
CPRL – An Extension of Compressive Sensing to the
Phase Retrieval Problem

Henrik Ohlsson
Division of Automatic Control, Department of Electrical Engineering,
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Abstract

While compressive sensing (CS) has been one of the most vibrant research fields in
the past few years, most development only applies to linear models. This limits its
application in many areas where CS could make a difference. This paper presents
a novel extension of CS to the phase retrieval problem, where intensity measure-
ments of a linear system are used to recover a complex sparse signal. We propose
a novel solution using a lifting technique – CPRL, which relaxes the NP-hard
problem to a nonsmooth semidefinite program. Our analysis shows that CPRL
inherits many desirable properties from CS, such as guarantees for exact recovery.
We further provide scalable numerical solvers to accelerate its implementation.

1 Introduction

In the area of X-ray imaging, phase retrieval (PR) refers to the problem of recovering a complex
multivariate signal from the squared magnitude of its Fourier transform. Existing sensor devices for
collecting X-ray images are only sensitive to signal intensities but not the phases. However, it is
very important to be able to recover the missing phase information as it reveals finer structures of
the subjects than using the intensities alone. The PR problem also has broader applications and has
been studied extensively in biology, physics, chemistry, astronomy, and more recent nanosciences
[29, 20, 18, 24, 23].

Mathematically, PR can be formulated using a linear system y = Ax ∈ CN , where the matrix
A may represent the Fourier transform or other more general linear transforms. If the complex
measurements y are available and the matrix A is assumed given, it is well known that the least-
squares (LS) solution recovers the model parameter x that minimizes the squared estimation error:
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‖y−Ax‖22. In PR, we assume that the phase of the coefficients of y is omitted and only the squared
magnitude of the output is observed:

bi = |yi|2 = |〈x,ai〉|2, i = 1, · · · , N, (1)

where AH = [a1, · · · ,aN ] ∈ Cn×N , yT = [y1, · · · , yN ] ∈ CN , and AH denotes the Hermitian
transpose of A.

Inspired by the emerging theory of compressive sensing [17, 8] and a lifting technique recently
proposed for PR [13, 10], we study the PR problem with a more restricted assumption that the
model parameter x is sparse and the number of observations N are too few for (1) to have a unique
solution, and in some cases even fewer measurements than the number of unknowns n. The problem
is known as compressive phase retrieval (CPR) [25, 27, 28]. In many X-ray imaging applications,
for instance, if the complex source signal is indeed sparse under a proper basis, CPR provides a
viable solution to exactly recover the signal while collecting much fewer measurements than the
traditional non-compressive solutions.

Clearly, the PR problem and its CPR extension are much more challenging than the LS problem, as
the phase of y is lost while only its squared magnitude is available. For starters, it is important to note
that the setup naturally leads to ambiguous solutions regardless whether the original linear model is
overdetermined or not. For example, if x0 ∈ Cn is a solution to y = Ax, then any multiplication of
x and a scalar c ∈ C, |c| = 1, leads to the same squared output b. As mentioned in [10], when the
dictionary A represents the unitary discrete Fourier transform (DFT), the ambiguities may represent
time-reversed or time-shifted solutions of the ground-truth signal. Hence, these global ambiguities
are considered acceptable in PR applications. In this paper, when we talk about a unique solution to
PR, it is indeed a representative of a family of solutions up to a global phase ambiguity.

1.1 Contributions

The main contribution of the paper is a convex formulation of the CPR problem. Using the lift-
ing technique, the NP-hard problem is relaxed as a semidefinite program (SDP). We will briefly
summarize several theoretical bounds for guaranteed recovery of the complex input signal, which
is presented in full detail in our technical report [26]. Built on the assurance of the guaranteed
recovery, we will focus on the development of a novel scalable implementation of CPR based on
the alternating direction method of multipliers (ADMM) approach. The ADMM implementation
provides a means to apply CS ideas to PR applications e.g., high-impact nanoscale X-ray imaging.

