k=1

∥∥∥vk∥∥∥p (14a)

u(kTs) ∈ U (14b)

x(kTs) ∈ X (14c)
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where y(kTs), x(kTs) and u(kTs) are generated from vk and X(0). ‖ · ‖p is defined
as ‖z‖p , (

∑nz
i=1 |zi |

p)1/p for a vector z = [z1 z2 . . . znz ]
T .

The last term in the cost is a regularization term, and λ is a positive constant
that is used to control the trade-off between the fit to the waypoints W (t) (the
first term) and the size of the state changes caused by vk (the second term). The
regularization norm could actually be any `p-norm, like `1 or `2, but it is crucial
that it is a sum of norms, and not a sum of squared norms.

When the regularization norm is taken to be the `1 norm, i.e., ‖z‖1 =
∑n
k=1 |zk |,

the regularization in (14a) is a standard `1 regularization of the least-squares cri-
terion. Such regularization has been very popular recently, e.g., in the much used
lasso method (Tibsharani, 1996) or compressed sensing (Donoho, 2006; Candès
et al., 2006). See also Kim et al. (2009) and Ohlsson et al. (2010b) for relevant
contributions.

There are two key reasons why the criterion (14a) is attractive:

• It is a convex optimization problem, so the global solution can be computed
efficiently. In fact, its special structure allows it to be solved in O(N ) oper-
ations, so it is quite practical to solve it for a range of values of λ, even for
large values of N .

• The sum-of-norms form of the regularization favors solutions where “many”
(depending on λ) of the regularized variables come out as exactly zero in
the solution. In this case, this implies that many of the estimates of vk
become zero (with the number of vks becoming zero controlled roughly by
λ).

A third advantage is that

• It is easy to include realistic state constraints without destroying convexity.

We should comment on the difference between using an `1 regularization and
some other type of sum-of-norms regularization, such as sum-of-Euclidean norms.
With `1 regularization, we obtain an estimate of vk having many of its elements
equal to zero. When we use sum-of-norms regularization, the whole estimated
vector vk often becomes zero; but when it is nonzero, typically all its elements
are nonzero. In a statistical linear regression framework, sum-of-norms regular-
ization is called group-lasso (Yuan and Lin, 2006), since it results in estimates in
which many groups of variables are zero.

One final step is also useful. From our estimate of vk from (14a), we simply carry
out a final least-squares fit over the nonzero vk (fixing the other vk to zero). This
typically gives a small improvement in fit to the waypoints.

3.1 Solution Algorithms and Software

Many standard methods of convex optimization can be used to solve the prob-
lem (14a). Systems such as CVX (Grant and Boyd, 2010, 2008) or YALMIP (Löf-
berg, 2004) can readily handle the sum-of-norms regularization, by converting
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the problem to a cone problem and calling a standard interior-point method. For
the special case when the `1 norm is used as the regularization norm, more effi-
cient special purpose algorithms and software can be used, such as l1_ls (Kim
et al., 2007). Recently many authors have developed fast first order methods
for solving `1 regularized problems, and these methods can be extended to han-
dle the sum-of-norms regularization used here; see, for example, Roll (2008§2.2).
Both interior-point and first-order methods have a complexity that scales linearly
with N .

4 Numerical Illustration

Example 2: Two Dimensional Tracking Problem, Cont’d
Let us return to Example 1. Assume that we chose to model our system with the
model (see Chapter 13 of Gustafsson (2010), there called a constant acceleration
model)

ẋ(t) =

0 I2 0
0 0 I2
0 0 0

 x(t) +

0
0
I2

 u(t),

y(t) =
[
I2 0 0

]
x(t).

(15)

The two first elements of the state x are the x- and y-position, the third and fourth,
velocity in the x- and y-direction and the two last elements, the acceleration in
x- and y-direction. u is the jerk (the derivative of the acceleration). Assume now
that we believe that a piecewise constant input u in (15), (that means that p = 1
in (7)) gives a smooth enough output. The requirement of a piecewise constant
input implies that we have to extend our model with a integrator. We obtain the
extended model

ẋ(t) =


0 I2 0 0
0 0 I2 0
0 0 0 I2
0 0 0 0

 x(t) +


0
0
0
I2


∑
k

vkδ(t − kTs),

y(t) =
[
I2 0 0 0

]
x(t),

(16)

and seek a “sparse” pulse train {vk}. Discretizing (16) under the assumption that
vk is a pulse train and with Ts = 0.1 gives (see (11) and (12))

X(kTs + Ts) =


I2 0.1I2 0.005I2 0.0002I2
0 I2 0.1I2 0.005I2
0 0 I2 0.1I2
0 0 0 I2

X(kTs) +


0.0002I2
0.005I2

0.1I2
I2

 vk ,
y(kTs) =

[
I2 0 0 0

]
X(kTs).

(17)

Let X(0) = 0 and use (14a) (with (17) as a constraint) to compute {vk}. Finally
carry out a least-squares fit over the nonzero vk (fixing the other vk to zero). The
trajectory generated by this last estimate {vk} is shown in Figure 1 for
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λ = 0.05, 0.1 and 0.5 and `1-norm. The associated pulse train is given in Fig-
ure 2. Feeding a system consisting of a single integrator gives the searched piece-
wise constant input signal that should be used in (15) to make the output as in
Figure 1. Notice that it is only 10, 9 respective 6 vk-values that are needed to rep-
resent the control input. A known control saturation would also be easy to imple-
ment and impossible reference trajectories (as may occur when using splines) are
not a problem. Let us also compute the trajectory using a pulse train, piecewise
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Figure 1: The computed trajectory (x- and y-position) of Example 2 shown
for λ = 0.05, 0.1 and 0.5 (black, gray resp. light gray line). Waypoints are
shown with filled circles.
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Figure 2: The pulse train used to generate the trajectory shown in Figure 1.
From top to bottom, λ = 0.05, 0.1 and 0.5. Filled circles and squares are used
to symbolize the two dimensional vk .
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constant and piecewise linear input (p = 0, p = 1 resp. p = 2 in (7)). The result
using λ = 0.05 is shown in Figures 3 and 4. Note that the black line in Figure 1
thus coincides with the gray line in Figure 3.
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Figure 3: The computed trajectory (x- and y-position) of Example 2 shown
using a pulse train as an input in (15) (black thick line), a piecewise constant
input (gray line) and a piecewise linear input (light gray line). Waypoints are
shown with filled circles.
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Figure 4: The pulse train used to generate the trajectory shown in Figure 3.
From top to bottom, vk used to generate a pulse train, a piecewise constant
and a piecewise linear input to (15). Filled circles and squares are used to
symbolize the two dimensional vk .
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Example 3: Selecting Time Instances for Control Inputs
Consider the DC-motor model

ẋ(t) =
[
−1 0
1 0

]
x(t) +

[
1
0

]
u(t)

y(t) =
[
0 1

]
x(t).

(18)

Let W contain the reference values

{0, 0, 0, 0, 10, 10, 0, 0, 10, 10, 10, 10, 10} (19)

and let the associated tk be

{0.75, 2.25, 3, 3.75, 5.25, 7.5, 7.8, 8.25, 9, 10.5, 12, 13.5, 15}.

Extend now (18) by adding an extra state to be able to impose a piecewise con-
stant input u(t). Set the sampling time Ts = 0.15 and discretize. The extended
discretized model takes the form

X(kTs + Ts) =

0.8607 0 0.1393
0.1393 1 0.0107

0 0 1

X(kTs) +

0.1393
0.0107

1

 vk
y(kTs) =

[
0 1 0

]
X(kTs).

(20)

The computed y(t) using λ = 0.5, ‖vk‖22 < 40 and an initial state x(0) =
[
0 2

]T
is

shown in Figure 5. The associated pulse train is given in Figure 6.
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Figure 5: The computed trajectory of Example 3 shown using black thick
line. Waypoints are shown with filled circles.

Let us now make the example a bit more interesting by applying the technique
repeatedly, optimizing over a horizon of mTs and applying the control for nTs sec-
onds before re-optimizing. Assume the same waypoints as above. With m = 14,
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Figure 6: The pulse train used to generate the trajectory shown in Figure 5.

n = 4 and λ = 1 the result shown in Figures 7 and 8 was obtained. To recursively
compute control signals like this is done in optimal control and MPC. To avoid
changing the control signal, if not necessary, like above, may help prevent chat-
tering in MPC (see e.g., Wojsznis et al. (2003) or Naus et al. (2008) for relevant
contributions discussing the problem of chattering in applications).
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Figure 8: The pulse train used to generate the trajectory shown in Figure 7.
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Figure 7: The computed trajectory of Example 3 shown using black thick
line. Waypoints are shown with black filled circles. Gray is used to show the
recursively computed full trajectories (the first nTs seconds of these trajecto-
ries were painted black since this was how long a computed control sequence
was applied).

5 Conclusion

A spline representation is often chosen for the reference signal in tracking
application. The motivation for this is twofold:

• Using splines a certain degree of smoothness can be guaranteed.

• Splines can be compactly represented.

A spline representation has two disadvantages:

• A spline is a piecewise polynomial function with the different pieces
often glued together at the waypoints (see for example Sun et al. (2000)
for an attempt to remove this constraint). A more flexible approach would
be to not restrict the breakpoints of the spline to the waypoints. This could
for example lead to a smoother reference trajectory with a more compact
representation.

• A second disadvantage is that it is difficult to guarantee that the generated
reference is physically possible for the system to follow.

The proposed method generates a control input which could be fed through
the system model to give a spline. We see no reason for computing this spline,
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however. The output of the method is rather the sequence {vk}Nk=1. The sparse
sequence {vk}Nk=1 can be stored or communicated using limited resources to the
system. The system can then generate an input by integrating the pulse train
defined by {vk}Nk=1 which takes the system through the specified waypoints. A
feedback control is still necessary to reduce the effect of noise and model errors.

The proposed method can hence guarantee a smooth system output. It does not
have the problem of generating infeasible reference trajectories. And, since the
output sequence is optimized to have few changes but at suitable instances, the
representation may be considerably more compact then using splines as a refer-
ence.

The proposed method has an optimization formulation. It is convex and the
complexity grows linear with N . Constraints, such as control signal saturations,
can easily be incorporated. Relations to optimal control and MPC have also been
discussed. There is also a relation to Lebesgue sampling, even-triggered sam-
pling and control (see e.g., Åström and Bernhardsson (2003)). This has not been
discussed and is seen as future work.
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Abstract

A new type of linear kernel smoother is derived and studied. The
smoother, referred to as weight determination by manifold regulariza-
tion, is the solution to a regularized least squares problem. The regu-
larization avoids overfitting and can be used to express prior knowl-
edge of an underlying smooth function. An interesting property of
the kernel smoother is that it is well suited for systems govern by
the semi-supervised smoothness assumption. Several examples are
given to illustrate this property. We also discuss why these types of
techniques can have a potential interest for the system identification
community.

1 Introduction

A central problem in many scientific areas is to link certain observations to each
other and build models for how they relate. In loose terms, the problem could be
described as relating y to ϕ in

y = f0(ϕ) (1)

where ϕ is a vector of observed variables, a regressor vector, and y is a charac-
teristic of interest, an output. In system identification ϕ could be observed past
behavior of a dynamical system, and y the predicted next output.

Observations are often imperfect or noisy, and we are therefore led to consider

y = f0(ϕ) + e, e ∼ N (0, σ2). (2)

Assume now that a set of observations, {(ϕt , yt)}
Ne
t=1, of how f0 transforms ϕ is

available. f0 : Rnϕ → R is itself unknown. The conventional approach within
system identification is to make use of a parametric expression f (ϕt , θ), which is
hopefully flexible enough to imitate the transformation f0. f (ϕt , θ) is adjusted to
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the observations by choosing θ as

θ̂ = arg min
θ

Ne∑
t=1

l(yt − f (ϕt , θ)), (3)

where l : R → R is used to measure how well the model predict the estimation
data {(ϕt , yt)}

Ne
t=1. l could e.g., be chosen as a norm.

There are a number of parametric expressions and of varying flexibility, and to
chose a model structure just flexible enough is crucial when using (3). Let e.g.,

f (ϕ, θ) = θ (4)

and l( · ) = ( · )2 in (3). θ̂, and f (ϕ, θ̂), then become the mean of the observed
outputs

∑Ne
t=1 yt/Ne. This model has of course very good predictive abilities if f0

is constant but has otherwise rather limited abilities to produce satisfying predic-
tions.

