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Abstract-We consider personal navigation systems in devices 
equipped with inertial sensors and Global Positioning System 
(GPS), where we propose an improved Pedestrian Dead Reckon­
ing (PDR) algorithm that learns gait parameters in time intervals 
when position estimates are available, for instance from GPS or 
an indoor positioning system (IPS). A novel filtering approach 
is proposed that is able to learn internal gait parameters in 
the PDR algorithm, such as the step length and the step 
detection threshold. Our approach is based on a multi-rate 
Kalman filter bank that estimates the gait parameters when 
position measurements are available, which improves PDR in 
time intervals when the position is not available, for instance 
when passing from outdoor to indoor environments where IPS is 
not available. The effectiveness of the new approach is illustrated 
on several real world experiments. 

I. INTRODUCTION 

This paper applies a Dead Reckoning (DR) principle to 
a Pedestrian Navigation System (PNS) in order to obtain a 
system to locate the mobile user in both indoor or outdoor 
environments. These systems are gaining increasing interest 
as a tool to improve the localization aspects specifically in 
indoor-based problems. In these cases, either the accuracy 
of the GPS is degraded significantly or the signal is totally 
inaccessible, due to blocking line-of-sight (LOS) or strong 
signal attenuation. The application areas of PNSs are many, 
where navigation for blind, helping people suffering from 
Alzheimer's, essential services interruptions, emergency co­
ordination, assets tracking, rescue and tracking in big malls 
are few examples. 

Traditionally, PNSs use micro-electromechanical systems 
(MEMS) in order to locate the mobile user when GPS signals 
are blocked. Strap-down inertial navigation system (INS) is 
one example of PNSs that take advantage of MEMS sensors 
for the positioning process. However, these systems are no 
self-contained navigation systems. The reason comes from 
the positioning error caused by gyroscope and accelerometer 
resulting in a rapid drift growth in such systems. 

Pedestrian Dead Reckoning (PDR), that is used in PNSs 
integrates embedded Inertial Measurement Units (IMUs) to 
detect when the user takes footsteps and how the direction 
changes between footsteps. IMUs nowadays consist of three­
axis accelerometers, gyroscopes, and magnetometers, which 
are inexpensive and light weight. These small-sized sensors 
with low power consumption are numerously embedded in 
most recent generation of mobile devices, such as smart-
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phones. These systems use gyroscopes to determine the head­
ing and accelerometers to estimate gait parameters such as the 
number of steps and step lengths. 

For estimating the gait parameters, it is important to detect 
step occurrences and their length. These gait characteristics 
depend on individual walking patterns and vary between 
people. Besides, the same person does not have the same gait 
in all situations. That is, step length is a time-varying process 
which depends on the speed and frequency of steps. These are 
the main challenges of using PDR algorithms. 

Various systems and algorithms for PNSs have been intro­
duced in the literature. Comparing them shows that for pedes­
trian navigation technology, PDR using IMUs has attracted 
the most interest as it imposes no extra cost and does not rely 
on additional infrastructure. PNSs can be generally classified 
based on the location of the installed sensors. The most 
popular classes are waist-mounted [1], [2], foot-mounted [3], 
[4] and hand-held [5]-[8] types. Besides the large class of 
IMU-based systems, there are also other approaches that use 
other sensors such as e.g. electronic pedometers [9]. 

Since body-fixed systems, introduced above, require extra 
devices to be produced and mounted, hand-held devices gain 
more interest thanks to the rapid development of smartphones. 
Reference [5] is one example of using a hand-held device 
for positioning purposes. It uses an empirical model which is 
based on the accelerometer signal for detecting steps and a 
back-propagation neural network for step length estimation. 
In [10], a step determination method based on pattern recog­
nition is proposed. 

