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Abstract

The availability and reliability of mobile positioning algorithms depend on both
the quality of measurements and the environmental characteristics. The posi-
tioning systems based on global navigation satellite systems (gnss), for example,
have typically a few meters accuracy but are unavailable in signal denied con-
ditions and unreliable in multipath environments. Other radio network based
positioning algorithms have the same drawbacks. This thesis considers a couple
of cases where these drawbacks can be mitigated by model-based sensor fusion
techniques.

The received signal strength (rss) is commonly used in cellular radio net-
works for positioning due to its high availability, but its reliability depends heav-
ily on the environment. We have studied how the directional dependence in the
antenna gain in the base stations can be compensated for. We propose a semi-
empirical model for rss measurements, composed of an empirical log-distance
model of the rss decay rate, and a deterministic antenna gain model that ac-
counts for non-uniform base station antenna radiation. Evaluations and compar-
isons presented in this study demonstrate an improvement in estimation perfor-
mance of the joint model compared to the propagation model alone.

Inertial navigation systems (ins) rely on integrating inertial sensor measure-
ments. ins as a standalone system is known to have a cubic drift in the posi-
tion error, and it needs supporting sensor information, for instance position fixes
from gnsswhenever available. For pedestrians, special tricks such as parametric
gait models and step detections can be used to limit the drift. In general, the
more accurate gait parameters, the better position estimation accuracy. An im-
proved pedestrian dead reckoning (pdr) algorithm is developed that learns gait
parameters in time intervals when direct position measurements (such as gnss
positions) are available. We present a multi-rate filtering solution that leads to
improved estimates of both gait parameters and position. To further extend the
algorithm to more realistic scenarios, a joint classifier of the user’s motion and
the device’s carrying mode is developed. Classification of motion mode (walking,
running, standing still) and device mode (hand-held, in pocket, in backpack) pro-
vides information that can assist in the gait learning process and hence improve
the position estimation. The algorithms are applied to collected data and promis-
ing results are reported. Furthermore, one of the most extensive datasets for per-
sonal navigation systems using both rigid body motion trackers and smartphones
is presented, and this dataset has also been made publicly available.
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Populärvetenskaplig sammanfattning

Våra smarta mobiler har sofistikerade mätningar och algoritmer för att beräkna
användarens position. Utomhus används främst satellitnavigering (gps), som har
en hög noggrannhet men lider av problem med tillgänglighet när man inte har
fri sikt till satelliterna (t.ex. inomhus) och problem med tillförlitligheten i kom-
plexa miljöer som stadskärnor, där satellit-signalerna studsar runt innan de når
till mottagaren. För att gardera sig mot dessa utmaningar, har våra smarta tele-
foner algoritmer som använder radiosignaler signaler från våra radionät. För det
första kan man utnyttja privata WiFi-nätverk som telefonen hittar och jämföra
med en karta där dessa finns utsatta. För det andra används signalstyrkan från
våra mobilnät för att avgöra vår position. Detta är två exempel på hur modeller
av radiosignaler används för att beräkna position för mobila användare. Denna
avhandling behandlar ett par andra fall för att få bättre skattning av position,
också ämnade för mobila användare.

Det första fallet är att utnyttja att utsänd effekt från mobilmaster har ett rikt-
ningsberoende pga. antennernas utformning. Detta antennmönster är känt av
operatören, men inte för mobila användare. Vi studerar hur man kan skatta det-
ta antennmönster och kombinerar detta med en enkel utbredningsmodell för att
förklara hur signalstyrkan beror på positionen. Denna modell kan sedan använ-
das ‘baklänges’ för att räkna ut positionen från uppmätta signalstyrkor från olika
basstationer.

Våra smarta telefoner innehåller tröghetssensorer (accelerometer och gyro-
skop) samt elektronisk kompass (magnetometer), och dessa kan användas för att
ge oss en grov modell av hur användaren rör sig, tex genom att använda modeller
för gångstil och stegdetektion. Dessa modeller innehåller en mängd parametrar
för att beskriva vår gångstil, som dessutom varierar med promenadhastighet eller
om vi börjar springa. Signalerna från tröghetssensorerna beror också på var vi har
telefonen (i handen, ficka, väska osv.). Ju bättre modell, desto bättre uppfattning
av hur vi rör oss. Vi presenterar en algoritm som lär sig dessa gångstils-beroende
parametrar under tidsintervall när det finns stödsystem som ger position, tex
gps, och sedan använder denna parametriska modell ‘baklänges’ för att förbättra
rörelsemodellen.