The other extreme, and of particular interest in this chapter, would be to use a pa-
rameter for each of the ϕt we will work with. Let D denote that set of regressors.
D is typically larger than the set of regressors in the estimation set. (If nothing
else, we have occasion to compute the response value f0(ϕ) at new points). Let Θ
be a parameter vector of the same size as the number of elements in D:

card(D) = dimΘ (5)

We can then associate each parameter value in Θ with a response value f0(ϕt)
for any ϕt ∈ D: for convenience denote the elements of Θ by ft . This particular
model hence takes the form

f (ϕt ,Θ) = ft , ∀ϕt ∈ D. (6)

Remark 1 (Nonparametric Model). Somewhat miss-leading, a model for which the num-
ber of parameters grows with the number of estimation data is called a nonparametric
model. The model given in (6) is hence a nonparametric model.

2 Supervised, Semi-Supervised and Unsupervised
Learning

Before continuing it is useful to introduce the notion of supervised, semi-supervised
and unsupervised learning.

The term supervised learning is used for algorithms for which the construction of
f (ϕ, θ̂) is “supervised” by the measured information in y. In contrast to this, un-
supervised learning only has the information of the regressors {ϕt , t = 1, . . . , Ne}.
In unsupervised classification, e.g., Kohonen (1995), the classes are constructed
by various clustering techniques. Manifold learning, e.g., Tenenbaum et al. (2000);
Roweis and Saul (2000) deals with unsupervised techniques to construct a mani-
fold in the regressor space that houses the observed regressors.
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Semi-supervised algorithms are less common. In semi-supervised algorithms, both
(y, ϕ)-pairs and ϕs, for which no output has been observed, are used to construct
the model f (ϕ, θ). This is particularly interesting if extra effort is required to ob-
tain y. Thus costly (y, ϕ)-pairs are supported by less costly regressors to improve
the result. It is clear that unsupervised and semi-supervised algorithms are of
interest only if the regressors have a pattern that is unknown a priori.

Semi-supervised learning is an active area within classification and machine learn-
ing (see Chapelle et al. (2006); Zhu (2005) and references therein). The main
reason that semi-supervised algorithms are not often seen in regression and sys-
tem identification may be that it is less clear when only regressors can be of use.
We will try to bring some clarity to this through this chapter. Generally it could
be said that regression problems having regressors constrained to rather limited
regions in the regressor space may be suitable for a semi-supervised regression al-
gorithm. It is also important that regressors are available and comparably “cheap”
to get as opposed to the (y, ϕ)-pairs.

3 Cross Validation and Regularization

Let us now return to the model given in (6). If we let l( · ) = ( · )2 again and
D = {ϕ1, . . . , ϕNe

}, the criterion of fit (3) now takes the form

Θ̂ = (f̂1, f̂2, . . . , f̂Ne
) = arg min

f1,f2,...,fNe

Ne∑
t=1

(yt − ft)2 = (y1, y2, . . . , yNe
). (7)

f (ϕt , Θ̂) hence “succedes” to perfectly fit to the estimation data. If there was
no measurement noise polluting the observations, this would be a good thing.
However, with measurement noise present, obtaining a perfect fit is not desirable
and termed overfitting. Overfitting is a problem for flexible models and to chose
a model structure just flexible enough to imitate f0 (and not flexible enough to
being able to imitate the noise) would be ideal.

There are a number of approaches to find what is “just flexible enough”. Most
approaches can be seen belonging to either cross validation or regularization.

In cross validation, a new data set {(ϕt , yt)}
Nv
t=1 is utilized to avoid overfitting. The

data set {(ϕt , yt)}
Nv
t=1 is denoted the validation data set. Since measurement noise e

of the validation data set is impossible to predict, the best possible would be to
perfectly predict the outcome of the deterministic part of (2) i.e., f0(ϕ). Therefore,
for a number of candidate structures fi(ϕ, θ̂i), i = 1, . . . , m (θ̂ found using (3)), a
model is chosen by

arg min
fi (ϕ,θ̂i ),i=1,...,m

Nv∑
t=1

l
(
yt − fi(ϕt , θ̂i)

)
. (8)

To evaluate (8) we need to compute predictions for f0 at regressors not
included in the estimation data set i.e., fi(ϕt , θ̂i), t = 1, . . . , Nv. For the model
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f (ϕt , θ) = θ, see (4), this is straight forward. f (ϕt , θ̂), t = 1, . . . , Nv are simply
equal to

∑Ne
t=1 yt/Ne. For the model given in (6), however, it is not trivial and we

will discuss this in the next section.

In regularization, a cost on flexibility is added to the criterion of fit. f (ϕt , θ) is
now adjusted to the observations by choosing θ as

θ̂ = arg min
θ

Ne∑
t=1

l
(
yt − f (ϕt , θ)big) + λJ(θ, ϕt), (9)

rather than using (3). J(θ, ϕt) serves as a cost on flexibility and is often used to
penalize non-smooth estimates. λ is seen as a design parameter and regulates
the trade-off between fit to the estimation data and smoothness. Choosing the
“just flexible enough” model structure is now transformed to choosing the right
λ-value.

For the model proposed in (6), a suitable regularizer is

J(Θ, ϕt) =
Ne∑
t=1

ft − Ne∑
s=1

k(ϕt , ϕs)fs∑Ne
r=1 k(ϕt , ϕr )


2

, (10)

where k : Rnϕ × Rnϕ → R is a kernel. The regularizer (10) makes sure that close-
by regressors are transformed in a similar way by f (ϕ,Θ) and therefore reassures
smoothness. This remedies the overfitting problem that (6) was previously suffer-
ing of.

There are a number of different kernels that could be of interest to use in (10).
Some of the most interesting kernels are the squared exponential, KNN and LLE
kernel. The details of these kernels are outlined in Appendix A.1.

4 Generalization

For most practical purposes it is not enough to find a model f (ϕ, θ) that well
imitates f0 at {(ϕt , yt)}

Ne
t=1. Generalization to non-observed data is often of more

importance. This is denoted the model’s ability to generalize to unseen data.

Let ϕ∗ be an unseen regressor, i.e., ϕ∗ , ϕt , t = 1, . . . , Ne,. For the simple model
(4),

f (ϕ, θ̂) =
Ne∑
t=1

yt/Ne, (11)

generalization is trivial since the prediction does not depend on the regressor.
The estimate for f (ϕ∗), ϕ∗ , ϕt , t = 1, . . . , Ne, is simply taken as

∑Ne
t=1 yt/Ne.

For the model (6),

f (ϕt , Θ̂) = f̂t , t = 1, . . . , Ne, (12)
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with

Θ̂ = arg min
f1,f2,...,fNe

Ne∑
t=1

(yt − ft)2 + λ
Ne∑
t=1

ft − Ne∑
s=1

k(ϕt , ϕs)fs∑Ne
r=1 k(ϕt , ϕr )


2

, (13)

generalization is a bit more involved. The most natural way is to introduce a new
parameter f∗ for the estimate of f0(ϕ∗) and let the smoothness implied by the
regularization give an estimate

f (ϕ∗, Θ̂) = f̂∗ (14)

with

Θ̂ = arg min
f1,f2,...,fNe ,f∗

Ne∑
t=1

(yt − ft)2 + λ
∑
ϕt∈D

ft − ∑
ϕs∈D

k(ϕt , ϕs)fs∑
ϕr∈D k(ϕt , ϕr )


2

. (15)

D now contains both the estimation data and ϕ∗, i.e., D = {ϕ1, ϕ2, . . . , ϕNe
, ϕ∗}.

Since (15) is quadratic in the optimization variables, an explicit solution can be
computed. Introduce first the notation

J ,[INe×Ne
0Ne×1], y , [y1 y2 . . . yNe

]T , (16a)

f̂ ,[f̂1 f̂2 . . . f̂Ne
f̂∗]

T , k̄(ϕt , ϕs) ,
k(ϕt , ϕs)∑

ϕr∈D k(ϕt , ϕr )
, (16b)

K ,



k̄(ϕ1, ϕ1) k̄(ϕ1, ϕ2) . . . k̄(ϕ1, ϕNe
) k̄(ϕ1, ϕ∗)

k̄(ϕ2, ϕ1) k̄(ϕ2, ϕ2) k̄(ϕ2, ϕNe
) k̄(ϕ2, ϕ∗)

...
. . .

...
k̄(ϕNe

, ϕ1) k̄(ϕNe
, ϕ2) . . . k̄(ϕNe

, ϕNe
) k̄(ϕNe

, ϕ∗)
k̄(ϕ∗, ϕ1) k̄(ϕ∗, ϕ2) . . . k̄(ϕ∗, ϕNe

) k̄(ϕ∗, ϕ∗)


. (16c)

(15) can then be written as

(y − Jf̂)T (y − Jf̂) + λ(f̂ −Kf̂)T (f̂ −Kf̂) (17)

which expands into

f̂T
(
λ(I −K)T (I −K) + JT J

)
f̂ + 2f̂T JT y + yT y. (18)

Setting the derivative with respect to f̂ to zero and solving gives

f̂∗ = e∗
(
λ(I −K)T (I −K) + JT J

)−1
JT y, e∗ , [01×Ne

1]. (19)

It is straight forward to do the generalization for more than one unobserved re-
gressor at a time. D used in (15) then indexes all regressors, the Ne estimation
regressors and the regressors for which we seek an estimate of the function-value
but have not observed the output. We will refer to the method outlined in (19) to
as Weight Determination by Manifold Regularization (WDMR, Ohlsson et al. (2008),
see also Ohlsson (2008); Ohlsson and Ljung (2010a)). The reason for the name
will become clear later.
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Proposition 1 (Linear Kernel Smoother). The estimate given in (19) can be
rewritten in the form

f (ϕ∗, Θ̂) =
Ne∑
t=1

wtyt (20)

and is therefore a linear estimator, since it is linear in the estimation outputs. The
estimate given in (19) is also a kernel smoother since it is constructed using ker-
nels. These two combined makes WDMR a linear kernel smother (see e.g., Hastie
et al. (2001), p. 129). For WDMR wt is given by

wt = e∗
(
λ(I −K)T (I −K) + JT J

)−1
JT yeTt (21)

with et = [01×t−1 1 01×Ne−t]. The expression for constructing the weights w in (20)
is referred to as the equivalent kernel in the literature (see e.g., Hastie et al. (2001)
p. 170).

Notice that the resulting estimates coming from estimating the function-value of
unobserved regressors one-by-one and all at the same time will not be the same.
This is a property of semi-supervised regression approaches. The regularization
will make sure that the estimated ft varies smoothly on regressor-dense regions.
We will return to this property later and discuss when it can be useful.

5 WDMR and the Nadaraya-Watson Smoother

In the linear kernel smoother WDMR the kernel was used to provide a smooth-
ness prior. A kernel can also “direct” be used to obtain an estimate for f0(ϕ∗)
using

f (ϕ∗) =
Ne∑
t=1

k(ϕ∗, ϕt)yt∑Ne
r=1 k(ϕ∗, ϕr )

, (22)

which also is a linear kernel smoother. This is referred to as the Nadaraya-Watson
smoother or estimator (Nadaraya, 1964; Watson, 1964). It may seem a bit over-
complicated to, as in WDMR, use a kernel as e.g., smoothness prior but in the
end anyway end up with a linear kernel smoother. What is achieved by using a
kernel in WDMR compared to using the kernel direct in the Nadaraya-Watson
smoother as in (22)?

Remark 2. Note that the Nadaraya-Watson smoother weight together noisy observations

{yt}
Ne
t=1 to obtain an estimate f (ϕ∗). To reduce the influence of noise, yt in (22) could itself

be replaced by an estimate of f0(ϕt) by using (22) a second time. i.e.,

f (ϕt) =
1∑Ne

r=1 k(ϕt , ϕr ) + k(ϕt , ϕ∗)

( Ne∑
s=1

k(ϕt , ϕs)ys + k(ϕt , ϕ∗)f (ϕ∗)
)
. (23)
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If all noisy observations are replaced, we obtain the system of equations

f (ϕt) =
∑
ϕs∈D

k(ϕt , ϕs)f (ϕs)∑
ϕr∈D k(ϕt , ϕr )

, ∀ϕt ∈ D, D = {ϕ1, ϕ2, . . . , ϕNe , ϕ∗}, (24)

which takes a familiar form (see the regularization in (15)). The regularization in WDMR
expresses the desire to obtain an estimate satisfying this system of equations.

Remark 3. The resulting estimates coming from estimating the function-value at unob-
served regressors one-by-one and all at the same time will not be the same for WDMR. This
is a property of semi-supervised regression approaches. The regularization will make sure
that the estimated fts vary smoothly on regressor-dense regions. The Nadaraya-Watson
smoother is not a semi-supervised approach and estimating one function-value at a time
or all at the same time would be the same.

To start examine the advantages and disadvantages of WDMR compared to the
Nadaraya-Watson smoother, let us look at an example.

