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Abstract

The presence of abrupt changes, such as impulsive and load disturbances, commonly occur in applications, but make the
state estimation problem considerably more difficult than in the standard setting with Gaussian process disturbance. Abrupt
changes often introduce a jump in the state, and the problem is therefore readily and often treated by change detection
techniques. In this paper, we take a different approach. The state smoothing problem for linear state space models is here
formulated as a constrained least-squares problem with sum-of-norms regularization, a generalization of `1-regularization. This
novel formulation can be seen as a convex relaxation of the well known generalized likelihood ratio method by Willsky and
Jones. Another nice property of the suggested formulation is that it only has one tuning parameter, the regularization constant
which is used to trade off fit and the number of jumps. Good practical choices of this parameter along with an extension to
nonlinear state space models are given.
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1 Introduction

We consider the problem of state estimation in linear
state space models, where impulsive disturbances occur
in the process model. The case of impulsive process dis-
turbances occurs frequently in at least three different
application areas.

• In automatic control, impulsive disturbance is often
used to model load disturbances.
• In target tracking, impulsive disturbances are used to

model force disturbances, corresponding to maneuvers
for the tracked object.
• In Fault Detection and Isolation (FDI) literature im-

pulsive disturbance is used to model additive faults.
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Usually, this is done in a deterministic setting [30],
but a stochastic framework is also common [2,17].

There are several conceptually different ways to handle
disturbances in state estimation. We shall review and
discuss both deterministic and stochastic models.

The standard linear state space model with disturbances
is

x(t+ 1) = Ax(t) +Bu(t) +Gv(t)

y(t) = Cx(t) + e(t),
(1a)

where x(t) is the state, u(t) is the input, and y(t) is
the output at time t. Here e is the measurement noise
and v is the process disturbance. It is natural in many
applications to model the measurement noise as white
noise (a sequence of independent random vectors):

E[e(t)eT (s)] = 0 if t 6= s

E[e(t)eT (t)] = Re.
(1b)

The process disturbance v, on the other hand, can both
be of noise character, affecting the state at every time
instant, or occasionally occurring impulses. Any partic-
ularly common shape of the disturbance, like a step, a
ramp or a sinusoid, can via the state equation (matrices
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G and A) be constructed as the response of a driving
impulse.

Our interest lies in obtaining reliable state estimates x̂
under impulsive process disturbance, but we do not re-
quire the estimates in real time. That is, the estimate of
the state at time t, x̂(t), can be obtained at a later time
N . This is known as the smoothing problem in filtering
theory.

In the next section we describe a deterministic frame-
work for handling the detection and estimation of such
disturbances. In Section 3 we describe how to formulate
the case of impulsive process disturbances in a stochas-
tic framework, and what methods and algorithms for
detection and state estimation this leads to.

The approach we suggest in the present article is some-
where between these approaches. It is described in Sec-
tion 4 and is based on convex optimization of a criterion
that can be seen as a modification of either the deter-
ministic or the stochastic formulation. It is inspired by
the recent progress of sum-of-norms regularization in the
statistical literature, [21], and is also related to contri-
butions in the control community, [27].

2 A Deterministic Framework for State Estima-
tion Under Impulsive Process Disturbances

The assumption of an impulsive process disturbance im-
plies that v(t) is a vector that is zero for most t and
takes unknown, nonzero values at a few unknown time
instances. At this point, consider a certain time inter-
val [1, N ] where v(t) is nonzero for precisely one time
instant. The linear state space model with an impulsive
disturbance occurring in the process model is then:

x(t+ 1) = Ax(t) +Bu(t) +Gv(t)

y(t) = Cx(t) + e(t),
(2a)

v(t) =

{
v∗ t = t∗

0 t 6= t∗.
(2b)

Assume e(t) ∼ N(0, Re) and x(1) = 0 for simplicity
and assume that the model parameters A, B, G, C, are
known.

2.1 The Approach by Willsky and Jones

The state estimation problem then boils down to esti-
mating t∗ and v∗ from input-output data y(t), u(t), t =
1, . . . , N . This can be solved as a least squares problem
as follows: Suppose that v(t′) 6= 0 and v(t) = 0, t =
1, . . . , t′ − 1, t′ + 1, . . . , N − 1. The data for t ∈ [t′ +
1, . . . , N ] can then be used to compute the least-squares
estimate

v̂(t′) = (ΦTR−1e Φ)−1ΦTR−1e Y, (3)

with

Y ,


y(t′ + 1) − C

∑t′

t=1 A
t′−tBu(t)

y(t′ + 2) − C
∑t′+1

t=1 At′+1−tBu(t)

...

y(N) − C
∑N−1

t=t′ AN−1−tBu(t)

,Φ,


CG

CAG

...

CAN−1−t′G

,

and its covariance matrix

P (t′) = (ΦTR−1e Φ)−1. (4)

The significance of the least squares estimate can be
formed as

`(t′) = v̂T (t′)P−1(t′)v̂(t′). (5a)

This variable has a χ2(d) (d=dim v) distribution if the
true value of v(t′) = 0. Pick as estimate of the jump time
t∗ that value of t′ that maximizes this significance `(t′).

If we do not know for sure that there is a jump in the
interval [1, N − 1], we can decide if the indicated jump
is a significant indication by the test

`(t′) > T, (5b)

where T is a suitably chosen significance level, according
to the χ2(d) distribution.

This is the well known Willsky-Jones (WJ) Generalized
Likelihood Ratio (GLR) approach, [36]. See also Sec-
tion 9.3 in [17] and the related approach [16].

Remark 1 In [36] also a stochastic process disturbance
and a stochastic initial value x(1) are allowed. Then a
Kalman filter for the nominal case (discarding the im-
pulsive disturbance component in v) is constructed, and
the contribution of a deterministic v to the innovations
(residuals) ε from this filter is analyzed. That is, ε(t)
plays the role of y(t) in the calculations above.