Ett av de mer praktiska bidragen är genomförandet en omfattande datainsam-
ling där av en mängd olika försökspersoner fick röra sig längs en förutbestämd
väg med varierande hastigheter i olika faser, samt med en mängd telefoner i oli-
ka positioner. För att få ytterligare referensmätningar av gångstil, användes en
kroppsdräkt med tröghetssensorer på varje kroppsdel. Detta dataset har gjorts
allmänt tillgängligt, och beskrivs utförligt i avhandlingen. Slutligen presenteras
lovande resultat från en klassificerare som utifrån telefonens mätningar kan lista
ut hur telefonen bärs och vilken promenadstil användare har för tillfället.
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Notation

Mathematical Style

Notation Meaning

z Scalar parameter or variable
z Parameter or variable vector
Z Parameter or variable matrix

Symbols and operations

Notation Meaning

xk State vector at time k
x1:m Set of states from time 1 to m
uk Known input vector at time k
yk Measurements at time k

y1:m Set of measurements from time 1 to m
fk( · ) State update equation at time k
hk( · ) Measurement equation at time k
x̂k|k State estimate at time k given measurements up to and

including time k
Pk|k State covariance at time k given measurements up to

and including time k
θ̂ Parameter estimate

N (µ,Σ) Gaussian distribution with mean µ and covariance Σ
arg max Maximizing argument
arg min Minimizing argument
| · | Euclidean norm of a vector
|| · || L2 norm

p(a | b) Conditional pdf of stochastic variable
Cov( · ) Covariance

E( · ) Expected value
R Set of real numbers

xv



xvi Notation

Abbreviation

Abbreviation Meaning

bs Base station
ct Coordinated turn
cv Constant velocity
ekf Extended Kalman filter
gnss Global Navigation Satellite System
ips Indoor positioning system
imu Inertial measurement unit
ins Inertial navigation system
imm Interacting multiple model
kf Kalman filter
lse Least squares estimator
lte Long-term evolution
los Line of sight
mle Maximum likelihood estimator
mems Micro-machined electromechanical systems
ms Mobile station
pdr Pedestrian dead reckoning
pns Pedestrian Navigation System
rss Received signal strength
ssm State-space model
toa Time of arrival
wlan Wireless local area network
3gpp Third generation partnership project



1
Introduction

In this thesis, we investigate parameter estimation problems for mobile position-
ing applications based on measurements provided by common smartphones. The
measurements include received signal strength (rss) which depends on the dis-
tance to the radio transmitter but also on the environment and other uncertain-
ties. There are well established but approximate parametric models that describe
how rss depends on distance and direction to the transmitter, and if these pa-
rameters were known one could trilaterate the position of the mobile user given
a couple of rss values from different transmitters.

Conversely, the smartphones also contain inertial sensors and an electronic
compass that can be used to detect user movement and estimate the speed and
direction of the movement. Together, these can be seen as inputs to a motion
model for the mobile user, a so called gait model. Again, there are parameters in
this gait model that need to be adopted to each user and each use case.

The gait model and the rss model can be processed by a nonlinear filter
model, if only the parameters were known. This parameter estimation problem
is the focus in this thesis. The proposed rssmodel jointly accounts for rss decay
rate and the base station antenna characteristics. The gait model takes advantage
of supporting measurements as a solution to cumulative error problem caused
by using inertial sensors. A more sophisticated approach is to utilize the user’s
behavior. Knowing the user’s motion behavior allows for adopting the gait model
parameters accordingly. It is studied how this can be learned from measurements
through classification algorithms.

Part I of this thesis provides the basis for the work in Part II, in which three
applications are presented and further studied. The motivation and background
of this work are introduced in Section 1.1. Section 1.2 presents the author’s con-
tributions followed by the outline of the thesis given in Section 1.3.
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2 1 Introduction

1.1 Motivation and Background

The high pace of development of geographical positioning methods along with
tracking mobile users can be traced back to various sources. People and as-
sets tracking, mapping the location of disaster victims, Navigation, and location
based security, are all examples of different applications and services which rely
on accurate position estimation [14].