Example 1: Nadaraya-Watson Smoother Versus WDMR
Let us now consider a standard test example from Narendra and Li (1996), “the
Narendra-Li example”:

xt+1 =
(

xt
1 + x2

t

+ 1
)

sin(zt) (25a)

zt+1 =zt cos(zt) + xt exp
(
−
x2
t + z2

t

8

)
+

u3
t

1 + u2
t + 0.5 cos(xt + zt)

(25b)

yt =
xt

1 + 0.5 sin(zt)
+

zt
1 + 0.5 sin(xt)

+ et (25c)

This dynamical system was simulated with 2000 samples using a random binary
input, giving input output data {yt , ut , t = 1, . . . , 2000}. A separate set of 200
validation data, see Figure 1, were also generated with a sinusoidal input. The
chosen regression vector was

ϕt =
[
yt−1 yt−2 yt−3 ut−1 ut−2 ut−3

]T
. (26)

Let us use the squared exponential kernel (see Appendix A.1) and apply the
Nadaraya-Watson smoother and WDMR (λ = 0.0001 was used in (21)) to estimate
the function-values at the validation regressors. The result is given in Table 1. A
length scale (see Appendix A.1 for the definition of length scale) of 0.6 and 0.7
gave the best performing Nadaraya-Watson smoother respective WDMR. The ta-
ble also give the fit for a neural network (a single layer sigmoid network with
23 units in the System Identification Toolbox (Ljung, 2007) gave the best perfor-
mance) and the prediction given by guessing that the next f0-value will equal the
previous observation.

The direct usage of the squared exponential kernel in the Nadaraya-Watson
smoother is doing very well compare to the neural network and guessing that
the next f0-value will be equal the previous observation. However, even better



170 Paper E Weight Determination by Manifold Regularization

0 20 40 60 80 100 120 140 160 180 200
−5

−4

−3

−2

−1

0

1

2

3

t

y

Figure 1: Validation data for the Narendra-Li example.

does WDMR. As mentioned earlier (see Remark 2), WDMR has a hierarchical
scheme for denoising the observations. One may therefore wonder if enlarging
the bandwidth/length scale in the Nadaraya-Watson smoother would have the
same denoising effect. Figure 2 shows that it is not that easy and that enlarging
the bandwidth/length scale does not help the Nadaraya-Watson smoother.

Table 1: Mean fit over 20 noise and input realization for the Nadaraya-
Watson smoother and WDMR using a squared exponential kernel, a neural
network and the estimate obtained by simply taking the previous output as
an estimate for the next function value.

Algorithm Mean fit (%)
Nadaraya-Watson (squared exponential, l = 0.6) 68
WDMR (squared exponential, l = 0.7, λ = 10−4) 71
Neural network (23 units) 66
Last measurement 47

It is also interesting to examine what happens if the measurement noise changes.
Table 2 gives the result from an experiment where the noise level was decreased
in three steps. We see that as the noise level decrease the difference in perfor-
mance between the Nadaraya-Watson smoother and WDMR disappears.

So far we have only applied WDMR to a batch of data. We claimed earlier that
applying WDMR to a batch of data is not the same as applying it to the regres-
sors one-by-one. And unfortunately, the positive result seen for the batch tends
to disappear when this is done. WDMR and the Nadaraya-Watson smoother then
give similar performance. There are possibly many reasons for this. One pos-
sible reason is the following. In the batch setting, the regularization in WDMR
makes sure that the estimate varies smoothly over regions of regressors. So called
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Figure 2: wt of (21) (thin black line) plotted as a function of |ϕi − ϕt |, i =
1 . . . , Ne and ϕt being one of the validation regressors. Thick gray line shows
the corresponding weights of the Nadaraya-Watson smoother.

Table 2: The Nadaraya-Watson smoother and WDMR’s performance for
three different noise levels. Both algorithms used a squared exponential
kernel and were tuned for each of the noise levels for optimal perfor-
mance. l = 0.8, 0.6, 0.6, 0.5 were used in the Nadaraya-Watson estimator and
(l, λ) = (0.8, 10−4), (0.7, 10−4), (0.7, 0.8 · 10−4), (0.7, 0.5 · 10−4) in WDMR.

Algorithm
Fit

σ2 = 0.5
Fit

σ2 = 0.1
Fit

σ2 = 0.05
Fit

σ2 = 0.01
Nadaraya-Watson 56 69 72 74
WDMR 60 71 73 74

boundary effects have however been observed. This means that the estimates for
regressors at the end of dense regions often are worse than estimates for regres-
sors surrounded by many other regressors. Boundary effects are a known issue of
kernel smoothers, see e.g., Hastie et al. (2001, p. 168). This supports that batch
would do better than one-by-one.

This unfortunately means that WDMR is less interesting for other than batch and
nonlinear FIR models. We will in the subsequent only discuss a batch approach.

6 The Semi-Supervised Smoothness Assumption

WDMR does not only have good denoising properties, it can also provide desir-
able properties when it comes to problems having regressors confined to limited
regions e.g., manifolds, in the regressor space. Let us illustrate this by a pictorial
example.
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Figure 3: The left side shows 5 regressors, four with measured outputs and
one with unknown output. Desiring an estimate of the function value at
the regressor with a “?”, we could simply weight together the two closest
regressors’ outputs and get 2.5. Say now that the process that generated our
regressors, traced out the path shown in the right part of the figure. Would
we still guess 2.5?

Consider the five regressors shown in the left of Figure 3. For four of the regres-
sors the output has been observed and their outputs are written out next to them.
One of the regressors’ output is unknown. To estimate the function value at that
regressor, we could use the Nadaraya-Watson smoother and compute the average
of the two closest regressors’ outputs, which would give an estimate of 2.5. Let
us now add the information that the regressors and the outputs were sampled
from an in time continuous process and that the value of the regressor was evolv-
ing along the curve shown in the right part of Figure 3. Knowing this, a better
estimate of the function value would probably be 1. The knowledge of that the
regressors are restricted to a certain region in the regressor space can hence make
us reconsider our estimation strategy.

We are in regression interested in finding estimates for the conditional distribu-
tion p(f |ϕ). For the regressors without observed output to be useful, it is re-
quired that the regressor distribution p(ϕ) brings information concerning the
conditional p(f |ϕ). We saw from the pictorial example that one situation for
which this is the case is when we make the assumption that the sought function
value changes continuously along high-density areas in the regressor space. This
assumption is referred to as the semi-supervised smoothness assumption (Chapelle
et al., 2006):

Assumption E.1 (Semi-Supervised Smoothness). If two regressors ϕ1, ϕ2 in a
high-density region are close, then so should f0(ϕ1) and f0(ϕ2) be.

“High density region” is a somewhat loose term: In many cases it corresponds
to a manifold in the regressor space, such that the regressors for the application
in question are confined to this manifold. That two regressors are “close” then
means that the distance between them along the manifold (the geodesic distance)
is small.
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In classification, this smoothness assumption is interpreted as that the class labels
should be the same in the high-density regions. In regression, we interpret this
as a slowly varying function along high-density regions. Note that in regression,
it is common to assume that the function value varies smoothly in the regressor
space; the semi-supervised smoothness assumption is less conservative since it
only assumes smoothness in the high-density regions in the regressor space. Two
regressors could be close in the regressor space metric, but far apart along the
high density region (the manifold): think of the region being a spiral in the re-
gressor space.

One may discuss how common it is in system identification that the regressors are
constrained to a manifold. The input signal part of the regression vector should
according to identification theory be “persistently exciting” which is precisely the
opposite of being constrained. However, in many biological applications and in
DAE (Differential Algebraic Equation) modeling such structural constraints are
frequently occurring.

6.1 A Comparison Between the Nadaraya-Watson Smoother and
WDMR Using the KNN Kernel

To illustrate the advantage of WDMR under the semi-supervised smoothness as-
sumption, we continue to discuss the pictorial example previously discussed. We
now add 5 regressors with unobserved output to the 5 previously considered.
Hence we have 10 regressors, 4 with observed outputs and 6 with unobserved
outputs, and we desire an estimate of the output marked with a question mark
in Figure 4. The left part of Figure 4 shows how the Nadaraya-Watson smoother
solves the estimation problem if the KNN kernel (see Appendix A.1) is used. The
kernel will cause the searched function value to be similar to the observed out-
puts of the K closest regressors. In the right part of Figure 4, WDMR with the
KNN kernel is used. This kernel grants estimates of the K closest regressors (ob-
served or unobserved output) to be similar. Since the closest regressors, to the
regressor for which we search the function value, are unobserved, information is
propagated from the observed regressors towards the one for which we search a
function value estimate along the chain of unobserved regressors. The shaded re-
gions in both the left and right part of the figure symbolize the way information
is propagated using the Nadaraya-Watson smoother and WDMR. In the left part
of the figure we will therefore obtain an estimate equal to 2.5 while in the right
we get an estimate equal to 1.

The ability of WDMR to account for manifolds in the regressor space and the
semi-supervised smoothness assumption is a rather unique property of a kernel
smoother and the reason for the name Weight Determination by Manifold Regular-
ization.
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Figure 4: An illustration of the difference of using the Nadaraya-Watson
smoother (left part of the figure) and WDMR (right part of the figure) with
the KNN kernel.

7 Related Approaches

Semi-supervised learning has been around since the 1970s (some earlier attempts
exist). Fisher’s linear discriminant rule was then discussed under the assumption
that each of the class conditional densities was Gaussian. Expectation maximiza-
tion was applied using both regressor-output-pairs and regressors to find the pa-
rameters of the Gaussian densities (Hosmer, 1973). During the 1990s the interest
for semi-supervised learning increased, mainly due to its application to text clas-
sification, see e.g., Nigam et al. (1998). The first usage of the word semi-supervised
learning, as it is used today, was not until 1992 (Merz et al., 1992).

The boost in the area of manifold learning in the 1990s brought with it a number
of semi-supervised methods. Semi-supervised manifold learning is a type of semi-
supervised learning in which the map found by an unsupervised manifold learn-
ing algorithm is restricted by giving a number of regressor-output-pairs as exam-
ples for how that map should be. Most of the algorithms are extensions of un-
supervised manifold learning algorithms, see among others Belkin et al. (2006);
Yang et al. (2006); Navaratnam et al. (2007); de Ridder et al. (2003); de Ridder
and Duin (2002); Ohlsson et al. (2008); Zhao and Zhang (2009). Another interest-
ing contribution is the developments by Rahimi in Rahimi et al. (2007). A time
series of regressors, some with measured outputs and some not, are considered
there. The series of estimates best fitting the given outputs and at the same time
satisfying some temporal smoothness assumption is then computed.

Most of the references above are to semi-supervised classification algorithms.
They are however relevant since most semi-supervised classification methods can,
with minor modifications, be applied to regression problems. The modification
or the application to regression problems are however almost never discussed or
exemplified. For more historical notes on semi-supervised learning, see Chapelle
et al. (2006).

Similar methods to WDMR has also been discussed previously, see e.g., Goldberg
and Zhu (2006); Ohlsson et al. (2007); Yang et al. (2006); Bengio et al. (2006);
Belkin et al. (2006); Wang and Zhang (2008). Yang et al. (2006) discusses man-
ifold learning and construct a semi-supervised version of the manifold learning
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technique Locally Linear Embedding (LLE, Roweis and Saul (2000)) which coin-
cides with a particular choice of kernel in (15). Combining LLE with system
identification was also discussed in Ohlsson et al. (2007). Goldberg and Zhu
(2006) studies graph based semi-supervised methods for classification and de-
rives a similar objective function as (15). Bengio et al. (2006); Wang and Zhang
(2008) discuss a classification method called label propagation which is an itera-
tive approach converging to (15). In Belkin et al. (2006), support vector machines
is extended to work under the semi-supervised smoothness assumption. There is
also a huge literature on kernel smoothers, see e.g., Hastie et al. (2001).

8 Examples

We give in the following two examples of regression problem for which the semi-
supervised smoothness assumption is motivated.

8.1 fMRI

functional Magnetic Resonance Imaging, fMRI is a technique to measure brain ac-
tivity. The fMRI measurements give a measure of the degree of oxygenation in
the blood, it measures the Blood Oxygenation Level Dependent (BOLD) response.
The degree of oxygenation reflects the neural activity in the brain and fMRI is
therefore an indirect measure of brain activity.

Measurements of brain activity can with fMRI be acquired as often as once a
second and are given as an array, each element giving a scalar measure of the
average activity in a small volume element of the brain. These volume elements
are commonly called voxels (short for volume pixel) and they can be as small as
one cubic millimeter. The fMRI measurements are heavily affected by noise.