In the experiment, we will present a comprehensive comparison of the new algorithm with the tra-
ditional interior-point method, other state-of-the-art sparse optimization techniques, and a greedy
algorithm proposed in [26]. In high-dimensional complex domain, the ADMM algorithm demon-
strates superior performance in our simulated examples and real images. Finally, the paper also
provides practical guidelines to practitioners at large working on other similar nonsmooth SDP ap-
plications. To aid peer evaluation, the source code of all the algorithms have been made available at:
http://www.rt.isy.liu.se/˜ohlsson/.

2 Compressive Phase Retrieval via Lifting (CPRL)

Since (1) is nonlinear in the unknown x, N � n measurements are in general needed for a unique
solution. When the number of measurementsN are fewer than necessary for such a unique solution,
additional assumptions are needed as regularization to select one of the solutions. In classical CS, the
ability to find the sparsest solution to a linear equation system enables reconstruction of signals from
far fewer measurements than previously thought possible. Classical CS is however only applicable
to systems with linear relations between measurements and unknowns. To extend classical CS to the
nonlinear PR problem, we seek the sparsest solution satisfying (1):

min
x
‖x‖0, subj. to b = |Ax|2 = {aHi xxHai}1≤i≤N , (2)

with the square acting element-wise and b = [b1, · · · , bN ]T ∈ RN . As the counting norm ‖ · ‖0 is
not a convex function, following the `1-norm relaxation in CS, (2) can be relaxed as

min
x
‖x‖1, subj. to b = |Ax|2 = {aHi xxHai}1≤i≤N . (3)
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Note that (3) is still not a convex program, as its equality constraint is not a linear equation. In the
literature, a lifting technique has been extensively used to reframe problems such as (3) to a standard
form in SDP, such as in Sparse PCA [15]. More specifically, given the ground-truth signal x0 ∈ Cn,
let X0 , x0x

H
0 ∈ Cn×n be an induced rank-1 semidefinite matrix. Then (3) can be reformulated

into1

minX�0 ‖X‖1, subj. to rank(X) = 1, bi = aHi Xai, i = 1, · · · , N. (4)

This is of course still a nonconvex problem due to the rank constraint. The lifting approach addresses
this issue by replacing rank(X) with Tr(X). For a positive-semidefinite matrix, Tr(X) is equal to
the sum of the eigenvalues of X (or the `1-norm on a vector containing all eigenvalues of X). This
leads to the nonsmooth SDP

minX�0 Tr(X) + λ‖X‖1, subj. to bi = Tr(ΦiX), i = 1, · · · , N, (5)

where we further denote Φi , aia
H
i ∈ Cn×n and λ ≥ 0 is a design parameter. Finally, the estimate

of x can be found by computing the rank-1 decomposition of X via singular value decomposition.
We refer to the approach as compressive phase retrieval via lifting (CPRL).

Consider now the case that the measurements are contaminated by data noise. In a linear model,
bounded random noise typically affects the output of the system as y = Ax + e, where e ∈ CN is a
noise term with bounded `2-norm: ‖e‖2 ≤ ε. However, in phase retrieval, we follow closely a more
special noise model used in [13]:

bi = |〈x,ai〉|2 + ei. (6)
This nonstandard model avoids the need to calculate the squared magnitude output |y|2 with the
added noise term. More importantly, in most practical phase retrieval applications, measurement
noise is introduced when the squared magnitudes or intensities of the linear system are measured on
the sensing device, but not y itself. Accordingly, we denote a linear operator B of X as

B : X ∈ Cn×n 7→ {Tr(ΦiX)}1≤i≤N ∈ RN , (7)

which measures the noise-free squared output. Then the approximate CPR problem with bounded
`2-norm error model can be solved by the following nonsmooth SDP program:

minX�0 Tr(X) + λ‖X‖1, subj. to ‖B(X)− b‖2 ≤ ε. (8)

Due to the machine rounding error, in general a nonzero ε should be always assumed and in its
termination condition during the optimization. The estimate of x, just as in noise free case, can
finally be found by computing the rank-1 decomposition of X via singular value decomposition.
We refer to the method as approximate CPRL.