Another class of methods used in this context are methods 
that use constant, pre-learned gait parameters. As mentioned 
before, the step length depends on the user's behavioral and 
physical characteristics. In order to take this relation into 
account, a few parameters such as weight and height must be 
calibrated before starting to measure and performing gait pa­
rameter estimation. Different studies on this problem propose 
constant pre-learned parameters in their models. For example, 
in [11] a linear relation between the measured frequency of 
steps and a pre-learned constant parameter is proposed for 
online step length estimation. In [12], the step frequency and 
variation of the acceleration is taken into account together with 
a pre-learned constant parameter. 

In this paper, we propose a filtering approach that is able 
to learn gait parameters of the PDR algorithm, such as the 



step detection threshold and step length. Our approach is 
based on a multi-rate Kalman filter bank that estimates the 
gait parameters when position measurements are available, 
which improves PDR in time intervals when the position is 
unavailable. Moving from outdoor to indoor environments 
where IPS is not available is one example. 

The rest of the paper is organized as follows: In Sec. II, 
a basic pedestrian odometry model is presented together with 
an algorithm for step detection. Sec. III then proposes two 
extended pedestrian odometric models, which are embedded in 
Sec. IV into a multi-rate KF bank for step detection threshold 
estimation. Sec. V discusses the dead-reckoning improvements 
by learning the gait parameters on a couple of real-world 
experiments, and Sec. VI finally concludes the work. 

II. PEDESTRIAN ODOMETRY 

In pedestrian navigation systems, the double-integrating 
strap-down method suffers from an error in the position 
estimate. This error propagates and increases quadratically 
with time [13]. Integrating gait parameters could be a solution 
to this issue. The gait parameters can be utilized in PDR 
algorithms to improve the performance. 

Traditionally, PDR algorithms detect gait parameters, such 
as number of detected steps and step length, in order to 
determine the traveled distance. This approach is applied for 
navigation applications in many studies, e.g. [14], [15]. The 
basic longitudinal model is given by 

(1) 

where ds is the total walked distance, s is the step index, L is 
the step length and ns is noise. Estimating a pedestrian's step 
length and determining a suitable threshold for step detection 
from IMU accelerometer measurements is discussed in the rest 
of this section. 

A. Step Detection 

The three-axis accelerometer signal contains all the data 
required to detect the occurrence of a step. The vertical axis, 
relative to the ground, contains all information corresponding 
to the step specific peak. However, the orientation of the sensor 
may cause some disturbances on the vertical signal component. 
For instance, in the case when the IMU is embedded in 
hand-held devices such as smartphones. In order to avoid 
this disturbances, the norm of the total acceleration is used 
instead of looking only at the vertical acceleration component. 
Algorithm 1 illustrates the procedure of step detection. In 

this algorithm, the variables ax, ay and az denote the tri-axial 
accelerometer components, respectively. In order to improve 
the quality of the signal, a Butterworth band-pass filter with a 
proper cut-off frequency is applied to attenuate all frequencies 
outside the band-pass. 

Defining a suitable threshold h in order to correctly detect 
steps is one difficulty of PDR algorithms. The threshold needs 
to be adjusted for different people with different character­
istics. In order to make our point clear, we have designed 
an experiment in which three people with different attributes 

Algorithm 1 Step Detection 

• Input: Three-axis Accelerometer Signal 

1. Compute the norm of the accelerometer signal: 

a = J a~ + a~ + a;. 

2. Band-pass filter the resulting signal using a fourth­
order Butterworth filter with cut-off frequency 
[0.2,2.75] Hz. 

3. If the filtered signal exceeds a defined threshold h, 
a step is considered detected. 

4. Among all sets of accelerations that are larger than 
the threshold, before the signal again drops below the 
threshold, the one with the highest value is selected 
as the step. 

• Output: Step detections 

(height and weight) and walking behaviors have participated. 
All of them walked along the same rectangular trajectory. In 
order to have a better classification per person, they were asked 
to walk in a slow pace and count their steps, so that these can 
be used as the ground truth. As Fig. 1 shows the threshold 
for each measurement is unique. Furthermore, choosing a too 
large threshold will underestimate the number of detected 
steps. For instance, the number of detected steps for user 2 
drops rapidly for thresholds larger than 1 m/s2 . 
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Fig. 1: Number of steps detected vs. step detection threshold h for 
users with different height (H) and weight (W). The crosses indicate 
true number of steps. 