In this example, we consider measurements from an 8 × 8 × 2 array covering
parts of the visual cortex gathered with a sampling period of 2 seconds. To re-
move noise, data was prefiltered by applying a spatial and temporal filter with
a squared exponential kernel. The filtered fMRI measurements at each time t
were vectorized into the regression vector ϕt . fMRI data was acquired during
240 seconds (giving 120 samples, since the sampling period was 2 seconds) from
a subject that was instructed to look away from a flashing checkerboard covering
30% of the field of view. The flashing checkerboard moved around and caused
the subject to look to the left, right, up and down. The direction in which the
person was looking was seen as the output. The output was chosen to 0 when the
subject was looking to the right, π/2 when looking up, π when looking to the left
and −π/2 when looking down.

The direction in which the person was looking is described by its angle, a scalar.
The fMRI data should hence be constrained to a one-dimensional closed mani-
fold residing in the 128 dimensional regressor space (since the regressors can be
parameterized by the angle). If we assume that the semi-supervised smoothness
assumption holds, WDMR therefore seems like a good choice.
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The 120 regressors with observed output were separated into two sets, a training
set consisting of 80 regressors and a test set consisting of 40 regressors. The train-
ing set was further divided into an estimation set and a validation set, both of the
same size. The estimation set and the regressors of the validation set were used
in WDMR. The estimated outputs of the validation regressors were compared to
the measured outputs and used to determine the design parameters. λ in (15)
was chosen as 0.8 and K (using the kernel determined by LLE, see Appendix A.1)
as 6. The tuned WDMR regression algorithm was then used to predict the direc-
tion in which the person was looking. The result from applying WDMR to the 40
regressors of the test set is shown in Figure 5.

The result is satisfactory but it is not clear to what extent the one-dimensional
manifold has been found. The number of regressors with unobserved output
used are rather low and it is therefore not surprising that the Nadaraya-Watson
smoother with the KNN kernel can be shown to do almost as good as WDMR
in this example. One would expect that adding more regressors with unobserved
output would improve the result obtained by WDMR. The estimates of the
Nadaraya-Watson smoother would however stay unchanged since the Nadaraya-
Watson smoother is a supervised method and therefore not affected by regressors
with unobserved output.

Figure 5: WDMR applied to brain activity measurements (fMRI) of the vi-
sual cortex in order to tell in what direction the subject in the MR scanner
was looking. Thin gray line shows the direction in which the subject was
looking and thick black line, the estimated direction by WDMR.

8.2 Climate Reconstruction

There exist a number of climate recorders in nature from which the past temper-
ature can be extracted. However, only a few natural archives are able to record
climate fluctuations with high enough resolution so that the seasonal variations
can be reconstructed. One such archive is a bivalve shell. The chemical com-
position of a shell of a bivalve depends on a number of chemical and physical
parameters of the water in which the shell was composed. Of these parameters,
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the water temperature is probably the most important one. It should therefore
be possible to estimate the water temperature for the time the shell was built,
from measurements of the shell’s chemical composition. This would e.g., give cli-
matologists the ability to estimate past water temperatures by analyzing ancient
shells.

In this example, we used 10 shells grown in Belgium. Since the temperature in
the water had been monitored for these shells, this data set provides excellent
means to test the ability to predict water temperature from chemical composi-
tion measurements. For these shells, the chemical composition measurements
had been taken along the growth axis of the shells and paired up with tempera-
ture measurements. Between 30 and 52 measurement were provided from each
shell, corresponding to a time period of a couple of months. The 10 shells were
divided into an estimation set and a validation set. The estimation set consisted
of 6 shells (a total of 238 regressors with observed output) grown in Terneuzen
in Belgium. Measurements from five of these shells are shown in Figure 6. The
figure shows measurements of the relative concentrations of Sr/Ca, Mg/Ca and
Ba/Ca (Pb/Ca is also measured but not shown in the figure). The line shown be-
tween measurements connects the measurements coming from a shell and gives
the chronological order of the measurements (two in time following measure-
ments are connected by a line).

Figure 6: A plot of the Sr/Ca, Mg/Ca and Ba/Ca concentration ratio mea-
surements from five shells. Lines connects measurements (ordered chrono-
logically) coming from the same shell. The temperatures associated with the
measurements were color coded and are shown as different gray scales on
the measurement points.

As seen in the figure, measurements are highly restricted to a small region in
the measurement space. Also, the water temperature (gray level coded in Fig-
ure 6) varies smoothly in the high-density regions. This together with that it is a
biological process generating data, motivates the semi-supervised smoothness as-
sumption when trying to estimate water temperature from chemical composition
measurements (4-dimensional regressors).
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The four shells in the validation set came from four different sites (Terneuzen,
Breskens, Ossenisse, Knokke) and from different time periods. The estimated
temperatures for the validation data obtained by using WDMR with the kernel
determined by LLE (see Appendix A.1) are shown in Figure 7. For comparison
purpose, it could be mentioned that the Nadaraya-Watson smoother using the
LLE kernel had a Mean Absolute Error (MAE) nearly twice as high as WDMR.

Figure 7: Water temperature estimations using WDMR for validation data
(thick line) and measured temperature (thin line). From top to bottom figure,
shells from: Terneuzen, Breskens, Ossenisse, Knokke.

A more detailed discussion of this exampled is presented in Bauwens et al. (2009).
The data sets used were provided by Vander Putten and colleagues (Vander Put-
ten et al., 1999) and Gillikin and colleagues (Gillikin et al., 2006a,b).

9 Conclusion

This chapter presents and discusses a novel linear kernel smoother, weight de-
termination by manifold regularization. The regression method is of particular
interest when regressors are confined to limited regions in the regressor space
and under the semi-supervised smoothness assumption. Examples of this type of
problems were given.
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A Appendix

A.1 Kernels

This section presents kernels referred to in the chapter. The convention that
k(ϕi , ϕj ) = 0 if i = j is always used. See Chapter 4 in Rasmussen and Williams
(2005) for more on kernels.

The KNN Kernel

Define the K-nearest neighbor kernel as

k(ϕi , ϕj ) ,
{

1
K , if ϕj is one of the K closest neighbors,
0, otherwise.

(27)

The Squared Exponential Kernel

Define the squared exponential kernel (sometimes called a Gaussian kernel) as

k(ϕi , ϕj ) , e
−‖ϕi−ϕj‖22/2l

2
. (28)

l is a parameter of the kernel and denoted the length scale.

The LLE Kernel

Locally Linear Embedding (LLE, Roweis and Saul (2000)), is a technique to find
lower dimensional manifolds to which an observed collection of regressors be-
long. A brief description of it is as follows:

Let {ϕi , i = 1, . . . , N } belong to U ⊂ Rnϕ where U is an unknown manifold of
dimension nz . A coordinatization zi , (zi ∈ Rnz ) of U is then obtained by first
minimizing the cost function

ε(l) =
N∑
i=1

∥∥∥∥∥∥∥∥ϕi −
N∑
j=1

lijϕj

∥∥∥∥∥∥∥∥
2

2

(29a)

under the constraints{ ∑N
j=1 lij = 1,

lij = 0 if ‖ϕi − ϕj‖2 > Ci(κ) or if i = j.
(29b)

Here, Ci(κ) is chosen so that only κ weights lij become nonzero for every i. κ
is a design variable. It is also common to add a regularization to (29a) not to get
degenerate solutions.
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Then for the determined lij find zi by minimizing

N∑
i=1

∥∥∥∥∥∥∥∥zi −
N∑
j=1

lijzj

∥∥∥∥∥∥∥∥
2

2

(30)

wrt zi ∈ Rnz under the constraint

1
N

N∑
i=1

ziz
T
i = Inz×nz (31)

zi will then be the coordinate for ϕi in the lower dimensional manifold. Define
now the LLE-kernel as

k(ϕi , ϕj ) , lij (32)

where lij is defined in (29).

Note that the LLE kernel is invariant to translation, rotation, and rescaling of
the regressors ϕ. By using the LLE kernel in (19) we hence assume that the map
f0 is a linear combination of some coordinates that are invariant to translation,
rotation, and rescaling of the regressors.
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Abstract

Intrigued by some recent results on impulse response estimation by
kernel and nonparametric techniques, we revisit the old problem of
transfer function estimation from input-output measurements. We
formulate a classical approach, focused on finite impulse response
(FIR) models, and find that regularization is necessary to cope with
the high variance problem. This basic, regularized Least Squares esti-
mate is then a focal point for interpreting other techniques, including
Gaussian Process Regression. The role of the kernels – or regulariza-
tion matrices – is illustrated by numerical experimentation on a data
bank of many systems. The consequences for estimating a model of
given complexity are illuminated.

1 Introduction

Estimation of the transfer function, or impulse response, of a linear system is a
problem that we feel that we have known “everything about” for at least a quarter
of a century, e.g., Ljung (1985), based on well established theory and algorithms
in statistics and the system identification community. Nevertheless, papers on
the problem are still appearing. A recent, very inspiring, and thought provoking,
contribution is Pillonetto and De Nicolao (2010a) (see also the follow-up, Pil-
lonetto et al. (2010)), which shows rather remarkable results based on Gaussian
Processes and Spline Kernels. That has prompted the current wish to revisit the
transfer function estimation problem from scratch.

The problem

Suppose we are given a batch of input-output data (single-input single-output
(SISO)) ZN = {u(t), y(t), t = 1, . . . , N }. We have no information about the data,
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except that it is collected from a linear system with additive noise. The task is to

a) Estimate, as well as possible, the impulse response of the unknown system.

b) Estimate a model of given order that has an impulse response as close as pos-
sible to the unknown system.

The standard answers to these questions are

for b) to use a prediction error/maximum likelihood (PEM/ML) estimate for the
given model structure.

for a) to try several models of different orders, apply b) and use model order/-
model selection techniques to pick the right model order.

We shall revisit these two problems with an emphasis on high order FIR (finite im-
pulse response) models, that are simple, safe and robust ways of building linear
models, directly focusing on the impulse response.

2 Problem Formulation

Consider a linear system

y(t) = G0(q)u(t) + v(t) (1)

Here q is the shift operator, qu(t) = u(t + 1), v(t) is additive noise, independent
of the input u(t), and the transfer function is

G0(q) =
∞∑
k=1

g0
k q
−k (2)

The coefficients g0
k form the impulse response of the system. The corresponding

frequency function is defined as

G0(eiω) =
∞∑
k=1

g0
k e
−iωk (3)

We measure the sequences y(t) and u(t), t = 1, 2, . . . , N and the goal is to find an
estimate ĜN (eiω) of G0(eiω) that is as good as possible in the sense of the mean
square error (MSE, see (6)). A related goal is to assess and quantify the error in
the estimate.

The traditional way is to postulate a finite-dimensional parameterization

G(q, θ) (4)

in terms of θ and then estimate θ in some suitable way and deliver the estimate
ĜN (eiω) = G(eiω, θ̂N ). Many such parameterizations have been suggested and
tested in the literature, e.g., Ljung (1999). A distinct difficulty is to determine the
“size” of the parameter vector θ and to assess the error that stems from G0 being
outside the set of functions that is covered within the parameterization. Partly
for that reason, alternative approaches based on other ideas, like “Gaussian Pro-
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cess Regression”, and non-parametric descriptions of the function G0(eiω) (or the
impulse response) have recently been suggested, e.g., Pillonetto and De Nicolao
(2010a); Pillonetto et al. (2010). Related methods for assessing the quality of
ĜN (eiω) have been discussed in the 1990’s and early 2000’s (Goodwin et al., 1992,
2002) in connection with bias quantification.

The purpose of the current contribution is to give a simplistic perspective of what
can be done to deal with this problem and the different interpretations that can
be associated with the solutions.

3 A Data-Bank of Test Data

To test different techniques we generated a data-bank of 5000 systems and data
sets. They should be representative of real-life data sets, in that the underlying
system is not of low order (but could allow good low order approximations) and
should correspond to different signal-to-noise ratios (SNR). We have done as fol-
lows:

• A number of 30th order random SISO continuous-time systems were gener-
ated in Matlab using the command rss.

• These continuous-time systems were sampled at 3 times the bandwidth to
yield the discrete-time systems using the following commands
bw=bandwidth(m)
f = bw*3*2*pi
md=c2d(m,1/f,’zoh’)
where m is the continuous-time system and md is the corresponding discrete-
time system.

• These discrete-time systems were split into 2500 “fast” systems S1 that
have all their poles inside a circle with radius 0.95 and 2500 ”slow” sys-
tems S2 which have at least on pole outside the circle with radius 0.95 (but
inside the unit circle).

• The 5000 systems were simulated with an input which was white Gaussian
noise with unit variance, and output additive white Gaussian noise with
different variances:

– low SNR: SNR=1. The additive output noise has the same variance as
the noise-free output. The number of data in these records were 375.