Another description of the WJ-approach is as follows:
Let

W
(
v(·)
)

=

N∑
t=2

∥∥R−1/2e

(
y(t)− Cx(t)

)∥∥2
2
,

where x(t+ 1) = Ax(t) +Bu(t) +Gv(t), x(1) = 0. Solve

min
v(k),k=1,...,N−1

W
(
v(·)
)

s.t. ‖V ‖0 = 1; V =
[
‖v(1)‖2, . . . , ‖v(N − 1)‖2

]
.

(6)

Here ‖V ‖0 is the `0 norm, i.e., the cardinality (number of
nonzero elements) of the vector V . Due to the constraint
‖V ‖0 = 1, (6) will result in an estimate for v(t) which is
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nonzero for precisely one time instant. Hence, to solve
the non-convex problem (6),

min
v(k),k=1,...,N−1

W
(
v(·)
)

s.t. v(t) = 0, t = 1, . . . , t′ − 1, t′ + 1, . . . , N − 1,
(7)

can be solved for t′ = 1, . . . , N−1. The v-estimate giving
the smallest objective value clearly also solves (6). It can
further be shown that this estimate is equivalent to that
of the WJ-approach. The equivalence follows from the
following lemma.

Lemma 2 For any t′ ∈ [1, . . . , N − 1], the criterion (7)
has the objective value

N∑
t=2

∥∥R−1/2e

(
y(t)− C

t−1∑
s=1

As−1Bu(t− s)
)∥∥2

2
− `(t′) (8)

at the optimum. Hence, the t′ that gives the smallest ob-
jective value of (7) also maximizes ` in (5a).

PROOF. This is a well known property of least squares
estimation: First rewrite (7) as a least squares problem
by substituting the constraint into the objective. Then,
using the same definitions for Y and Φ as used in (3),
(7) takes the form

min
v(t′)

(
Y − Φv(t′)

)T
R−1e

(
Y − Φv(t′)

)
+

t′∑
t=2

∥∥R−1/2e

(
y(t)− C

t−1∑
s=1

As−1Bu(t− s)
)∥∥2

2

= min
v(t′)

∥∥R−1/2e

(
(ΦTR−1e Φ)−1ΦTR−1e Y − v(t′)

)∥∥2
2

−Y TR−1e Φ(ΦTR−1e Φ)−1ΦTR−1e Y

+

N∑
t=2

∥∥R−1/2e

(
y(t)− C

t−1∑
s=1

As−1Bu(t− s)
)∥∥2

2

= min
v(t′)

∥∥R−1/2e

(
(ΦTR−1e Φ)−1ΦTR−1e Y − v(t′)

)∥∥2
2

+

N∑
t=2

∥∥R−1/2e

(
y(t)− C

t−1∑
s=1

As−1Bu(t− s)
)∥∥2

2
− `(t′).

The objective is now trivially minimized by

v(t′) = (ΦTR−1e Φ)−1ΦTR−1e Y (9)

and then takes the value (8). 2

If n jumps are allowed, the only difference in the for-
mulation (6) is that ‖V ‖0 = n instead (which for larger

n will be combinatorially forbidding). If the number of
jumps is not known, a trade-off can be formulated as

min
v(k),k=1,...,N−1

N∑
t=1

∥∥R−1/2e

(
y(t)− Cx(t)

)∥∥2
2

+ λ‖V ‖0

s.t. x(t+ 1) = Ax(t) +Bu(t) +Gv(t); x(1) = 0.
(10)

The parameter λ > 0 sets the trade-off between the
number of jumps and the fit to the measurements y. (10)
is a combinatorial non-convex optimization problem and
in general, 2N−1 constrained least squares problems have
to be solved to find the minimizing v.

Remark 3 The case with several jumps is handled in
[36] by performing the above search for one jump, recur-
sively over sliding windows of length F . Once a jump has
been indicated, its influence on y is removed ( i.e., the
residuals ε are calculated) before the search for the next
jump is continued.

2.2 The CUSUM Test

The key element in the Willsky-Jones GLR approach is
to find a deterministic component v in a stochastic sig-
nal y(t+ 1)− C

∑t
s=1A

t−sBu(s) (or the Kalman filter
residual ε). The WJ approach can be seen as an opti-
mal matched filter for this deterministic signal. A more
simplistic approach would be to try to detect nonzero
deterministic components in the theoretically zero-mean
sequence y using a change detection method. This is
the approach taken in the CUSUM test (Cumulative
Sum [29], see also Algorithm 1).

Algorithm 1 CUSUM
Set g(1) = 0. For a chosen γc and h, the time of a change
in the signal r(t) is estimated by observing when

g(t+ 1) = max
(
g(t) + r(t)− γc, 0

)
(11)

exceeds the threshold h. After a change has been detected,
g is reset to zero and the last t for which g(t) = 0 taken
as an estimate of the change time.

The CUSUM algorithm detects a change in the mean
of the signal by checking when the test statistic g (see
Algorithm 1) exceeds some threshold h. Since g is built
up by summing consecutive signal values, a large g is an
indication that the mean has changed and has been con-
siderably larger than zero for some time. To also detect
that the mean has changed to something smaller than
zero, r(t) in (11) should be replaced by −r(t).