3 Theoretical Analysis

This section highlights some of the analysis results derived for CPRL. The proofs of these results are
available in the technical report [26]. The analysis follows that of CS and is inspired by derivations
given in [13, 12, 16, 9, 3, 7]. In order to state some theoretical properties for CPRL, we need a
generalization of the restricted isometry property (RIP).

Definition 1 (RIP) A linear operator B(·) as defined in (7) is (ε, k)-RIP if | ‖B(X)‖22
‖X‖22

− 1| < ε for all
‖X‖0 ≤ k and X 6= 0.

We can now state the following theorem:

Theorem 2 (Recoverability/Uniqueness) Let B(·) be a (ε, 2‖X∗‖0)-RIP linear operator with ε <
1 and let x̄ be the sparsest solution to (1). If X∗ satisfies b = B(X∗), X∗ � 0, rank{X∗} = 1,
then X∗ is unique and X∗ = x̄x̄H .

We can also give a bound on the sparsity of x̄:

Theorem 3 (Bound on ‖x̄x̄H‖0 from above) Let x̄ be the sparsest solution to (1) and let X̃ be the
solution of CPRL (5). If X̃ has rank 1 then ‖X̃‖0 ≥ ‖x̄x̄H‖0.

The following result now holds trivially:
1In this paper, ‖X‖1 for a matrix X denotes the entry-wise `1-norm, and ‖X‖2 denotes the Frobenius norm.
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Corollary 4 (Guaranteed recovery using RIP) Let x̄ be the sparsest solution to (1). The solution
of CPRL X̃ is equal to x̄x̄H if it has rank 1 and B(·) is (ε, 2‖X̃‖0)-RIP with ε < 1.

If x̄x̄H = X̃ can not be guaranteed, the following bound becomes useful:

Theorem 5 (Bound on ‖X∗ − X̃‖1) Let ε < 1
1+
√

2
and assume B(·) to be a (ε, 2k)-RIP linear

operator. Let X∗ be any matrix (sparse or dense) satisfying b = B(X∗), X∗ � 0, rank{X∗} = 1,
let X̃ be the CPRL solution, (5), and form Xs from X∗ by setting all but the k largest elements to
zero. Then,

(1− ( 2
√
k

1−ρ + 1) 1
λ )‖X̃ −X∗‖1 ≤ 2

(1−ρ)
√
k
‖X∗ −Xs‖1, (9)

with ρ =
√

2ε/(1− ε).
Given the RIP analysis, it may be the case that the linear operator B(·) does not well satisfy the RIP
property defined in Definition 1, as pointed out in [13]. In these cases, RIP-1 maybe considered:
Definition 6 (RIP-1) A linear operator B(·) is (ε, k)-RIP-1 if | ‖B(X)‖1

‖X‖1
− 1| < ε for all matrices

X 6= 0 and ‖X‖0 ≤ k.
Theorems 2–3 and Corollary 4 all hold with RIP replaced by RIP-1 and are not restated in detail
here. Instead we summarize the most important property in the following theorem:
Theorem 7 (Upper bound & recoverability through `1) Let x̄ be the sparsest solution to (1). The
solution of CPRL (5), X̃ , is equal to x̄x̄H if it has rank 1 and B(·) is (ε, 2‖X̃‖0)-RIP-1 with ε < 1.
The RIP type of argument may be difficult to check for a given matrix and are more useful for
claiming results for classes of matrices/linear operators. For instance, it has been shown that ran-
dom Gaussian matrices satisfy the RIP with high probability. However, given realization of a ran-
dom Gaussian matrix, it is indeed difficult to check if it actually satisfies the RIP. Two alternative
arguments are spark [14] and mutual coherence [17, 11]. The spark condition usually gives tighter
bounds but is known to be difficult to compute as well. On the other hand, mutual coherence may
give less tight bounds, but is more tractable. We will focus on mutual coherence, which is defined as:

Definition 8 (Mutual coherence) For a matrix A, define the mutual coherence as µ(A) =
max1≤i,j≤n,i6=j

|aHi aj |
‖ai‖2‖aj‖2

.