– high SNR: SNR=10. The additive output noise has a variance which is
a tenth of the variance of the noise-free output. The number of data in
these records were 500.

• This gives four collections of data sets.

– S1D1: Fast systems with high SNR.

– S2D1: Slow systems with high SNR.

– S1D2: Fast systems with low SNR.
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– S2D2: Slow systems with low SNR.

All these data sets are accessible from
http://www.rt.isy.liu.se/~tschen/research/regul_fir/
systems_tested/

To evaluate the various methods the estimates of the impulse response coeffi-
cients ĝNk were compared to the true ones by the measure

W = 100

1 −
∑N

k=1 |g
0
k − ĝ

N
k |

2∑N
k=1 |g

0
k − ḡ0|2

1/2 , ḡ0 =
1
N

N∑
k=1

g0
k (5)

It corresponds to the “fit” in the compare command in the System Identification
Toolbox (Ljung, 2007). Note that W = 100 means a perfect fit between the im-
pulse responses. Each data set gives rise to a particular value of W , and in the
tables below we give the average of W over all the sets in a certain collection.

4 A Classical Perspective

In the classical perspective G0(eiω) is an unknown quantity that is estimated from
the data. The estimate is a random variable (due to the noise v(t)) and the quality
can be assessed by the “distance” between the estimate and the true value.

A reasonable measure is the mean square error (MSE)

MN = E |ĜN (eiω) − G0(eiω)|2 (6)

Here, expectation E is with respect to both the input noise process u(t) and the
output noise process v(t). Now, the MSE is classically split into a bias part

BN = E ĜN (eiω) − G0(eiω) (7)

and a variance part

VN = E |ĜN (eiω) − E ĜN (eiω)|2 (8)

so that

MN = VN + |BN |2 (9)

4.1 Trading Variance for Bias to Minimize the MSE

In the expression for the MSE, the bias term BN decreases and the variance term
VN increases, when the model becomes more flexible (contains more essential
parameters). The MSE is then often minimized for a model flexibility that does
not give zero bias. In other words, a pragmatic choice of model flexibility allows
some bias to reduce variance so that the MSE is minimized.

http://www.rt.isy.liu.se/~tschen/research/regul_fir/systems_tested/
http://www.rt.isy.liu.se/~tschen/research/regul_fir/systems_tested/
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4.2 OE-Models

We will not be concerned with noise models in this contribution, so a natural
numerator/denominator model is

G(q, θ) =
B(q, θ)
F(q, θ)

(10)

The PEM/ML approach to the estimation of (10) would be

θ̂N = arg min
θ

N∑
t=1

|y(t) − G(q, θ)u(t)|2 (11)

The estimation involves search for the solution of the non-convex problem (11),
which may lead to local minima and possibly ill-conditioned calculations. An
alternative is to fix the denominator F(q, θ) to 1 (or any fixed, stable, polynomial)
so that a linear regression problem is obtained.

4.3 FIR-Models

The simplest approach to estimate G(q, θ) is to truncate the expansion (2) at a
finite number of impulse response coefficients (“FIR” model, corresponding to
fixing F(q, θ) = 1 in (10))

G(q, θ) =
n∑
k=1

gkq
−k , θ =

[
g1 g2 . . . gn

]T
(12)

The vector θ is then easily estimated by the least squares method: Write the
model as

y(t) = ϕT (t)θ + v(t), ϕ(t) =
[
u(t − 1) . . . u(t − n)

]T
(13a)

or YN = ΦTNθ + ΛN (13b)

where YN =
[
y(1) y(2) . . . y(N )

]T
(13c)

ΦN =
[
ϕ(1) ϕ(2) . . . ϕ(N )

]
(13d)

ΛN =
[
v(1) v(2) . . . v(N )

]T
(13e)

The least-squares solution is well known:

θ̂N = arg min νN (θ) (14a)

νN (θ) = ‖YN − ΦTNθ‖
2 =

N∑
t=n

(
y(t) − ϕT (t)θ

)2
(14b)

θ̂N = (ΦNΦ
T
N )−1ΦNYN = R−1

N FN (14c)

FN = ΦNYN =
N∑
t=1

ϕ(t)y(t), (14d)
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RN = ΦNΦ
T
N =

N∑
t=1

ϕ(t)ϕ(t)T (14e)

The summation in (14b) starts at n to allow ϕ(t) to be formed. (This is known as
the ’non-windowed’ case.)

How good is the resulting FIR model? Let us assume that

E v(t) = 0, E v(t)v(s) = σ2δt,s, (15)

where δt,s is Kronecker-delta function, i.e., if t = s, δt,s = 1, otherwise δt,s = 0.
The input u(t) (and thus ϕ(t)) is seen as a deterministic variable, and for the
conceptual analysis here, for simplicity we will assume that there exists µ > 0
such that

1
N
RN → µIn as N →∞ (16)

where In is the n × n unit matrix. This will hold w.p. 1 if u(t) is chosen as white
noise with variance µ but may be true under many other choices of input (PRBS,
certain multi-sine input etc.). This means that for reasonably large N ,

1
N
RN ≈ µIn (17)

Then it is immediate to show that

E θ̂N = θ0 =
[
g0

1 g0
2 . . . g0

n

]T
(18a)

E(θ̂N − θ0)(θ̂N − θ0)T = σ2R−1
N ≈

σ2

Nµ
In (18b)

which gives the, variance, bias, and MSE

VN =
nσ2

Nµ
(19a)

BN =
∞∑

k=n+1

g0
k e
iωk (19b)

MN = VN + |BN |2 (19c)

It is well known, Ljung and Wahlberg (1992), that by letting the order n increase
to infinity with the number of data N , sufficiently slowly, the model (12) will
converge to the true transfer function (2). To minimize the MSE with respect to
the order n for a given data size N requires some idea on the size of BN as a
function of n. If the system has all poles inside a circle with radius λ̄, then there
exists a c̄ > 0 such that

|g0
k | < c̄λ̄

k (20a)

|BN | <
c̄λ̄n+1

1 − λ̄
(20b)
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which means that an upper bound on the MSE is minimized for

n =
logN + log

(
µc̄ log(1/ λ̄)/(σ2/ λ̄ − σ2)

)
log(1/ λ̄)

(21)

Therefore, in order to minimize the upper bound on the MSE, the FIR model
order n should increase with the number of observations N like logN according
to (21). As a result, it follows that the MSE is minimized at relatively low orders
compared to the data size.

4.4 Regularization

Still, we see that the variance increases linearly with the FIR model order n so for
higher order FIR models it is important to counteract the increasing variance by
regularization. This is an example of pragmatic bias-variance trade-off, cf. Section
4.1. Regularization means that we replace the criterion νN (θ) in (14) by

vRN (θ, D) =
N∑
t=n

(y(t) − ϕT (t)θ)2 + θTDθ (22)

where D is a positive semi-definite n × n matrix. That changes the estimate to be

θ̂RN = (RN + D)−1FN = (RN + D)−1[RN θ̂N ] (23)

How to select D? We have (all expectations are with respect to v(t))

E θ̂RN = (RN + D)−1RNθ0 (24a)

θRbias = E θ̂RN − θ0 = −(RN + D)−1Dθ0 (24b)

θ̃ = θ̂RN − E θ̂
R
N = (RN + D)−1RN (θ̂N − θ0) (24c)

E θ̃θ̃T = (RN + D)−1σ2RN (RN + D)−1 (24d)

MSE(θ̂RN ) = E(θ̂RN − θ0)(θ̂RN − θ0)T = E θ̃θ̃T + θbias(θ
R
bias)

T

= (RN + D)−1
(
σ2RN + Dθ0θ

T
0 D

T
)
(RN + D)−1 (24e)

Suppose that D is diagonal D = diag(d1, d2, . . . , dn), and we use (17) for RN . Con-
centrating on the MSE of the impulse response coefficients gk , we find from the
(k, k) element of the MSE matrix MSE(θ̂RN ) that

MSE(ĝNk ) ≈
σ2µN + d2

k (g0
k )2

(µN + dk)2 (25)

This is minimized with respect to dk by dk =
(
σ
g0
k

)2
.

So this gives a clue how to choose the regularization matrix: If the system is ex-
ponentially stable as in (20a) the diagonal of the regularization matrix D should
increase exponentially:

dk =
σ2

cλk
, where λ = λ̄2, c = c̄2 (26)
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Remark 1. Note that the FIR model (12) can be seen as a special case of regularization: If
we choose the diagonal regularization D = diag(d1, d2, . . . , dm) with m > n and

dk =

1 if k ≤ n
∞ if k > n

(27)

this is the same as using an FIR model (12).

Remark 2. Regularization as in (22) is often used in a Tikhonov sense (Tikhonov and
Arsenin, 1977), where the objective is to make an ill-conditioned problem have better
numerical properties. Here, however, the main aspect of regularization is to better deal
with the bias-variance trade-off (9).

4.5 Using a Base-Line Model

If the impulse response is decaying slowly, high order FIR model will be required
to capture that. It may then be beneficial to incorporate a “base-line model” that
can take care of a dominating part of the impulse response. For example, an
additive second order model, like

y(t) =

 b1q
−1 + b2q

−2

1 + f1q−1 + f2q−2 +
n∑
k=1

gkq
−k

 u(t) (28)

The second order model can be adjusted separately, (using e.g., a PEM/ML meth-
ods), form a residual from this model and estimate an FIR model from the resid-
ual using regularization as above.

4.6 Cross-Validation

Using FIR model or (actually more general) regularized estimation (22) for opti-
mal MSE means that we must know certain variables (say β), like best FIR model
order n in (21) or the optimal regularization parameters c, λ in (26). The neces-
sary information to compute these are typically not known, which in the classical
approach typically is handled by cross-validation:

1. Split the data record into two parts of the same length: an estimation data
part and a validation data part.

2. Estimate models ĜN (eiω) = G(eiω, θ̂N ) using the estimation data for differ-
ent values of β.

3. Form the error between the measured and the model outputs for these mod-
els for the validation data:

ε(t, β) = y(t) − G(q, θ̂N )u(t) (29a)

W (β) =
∑
t

|ε(t, β)|2 (29b)

and pick the value of β that minimizes W (β). The model can then be re-
estimated for this β using the whole data record.
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4.7 Regularization as Model Merging
It is well known in statistics that if you have two parameter estimates θ1 and
θ2 with covariance matrices P1 and P2 they can be combined to an estimate with
minimal variance by

θ = (P −1
1 + P −1

2 )−1(P −1
1 θ1 + P −1

2 θ2) (30)

In that perspective the regularized estimate (23) can be seen as the combination

of the un-regularized estimate θ̂N and an estimate θ̃ =
[
0 0 . . . 0

]T
with vari-

ance D−1.

4.8 Numerical Illustration
Example 1: Fixed order OE models

Let us try these methods on our data bank of data sets. We first follow the answer
for question a) in the introduction. We estimate models (10) of different orders n
(same order for B(q, θ) and F(q, θ)) using the command m=oe(data,[n,n,1])
in the System Identification Toolbox (Ljung, 2007), and compute the average fit
(5) for all the models.

The results are shown in the table below. It also contains the fit when the order
for each data set has been chosen by cross-validation (CV) testing orders 5:5:40.

n=5 n=10 n=15 n=20 n=25 n=30 n=40 CV

S1D1 86.3 89.2 86.4 81.5 74.2 61.5 42.5 89.4
S2D1 68.7 72.8 71.7 70.5 63.1 57.2 42.0 73.0
S1D2 71.9 65.5 56.1 46.1 34.5 19.7 -1.7 70.8
S2D2 50.8 43.0 42.4 30.7 20.5 10.5 -8.6 49.5

One may note that each figure in this table is the average of 2500 fits. It is of
course interesting to study the distribution of the fits over the different individual
data sets. It turns out that the distributions in the CV column have long tails of
poor fits, which indicates that the OE models occasionally have problems. (See
also Figure 1 in Section 8.)