Note that the CUSUM algorithm is a change detection
algorithm and seeks the time of a change while Willsky-
Jones GLR approach directly estimates v(t∗). Of course,
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having estimated the time of the change, say t′, an esti-
mate for v(t′) can be found through

min
v(k),k=1,...,N−1

W
(
v(·)
)

s.t. v(t) = 0, t = 1, . . . , t′ − 1, t′ + 1, . . . , N − 1.
(12)

3 A Stochastic Framework for State Estimation
Under Impulsive Process Disturbances

The standard linear state space model with stochastic
disturbances is well known to be

x(t+ 1) = Ax(t) +Bu(t) +Gv(t)

y(t) = Cx(t) + e(t).
(13a)

Here, v and e are white noises: sequences of independent
random vectors

E[v(t)] = 0, E[e(t)] = 0, ∀ t
E[v(t)eT (s)] = 0, ∀ t, s
E[v(t)vT (s)] = 0, E[e(t)eT (s)] = 0, t 6= s

E[v(t)vT (t)] = Rv, E[e(t)eT (t)] = Re.

(13b)

The independence of the noise sequences is required in
order to make x a state or a Markov process.

The model (13) with the process disturbance v being
Gaussian is a standard model for control applications.
v then represents the combined effect of all those non-
measurable inputs that in addition to u affect the states.
This is the common model used both for state estimation
and in Linear-Quadratic-Gaussian (LQG) control.

The state smoothing problem is well known in this Gaus-
sian case as the classical Kalman smoothing problem,
e.g., [20]. Viewing x(t) as a function of u and v, the
smoothed state is the solution to the quadratic mini-
mization problem

min
x(1),v(t),1≤t≤N−1

N∑
t=1

∥∥R−1/2e

(
y(t)− Cx(t)

)∥∥2
2

+

N−1∑
t=1

‖R−1/2v v(t)‖22,

s.t. x(t+ 1) = Ax(t) +Bu(t) +Gv(t).

(14)

This is also the maximum likelihood estimate and gives
the conditional mean of x(t) given the observations. It is
a pure least squares problem, and the solution is usually
given in various recursive filter forms, see e.g., [25].

Since x(t) is a given function of x(1), v(t) and the known
sequence u(t), it may seem natural to do the minimiza-

tion directly over x(t), i.e., to write

min
x(t),1≤t≤N

N∑
t=1

∥∥R−1/2e

(
y(t)− Cx(t)

)∥∥2
2

+

N−1∑
t=1

∥∥R−1/2v G†
(
x(t+ 1)−Ax(t)−Bu(t)

)∥∥2
2

(15a)

where G† is the pseudo inverse of G. However, if G is not
full rank, nothing constrains the state evolution in the
null space of G, so (15a) must be complemented with
the constraint

G⊥
(
x(t+ 1)−Ax(t)−Bu(t)

)
= 0 (15b)

where G⊥ is the projection onto the null-space of G,

G⊥ , I −GG†. (16)

However, since several approaches can be interpreted as
explicit methods to estimate v(t), we shall adhere to the
(equivalent) formulation (14).

3.1 Sparse Process Disturbance

The situation of current interest is that the process dis-
turbance is zero most of the time, and assumes unknown
nonzero values at unknown time instants. It is conve-
nient to capture this by the distribution (cf. eq (2.10)-
(2.11) in [24].)

v(t) = δ(t)η(t) (17a)

where

δ(t) =

{
0 with probability 1− µ
1 with probability µ

(17b)

η(t) ∼ N(0, Q). (17c)

This makes Rv = µQ.

3.2 State Estimates Based on a Stochastic Framework

The best linear solution: Even with the non-
Gaussian noise (17), the process disturbance is still
white, which means the Kalman-smoother (14) still gives
the best linear estimate. This implies that among all es-
timates x̂ that are linear functions of x(1), y and u, the
Kalman-smoother residual has the smallest variance.

The clairvoyant estimator: If the jump times, the
times when δ(t) = 1 in (17a), are known, the random
variable v(t) is Gaussian (with time-varying covariance
matrix Rv(t) = δ(t)Q). This means that the Kalman
smoother (14) is not only the best linear estimator, but
also gives the conditional mean and the estimate with
the smallest variance among all possible ones.
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Filter banks: If δ(t) is not known, we could hypothe-
size in each time step that it is either 0 or 1. This leads to
a large bank (2N−1) of Kalman filters, which constitute
the optimal solution. The posterior probability of each
filter estimate can be determined, and the optimal esti-
mate is a weighted sum of the state estimates from each
filter. In practice, the number of filters in the bank must
be limited, and there are two main options (see Chapter
10 in [18]):

• Merging trajectories of different δ(t) sequences. This
includes the well-known IMM (Interactive Multiple
Model) filter, see [4] and e.g., [23] for a smoothing
formulation.
• Pruning, where unlikely sequences are deleted from

the filter bank.

Remark 4 The Willsky-Jones GLR approach can
also be given an interpretation as a filter bank, see
e.g., [36,35].

Particle filters: Since (13) and (17) form a linear
model with non-Gaussian noise, nonlinear
filtering/smoothing techniques based on particle filter-
ing ([13], see also [1] for a relevant contribution) can
also be applied. This solution means that a set of new
particles are created at each time instant, correspond-
ing to the possibility that δ(t) is nonzero, and these
will then survive if supported by future measurement.
This is in spirit very much like Kalman filter banks.
Experience shows that the Kalman filter bank is quite
efficient to explore multiple hypotheses. The standard
SIR (Sequential Importance Resampling) particle filter
works well for low and moderate SNRs (Signal-to-Noise
Ratio), but starts to degenerate due to depletion for
very large SNRs. This can be mitigated with other pro-
posal distributions and resampling schemes, but still the
particle filter/smoother cannot compete with a good
implementation of a Kalman filter/smoother bank.

4 The Proposed Method: State Smoothing by
Sum-of-Norms Regularization

We may regard (10) or the filter banks as ideal methods
for state estimation in linear state space models where
impulsive disturbances occur in the process model. The
catch is that these are both computationally forbidding.
One way to obtain a computationally feasible method is
to follow the idea from compressed sensing [10,8], and re-
place the `0-norm in (10) by the `1 norm. That makes the
optimization problem convex, at the same time as several
of the good features of the `0-norm are retained, [10,8],
e.g., sparsity (see e.g., [19, pp. 70-71]).