A change of the user's speed is another aspect that may 
affect the threshold. Fig. 2 illustrates the step detection per­
formance for different paces of a single user. We observe 
that different speeds yield different step detection curves, and 
choosing the right threshold becomes important. 

It is worth noting that in all of our experiments the user is 
walking all the time. This means, that below a certain threshold 
the step detection curves become (relatively) flat. Hence, 
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Fig. 2: Number of steps detected vs. step detection threshold h for 
a single user with different walking paces. The crosses indicate true 
number of steps. 

one could argue that a properly chosen (small enough) fixed 
threshold might be sufficient to obtain good step detection 
performance. However, in reality the user is not walking all 
the time. The user motion will be rather interrupted by shorter 
(or longer) periods of stand still, which yields step detection 
curves that are no longer flat and would result in a significant 
increase of false detections if the threshold is chosen too small. 

III. EXTENDED PEDESTRIAN ODOMETRIC MODEL 

In this part the basic odometry model is extended with 
more variables, velocity, heading and angular rate, in order 
to improve the PDR model and increase the accuracy of the 
estimated gait parameters. 

A. Longitudinal model 

In this section, a longitudinal multi-rate model is proposed 
that is updated each time a step is detected or a GPS position 
estimate becomes available. The underlying motion model is 
the standard constant velocity (CV) model extended with step 
length. This model has a state vector x = [d, v, LV with 
traveled distance d, velocity v and step length L. The dynamic 
model from one event tk (either GPS position observed or step 
detected) to the next event at tk+ 1 is given by 

XtHl = F(tk+1 - tk) Xtk + G(tk+l - tk)Wtk+l' (2) 

where Wt H l denotes process noise 

Q = [~~ (3) 

The matrices F and G are given by 

[
T2 / 2 

G(T) = ~ (4) 

In this model, the measurement data is asynchronous, i.e. 
the time elapsed between two filter updates will depend on 

which measurement (step detected or GPS position observed) 
is currently processed. The general form of a measurement 
model is given by 

(5) 

where Hk is a mapping matrix and ek denotes measurement 
noise. In case a GPS position estimate is available, it is 

converted to a corresponding velocity IIP~:=~lt~~ " Il, where 11 · 11 

denotes the L2 norm and Ptl and Ptl - l denote the GPS position 
estimates available from the current time instance tl and the 
previous time instance tl - I. It is then possible to express the 
model for the GPS measurement as follows 

y~PS = H t/xt/ + e~Ps, (6) 

where e~Ps is noise assumed to be zero-mean Gaussian 
distributed with variance CT~,GPS ' and Htl = [0, I , 0]. Since 
there are no direct observations for step detection available, we 
define an artificial measurement that is used whenever a step 
is detected. The step detection measurement model is given 
by 

(7) 

where H t , = [0, /:).t s , - 1], /:).t s = ts - t s-I is the time 
difference between two consecutive step detections regardless 
of how many GPS measurements are detected in between, and 
e~~ep is noise assumed to be zero-mean Gaussian distributed 
with variance CT;tev This longitudinal model is linear in the 
state, and the solution for this problem fits the linear Kalman 
filter. 

Remark: A common PDR model is to let each step trigger 
the process model to increase the traveled distance with 
the step length. The advantage is that the velocity state is 
not needed. However, when GPS comes asynchronously, the 
velocity state makes it possible to interpolate. The relative 
accuracy of GPS is in the order of one step, so interpolation 
is important. 