Example 2: Fixed order FIR models
Let us try FIR models on the data bank of data sets. We estimate models (12)

of different orders n, and compute the average fit (5) for all the models. For fair
comparisons we use in all cases the maximum start value of n = 125 in (14b). The
results are shown in the table below. It also contains the fit when the order for
each data set has been chosen by cross-validation (CV) testing orders 5:10:125.

n = 5 n = 35 n = 65 n = 95 n = 125 CV

S1D1 32.2 83.1 85.8 81.7 76.9 86.1
S2D1 -0.7 47.1 60.0 64.0 65.3 67.4
S1D2 30.8 61.4 46.0 25.9 -0.1 59.6
S2D2 -1.8 30.5 24.3 8.1 -18.1 30.5
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Example 3: FIR-models of order 125 with regularization
The data sets were tested using the FIR model (12) with n = 125 and regulariza-

tion (22) with D diagonal, (26) for different values of c and λ. The result is shown
below. The cross-validation (CV) choice of these values (from the grid of 9 values,
c=1,5,9, λ = 0.5, 0.9, 0.95) is also shown.

c = 1
λ = 0.5

c = 1
λ = 0.9

c = 1
λ = 0.95

c = 9
λ = 0.5

c = 9
λ = 0.95 CV

S1D1 51.0 84.8 79.2 58.2 77.5 84.8
S2D1 18.4 67.8 66.8 24.5 65.6 67.2
S1D2 37.4 54.9 36.3 44.7 17.1 55.6
S2D2 6.5 29.5 8.6 12.8 -7.8 23.3

Example 4: As Example 2, but with base-line model (28)
An additive second order model is first identified using the command

m=oe(data,[2,2,1]) and then the residual is regarded as a new measured out-
put based on which the regularization method is used to estimate an FIR model.

c = 1
λ = 0.5

c = 1
λ = 0.9

c = 1
λ = 0.95

c = 9
λ = 0.5

c = 9
λ = 0.95 CV

S1D1 74.8 85.4 79.3 78.0 77.5 86.7
S2D1 56.5 72.2 69.6 58.7 68.4 74.1
S1D2 62.2 57.5 37.4 64.3 17.1 66.4
S2D2 42.2 32.6 9.8 42.8 -6.4 45.8

Findings: The “standard” approach to cross-validation over different order OE
models (Example 1), works reasonably well. Note that in the simulated data,
the “true” order is 30, but this is normally not the best order choice for the OE
models. The experiments in Example 2 also show that although the true impulse
response is infinite, it is normally not the best choice to use maximum FIR model
order. The high variance for such models overrides the low bias. Choosing the
FIR model order by cross-validation gives a fit between 30 – 85%. Using FIR
models of order 125 and regularization (22) with (26) (Example 3) does not al-
ways improve the fit for all the c, λ tests, and the good affect is largely dependent
on their values, so they should be chosen with care. The cross-validation choice
of c, λ over the 9 point-grid gives a fit of about the same size as cross-validation
over orders. Adding a second order basel-line model, (Example 4), is beneficial,
mostly so for the slow systems.

5 A Bayesian Perspective

In the Bayesian view, the parameter to be estimated is itself a random variable,
and we seek the posterior distribution of this parameter, given the observations.
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The following well known and simple result about conditioning jointly Gaussian
random variable is a key element in Bayesian calculations:

Let
(
X
Z

)
∈ N

([
mx
mz

]
,

[
Pxx Pxz
Pzx Pzz

])
(31a)

Then (X |Z = a) ∈ N (m, P ) (31b)

m = mx + PxzP
−1
zz (a −mz) (31c)

P = Pxx − PxzP −1
zz Pzx (31d)

It is also good to recall the following simple matrix equality:

A(In + BA)−1 = (Im + AB)−1A (32)

where A is an m × n matrix and B is an n ×m matrix.

In the current setup, we regard the parameter of the nth order FIR model (12),
i.e., the impulse response coefficients θ as a random variable, say of Gaussian
distribution with zero mean and covariance matrix Pn:

θ ∈ N (θap, Pn), θap = 0 (33)

If the input u(t) (and ϕ(t), see (13a)) is known and the noise v(t) is independent
Gaussian distributed with

v(t) ∈ N (0, σ2) (34)

then with

YN = ΦTNθ + ΛN (35)

YN and θ will be jointly Gaussian variables:(
θ
YN

)
∈ N

([
0
0

]
,

[
Pn PnΦN
ΦTN Pn ΦTN PnΦN + σ2IN

])
(36)

The posterior distribution of θ given YN follows from (31)

(θ|YN ) ∈ N (θ̂apostN , P apost) (37a)

θ̂apost = PnΦN (ΦTN PnΦN + σ2IN )−1YN (37b)

= (PnΦNΦ
T
N + σ2In)−1PnΦNYN (37c)

= (RN + σ2P −1
n )−1FN (37d)

=
(
(σ2R−1

N )−1 + P −1
n

)−1
(σ2R−1

N )−1θ̂N (37e)

P apost = Pn − PnΦN (ΦTN PnΦN + σ2IN )−1ΦTN Pn (37f)

= Pn − (PnΦNΦ
T
N + σ2In)−1PnΦNΦ

T
N Pn (37g)

=
(
(σ2R−1

N )−1 + P −1
n

)−1
(37h)

Here FN , RN , θ̂N are defined in (14). Here (37b) and (37f) are the expressions
from (31) while the steps to (37e) and (37h) using (32) stress the link to (30)
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merging the models θap and θ̂N .

We notice that this a posteriori estimate is the same as the regularized estimate
θ̂RN if the regularization matrix D is chosen as

D = σ2P −1
n (38)

This is just a restatement of the well-known fact that regularization is closely
related to prior estimates.

So this gives an insight in how to choose the regularization matrix: Let it reflect
the size and correlations of the impulse response coefficients. For the size, it is
entirely in line with the choice of diagonal elements (26). If the impulse response
is smooth (for example a fast sampled continuous system) it is also natural to
let Pn reflect that, by letting the diagonals close to the main diagonal show high
correlation. A simple choice is to let the correlation coefficient between θk and
θj be ρ|k−j |. With diagonal elements of Pn being cλk as in (26) we then get a
covariance matrix Pn whose (k, j) element is

cρ|k−j |λ(k+j)/2 (39)

The estimates that we come up with are thus the same as in the classical, regu-
larized estimate (23), but the Bayesian perspective has given additional insights
into the choice of D.

5.1 Estimating Hyper-Parameters

The Bayesian perspective gives one more insight: Suppose that prior knowledge
does not give a definite choice of Pn, but it is natural to let it depend on unknown
hyper-parameters parameters β, Pn(β) (like β = [c λ] in (26)). From (36) we see
that

YN ∈ N (0, σ2IN + ΦTN Pn(β)ΦN ) (40a)

so with a classical twist in this Bayesian framework we can form the likelihood
function for β given the observation Y , and estimate β by the maximum likeli-
hood method:

β̂ = arg min
β

Y TN Σ(β)−1YN + log detΣ(β) (40b)

where Σ(β) = σ2IN + ΦN Pn(β)ΦTN . This method of estimating hyper-parameters
in the prior distribution is known as the empirical Bayes methods.

The noise variance σ2 used in (40b) and (38) can of course be included among the
hyper-parameters, but in the simulations in this paper we have chosen to estimate
it from the sample variance of the FIR model (12) with n = 125.
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5.2 Testing ML Estimation of Hyper-Parameters

Example 5
Let us return to the data bank and test regularization matrices with parameters

estimated by the method (40) and n = 125. We try the prior covariances: the
diagonal (26) and the correlation (39)

PDI (k, j) =

 cλk if k = j

0 else
, (’Diagonal’) (41a)

PDC(k, j) = cρ|k−j |λ(k+j)/2 (’Diagonal/correlated’) (41b)

We also test a related prior, where we link ρ and λ: ρ =
√
λ:

PT C(k, j) = cmin(λj , λk), (‘Tuned/correlated’) (41c)

In all these cases 0 < λ < 1, |ρ| < 1 c > 0 (41d)

The resulting fits are shown in the table below. With DIe, DCe and TCe we mean
the same priors but applied to the problem with a second order base-line model
(28) identified using the command m=oe(data,[2,2,1]) first.

DI DC TC DIe DCe TCe

S1D1 86.7 90.7 90.3 88.9 91.0 91.0
S2D1 67.3 73.7 74.5 74.4 77.8 78.6
S1D2 61.8 72.4 72.3 69.1 72.9 74.2
S2D2 33.3 50.4 52.9 50.7 54.5 56.5

Findings: We see that estimating the hyper-parameters for DI and DIe gives
about the same fit as the CV in examples 3 and 4. The ML estimates are slightly
better though, perhaps since the search is over a continuum of c, λ and not just
the 9-point grid, used for CV. It is also clear that allowing and estimating corre-
lation between the impulse response coefficients with DC, and TC gives a clear
improvement. It should be noted that the criterion (40b) is not convex, so it re-
quires some care to initialize the search and search for the minimum. This can
be illustrated by the fact that TC actually behaves better than DC in some cases,
although it is a special case of DC, but with fewer parameters. In all the tests, we
set c = exp(5), λ = ρ = 0.5.

6 Gaussian Process Method to Estimate the Transfer
Function

Gaussian Process Regression (GPR) has become a widely spread and very popu-
lar method for inference in Machine Learning, see, e.g., Rasmussen and Williams
(2005). In short, it is about inferring an unknown function f (x) from measure-
ments yi , i = 1, 2, . . . , N that bear some information about f (x). The argument
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x can either be a continuous or a discrete variable. The prior information about
the function is that it is a Gaussian Process, with certain mean and covariance
function. This means that the vector [f (x1), f (x2), ..., f (xn)] , for any collection
of points xk is a jointly Gaussian random vector, with mean m(x) = E f (x) and
covariances

Cov
(
f (xk), f (xj )

)
= P

(
xk , xj

)
(42)

where P (xk , xj ) is often called a kernel. Often m(x) ≡ 0. Typically, the observation
yi is a linear functional of f (xi), measured in additive Gaussian noise. This causes
f (x), y1, . . . , yN to be a jointly Gaussian vector, which means that the posterior
distributions,

p
(
f (x1), ..., f (xn)

∣∣∣y1, . . . , yN
)

(43)

can be calculated by the rules for conditioning jointly Gaussian random variables,
(31).

In Pillonetto and De Nicolao (2010a) the GPR is applied to estimating the impulse
response of a stable linear system. For a sampled model, the impulse response
function is given by g0

k , k = 1, . . . ,∞ in (2). The observation yi is the measured
output in (1) at time t = i. Modeling the impulse response function as a Gaussian
process means that, for any n,

[g1, . . . , gn] ∈ N (0, Pn) (44)

where Pn is the n × n upper left block matrix of a semi-infinite matrix Pn with
elements Pk,j = P (xk , xj ) (corresponding to the assumption (42)).

This is the same situation as in the Bayesian Perspective (33)–(37). The Gaussian
Process estimate of any collections of impulse response coefficients is thus given
by (37).

The only thing that remains to be discussed is the choice of prior covariances (44)
(or (42)). Of course, the considerations for choosing Pn in (44) and in (33) must
be the same, and the relation to the thoughts about the regularization matrix D
in (38) still holds. But in GPR several standard choices for (42) exist.

In Pillonetto and De Nicolao (2010a) the following kernels/covariance functions
are discussed

PCS (k, j) =

c k
2

2 (j − k
3 ), k ≤ j

c j
2

2 (k − j
3 ), k > j

(’Cubic Spline’) (45a)

PSE(k, j) =ce−
(k−j)2

2λ2 (’Squared Exponential’) (45b)

PSS (k, j) =

c λ
2k

2 (λj − λk
3 ), k ≤ j

c λ
2j

2 (λk − λj
3 ), k > j

(’Stable Spline’) (45c)

Here c and λ are hyper-parameters. There is also a Matlab toolbox, Pillonetto
and De Nicolao (2010b), that implements the GPR, including estimating the
hyper-parameters using (40).
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Example 6: D-matrices suggested in the GP approach
Let us compute the estimates corresponding to the kernels (regularization matri-
ces) (45), with and without a second order base-line model (28) identified using
the command m=oe(data,[2,2,1]) first. If a base-line model is used, we ap-
pend ’e’ to the kernel name in the table below.

CS SE SS CSe SEe SSe

S1D1 78.0 81.0 90.3 81.6 84.2 89.8
S2D1 -51620 74.8 71.7 -73313 78.9 76.4
S1D2 16.6 44.2 68.0 60.8 65.6 70.3
S2D2 -14289 48.2 48.2 -17373 58.5 51.6

Findings: The CS kernel, has difficulties with the slow systems, while the kernel
SS shows a performance compatible with DC, DI and TC in Example 5.

Remark 3. For the SS estimate, we used the SSpline command in the identification
toolbox Pillonetto and De Nicolao (2010b) (with p=125, Lab=’ny’, mv=0, mb=1, cn=0,
red=375, LP=0 and LP2=0). For the remaining estimates, we used our own implemen-
tation, which only differs in the estimation of σ2 to be in line with the simulations in
Example 5. With our implementation, the four figures for the SS estimate become 90.3,
74.2, 67.9 and 49.3 in order.

Remark 4. It is fair to add that the theory around GPR and its relation to Bayesian es-
timation is much richer than shown here. The estimation of continuous time impulse
responses can be handled in the same framework and there are interesting connections
to Reproducing Kernel Hilbert Spaces (RKHS) and spline approximation. Our point here is
that the actual resulting impulse response estimate is a regularized FIR model (23) for a
certain choices of regularization matrix D. We refer to Pillonetto and De Nicolao (2010a)
for a more complete account of the theory.