4.1 Sum-of-Norms Regularization

Consider

min
v(k),k=1,...,N−1

N∑
t=1

∥∥R−1/2e

(
y(t)− Cx(t)

)∥∥2
2

+ λ‖V ‖0

s.t. x(t+ 1) = Ax(t) +Bu(t) +Gv(t), x(1) = 0,

V =
[
‖Q−1/2v(1)‖p, . . . , ‖Q−1/2v(N − 1)‖p

]
(18)

which is the same as (10) up to a scaling of V . Since the
`0-norm is invariant to scalings, it is easily verified that
(10) and (18) give the same v-estimates. Now, using the
`1 instead of the `0-norm on V in (18) and relaxing the
constraint x(1) = 0 gives the optimization problem

min
x(1),v(t),1≤t≤N−1

N∑
t=1

∥∥R−1/2e

(
y(t)− Cx(t)

)∥∥2
2

+λ

N−1∑
t=1

‖Q−1/2v(t)‖p (19a)

s.t. x(t+ 1) =Ax(t) +Bu(t) +Gv(t). (19b)

The parameter λ, as in (10), is a positive constant that is
used to control the trade-off between the fit to the obser-
vations y(t) (the first term) and the number of nonzero
v(t) (the second term). The weighted p-norm could be
any `p-norm, like `1 or `2. It is however crucial for sparse
solutions that the second term in (19a) is a sum of norms,
and not a sum of squared norms.

While this criterion is grown from the deterministic ap-
proach, it is interesting to see its connection with the
stochastic criterion (15a). The expression (15a) can be
seen as the criterion of fit

min
x(1),v(t),1≤t≤N−1

N∑
t=1

∥∥R−1/2e

(
y(t)− Cx(t)

)∥∥2
2

(20)

regularized by the quadratic term

N−1∑
t=1

‖R−1/2v v(t)‖22 (21)

in order to curb the flexibility of v. Our criterion (19)
just replaces this quadratic regularization with the sum-
of-norms

N−1∑
t=1

‖Q−1/2v(t)‖p. (22)

When the p-norm of v(t) is taken to be the `1 norm,
i.e., ‖z‖1 =

∑nz

i=1 |zi|, the regularization in (19a) is a
standard `1 regularization of the least-squares criterion.
Such regularization has been very popular recently, e.g.,
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in the much used Lasso method, [34] or compressed sens-
ing [10,8].

There are two key reasons why the criterion (19a) is
attractive:

• It is a convex optimization problem, so the global so-
lution can be computed efficiently. In fact, its special
structure allows it to be solved in O(N) operations,
so it is quite practical to solve it for a range of values
of λ, even for large values of N .
• The sum-of-norms form of the regularization favors

sparse solutions where many (depending on λ) of the
regularized variables come out as exactly zero in the
solution. In this case, this implies that many of the
estimates of v(t) become zero (with the number of
v(t)’s becoming zero controlled roughly by λ).

A third advantage is that

• It is easy to include realistic state constraints without
destroying convexity.

The downside of using an `1-norm instead of the `0-norm
is that the `1-norm penalizes the size of the regularized
variable and not only if it is nonzero or not, like the `0-
norm. The regularized variable (‖Q−1/2v(t)‖p in (19a))
will therefore be biased toward zero. We return to this
issue in Section 5.3.

We should comment on the difference between using
p = 1 in (19a), giving an `1 regularization on Q−1/2v(t),
and some other type of sum-of-norms regularization,
such as sum-of-Euclidean norms (which gives an `1 reg-
ularization on

[
‖Q−1/2v(1)‖2, . . . , ‖Q−1/2v(N − 1)‖2

]
).

With `1 regularization, we obtain an estimate of
Q−1/2v(t) having many of its components equal to
zero. When we use sum-of-norms regularization with
p > 1, the whole estimated vector Q−1/2v(t) often
becomes zero; but when it is nonzero, typically all
its components are nonzero. Note however that both
p = 1 and p > 1 give an `1-regularization on the vector[
‖Q−1/2v(1)‖p, . . . , ‖Q−1/2v(N − 1)‖p

]
. In a statistical

linear regression framework, sum-of-norms regulariza-
tion with p > 1 is called group-lasso [37], since it results
in estimates in which many groups of variables are zero.

Remark 5 A criterion (19a) handles the process distur-
bance as described in (17) well. In some situations it may
however be more accurate to assume a Gaussian noise
component in the process disturbance as well, i.e.,

x(t+ 1) = Ax(t) +Bu(t) +Gv(t) +Hw(t)

y(t) = Cx(t) + e(t)
(23)

with w ∼ N(0, S) and v as defined in (17). It is then

motivated to use a criterion

min
x(1),v(t),w(t)
1≤t≤N−1

N∑
t=1

∥∥R−1/2e

(
y(t)− Cx(t)

)∥∥2
2

+

N−1∑
t=1

λ‖Q−1/2v(t)‖p + ‖S−1/2w(t)‖22 (24a)

s.t. x(t+ 1) =Ax(t) +Bu(t) +Gv(t) +Hw(t) (24b)

rather than (19a).

5 Choice of Regularization Parameter λ

5.1 Regularization Path and Critical Parameter Value

The estimated sequence v(t) as a function of the regu-
larization parameter λ is called the regularization path
for the problem. Roughly, larger values of λ correspond
to estimated x(t) with worse fit, but an estimate of v(t)
with many zero elements. A basic result from convex
analysis (see Remark 2 in [28], also cf. pp. 277–278 in
[7]) tells us that there is a value λmax for which the esti-
mated v(t) is identically zero if and only if λ ≥ λmax. In
other words, λmax gives the threshold above which the
estimated v(t) = 0, t = 1, ..., N − 1. The critical param-
eter value λmax is very useful in practice, since it gives a
very good starting point in finding a suitable value of λ.