By an abuse of notation, let B be the matrix satisfying b = BXs with Xs being the vectorized
version of X . We are now ready to state the following theorem:
Theorem 9 (Recovery using mutual coherence) Let x̄ be the sparsest solution to (1). The solution
of CPRL (5), X̃ , is equal to x̄x̄H if it has rank 1 and ‖X̃‖0 < 0.5(1 + 1/µ(B)).

4 Numerical Implementation via ADMM

In addition to the above analysis of guaranteed recovery properties, a critical issue for practitioners is
the availability of efficient numerical solvers. Several numerical solvers used in CS may be applied
to solve nonsmooth SDPs, which include interior-point methods (e.g., used in CVX [19]), gradient
projection methods [4], and augmented Lagrangian methods (ALM) [4]. However, interior-point
methods are known to scale badly to moderate-sized convex problems in general. Gradient projec-
tion methods also fail to meaningfully accelerate the CPRL implementation due to the complexity
of the projection operator. Alternatively, nonsmooth SDPs can be solved by ALM. However, the
augmented primal and dual objective functions are still complex SDPs, which are equally expensive
to solve in each iteration. In summary, as we will demonstrate in Section 5, CPRL as a nonsmooth
complex SDP is categorically more expensive to solve compared to the linear programs underlying
CS, and the task exceeds the capability of many popular sparse optimization techniques.

In this paper, we propose a novel solver to the nonsmooth SDP underlying CPRL via the alternating
directions method of multipliers (ADMM, see for instance [6] and [5, Sec. 3.4]) technique. The
motivation to use ADMM are two-fold: 1. It scales well to large data sets. 2. It is known for its fast
convergence. There are also a number of strong convergence results [6] which further motivates the
choice.

To set the stage for ADMM, rewrite (5) to the equivalent SDP

minX1,X2,Z f1(X1) + f2(X2) + g(Z), subj. to X1 − Z = 0, X2 − Z = 0, (10)
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where

f1(X),

{
Tr(X) if bi = Tr(ΦiX), i = 1, . . . , N
∞ otherwise

, f2(X),

{
0 if X � 0
∞ otherwise

, g(Z),λ‖Z‖1.

The update rules of ADMM now lead to the following:

X l+1
i = arg minX fi(X) + Tr(Y li (X − Zl)) + ρ

2‖X − Z
l‖22,

Zl+1 = arg minZ g(Z) +
∑2
i=1−Tr(Y li Z) + ρ

2‖X
l+1
i − Z‖22,

Y l+1
i = Y li + ρ(X l+1

i − Zl+1),
(11)

whereXi, Yi, Z are constrained to stay in the domain of Hermitian matrices. Each of these steps has
a tractable calculation. However, the Xi, Yi, and Z variables are complex-valued, and, as most of
the optimization literature deals with real-valued vectors and symmetric matrices, we will emphasize
differences between the real case and complex case. After some simple manipulations, we have:

X l+1
1 = argminX ‖X − (Zl − I+Y l1

ρ )‖2, subj. to bi = Tr(ΦiX), i = 1, · · · , N. (12)

Assuming that a feasible solution exists, and defining ΠA as the projection onto the convex set given
by the linear constraints, the solution is: X l+1

1 = ΠA(Zl − I+Y l1
ρ ). This optimization problem has a

closed-form solution; converting the matrix optimization problem in (12) into an equivalent vector
optimization problem yields a problem of the form: minx ||x−z||2 subj. to b = Ax. The answer
is given by the pseudo-inverse of A, which can be precomputed. This complex-valued problem can
be solved by converting the linear constraint in Hermitian matrices into an equivalent constraint on
real-valued vectors. This conversion is done by noting that for n× n Hermitian matrices A,B:

〈A,B〉 = Tr(AB) =
∑n
i=1

∑n
j=1AijBij =

∑n
i=1AiiBii +

∑n
i=1

∑n
j=i+1AijBij +AijBij

=
∑n
i=1AiiBii +

∑n
i=1

∑n
j=i+1 2 real(Aij) real(Bij) + 2 imag(Aij) imag(Bij)