7 Estimating a Model of Given Order

Let us now turn to question b) in the introduction, to find a model (10) of a given
order, that has the best fit to the true impulse response.

The PEM/ML approach (11) has two good features, e.g., Ljung (1999):

1. If the given model structure contains the true, unknown system, PEM/ML
has the smallest possible variance (asymptotically) [among all unbiased es-
timates].

2. If not, PEM/ML will converge, as N → ∞ to the best possible approxima-
tion within the given structure.

Is there a catch? Yes, if the true system and model is of high order, the estimate
will have rather high variance. It will be the smallest one possible for unbiased
estimates, but just as shown in Section 4.1 it is conceivable that the MSE could be
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smaller if we allow some bias. There are several ways to achieve this. One would
be to regularize the estimation criterion (11), just as in (22). Another would be to
use the best available impulse response estimate and fit it to the required model
structure. That can be done by model reduction either by minimizing the L2-
fit, e.g., Tjärnström and Ljung (2002) or by balanced realization reduction (see
balred in the System Identification Toolbox, Ljung (2007)), or any other model
reduction technique.

Example 7: Estimating models of a given structure
We use the data bank of data sets to estimate models of the kind (10) of different
orders n. We try the following methods:

• OE*: m=oe(data,[n,n,1])

• OE†: m=oe(data(126:end),[n,n,1])

• TC + BR: mf=TC(data), m=balred(mf,n)

where TC is the command that generates the FIR model of order 125 as described
in Example 5 and m denotes the estimated impulse response.

It may be questionable how to deal with initial conditions: On the one hand the
FIR-based methods do not use the first 125 outputs, due to (14b). One the other
hand, the oe command in the System Identification Toolbox, Ljung (2007), is
capable of estimating the required initial conditions. Discarding the first 125
data points means that oe does not have access to the first 125 inputs, which the
FIR based methods have access to. Therefore we compute the oe estimate for
both cases: OE* and OE†.

The resulting fits between the estimated impulse response and true one are given
below.
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n=5 n=10 n=15 n=20 n=25 n=30

S1D1
OE* 86.3 89.2 86.4 81.5 74.2 61.5
OE† 85.0 87.1 82.9 74.7 67.0 57.1

TC+BR 82.3 90.2 90.4 90.4 90.3 90.3

S2D1
OE* 68.7 72.8 71.7 70.5 63.1 57.2
OE† 62.7 68.6 66.4 62.1 56.2 43.1

TC+BR 52.1 70.8 73.1 73.9 74.1 74.3

S1D2
OE* 71.9 65.5 56.1 46.1 34.5 19.7
OE† 65.6 54.6 37.7 26.6 6.4 -2.0

TC+BR 67.7 72.2 72.3 72.3 72.3 72.3

S2D2
OE* 50.8 43.0 42.3 30.7 20.5 10.5
OE† 38.2 31.7 18.3 7.0 -10.3 -23.2

TC+BR 39.0 50.9 52.2 52.5 52.7 52.8

We also tried the regularizations DI, DC and SS instead of TC, and they gave very
similar or slightly inferior results.

Findings: We see that for low order models (5th order model), the PEM/ML
method OE* gives the best fit. Then the variance of OE* is small enough so that
reducing it using the regularized FIR at the price of some bias gives a worse MSE
fit. For the higher order models it is beneficial to first estimate a 125th order reg-
ularized FIR model and then reduce its order using model reduction. We also see
that the simple 5th order model for the OE* gives not much worse performance
than the best that can be achieved (within 5%). The relatively short data records
for all these tests have information contents that are simply not enough to well
support higher order models.

8 Conclusions

We have studied how the impulse response from an unknown system can be esti-
mated as well as possible. The focal point of the paper is the classical regularized
method to estimate (high order) FIR model (23). We have discussed how this es-
timate is obtained in different frameworks and how different interpretations and
approaches can be invoked for the choice of regularization matrix D.

The message is also that the impulse response obtained by this simple and robust
regularized FIR method has good quality and may have smaller MSE than other,
more sophisticated methods. For complex systems, even with rather poor data
quality we get somewhat between 50 – 90% fit, in the sense defined in Section 3.

It is conceivable that refined techniques to select and tune suitable D-matrices,
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Figure 1: Box-plots for the 2500 fits for data set S1D1 for OE (left figure)
and TCe (right figure). The left figure has an additional 1.4% fits below 50.

guided by the data can improve the fits further. This is a good topic for further
research.

To return to the two questions posed in the introduction, we may note that for
the tested data sets, the “standard approach” for question a), works rather well,
but the fit can be slightly improved by careful regularization: See Example 1,
column CV and Example 5, column TCe. An important remark is that the TCe es-
timate is considerably more robust than the oe estimate with orders determined
by CV. Box-plots for the 2500 fits corresponding to CV/S1D1 in Example 1 and
the TCe/S1D1 in Example 7 are shown in Figure 1.

For question b) we have seen that for higher order models it is better to use model
reduction on regularized FIR models than the standard approach (but this may
be for models that have higher order than CV would suggest).
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Abstract

Despite the enormous complexity of the human mind, fMRI tech-
niques are able to partially observe the state of a brain in action. In
this paper we describe an experimental setup for real-time fMRI in
a bio-feedback loop. One of the main challenges in the project is to
reach a detection speed, accuracy and spatial resolution necessary to
attain sufficient bandwidth of communication to close the bio-
feedback loop. To this end we have banked on our previous work
on real-time filtering for fMRI and system identification, which has
been tailored for use in the experiment setup.

In the experiments presented the system is trained to estimate where
a person in the MRI scanner is looking from signals derived from the
visual cortex only. We have been able to demonstrate that the user
can induce an action and perform simple tasks with her mind sensed
using real-time fMRI.

The technique may have several clinical applications, for instance to
allow paralyzed and "locked in" people to communicate with the out-
side world. In the meanwhile, the need for improved fMRI perfor-
mance and brain state detection poses a challenge to the signal pro-
cessing community. We also expect that the setup will serve as an
invaluable tool for neuro science research in general.

209
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1 Introduction
Revealing the functionality of the human brain continues to be one of the grand
scientific challenges. Although considerable effort has been made toward this
end, many issues remain unresolved.

A new tool in this endeavor is functional Magnetic Resonance Imaging (fMRI).
The aim in fMRI is to map cognitive, motor and sensor functions to specific areas
in the brain (Weiskopf et al., 2007). The physical foundation for the method is the
fact that oxygenated and deoxygenated blood have different magnetic properties.
When a neuron in the brain is active it consumes oxygen, which is supplied by
the blood. To compensate for the increased rate of oxygen consumption in an
active brain area the blood flow is increased and the result is that the oxygenation
level of the blood to this area is, in fact, increased. This increase, commonly
known as the BOLD (Blood Oxygen Level Dependent) effect, can be measured in a
magnetic resonance scanner. Thus, we can locate areas of brain activity indirectly
by locating areas with elevated blood oxygen levels.

To map, for example, the sensory function area of a finger, one can stimulate the
finger on a volunteer with a brush, while images of the brain are continuously
acquired by the MR-scanner. During the stimulation of the finger there is an
increase in image intensity (i.e., the active area becomes brighter) compared to
a resting state. Thus, to detect activity we need to compare images where the
finger is stimulated by the brush to images acquired in a resting state. The areas
where the “activated” images are brighter than images acquired in the “rest” state
indicate brain areas involved when the brush stimulates the finger.

In the project presented in this paper, we aim at using the estimates of brain ac-
tivity for the purpose of bio-feedback, i.e., to use the information obtained in the
fMRI scan to alter the stimuli generating the fMRI response and thus generating
a feedback loop involving the brain. This requires that all parts of the loop, in
particular the brain activity estimation, run in real-time. To capture real-time
dynamics of the brain, we must acquire each image-slice rapidly. Unfortunately,
this makes the images heavily contaminated with random noise. Hence, it is not
enough to acquire just one image in activity and one in rest, as it is likely that we
can not detect any significant change in intensity due to the high noise level. How
the experiment and acquisition of the image volumes are performed is termed the
paradigm and is, as a rule, a determining factor for success or failure.

Bio-feedback has since long been explored using electromyography (EMG),
temperature and electroencephalography (EEG), see among others
Kaushik et al. (2005); Harden et al. (2005); Horowitz (2006); Weiskopf et al. (2004);
Birbaumer (2006); Kübler et al. (2001); Kotchoubey et al. (2001); Pfurtscheller
et al. (2000); Neuper et al. (2003); Fuchs et al. (2003), but is relatively new in the
field of fMRI. Some of the most known examples are the one by DeCharms et al.,
who showed how patients suffering from chronic pain could learn how to control
their pain by bio-feedback based on fMRI (DeCharms et al., 2005), and the one
by Yoo et al., who made it possible to navigate throw a 2D maze through fMRI
bio-feedback (Yoo et al., 2004).
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The long term vision behind the present project is to apply techniques used in
system identification for the analysis and ‘control’ of brain activity. Potentially
the ‘state of mind’ could be steered towards a goal state (activation pattern) by
producing a sequence of stimuli that is dependent on the estimated activation
pattern sequence. A dual view is that a person can be told to try to make the
stimuli produced move towards a target stimulus by will. In the future it may
in this way be possible to analyze certain brain functions in terms of brain state
transition probability matrices.

However, being in the startup phase of the project, the goal of this first experi-
ment has been to explore the response times that can be expected using fMRI for
bio-feedback. We have chosen to work with measurements from the visual cortex,
and based on those, track the sight of a person in the MRI scanner.

The paper is structured as follows: We start by formulating our problem in Sec-
tion 2 and follow up by describing the experiments setup in Section 3. The way
we have chosen to solve the problem is presented in Section 4, followed by a de-
scription of obtained results in Section 5. We finish with a discussion in Section 6.

Figure 1: The MRI scanner used in the experiments.

2 Problem Description

As an example of generating stimuli based on feedback from an fMRI signal, and
thereby closing the loop, we here consider a visually-based experiment.

The stimuli are selected to consist of a flashing checkerboard, placed either on
the left or the right of the screen. The aim of the experiment is to make the non-
flashing part of the visual stimuli to follow the eye movements of the subject, i.e.,
to flash to the left if the subject is looking to the right, and to flash on the right
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side if the subject is looking to the left. Hence, the problem is to detect where
the subject is looking at the moment, using the measured fMRI data. Once this is
done, the stimulus is simply set to the opposite side.

To judge if the subject is looking to the left or to the right, we need to build a
prediction model, with the measurements from the fMRI as the input, and the
direction of the subject’s gaze as the output. This is a regression problem of high-
dimensional nature. The input, i.e., the fMRI measurements, will typically be
a signal of approximately 40000 elements or dimensions. Without any kind of
regressor selection or regularization, we would therefore get a severe overfit to
estimation data.

For the particular experiment setup described, we could use a two-class classifier
to determine whether the subject is looking to the left or right. However, aiming
at an extension where the stimulus can be moved more than to the left or the
right side of the field of vision, regression was considered and not classification.

Previous attempts to handle fMRI data have used a range of various methods,
from sliding-window General Linear Modeling (GLM) to Support Vector Ma-
chines (SVM), see e.g., Laconte et al. (2007); Nakaia et al. (2006); Cox and Savoy
(2003); Gembris et al. (2000); Esposito et al. (2003); LaConte et al. (2005). A good
overview is given in Bagarinao et al. (2006).

3 Experiment Setup

As mentioned, the goal of this first real-time feedback experiment has been to cre-
ate a simple eye-tracker, which will detect if the subject in the scanner is looking
to the left or right and show a flashing checkerboard on the right or left 30% of
the screen, respectively (see Figure 2, left figure).

The data was acquired using a 1.5 T Philips Achieva MR scanner, see Figure 1.
The acquisition resolution was 80 by 80 pixels in each slice, and 7 slices were
acquired. Field of view and slice thickness were chosen to obtain a voxel size of
approximately 3 × 3 × 3 mm. The use of cubic voxels make three-dimensional
signal processing (e.g., smoothing) viable. The acquired data cover the primary
visual cortex, and a surface coil was used to provide an optimal signal-to-noise
ratio within this region. To obtain high BOLD contrast, the echo time (TE) was set
to 40 ms and the repetition time (TR) was set to 1000 ms. Hence we acquire one
volume per second, which we consider to be sufficient to deliver close to realtime
feedback to the subject.

The subject in the scanner was exposed to a visual stimulus through a pair of
head mounted displays. The data processing was done in Matlab on a standard
laptop.
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Figure 2: Visual stimuli used. Left figure: left 30% of the screen as a flash-
ing checkerboard. Right figure: a centered vertical stripe, covering 100%
vertically and 40% horizontally of the screen.