Proposition 6 The Critical Value λmax

Introduce εt for the (process) noise free scaled residual

εt,R
−1/2
e

(
y(t)−C

( t−1∑
r=1

At−r−1Bu(r)+At−1x(1)
))

(25)

and take ε̄t to be εt evaluated at

x(1) = arg min
x(1)

N∑
t=1

‖εt‖22 . (26)

We can then express λmax as

λmax = max
k=1,...,N−1

∥∥∥∥∥2

N∑
t=k+1

(
R−1/2e CAt−k−1GQ1/2

)T
ε̄t

∥∥∥∥∥
q

with ‖ · ‖q the dual norm (1/p+ 1/q = 1) associated with
‖ · ‖p used in (19a).

The proof is given in the appendix.
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5.2 Signal-to-Noise Ratio and the Choice of λ

The regularization parameter λ controls the trade-off
between the fit of x to observations and the amount
of process disturbance v that can be used for that fit.
This reflects the signal-to-noise ratio of the data: The
more signal influence (process disturbances v), the more
important the second term of (19a) and vice versa.

The criterion (19a) is not homogeneous. Since the second
term is a norm and the first one is a squared norm,
the solution will change if we rescale the problem by
multiplying all signals by a scalar.

A criterion with λ based on a fraction of λmax,

min
∑∥∥R−1/2e

(
y(t)−Cx(t)

)∥∥2
2

+βλmax
∑
‖Q−1/2v(t)‖p,

(27)

will handle this, giving a criterion that is invariant to
scaling: If Re and Q are multiplied by the same scalar,
the minimization problem is not affected. Letting the
choice of λ be based on λmax is thus a sound principle.
But note that (27) is also invariant to all scaling in the
scalar case (y, v,Re, Q being scalars): Re and Q can be
changed to any positive numbers, without affecting the
solution if β is a given constant. To allow the second term
to have more influence at high signal-to-noise ratios, we
propose the following basic choice of regularization pa-
rameter:

λ =
1

10

√
‖Re‖
‖Q‖

λmax (28)

The choice of the scaling 1/10 is admittedly ad hoc, but
governed by the fact that if the amplitude signal-to-noise
ratio is less that 0.1, no jumps v will be indicated by
criterion (19). This is a reasonable choice, since at such a
low signal-to-noise ratio the risk of false jump detections
is very high.

Such signal-to-noise tuning is present in all state estima-
tion algorithms. For example the Willsky-Jones method
(5) requires the noise level Re to determine the covari-
ance matrix P and knowledge of typical jump sizes to
design a proper significance level T to minimize the risk
of false detections. The Kalman filter, the particle fil-
ter, the IMM, all require such knowledge to be properly
tuned.

5.3 Iterative Refinement

To (possibly) get even more zeros in the estimate of v(t),
with no or small increase in the fitting term, iterative re-
weighting can be used [9]. We modify the regularization

term in (19a) and consider

min
x(1),v(t),1≤t≤N−1

N∑
t=1

∥∥R−1/2e

(
y(t)− Cx(t)

)∥∥2
2

+λ

N−1∑
t=1

α(t)‖Q−1/2v(t)‖p

(29)

where α(1), . . . , α(N − 1) are positive weights used to
vary the regularization over time. Iterative refinement
proceeds as follows. We start with all weights equal to
one i.e., α(0)(t) = 1. Then for i = 0, 1, . . . we carry
out the following iteration until convergence (which is
typically in just a few steps).

(1) Find the state estimate.
Compute the optimal v(i)(t) using (29) with the
weighted regularization using weights α(i).

(2) Update the weights.
For t = 1, . . . , N − 1, set α(i+1)(t) = 1/(ε +
‖Q−1/2v(i)(t)‖p). In this situation the value of λ
can be reduced, to obtain better estimates of the
jump size at the jump instances.

Here ε is a positive parameter that sets the maximum
weight that can occur.

As already stated, several of the good features of the `0-
norm are retained when replaced by the `1-norm. How-
ever, the downside is that the `1-norm penalizes the size
of the regularized variable and not only if it is nonzero
or not, like the `0-norm. The regularized variable will
therefore be biased toward zero. To get rid of this bias,
one final step is useful. From our final estimate of v(t),
we simply define the set of times T at which an esti-
mated load disturbance occurs (i.e., T = {t|v(t) 6= 0})
and carry out a final optimization over just v(t), t ∈ T ,

min
x(1),v(t),1≤t≤N−1

N∑
t=1

∥∥R−1/2e

(
y(t)− Cx(t)

)∥∥2
2

s.t. x(t+ 1) =Ax(t) +Bu(t) +Gv(t)

v(t) =0 if t /∈ T .

(30)

6 Summary of the Algorithm — STATESON

The algorithm is summarized in Algorithm 2.

Algorithm 2 State Estimation by Sum-of-Norms
Regularization (STATESON)

Given A, B, C, G, Re, Q and
{(
y(t), u(t)

)}N
t=1

. Let ε be

a positive parameter, set α(0)(t) = 1 for t = 1, . . . , N −1
and i = 0. Then, for a given λ ( e.g., determined as (28))
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(1) Compute the optimal v(i)(t) using (29) with α =
α(i).

(2) Set α(i+1)(t) = 1/(ε + ‖Q−1/2v(i)(t)‖p). Possibly
also reduce λ at this step.

(3) If convergence, go to the next step, otherwise set
i = i+ 1 and return to step 1.

(4) Compute a final estimate of v(t) using (30).

Remark 7 If the jump covariance Q in (17) is known
or can be given a good value, the final optimization step
(step (4) in Algorithm 2) could be replaced by a Kalman
smoother with the time-varying process disturbance

Rv(t) =

{
0 for t’s such that v(t) = 0

Q otherwise.