The Global Positioning System (gps), the first of the Global Navigation Satel-
lite System (gnss), is still the enabler in many applications. Briefly speaking,
the gnssmethods are based on signals transmitted from satellites. However, the
limiting factors require these methods to be evolved. For instance, in outdoor
environments such as street canyons, bad weather conditions resulting in poor
signals, and indoor environments where the signal is totally non-accessible, other
alternatives must be applied.

Assisting gnss signals with information from other wireless networks such as
the long term evolution (lte) or IEEE 802.11, which are studied widely in the lit-
erature [64, 93, 17, 68, 67], is one solution to increase both availability of service
and the accuracy of estimation. On the other hand, in indoor environments, rely-
ing on available wireless local area network (wlan) infrastructure for position es-
timation purposes has been investigated for long time [46, 24, 16, 19, 91, 53, 90].

In this thesis, we use measurements collected by sensors and receivers avail-
able in most recent smartphones. These measurements are used in three different
applications as follows. The motivation and background theory for first two ap-
plications are previously published by the author in [47, ©2015 IEEE], [48, ©2016
IEEE], and the third application will be published in [49, ©2017 IEEE].

1.1.1 Antenna gain parameter estimation

Cellular radio network positioning can be seen as an alternative to the gnss sys-
tems mentioned above, when they are unavailable. Emergency call positioning is
an example use case. Furthermore, from a radio network management perspec-
tive, the positioned radio measurement enables an operator to identify where
issues such as poor coverage or excessive interference are located.

The positioning solutions can be characterized as network-centric and mobile-
centric. In the former, a network entity estimates the position of a terminal, pos-
sibly based on measurements reported by the terminal. In the latter, the terminal
is provided with assistance data to enable it to estimate its position. The posi-
tion estimate may be based on a measurement snapshot, or a time series of mea-
surements. The measurements are typically related to time of arrival (toa), rss
and angle of arrival (aoa) of transmitted reference signals, or combinations on
them [34].
rssmeasurements are typically reported from the terminal to the base station

for other reasons than positioning, such as handover from a serving cell to a tar-
get cell, radio resource management in general, or to assess the properties of the
radio conditions in a cell as part of network management. Therefore, they can
be seen as readily available. In a positioning context, rssmeasurements are used
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for ranging, fingerprinting and channel modeling [61, 8, 34, 65, 92]. Recently,
it has also been shown how rss measurements together with information about
base station antenna properties, can be used to estimate the aoa [31]. In addi-
tion, knowledge about the serving sector cell together with information about
the sectorized antenna, yields a crude estimate of the aoa for the terminal. The
performance of positioning based on such bearing estimates is assessed in [13],
and in [34]. The latter also addresses the positioning performance given rssmea-
surements used for ranging, given a parametric radio propagation model.

These models, however, suffer from lack of considering simultaneous effects
of channel and antenna parameters on rss measurements used for positioning
algorithms. The changes of channel and antenna parameters based on the in-
stantaneous propagation condition are neglected. If detailed propagation model
calibration is ruled out, the applicability of the rss measurements for ranging is
subject to significant uncertainty. Such uncertainty can be tolerated in the posi-
tioning algorithm, but still with fairly inaccurate positioning performance as a
result [81].

To improve performance, an alternative is to take advantage of the recent de-
velopments of smartphones. By logging accurate gps positions and rssmeasure-
ments, it is possible to retrieve calibration measurements and use them for pa-
rameter calibrations. Traditionally, close range measurements have been used
to measure the antenna gain in detail, while avoiding significant propagation
effects. Moreover, positioned rss measurements have been used together with
the antenna models to determine the corresponding rss measurements from an
isotropic antenna, which in turn has been used to estimate the parameters of the
propagation model.

1.1.2 Pedestrian dead reckoning positioning

The dead reckoning principle can be applied to a pedestrian navigation system
(pns) in order to locate the mobile user in indoor and/or outdoor environments.
These systems are gaining increasing interest as a tool to improve the localiza-
tion aspects specifically in indoor-based problems. In these cases, either the accu-
racy of the gps is degraded significantly or the signal is totally inaccessible, due
to blocking line-of-sight (los) or strong signal attenuation. The application ar-
eas of pnss are many, where navigation for blind, helping people suffering from
Alzheimer’s, emergency coordination, assets tracking, rescue, and tracking in big
malls are a few examples.