4 Training and Real-Time fMRI

Before starting the real-time feedback phase, a training phase was performed to
build a prediction model.

4.1 Training Phase

During the training phase, two training data sets were gathered. First, the subject
in the scanner was exposed to a flashing checkerboard, a centered vertical stripe
covering 100% vertically and 40% horizontally of the screen. Figure 2 shows the
visual stimulus used. Data was gathered for approximately 40 seconds.

The second training data set was gathered by instructing the subject in the scan-
ner to look away from a periodically shifting flashing checkerboard (15 seconds
flashing checkerboard on the left, 15 seconds flashing checkerboard on the right,
see Figure 2). Data was gathered for approximately 90 seconds.

Using this last data set, 8 voxels were picked out correlating the best with the
paradigm. The reason for not just using the two best correlating voxels was to be
able to use the redundancy in data to reduce the impact of noise. The 8 voxels
were picked out by first computing the correlation to a sine wave with a period
of 30 seconds. This was done voxel-by-voxel. In order not to have to go through
all possible phase shifts for the sine wave, to find the phase shift associated with
the best correlation, Canonical Correlation Analysis (CCA, Hotelling (1936)) was
used. In this context, CCA has the property to automatically find the time delay
in the sine wave giving the best correlation. Note that this usage of CCA would
not be possible using a square wave. The voxel with the best correlation was
chosen as the first of the 8 voxels. The three voxels with a phase within 90 degrees
of the first one and with the highest correlations were also picked out. Finally,
the 4 voxels correlating best with a sine wave at least 90 degrees out of phase
compared to the best correlating voxel were chosen.

At this time, the voxel locations were verified to be within the visual cortex. This
was done manually by inspection of a plot like the one shown in Figure 3. To fur-
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ther reduce noise and to gain some robustness against movements of the subject,
the two training data sets were spatially smoothed. Note that this will turn the 8
chosen voxels into 8 neighborhoods, centered at the previously chosen voxels.

The 8 chosen neighborhood signals were then picked out from the two training
data sets, detrended voxel-by-voxel, and merged together (90 seconds of data
associated with the left-right stimuli followed by 40 seconds of data associated
with the centered vertical flashing stripe). Finally, a linear predictor, using the
8 signals as regressors, was fit to a square wave, switching between −1 and +1
(in phase with first sine wave used above), and followed by zeros for the last 40
seconds. Hence, the predictor was expected to give −1 if the subject was looking
to the left of the checkerboard, +1 if the subject is looking to the right, and zero
otherwise.

The training phase is summarized in Algorithm 1.

Algorithm 1 Training Phase

Given data from a voxel i associated with stimulus on the left-right, X lri (t), t =

1 . . . 90, and from stimulus as a centered vertical stripe, Xfi (t), t = 1 . . . 40.
1. Use CCA to find how well X lri (t) correlates to a sine wave with a period of

30 seconds.
2. Find the index for the voxel with the highest correlation.
3. Find the three voxels with the highest correlation but with a phase differ-

ence less then 90 degrees compared to the best correlating voxel.
4. Find the 4 voxels with the highest correlation having a phase difference of

more than 90 degrees compared to the best correlated voxel.
5. Make sure that the chosen voxels are in the visual cortex.
6. For the chosen voxels, make a spatial smoothing using a Gaussian spatial

filter to obtain X̃ lri (t) and X̃fi (t).

7. Detrend, voxel-by-voxel, the signals X̃ lri (t) and X̃
f
i (t) from the 8 chosen

neighborhoods.
8. Concatenate the detrended X̃ lri (t) and X̃fi (t) to form Xi(t).
9. Find the θi such that

∑130
t=1 |y(t) −

∑8
i=1 θiXi(t)|2 is minimized; y(t), t =

1 . . . 90 being a −1/ + 1 square wave in phase with the best correlated voxel,
and y(t) = 0, t = 91 . . . 130.

4.2 Real-Time Phase

During the real-time data phase, the data was first spatially smoothed, just as
the training data set. The signals from the 8 chosen neighborhoods were then
detrended using a Windowed Least Squares (WLS) approach, with a window size
of 50 seconds. With X̄i(t) being the data at time t from neighborhood i, let

~Xi(t) =
[
X̄i(t) X̄i(t − 1) . . . X̄i(t − 50)

]
. (1)
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We can remove a linear trend in ~Xi(t) by subtracting the best fitted line

X̃i(t) = ~Xi(t) −
[
αi βi

] [1 1 . . . 1
t t − 1 . . . t − 50

]
(2)

where αi , βi minimizes∥∥∥∥∥∥~Xi(t) − [
αi βi

] [1 1 . . . 1
t t − 1 . . . t − 50

]∥∥∥∥∥∥2

. (3)

The first element in X̃i(t) after the trend has been removed is used as input for the
linear predictor. The resulting signal from this procedure will take values close
to one when the subject is looking to the right and minus one when the subject
is looking to the left. The flashing checkerboard was therefore moved to the left
side when the predictor signal exceeded a certain threshold, and correspondingly
for the right side.

For validation, the subject in the scanner was during the real-time phase in-
structed to keep its eyes on a moving point on the screen. In this way, we could
keep track of where the subject was looking, which was used to validate the re-
sults.

The real-time phase is summarized in Algorithm 2.

Algorithm 2 Real-Time Phase
Given new data Xi(t). Let T be a threshold and assume that the θi and the 8
chosen neighborhoods are given from the training phase. Do the following:

1. For the chosen voxels, perform a spatial smoothing using a Gaussian spatial
filter to obtain X̄i(t).

2. Detrend, voxel-by-voxel, the signals X̄i(t) from the 8 chosen neighborhoods
to get X̃i(t).

3. Compute ŷ(t) =
∑8
i=1 θi X̃i(t).

4. If ŷ(t) < −T : move the stimulus to the right side; if ŷ(t) > T : move the
stimulus to the left side; and if −T < ŷ(t) < T : use the same stimulus as for
t − 1.

5 Results

Figure 3 shows the 8 voxels picked out in the training phase. The 4 voxels corre-
lating best with the flashing checkerboard on the left are shown in the top row
of Figure 3. The best correlation was computed for the voxel shown in the first
column from the left, second best for the second column from the left and so on.
A correlation of 0.6 was the highest correlation computed, and the signal from
this voxel during the training phase is shown in the top figure of Figure 4.

The bottom row of Figure 3 shows voxels with the highest correlation to stimuli
on the right, arranged in the same way as the top row. As can be seen, the neigh-
borhoods shown in the second row, columns 2–4, are not within the visual cortex.
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The signals from these neighborhood were therefore not considered. The signal
from the voxel correlating best (correlation 0.55) with stimuli on the right side is
shown in the bottom figure of Figure 4.

The signal from the 5 remaining neighborhoods were weighted together to give
an as good fit to the stimuli as possible (see Figure 5).

Figure 3: Slices associated with the chosen 8 voxels. A red cross, centered
at the chosen voxel, is used to show the location of the chosen voxel. The
top row shows the voxels correlating best with stimuli to the left and the
bottom row with stimuli to the right. The best correlation was found for
voxels shown in the first column, then second best in the next column and
so on.

Figure 6 shows logged results from the real-time phase using the computed weight-
ing and choice of neighborhood. The horizontal coordinate for the reference
point where the subject in the scanner was aiming to look at is shown in the
top subplot. The computed signal from the fMRI data is given in the middle sub-
plot. The bottom subplot shows if the flashing checkerboard is to the left or the
right (−1 if the checkerboard is to the left and +1 if it is to the right). It can be
seen that, as the subject shifts focus from one side to the other, it takes between
2.5 and 7 seconds until the visual stimulus has changed.

6 Discussion

It should be emphasized that the purpose of this work has not been to introduce
a method for an eye-gaze interface; the authors are well aware that there exist
more simple, inexpensive and exact solutions for that specific purpose. The main
contribution is instead the closing of the bio-feedback loop where the user experi-
ences a real-time response from the state of his or her mind and is able to perform
a simple task.
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Figure 4: The signals coming from the voxels correlating best with stimuli.
Top figure: best correlated signal with stimuli to the left, bottom figure: best
correlated signal with stimuli to the right.
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Figure 5: The weighted signal computed from the 5 chosen neighborhoods
(solid line). Dash-dotted line represents the stimuli. First 105 seconds: stim-
uli switching periodically between left and right. Last 43 seconds: the flash-
ing vertical stripe at the center of the field of view. Three of the 8 chosen
neighborhoods have been removed because of their location outside the vi-
sual cortex.

The choice of a visual stimulus is not of central importance for this work. A rea-
son for choosing the specific experimental setup was that MR-compatible goggles
provide a simple perception of a stimulus inside the MR-scanner, and the flash-
ing checkerboard pattern enables a distinctive activation in the visual cortex due
to both temporal variation and spatial high contrast edges.
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Figure 6: Logged results. Top figure: The reference signal showing where
the subject should focus. A small value corresponds to the subject in the
scanner looking to the left, while a high value corresponds to looking to the
right. Middle figure: Computed signal from the fMRI measurements. Bot-
tom figure: The location of the stimuli. Small value: flashing checkerboard
on the left part of the screen; high value: checkerboard on the right part of
the screen.

The use of an MR-scanner as a Brain Computer Interface (BCI) in a real-time bio-
feedback loop stresses the boundaries for image acquisition and signal processing
to the absolute limit. In our current setup an average user experiences a response
time of 5 seconds. However, we observed times down to 2.5 seconds. Similar
results have recently been shown by Laconte et al. (2007). Considering that the
BOLD signal, in itself, has a response time of the same order, these response times
can be seen as quite good results. However, it has been shown that it is possible
to spot activity in the BOLD signal considerably earlier, see Kollias et al. (2000)
and Yacoub and Hu (1999). The question of whether these early signs of activity
are large enough to be able to reliably detect activity is still open. MRI is contin-
ually improving with respect to acquisition time, SNR and resolution. A limiting
factor for functional-MRI is the temporal dynamics of the BOLD response. For
the visual cortex, stimuli like the flashing checkerboard pattern induce a BOLD
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response that is present for approximately 30 seconds (Harel et al., 2001). Dur-
ing the first half, the BOLD signal increases in intensity apart from a very small
initial dip. After that time, the blood oxygen control system of the brain compen-
sates the blood oxygen distribution for this new state, and the BOLD response
disappears.

An objective method to evaluate the performance of such a real-time fMRI sys-
tem is to estimate the bandwidth in the bio-feedback loop. For the present setup
the bandwidth is approximately 0.2 bits/s. A shorter acquisition time (currently
about 1 s) will not by itself be a key factor to increase of the bandwidth above
1 bit/s limit, considering the temporal dynamics of the BOLD response. An im-
proved SNR of the MRI would on the other hand provide the means to discern the
BOLD response within the noise at a much earlier stage in the activation process,
which has the potential to increase the bandwidth several orders of magnitude.
This is a real future challenge both for the manufacturers of MRI equipment as
well as for the signal processing community.

Although it is convenient to use visual stimuli inside the MR-scanner some issues
must be considered. During the training phase, both unconscious and reflex-
based eye movements degrade the training data. Using more advanced VR-goggles
with an eye tracker device that fixate the stimuli at a local area in the visual cor-
tex, independently of the eye motions of the user, would provide a significant
improvement of the training data set. An additional problem using a gaze based
BCI is that the user may unintentionally move the head a little synchronously
to the movement of the gaze. These motion artifacts are the main reason why
neighborhoods outside the visual cortex sometimes may provide high correlation
to the paradigm. To detect and compensate for occasional head motions would
improve the performance of the real-time phase. The head motion can be mod-
eled as a rigid body motion and the new locations of the selected neighborhoods
are straight forward to compute once the global head motion is estimated. To
compensate for a user that continuously moves his or head is much more cumber-
some due to the complex motion artifacts which are associated to MRI. Detection
and compensation for small occasional head movements should be possible to
perform within this setup.

A next step in our research is to extend the simple left/right response to a more
complicated task involving a graded response. A possible task would be a virtual
pole balancing problem. Such a graded response could be computed in different
ways, but a straight-forward method is to apply a temporal integration on the
present output signal.

A possible way to further increase the bandwidth in the bio-feedback loop would
be to use parallel or sequential activation of different brain areas. Broca’s and
Wernicke’s areas are e.g., activated in speech processing using language or signs.
An activation in these areas could be deliberately induced by the person in the
scanner by focusing the mind on a sentence, which can be done without any
movement of the eyes. Activating several cortical areas at once will make the
training phase more complex, and more advanced adaptive training methods will
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be required to fully explore these possibilities. To optimize the BCI bandwidth
for a specific task, adaptation to each user’s own capabilities is necessary.
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