B. Horizontal model 

In this section a 2-D multi-rate horizontal model is pro­
posed. It is a Coordinated Turn (CT) model with polar velocity 
extended with step length. The nonlinear CT allows for a 
varying turn rate and also a varying target speed [16]. The 
proposed model has a state vector x with 6 components: 
position X, position Y, polar velocity v, heading 'VJ, heading 
rate wand step length L. The resulting differential equation 
for the state is given by 

x- v cos( 'VJ ) 
Y v sin( 'VJ ) 

x= v a 

~ w 
(8) 

W a 

t 0 

where a is linear acceleration and a is turn rate. The differen­
tial equations require discretization in order to apply discrete­
time filtering techniques. The result has the form 

Xt k+l = f( Xt k ' tk+l - tk) + g(Xtk' tk+l - tk)WtH l ' (9) 



where Wt k+ l is assumed to be uncorrelated zero-mean Gaus­
sian noise with covariance matrix Q = diag( [a~ , a;, aID. 
The discretization of (8) yields 

f( x, T) = 

X + 7;: sin( W2T) cos( 1j; + W2T) 
Y + 7;: sin( W2T) sin( 1j; + Wi) 

v 
1j; + wT 

w 
L 

(10) 

where we have assumed a and a to be zero. The zero-order­
hold discretization [17] is applied in order to find g(x, T) 
which is given by 

~2 cos( 1j;) 0 0 

~2 sin( 1j;) 0 0 

g(x, T) = T 0 0 (11) T 2 
0 2 0 
0 T 0 
0 0 1 

For the horizontal model it is assumed that 2-D GPS positions 
estimates, step detections as well as turn rates from gyroscopes 
are available as measurements. The model for the GPS position 
estimates is given by 

YGPS = [1 
t l 0 

o 0 0 0 
1 000 

0] GPS o Xt l + etl ' (12) 

where e~Ps is noise on the GPS position estimates, which 
is assumed to be zero-mean Gaussian distributed with covari­
ance matrix R G P S = diag( [a;,GPS ' a;,GPsD. The measurement 
model for the step detections is analogous to the longitudinal 
model (7) and is given by 

step - [0 Yts - o o 0 (13) 

The gyroscope measurement model is given by 

Ygy ro = w + bgy ro + e gy ro 
t g z, t g tg t g , (14) 

where W z, t g is the yaw rate which is the gyroscope measure­
ment in the horizontal plane, bgyro denotes gyroscope bias, 
and tg denotes the time instance when gyroscope measure­
ments are available, and e gtyro denotes noise assumed to be 

9 

zero-mean Gaussian with variance aiyro. The gyroscope bias 
can be generally compensated for via calibration, yielding a 
gyroscope measurement model without bias given by 

yf: ro = [0 0 0 0 1 O J Xt g + er;ro. (15) 

In contrast to the longitudinal model, the horizontal model is 
nonlinear in the states due to the nonlinear process model. 
Hence, nonlinear filters have to be used for state estimation, 
and we will make use of the Extended Kalman filter in our 
proposed PDR solution which is further detailed in the next 
section. 

IV. PDR WITH GAIT PARAMETER LEARNING 

The block diagram of the proposed PDR algorithm that 
learns gait parameters is shown in Fig. 3. The algorithm 
basically consists of four blocks. In the step detection filter 
block, N different thresholds are applied to a bank of step 
detectors, whose inputs are the accelerometer signals. The 
detected steps, as the output of this filter, are passed to 
the Kalman filter bank block consisting of N multi-rate 
(Extended) Kalman Filters, that process the step detections, 
GPS position estimates (and gyroscope measurements). The 
results of this filter bank are then passed to the state estimation 
and threshold selection block. The threshold selection block 
is processing N threshold dependent innovation vectors Ek(h) 
and corresponding innovation covariances Sk(h) to obtain a 
threshold estimate it for the step detector based on minimizing 
some likelihood cost function. In the state estimation block, 
the N estimated states together with the error covariances 
and other filter parameters are inputs to a mixing stage that 
produces the final filter output consisting of a state vector 
estimate x and corresponding error covariance P [17]. 