It should be noticed that if the correct jump-times and Q
have been found, this is actually optimal in the sense that
no other smoother (linear or nonlinear) can achieve an
unbiased estimate with a lower error covariance. Since
everything is Gaussian (time varying covariance), this
follows from the optimality of the Kalman smoother.

7 Solution Algorithms and Software

Many standard methods of convex optimization can be
used to solve the problem (19). Systems such as CVX
[15,14] or YALMIP [26] can readily handle the sum-
of-norms regularization, by converting the problem to
a cone problem and calling a standard interior-point
method. For the special case when the `1 norm is used as
the regularization norm, more efficient special purpose
algorithms and software can be used, such as l1 ls [22].
Recently many authors have developed fast first order
methods for solving `1 regularized problems, and these
methods can be extended to handle the sum-of-norms
regularization used here; see, for example, [32, §2.2].
Methods such as Alternating Direction Method of Mul-
tipliers (ADMM, [11,12], see also [6]), which are equiva-
lent to other methods (such as Douglas-Rachford split-
ting) can also handle the sum-of-norms regularization
and should be an attractive choice for large-scale prob-
lems. All of these methods have a complexity that scales
linearly with N , and so can be applied to long data sam-
ples.

A CVX implementation of STATESON can be down-
loaded from http://www.rt.isy.liu.se/~ohlsson/
code.html.

8 Numerical Illustration

We will use a DC motor to illustrate how the distur-
bances can be handled. This is the same system as used
in e.g., [24, pp. 95-97], (Ts = 0.1 s, τ = 0.286, β = 40).
The input is the applied torque and the output is the

angle of the motor shaft. With states being angular ve-
locity and angle, and a sampling time Ts = 0.1 s, we
obtain the discrete time model

x(t+ 1) =

[
0.7047 0

0.08437 1

]
x(t) +

[
11.81

0.6250

] (
u(t) + v(t)

)
s(t) =

[
0 1
]
x(t) (31)

y(t) = s(t) + e(t).

The transfer function from load disturbance v to angle
y contains an integration, so a unit impulse in v causes
a change of level in s of 4 units.

Example 8 Estimating Jump Times Using STATE-
SON and WJ

Let us first study how well the STATESON algorithm can
estimate the time of a single jump in v. We may think
of the Willsky-Jones GLR approach (6) as a reference
method, being the Maximum-Likelihood (ML) solution.
We simulate (31) from t = 1 to t = 100 with u ≡ 0 (with
no loss of generality, since the effect of the input is known
anyway), x(1) = 0 and

v(t) =

{
0 t 6= 55

w t = 55

with 10 different values of w from 0.01 to 10. The mea-
surement noise is chosen as e(t) ∼ N(0, 1). For each
value of w we generate 500 realizations of the measure-
ment noise and estimate the jump time as

tWJ = arg max
t
`(t), `(t) defined by (5a),

tSTATESON = arg max
t
v(t).

Here v(t) is defined as the solution to (19) with Re =
1, Q = 1, p = 2 and λ chosen as in (28). We then study
the ensemble values of these estimates over the 500 mea-
surement noise realizations. Histogram plots over the er-
rors in estimated time are given in Figure 1. To illus-
trate how the accuracy of the jump time estimates depend
on the jump size ( i.e., the SNR) we plot in Figure 2 the
square Root of the Mean Square Error (RMSE) of the
estimate.

This example favors the Willsky-Jones approach, since
it is devised to find one jump in the chosen interval.
STATESON has no such information. For high SNR
(jumps larger than 1) the WJ approach also outperforms
STATESON. This is expected due to the asymptotic (er-
rors tending to zero) optimality of the ML method. What
is surprising is that STATESON does so well, and even
outperforms WJ for small (jumps less than 1) SNRs.

If there is a possibility of several jumps in the signal, the
situation is a bit more complex for the WJ approach.
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Fig. 1. Histogram over the errors in jump time for w = 0.1
(left) and w = 1 (right). Top: The Willsky Jones method.
Bottom: The STATESON method.
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Fig. 2. Log-log diagram of the RMS error of the jump time es-
timate as a function of the SNR. Dashed line: Willsky-Jones.
Solid line: STATESON. For the two highest SNRs the Will-
sky-Jones error is zero.

Then a sliding window must be applied as described
in Remark 3. The resulting algorithm then has two im-
portant design variables: the threshold T in (5b) and the
window length F . Experimentation shows that the per-
formance could be quite sensitive to these two variables.

We now turn to the problem of not primarily estimating
jump times, but finding good smoothed state estimates.

Example 9 State Estimates by WJ and STATESON

We return to the system (31) in Example 8. Two jumps
occur: 

v(49) = 1

v(55) = −1

v(t) = 0 otherwise

The initial condition is fixed to x(1) = 0, the measure-
ment noise is e(t) ∼ N(0, 1) and the system simulated for
t = 1 to 100. A typical realization of y is shown in Fig-
ure 3. The state is estimated by the Willsky-Jones method

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

4

Fig. 3. A typical realization of y in Example 9.

using a sliding window of length 5 and a threshold of 20.
(See Remark 2.2 and (5b)). These design variables were
optimized to give the best MSE over a Monte-Carlo study.

The state was also estimated by STATESON, Algo-
rithm 2, with one iterative refinement. The parame-
ter λ was chosen as in (28) with Re = Q = 1, i.e.,
λ = λmax/10 and it was further reduced by another
factor 10 at the refinement iteration. The chosen norm
was the Euclidean norm, i.e., p = 2. The squared errors
|x2(t)− x̂2(t)|2 as a function of t averaged over 500 real-
izations of e are shown in Figure 4. A histogram plot over
the 500 realizations of the norm

√∑
t |x2(t)− x̂2(t)|2 is

shown in Figure 5.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Fig. 4. The squared error of the second state estimate as
a function of time, averaged over 500 measurement noise
realizations. Dashed line: Willsky-Jones. Thick solid line:
STATESON.
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Fig. 5. Histogram plot for the error norms over 500 noise real-
izations. Light grey: STATESON. Black: Willsky-Jones. The
x-axis is the error norm, and the y-axis shows the number
of occurrences of the corresponding segment of error norm.