Traditionally, pnss use micro-electromechanical systems (mems) in order to
locate the mobile user when gps signals are blocked. Strap-down inertial naviga-
tion system (ins) is one example of pnss that takes advantage of mems sensors
for the positioning process. However, these systems are not self-contained naviga-
tion systems. The reason comes from the positioning error caused by gyroscope
and accelerometer resulting in a rapid drift growth in such systems.

Various systems and algorithms for pnss have been introduced in the litera-
ture. Comparing them reveals that for pedestrian navigation technology, Pedes-
trian Dead Reckoning (pdr) using inertial measurement units imus has attracted



4 1 Introduction

the most interest as it imposes no extra cost and does not rely on additional in-
frastructure.
pdr integrates embedded imus to detect when the user takes footsteps and

how the direction changes between footsteps. The imus use gyroscopes to de-
termine the heading, and accelerometers to estimate gait parameters such as the
number of steps and step lengths. More details about these systems will be pre-
sented in Section 3.1. For estimating the gait parameters, it is important to detect
step occurrences and their length. These gait characteristics depend on individ-
ual walking patterns and vary between people. Besides, the same person does
not have the same gait in all situations. That is, step length is a time-varying
process which depends on the speed and frequency of steps. These are the main
challenges of using pdr algorithms. More details about these systems will be
presented in Section 5.2.
pnss can be generally classified based on the location of the installed sensors.

The most popular classes are waist-mounted [4, 56], foot-mounted [60, 11] and
hand-held [58, 83, 85, 94] types. Besides the large class of imu-based systems,
there are also other approaches that use other sensors such as electronic pedome-
ters [42]. Chapter 6 is dedicated to discussing this issue.

Since body-fixed sensors, introduced above, require extra devices to be pro-
duced and mounted, hand-held devices gain more interest thanks to the rapid
development of smartphones. One example of using a hand-held device for posi-
tioning purposes is presented by [58]. It uses an empirical model which is based
on the accelerometer signal for detecting steps and a back-propagation neural
network for step length estimation. In [51], a step determination method based
on pattern recognition is proposed.

Another class of methods used in this context are methods that use constant,
pre-learned gait parameters. As mentioned before, the step length depends on
the user’s behavioral and physical characteristics. In order to take this relation
into account, a few parameters such as weight and height must be calibrated be-
fore starting measurement and performing gait parameter estimation. Different
studies on this problem propose constant pre-learned parameters in their models.
For example, in [55] a linear relation between the measured frequency of steps
and a pre-learned constant parameter is proposed for online step length estima-
tion. In [77], the step frequency and variation of the acceleration is taken into
account together with a pre-learned constant parameter.

In this thesis, a filtering approach that can learn gait parameters of the pdr
algorithm, such as the step detection threshold and step length, is proposed. This
approach is based on a multi-rate Kalman filter bank that estimates the gait pa-
rameters when position measurements from gps are available, which improves
pdr in time intervals when gps position estimates are unavailable. Fig. 1.1 is an
illustration of a smartphone using imus for positioning purposes.

1.1.3 Motion and device mode classification

pns is used in a range of applications, from pure navigation and guidance tools,
healthcare assistance systems to infotainment applications, and more generally
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Figure 1.1: Indoor positioning using smartphone. By courtesy of Senion [2].

location based services. The main goal of a pns is to have an accurate and reli-
able position estimate, but there are certain metadata that can provide additional
information in itself. In this contribution, the problem of classifying the activity
mode (standing still, walking, running) and the device mode (handheld in view,
handheld in swinging hand, in front/back pocket, and in a backpack) is consid-
ered.

The activity mode is a key feature in sports and healthcare applications, where
it is logged for its own sake. The activity mode can also select a set of appropriate
internal parameters in the pns, such as step length and step detection thresh-
olds [48]. It can also be an enabler for energy efficient pns. For instance, in
outdoor applications, an energy demanding gps fix can be obtained first when
the user has moved a certain distance, and here it is useful to know if the user is
standing still, walking or running. Similar compromises about using additional
information sources from infrastructure can be made in indoor pns. For certain
personnel, such as guards and rangers, running may indicate danger and a sud-
den and unexpected stand still can indicate an accident, and in both cases officers
can be automatically alerted.