So if we define the vector Av as an n2 vector such that its elements are Aii for i = 1, · · · , n,√
2 real(Aij) for i = 1, · · · , n, j = i + 1, · · · , n, and

√
2 imag(Aij) for i = 1, · · · , n, j = i +

1, · · · , n, and similarly defineBv , then we can see that 〈A,B〉 = 〈Av, Bv〉. This turns the constraint
bi = Tr(ΦiX), i = 1, · · · , N, into one of the form: b = [Φv1 · · ·ΦvN ]TXv, where each Φvi is in Rn2

.
Thus, for this subproblem, the memory usage scales linearly with N , the number of measurements,
and quadratically with n, the dimension of the data. Next,X l+1

2 = argminX�0 ‖X−(Zl− Y l2
ρ )‖2 =

ΠPSD(Zl − Y l2
ρ ), where ΠPSD denotes the projection onto the positive-semidefinite cone, which

can easily be obtained via eigenvalue decomposition. This holds for real-valued and complex-valued
Hermitian matrices. Finally, let X

l+1
= 1

2

∑2
i=1X

l+1
i and similarly Y

l
. Then, the Z update rule

can be written:

Zl+1 = argminZ λ‖Z‖1 + 2ρ
2 ‖Z − (X

l+1
+ Y

l

ρ )‖22 = soft(X
l+1

+ Y
l

ρ ,
λ
2ρ ). (13)

We note that the soft operator in the complex domain must be coded with care. One does not simply
check the sign of the difference, as in the real case, but rather the magnitude of the complex number:

soft(x, q) =

{
0 if |x| ≤ q,
|x|−q
|x| x otherwise,

(14)

where q is a positive real number. Setting l = 0, the Hermitian matrices X l
i , Z

l
i , Y

l
i can now be

iteratively computed using the ADMM iterations (11). The stopping criterion of the algorithm is
given by:

‖rl‖2 ≤ nεabs + εrel max(‖X l‖2, ‖Zl‖2), ‖sl‖2 ≤ nεabs + εrel‖Y l‖2, (15)

where εabs, εrel are algorithm parameters set to 10−3 and rl and sl are the primal and dual residuals
given by: rl = (X l

1 −Zl, X l
2 −Zl), sl = −ρ(Zl −Zl−1, Zl −Zl−1). We also update ρ according

to the rule discussed in [6]:

ρl+1 =


τincrρ

l if ‖rl‖2 > µ‖sl‖2,
ρl/τdecr if ‖sl‖2 > µ‖rl‖2,
ρl otherwise,

(16)

where τincr, τdecr, and µ are algorithm parameters. Values commonly used are µ = 10 and τincr =
τdecr = 2.
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5 Experiment

The experiments in this section are chosen to illustrate the computational performance and scalabil-
ity of CPRL. Being one of the first papers addressing the CPR problem, existing methods available
for comparison are limited. For the CPR problem, to the authors’ best knowledge, the only methods
developed are the greedy algorithms presented in [25, 27, 28], and GCPRL [26]. The method pro-
posed in [25] handles CPR but is only tailored to random 2D Fourier samples from a 2D array and it
is extremely sensitive to initialization. In fact, it would fail to converge in our scenarios of interest.
[27] formulates the CPR problem as a nonconvex optimization problem that can be solved by solv-
ing a series of convex problems. [28] proposes to alternate between fit the estimate to measurements
and thresholding. GCPRL, which stands for greedy CPRL, is a new greedy approximate algorithm
tailored to the lifting technique in (5). The algorithm draws inspiration from the matching-pursuit al-
gorithm [22, 1]. In each iteration, the algorithm adds a new nonzero component of x that minimizes
the CPRL objective function the most. We have observed that if the number of nonzero elements in
x is expected to be low, the algorithm can successfully recover the ground-truth sparse signal while
consuming less time compared to interior-point methods for the original SDP.2 In general, greedy
algorithms for solving CPR problems work well when a good guess for the true solution is available,
are often computationally efficient but lack theoretical recovery guarantees. We also want to point
out that CPRL becomes a special case in a more general framework that extends CS to nonlinear
systems (see [1]). In general, nonlinear CS can be solved locally by greedy simplex pursuit algo-
rithms. Its instantiation in PR is the GCPRL algorithm. However, the key benefit of developing the
SDP solution for PR in this paper is that the global convergence can be guaranteed.