The example shows that the suggested STATESON
method has a clear edge over the Willsky-Jones ap-
proach. This can probably be traced back to the fact
that STATESON is a global method, while Willsky-
Jones is a sliding, local method, in this application with
possibly multiple jumps.

Let us also study the dependence of the signal-to-noise
ratio and compare with the methods described in Sec-
tions 2 and 3.

Example 10 State Estimates Under Varying SNR and
Multiple Jumps

Consider again the system given in (31). Let v(t), t =
1, . . . , 100, be generated by (17) with µ = 0.015, Q = 10,
set x(1) = 0, u ≡ 0 and varyRe to obtain different SNRs.
For each SNR-value, 500 Monte-Carlo runs (different v
and e realizations in each run) were carried out. State
estimates were computed using:

(1) The lower bound according to the Clairvoyant
smoother.

(2) Kalman smoother with the true Re and the change
detection algorithm CUSUM (Cumulative Sum [29],
see also Algorithm 1) to detect when to change be-
tween Rv = 0 and Rv = 10. CUSUM was applied
to both the whitened innovations and the negative
whitened innovations of a Kalman filter. A Kalman
smoother was then applied with Rv = 10 at the time
instances of detected changes andRv = 0 otherwise.
Several values for h and γc = 1 were tried out and
h = 10 and γc = 1 gave the best performance and
were used here.

(3) The proposed method STATESON according to Al-
gorithm 2 with ε = 10−4, two iterations, λ as in (28)
in the first iteration and a tenth of the that value in
the second iteration.

(4) The Willsky and Jones GLR test, as described in
Remark 3, with T = 25 and F = 40 for Re ≥ 1
and otherwise T = 85 and F = 40. Several T and
F -values were tested and these T and F -values gave
the best performance.

(5) A particle smoother with the true Re and a process
disturbance distribution as in (17) with µ = 0.015
and Q = 10. 1000 particles were used.

(6) Conventional Kalman smoother with Rv = µQ =
0.15 and the true Re.

(7) An IMM smoother with two modes, the true Re for
both and Rv = 0 and 10, respectively, with probabil-
ities 0.985 and 0.015. The IMM smoothing imple-
mentation of [33] was used.

The mean MSE (1/N
∑

t |x2(t)− x̂2(t)|2) taken over the

500 Monte-Carlo runs is shown for a number of
√
Q/Re-

values in Figure 6.

10
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(Q/R
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)
1/2

M
S

E

 

 

Clairvoyant

CUSUM

STATESON

WJ

PF

Kalman

IMM

Fig. 6. A comparison between various methods for state es-
timation under impulsive process disturbances, as explained
in Example 10. The x-axis is the varying SNRs obtained by
varying measurement disturbance variance Re and a con-
stant jump size variance Q = 10. The y-axis is the mean
square error of the second state variable over all the 100
time samples. 7 different methods are tested, as indicated:
(1) Clairvoyant smoother, (2) CUSUM, (3) STATESON, (4)
WJ: Willsky-Jones, (5) PF (particle smoother), (6) conven-
tional Kalman smoother and (7) IMM.

Remark 11 The state estimates approach that of the
clairvoyant algorithm as the SNR increases. To under-
stand the discrepancy in the plot, one must keep in mind
the logarithmic scale, and that even for high SNR there
will be occasional small jumps, that remain undetected
by the algorithms that do not have access to the correct
jump instances.

STATESON is in some sense the closest convex relax-
ation of (10). It is therefore not very surprising that it is
doing so well. That STATESON is doing very well over
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the various
√
Q/Re-values also motivates the suggested

λ-choice in (28).

8.1 Computational Complexity

In the numerical illustrations, we used our own imple-
mentation of all algorithms except the IMM smoother,
for which we used the implementation of [33]. A CVX
implementation of STATESON was used, see also Sec-
tion 7. The computational times (in seconds) for one run
in Example 10 are given in Table 1. None of the algo-
rithms have been optimized for computational speed.

Table 1
Computation times (in seconds) for one run in Example 10.

Clairvoyant CUSUM STATESON WJ PF Kalman IMM

0.1 0.1 2.4 0.1 54 0.1 0.4

Remark 12 With unknown jump-times, (10) (with the
correct λ-choice) or the filter banks would be unbeat-
able. Their combinatorial-complexity make them compu-
tationally infeasible though. In Example 10, 299 ≈ 1030

constrained least squares problems would have to be solved
for each Monte-Carlo run.

9 Extension to Nonlinear Models

An extension to nonlinear systems is of interest since
many systems are poorly described by linear approxi-
mations. We do this in an extended-Kalman-filter-like
fashion and approximate the nonlinear system by a time-
varying linear model. To get an initial state trajectory
estimate, we use an Extended Kalman Filter (EKF). The
algorithm is summarized in Algorithm 3.

Algorithm 3 State Estimation by Sum-of-Norms
Regularization Using Nonlinear Models
Given a nonlinear state space model and {(y(t), u(t))}Nt=1.
Let ε be a positive parameter. Then, for a chosen λ:

(1) Find an initial state trajectory estimate by applying
an extended Kalman filter.

(2) Create a time-varying approximation of the nonlin-
ear system by linearizing around the computed state
trajectory.

(3) Apply Algorithm 2 to obtain a new state estimate.
(4) Return to step (2) if necessary.