The device mode is crucial for the design and performance of a pns. For
instance, if it is known that the device is rigidly attached to a foot, special tricks
can be used [26, 11, 60]. Most importantly, using the knowledge that the foot is
at rest, at least for a short while in each stance, the bias in the accelerometer and
gyroscope can be read off directly. These are referred to as zero velocity updates
and zero angular rate updates, respectively. The elimination of bias enables the
use of dead-reckoning principles to integrate acceleration and angular rate into
a precise trajectory.

Other assumptions on the device mode include that the imu is fixed on the
waist rather than the foot [4, 56], located in the front pocket [79], carried horizon-
tally in hand [32] or carried in hand not necessarily horizontally [58, 83, 85, 94].

Classification of various motion modes could be one step towards more real-
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istic scenarios in which the smartphone is allowed to switch arbitrarily among
different device modes, just as normal users operate their smartphones. Classifi-
cation of motion and device modes is a less studied area in literature. However,
some studies are presented in the following. The classifier introduced in [66] is
based on accelerations and magnetic field data recorded with a hand-held unit.
Another study dealing with different motion and device modes is performed and
reported in [80], where standing still and walking patterns are studied. An ex-
tended investigation is to also add the running mode as in [94]. The classification
of motion mode is also studied in [20, 21, 82, 70].

The importance of the modes classification for pns can be summarized as
follows. The main design parameters include the step length and the step detec-
tion threshold determining when the magnitude of the measured acceleration is
deemed to be caused by a step. Both of these depend on the motion mode. Ba-
sically, the smaller the step length, the smaller the threshold needs to be. The
device mode can simplify the model further. For instance, if the device is hand
held flat, the heading corresponding to the projection (rotation) to the horizontal
plane (heading) can be computed by just integrating the angular rate around the
gravity vector. There are many other similar tricks described in literature. One
recent proposal of a multi-mode pdr algorithm can be found in [82], otherwise
mode-switching algorithms seem to be rare in literature.

This application is based on an extensive experimental study where different
users participated. Several smartphones were carried in different ways, as well
as inertial measurements units configured in a body suit. More details about the
experimental setup and the methods are given in Chapter 6. Fig. 1.2 shows a
subject while collecting data wearing a suit, provided by Xsens, containing the
imu sensors and carrying several smartphones.

1.2 Publications and Contributions

The main contributions and publications of the work can be listed as follows

1. The development and analysis of models for jointly antenna and propaga-
tion model parameters estimation. The contribution is published in the
paper

P. Kasebzadeh, C. Fritsche, E. Özkan, F. Gunnarsson, F. Gustafsson.
Joint Antenna and Propagation Model Parameter Estimation using RSS
measurements. In Proceedings of the 18th International Conference on
Information Fusion, pages 98–103, Washington D. C., USA, July 2015.

This contribution corresponds to the material presented in Chapters 1, 4,
and 7. The generic models that form the basis of parameter estimation
models used in this application are presented and described in Section 2.1.

2. Development of an extension of a pedestrian dead reckoning model. Some
parts of the contribution is published in the paper
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Figure 1.2: Photo from measurement campaign. Activity recognition, the
subject is running while carrying four smartphones in swinging hand, in her
front and back pocket, and also in her backpack [49, ©2017 IEEE].

P. Kasebzadeh, C. Fritsche, G. Hendeby, F. Gunnarsson, F. Gustafsson.
Improved Pedestrian Dead Reckoning Positioning With Gait Param-
eter Learning. In Proceedings of the 19th International Conference on
Information Fusion, pages 379–385, Heidelberg, Germany, July 2016.

This contribution corresponds to the material presented in Chapters 1, 5
and 7. The models that are used for state estimation in this application are
presented in Section 2.2. The version presented in this thesis is an extended
version of the paper.

3. Classification of human motion activity modes and device modes. The con-
tribution is published in the paper

P. Kasebzadeh, G. Hendeby, C. Fritsche, F. Gunnarsson, F. Gustafsson.
imu Dataset For Motion and Device Mode Classification. In Proceed-
ings of the 8th International Conference on Indoor positioning and indoor
navigation, Sapporo, Japan, September 2017.