Gyroscope 
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Fig. 3: Block diagram of PDR algorithm with gait parameter learning 

While the above proposed approach should be fully capable 
of processing the data sequentially, the majority of blocks 
could be only tested by processing batches of real data for 
each experiment. In particular, all blocks except the state 
estimation block, which was not tested, were each processed 
offline using batches of data. This means that the step detection 
filter processed all data at once. The output of this filter, a 
batch of detected steps, was then fed into the Kalman filter 
bank to output a batch of innovations and covariances. The 
threshold estimation block has been adapted to process batches 
of data. More specifically, the threshold estimate it for each 
experiment is obtained by minimizing the following likelihood 
cost function 

h' . L~=l Er(h)Sk1(h)Ek(h) + log Sk(h) 
= arg m~n N ' (16) 

where N is the length of the batch. Sand E are innovation 
and covariance innovation from Kalman filter, respectively. A 
small h, gives many false detected steps resulting in large 
innovations. Conversely, a large h results in that many steps are 
missed, yielding large innovations again. While the proposed 
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Fig. 4: Likelihood cost function vs. step detection threshold h 
for three different users with different characteristics. The crosses 
indicate the estimated threshold h where the likelihood cost function 
is minimized. 

analysis could be seen as a major limitation, it on the other 
hand gives a very good insight on the potential of the proposed 
approach for PDR and gait parameter learning, even though it 
is not fully sequential. 

Fig. 4 and 5 present results for the threshold selection block. 
Here, the (batch) of measurement data corresponding to three 
different users all walking slowly but with different physical 
characteristics and the data corresponding to the single user 
with different walking paces have been processed. The data 
batches used are the same that have generated Fig. 1 and Fig. 2. 
It can be observed that all cost functions are different and 
yield different estimated h values where the likelihood cost 
function is minimized. In Table I, the estimated thresholds 
from minimizing the likelihood cost function are compared to 
the "true" thresholds obtained from counting the total number 
of steps during the experiments. It can be observed that the 
estimated thresholds h are in good agreement with the true 
ones, and hence the criterion given in (16) seems to be a good 
indicator to choose the step detection threshold. 

TABLE I: Estimated step detection threshold h versus true threshold 

True Threshold Estimated threshold 
[m /s2 ] [m /s2 ] 

User 1 2.06 2.0 
User z 0.81 0.8 
User 3 0.61 0.4 

Slow pace 0.51 0.6 
Moderate pace 3.46 3.4 

Fast pace 1.56 1.4 

V. DEADRECKONING IN GPS DENIED EN VIRONMENTS 

In this part, the models proposed in Sec. III are applied and 
verified using field experiments. Moreover, results obtained 
by using adaptive gait parameters are compared to results 
obtained using a fixed step detection threshold. 
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Fig. 5: Likelihood cost function vs. step detection threshold h for a 
single user with three di fferent walking paces. The crosses indicate 
the estimated threshold h where the likelihood cost function is 
minimized. 

Measurements were collected in a parking lot at Linkoping 
university, using the sensor fusion Android app [18] , [19] to 
log GPS, accelerometer and gyroscope measurements. Several 
experiments were conducted with people of different heights 
and weights. Each person repeated the experiment in three 
walking modes; slow, moderate and fast. All the data were 
collected over the same trajectory that contains four sharp 
corners. 

Table II presents the results from applying the longitudinal 
model described in Sec. III-A. The elements of the process 
noise covariance matrix for this model were selected as 
O'~ = 10 (m/s2)2 and 0'1 = 0.002 m2 , and the measurement 
noise variances for GPS and step length are O';'GPS = 9 (rn/S)2 

and O'~ep = 0.04 m2 , respectively. The results of adaptively 
determining the step detection threshold are compared to the 
results when fixing the threshold to suit user l. In Table II 
the estimates are compared to the ground truth values for 
the gait parameters and the traveled distance. It shows that 
the estimates obtained with the fixed threshold for user 1 
are comparable to those obtained with the adaptive scheme. 
However, the fixed threshold did work less well for the second 
user. In that case, choosing a too large step detection threshold 
results in too few steps being detected. Hence, the threshold 
that suits user 1 works less well with user 2. As can be seen, 
not only the number of steps are affected but also the step 
length adapts to satisfy the condition for the traveled distance. 