Example 13 A Nonlinear Example — A Pendulum

Consider the pendulum shown in Figure 7. Its dynamical
behavior using a mass m = 1 and a pole length L = 1 is
described by the nonlinear relation

d

dt

[
θ

dθ/dt

]
=

[
dθ/dt

−g sin θ

]
+

[
0

F

]
. (32)

m

θ

L

F

Fig. 7. Notation for the pendulum in Example 13.

g is the gravitational constant (g = 9.81 was used in
the simulations). Using Euler integration with a time
step of 0.005, we obtain the time-discrete representation
(x1 = θ, x2 = dθ/dt)[
x1(t)

x2(t)

]
=

[
x1(t− 1) + 0.005x2(t− 1)

x2(t− 1)− 0.005g sinx1(t− 1)

]
+

[
0

F (t)

]
.

Let us assume that we can measure the quantity

y(t) = sinx1(t) + e(t), e(t) ∼ N(0, 0.5) (33)

and that the system is driven by the process disturbance

F (t) = w(t) + v(t), w(t) ∼ N(0, 0.0005) (34)

and

v(t) =

{
1 for t = 500,

0 otherwise.
(35)

x1(1) = π/3 and x2(1) = 0 were used to initialize the
system and y(t), t = 1, . . . , 1000, observed, see the top
plot of Figure 8. The estimate obtained by applying the
EKF, step (1) of Algorithm 3, is given in the middle plot
of Figure 8 (sin x̂2(t) plotted). A linear time-varying rep-
resentation of the pendulum was next computed around
the x-estimate from the EKF (step (2) of Algorithm 3).
Finally, using λ as in (28), ε = 10−4, and two itera-
tions in Algorithm 3 (the criterion (24) was used, see
Remark 5, due to the Gaussian component in the process
disturbance), the estimate of v given in the bottom plot
of Figure 8 was obtained. As seen, the impulse at t ≈ 500
was correctly detected.

10 Conclusion

A new formulation of the state estimation problem in the
presence of abrupt changes has been presented. The pro-
posed approach treats the state smoothing problem as a
constrained least-squares problem with a sum-of-norms
regularization, a convex formulation. A nice property of
the proposed formulation is that it can be seen as an `1

11



0 200 400 600 800 1000

−2

0

2

0 200 400 600 800 1000

−1

0

1

0 200 400 600 800 1000
0

0.5

1

t

Fig. 8. Top plot shows the measured output y(t). The middle
plot shows sinx2(t), with x2(t) obtained by applying an EKF
to the data of the top plot (step (1) of Algorithm 3). Bottom
plot gives the final estimate for v.

relaxation of the well known generalized likelihood ra-
tio method by Willsky and Jones. Many other methods
for state estimation in the presence of abrupt changes
have been suggested in the literature. We have found in
numerical examples that the suggested method shows
very good performance in comparison with six other al-
gorithms. Given that the proposed method is in some
sense the closest convex relaxation of the optimal, but
combinatorially forbidding, generalized likelihood ratio
method by Willsky and Jones, this may not be that
strange. Also, given that the method results in a con-
vex optimization problem, the computational burden is
reasonable. The extension to nonlinear models was also
discussed and exemplified.

A Proof of Proposition 6

To verify our formula for λmax we use convex analysis
[31,3,5]. First note that

x(t) =Gv(t− 1) +Ax(t− 1) +Bu(t− 1)

=

t−1∑
r=1

At−r−1(Gv(r) +Bu(r)
)

+At−1x(1). (A.1)

Introduce

εt , R−1/2e

(
y(t)− C

( t−1∑
r=1

At−r−1Bu(r) +At−1x(1)
))

(A.2)
and let ε̄t be εt evaluated at the x(1) minimizing

min
x(1)

N∑
t=1

‖εt‖22 . (A.3)

(19) can then be written as

min
x(1), v̄(t), t =

1, . . . , N − 1

N∑
t=1

∥∥∥∥∥ε̄t −R−1/2e C

t−1∑
r=1

At−r−1GQ1/2v̄(r)

∥∥∥∥∥
2

2

+λ

N−1∑
t=1

‖v̄(t)‖p (A.4)

with v̄(t) , Q−1/2v(t) and using (A.2). The subdiffer-
ential of ‖v̄(t)‖p evaluated at v̄(t) = 0 is the unit ball in
the dual norm ‖ · ‖q, 1/p+ 1/q = 1. λmax must therefore
be give by

λmax=max
k

∥∥∥∥∥∇v̄(k)

N∑
t=1

∥∥ε̄t−R−1/2
e C

t−1∑
r=1

At−r−1GQ1/2v̄(r)
∥∥2

2

∣∣∣
v̄≡0

∥∥∥∥∥
q

= max
k

∥∥∥∥∥∥2

N∑
t=k+1

(
R
−1/2
e CAt−k−1GQ1/2

)T
ε̄t

∥∥∥∥∥∥
q

.
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[26] J. Löfberg. Yalmip : A toolbox for modeling and optimization
in MATLAB. In Proceedings of the CACSD Conference,
Taipei, Taiwan, 2004.

[27] H. Ohlsson, L. Ljung, and S. Boyd. Segmentation of
ARX-models using sum-of-norms regularization. Automatica,
46(6):1107–1111, 2010.

[28] M. R. Osborne, B. Presnell, and B. A. Turlach. On the
LASSO and its dual. Journal of Computational and Graphical
Statistics, 9:319–337, 1999.

[29] E. S. Page. Continuous inspection schemes. Biometrika,
41(1/2):100–115, 1954.

[30] R. Patton, P. Frank, and R. Clark. Fault Diagnosis in
Dynamic Systems – Theory and Application. Prentice Hall,
1989.

[31] R. T. Rockafellar. Convex Analysis. Princeton University
Press, 1996.

[32] J. Roll. Piecewise linear solution paths with application to
direct weight optimization. Automatica, 44:2745–2753, 2008.
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