In this section, we will compare implementations of CPRL using the interior-point method used by
CVX [19] and ADMM with the design parameter choice recommended in [6] (τincr = τdecr = 2).
λ = 10 will be used in all experiments. We will also compare the results to GCPRL and the PR
algorithm PhaseLift [13]. The former is a greedy approximate solution, while the latter does not
enforce sparsity and is obtained by setting λ = 0 in CPRL.

In terms of the scale of the problem, the largest problem we have tested is on a 30× 30 image and is
100-sparse in the Fourier domain with 2400 measurements. Our experiment is conducted on an IBM
x3558 M3 server with two Xeon X5690 processors, 6 cores each at 3.46GHz, 12MB L3 cache, and
96GB of RAM. The execution for recovering one instance takes approximately 36 hours to finish in
MATLAB environment, comprising of several tens of thousands of iterations. The average memory
usage is 3.5 GB.

5.1 A simple simulation

In this example we consider a simple CPR problem to illustrate the differences between CPRL,
GCPRL, and PhaseLift. We also compare computational speed for solving the CPR problem and
illustrate the theoretical bounds derived in Section 3. Let x ∈ C64 be a 2-sparse complex signal,
A , RF where F ∈ C64×64 is the Fourier transform matrix and R ∈ C32×64 a random projection
matrix (generated by sampling a unit complex Gaussian), and let the measurements b satisfy the
PR relation (1). The left plot of Figure 1 gives the recovered signal x using CPRL, GCPRL and
PhaseLift. As seen, CPRL and GCPRL correctly identify the two nonzero elements in x while
PhaseLift fails to identify the true signal and gives a dense estimate. These results are rather typical
(see the MCMC simulation in [26]). For very sparse examples, like this one, CPRL and GCPRL
often both succeed in finding the ground truth (even though we have twice as many unknowns
as measurements). PhaseLift, on the other side, does not favor sparse solutions and would need
considerably more measurements to recover the 2-sparse signal. The middle plot of Figure 1 shows
the computational time needed to solve the nonsmooth SDP of CPRL using CVX, ADMM, and
GCPRL. It shows that ADMM is the fastest and that GCPRL outperforms CVX. The right plot of
Figure 1 shows the mutual coherence bound 0.5(1 + 1/µ(B)) for a number of different N ’s and
n’s, A , RF , F ∈ Cn×n the Fourier transform matrix and R ∈ CN×n a random projection
matrix. This is of interest since Theorem 9 states that when the CRPL solution X̃ satisfies ‖X̃‖0 <
0.5(1 + 1/µ(B)) and has rank 1, then X̃ = x̄x̄H , where x̄ is the sparsest solution to (1). From

2We have also tested an off-the-shelf toolbox that solves convex cone problems, called TFOCS [2]. Unfor-
tunately, TFOCS cannot be applied directly to solving the nonsmooth SDP in CPRL.
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the plot it can be concluded that if the CPRL solution X̃ has rank 1 and only a single nonzero
component for a choice of 125 ≥ n, N ≥ 5, Theorem 9 guarantees that X̃ = x̄x̄H . We also
observe that Theorem 9 is conservative, since we previously saw that 2 nonzero components could
be recovered correctly for n = 64 and N = 32. In fact, numerical simulation can be used to show
that N = 30 suffices to recover the ground truth in 95 out of 100 runs [26].
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Figure 1: Left: The magnitude of the estimated signal provided by CPRL, GCPRL and PhaseLift.
Middle: The residual ‖x̄x̄H − X̃‖2 plotted against time for ADMM (gray line), GCPRL (solid
black line) and CVX (dashed black line). Right: A contour plot of the quantity 0.5(1 + 1/µ(B)). µ
is taken as the average over 10 realizations of the data.