Fig. 6 presents results using the horizontal model. The 
elements of the process noise covariance matrix for this model 
were selected as O'~ = 10 (rn/S2)2, 0'; = 0.5 rad2 and 0'1 = 
0.002 m2 , and the measurement noise variance for GPS was 
selected as O'~,GPS = 9 m2 , for gyroscope as O'iyro = 0.64 rad2 

and for step length as O'~ep = 0.04 m2 . In this figure, the 
PDR estimation is shown with adaptive and fixed gait step 
detection threshold (again chosen to suit user 1 well) when two 



TABLE II: Estimated gait parameters and traveled distance versus 
true one. 

Traveled Number Position 
error at the Threshold 

distance Of end point [m/s 2] [m] Steps [m] 
Ground Truth 

248 333 0 2.06 User 1 
User 1 with 

adaptive 246.1 329 6.9 2 
gait parameters 

User 1 with 
fixed 245.2 321 8.6 4 

gait parameters 
Ground Truth 

242 346 0 0.81 
User 2 

User 2 with 
adaptive 240.1 352 9.8 0.8 

gait parameters 
User 2 with 

fixed 227.7 141 32.8 2 
gait parameters 

users walked slowly. The threshold for step detection has been 
estimated for Fig. 6a and Fig. 6b. Conversely, in Fig. 6c the 
fixed threshold is used and applied to the same measurement 
set as used in Fig. 6b. The GPS signal (green dots) is only 
assumed available for a few seconds in the beginning and 
middle of experiments. As can be seen in the figure, using 
the adaptive step detection threshold provides reasonably good 
position estimates even during periods without GPS coverage. 
At the same time, Fig. 6c shows how large influence poorly 
chosen gait parameters can have on the end result, when 
compared to adaptively choosing the parameters. It should 
be noted that in these limited experiments, simply choosing 
a very low step detection threshold would improve the result. 
However, we anticipate this not to be the case in more realistic 
settings with uneven gait and regular stops which motivates the 
choice of parameters here. 

The step lengths estimated with adaptive threshold, Fig. 6e 
and Fig. 6d, are fairly constant. In this figure green lines 
indicate availability of the GPS signal, as in the previous case. 
Fig. 6f shows the negative effect on the step length when 
the steps are incorrectly detected due to a poor step detection 
threshold. 

VI. CONCLUSION 

In this paper we have proposed a filtering approach in order 
to learn gait parameters in the Pedestrian Dead Reckoning 
(PDR) algorithm. Our approach is based on a multi-rate 
Kalman filter bank that estimates the gait parameters, such as 
step length and step detection threshold. This learning process 
is performed when GPS measurements are available, which 
improves the PDR in time intervals when the measurement 
is unavailable. For instance, indoor position systems are not 
always available when moving from outdoor to indoor envi­
ronments. 

The proposed method has been evaluated using real experi­
mental IMU measurements with promising results, especially 
when adaptively choosing the step detection threshold as part 

of the algorithm. Additionally, it has been demonstrated that 
the results deteriorate if a fixed threshold is used that is 
not appropriately chosen to suit the current user. Given the 
experimental data provided in this paper a low step detection 
threshold would probably work satisfactory; however, we 
anticipate this not to be the case with more variations in the 
user's walking patterns and with regular stops where a too low 
threshold would introduce many false step detections. The next 
step of this study will be to work with more advanced data 
sets including multi-rate walking and stops. 
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parameters. (d-f) illustrate the estimated step lengths, the green lines indicate time slots of available GPS signals. 
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