5.2 Compressive sampling and PR

One of the motivations of presented work and CPRL is that it enables compressive sensing for PR
problems. To illustrate this, consider the 20 × 20 complex image in Figure 2 Left. To measure the
image, we could measure each pixel one-by-one. This would require us to sample 400 times. What
CS proposes is to measure linear combinations of samples rather than individual pixels. It has been
shown that the original image can be recovered from far fewer samples than the total number of
pixels in the image. The gain using CS is hence that fewer samples are needed. However, traditional
CS only discuss linear relations between measurements and unknowns.

To extend CS to PR applications, consider again the complex image in Figure 2 Left and assume that
we only can measure intensities or intensities of linear combinations of pixels. Let R ∈ CN×400

capture how intensity measurements b are formed from linear combinations of pixels in the image,
b = |Rz|2 (z is a vectorized version of the image). An essential part in CS is also to find a dictionary
(possibly overcomplete) in which the image can be represented using only a few basis images. For
classical CS applications, dictionaries have been derived. For applying CS to the PR applications,
dictionaries are needed and a topic for future research. We will use a 2D inverse Fourier transform
dictionary in our example and arrange the basis vectors as columns in F ∈ C400×400.

If we choose N = 400 and generate R by sampling from a unit Gaussian distribution and set
A = RF , CPRL recovers exactly the true image. This is rather remarkable since the PR relation
(1) is nonlinear in the unknown x and N � n measurements are in general needed for a unique
solution. If we instead sample the intensity of each pixel, one-by-one, neither CPRL or PhaseLift
recover the true image. If we set A = R and do not care about finding a dictionary, we can use
a classical PR algorithm to recover the true image. If PhaseLift is used, N = 1600 measurements
are sufficient to recover the true image. The main reasons for the low number of samples needed in
CPRL is that we managed to find a good dictionary (20 basis images were needed to recover the true
image) and CPRL’s ability to recover the sparsest solution. In fact, setting A = RF , PhaseLift still
needs 1600 measurements to recover the true solution.

5.3 The Shepp-Logan phantom

In this last example, we again consider the recovery of complex valued images from random sam-
ples. The motivation is twofold: Firstly, it illustrates the scalability of the ADMM implementation.
In fact, ADMM has to be used in this experiment as CVX cannot handle the CPRL problem in this
scale. Secondly, it illustrates that CPRL can provide approximate solutions that are visually close
to the ground-truth images. Consider now the image in Figure 2 Middle Left. This 30× 30 Shepp-
Logan phantom has a 2D Fourier transform with 100 nonzero coefficients. We generate N linear
combinations of pixels as in the previous example and square the measurements, and then apply
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CPRL and PhaseLift with a 2D Fourier dictionary. The middel image in Figure 2 shows the recov-
ered result using PhaseLift with N = 2400, the second image from the right shows the recovered
result using CPRL with the same numberN = 2400 and the right image is the recovered result using
CPRL with N = 1500. The number of measurements with respect to the sparsity in x is too low for
both CPRL and PhaseLift to perfectly recover z. However, CPRL provides a much better approx-
imation and outperforms PhaseLift visually even though it uses considerably fewer measurements.
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Figure 2: Left: Absolute value of the 2D inverse Fourier transform of x, |Fx|, used in the ex-
periment in Section 5.2. Middle Left: Ground truth for the experiment in Section 5.3. Middle:
Recovered result using PhaseLift with N = 2400. Middle Right: CPRL with N = 2400. Right:
CPRL with N = 1500.

6 Future Directions

The SDP underlying CPRL scales badly with the number of unknowns or basis vectors in the dictio-
nary. Therefore, learning a suitable dictionary for a specific application becomes even more critical
than that in traditional linear CS setting. We also want to point out that when classical CS was first
studied, many of today’s accelerated numerical algorithms were not available. We are very excited
about the new problem to improve the speed of SDP algorithms in sparse optimization, and hope
our paper would foster the community’s interest to address this challenge collaboratively. One inter-
esting direction might be to use ADMM to solve the dual of (5), see for instance [30, 31]. Another
possible direction is the outer approximation methods [21].
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