This contribution corresponds to the material presented in Chapters 1, 6
and 7.
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The content of these three contributions are reused in this thesis by courtesy of
IEEE.

1.3 Thesis outline

This thesis is divided into two parts and founded upon theories formulated in
estimation theory and machine learning. The first part is devoted to the theoreti-
cal backgrounds relevant to the applications which are introduced in the second
part. These applications are the edited and/or extended versions of published
papers listed in Section 1.2.

In Chapter 2, we describe the relevant background information for the rest
of this work. Representations of state space models, common dynamics, and
measurement models are provided in this chapter. Given a set of measurements,
the measurement model is used to infer the desired parameters.

In Chapter 3, we present a general odometry model for pdr and also intro-
duce supporting measurements used to increase accuracy and reliability of the
system. Furthermore, detailed measurement model descriptions to relate the ob-
served quantity to the desired state to be estimated are provided. Additionally,
we describe all the sensors and receivers that are used as the measurement tools.

Chapter 4 is dedicated to the first contribution in Section 1.2. In this applica-
tion, a semi-empirical model for rssmeasurements is introduced that can be used
to predict base station antenna coverage in cellular radio networks. The model is
composed of an empirical log-distance model and a deterministic antenna gain
model that accounts for possible non-uniform base station antenna radiation. A
least squares estimator is proposed to jointly estimate the path loss and antenna
gain model parameters. Efficacy of this application is verified in both simulated
and experimental fields.

Chapter 5 presents second contribution introduced in Section 1.2. We con-
sider pnss in devices equipped with inertial sensors and gps, where we propose
an improved pdr algorithm that learns gait parameters in time intervals when
gps is available. A novel filtering approach is proposed that is able to learn inter-
nal gait parameters in the pdr algorithm, such as the step length and the step de-
tection threshold. Our approach is based on a multi-rate Kalman filter bank that
estimates the gait parameters when position measurements are available, which
improves pdr in time intervals when the position is not available.

Chapter 6 is dedicated to the third contribution in Section 1.2. In this chapter,
we study the classification of human motion modes (walking, standing still and
running) and device modes (hand-held, in pocket, in backpack). This classifica-
tion is an enabler in pnss for the purpose of saving energy and design parameter
settings and also for its own sake. The main contribution is to publish one of
the most extensive datasets for this problem. Moreover, a first study on a joint
human motion and device mode classifier is presented.

The work is concluded and a discussion of the future work is presented in
Chapter 7.
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Background





2
Estimation Prerequisites

Estimation is the process in which imprecise and uncertain observations are used
for inferring the “best guess” of a quantity of interest. In the context of this work,
estimation is the basis for determining parameters or states of a dynamic system.
In other words, it is applied to maximize the knowledge about an unknown vari-
able given unreliable observations.

This chapter sets the stage for all subsequent chapters by introducing the key
problems considered in this thesis; parameter estimation for nonlinear models
and estimation of unknown states of a dynamic system. Section 2.1 defines the
generic estimation problems and methods used for solving these problems. In
Section 2.2, a general introduction to stochastic state-space models is given. Fi-
nally, three different types of state estimation problems are defined, including
the filtering problem that is the main idea of this thesis.

2.1 Parameter Estimation

Parameter estimation models use the measured data to obtain the best estimate of
the deterministic parameters. The term parameter is used to designate a quantity,
scalar or vector valued, that is assumed time invariant [9].

A broad variety of parameter estimation techniques are presented by [50, 54].
This section presents an overview of two well-known methods used for data anal-
ysis; maximum likelihood (ml) and least squares (ls) estimation.

In order to estimate the unknown parameters, the estimator uses information
from the measurement model, probabilistic characterization of the various ran-
dom factors such as disturbances, and the evaluation of the variables from the
dynamic system.

11
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2.1.1 General Definition

Unknown parameters θ can be associated with the measured data using a generic
measurement model

yi = h(ui , θ) + ei i = 1, . . . , m, (2.1)

where ui is the known input vector, θ is the vector of unknown parameters be-
longing to the parameter space Θ ⊂ R

n , and errors ei are unobserved indepen-
dent random variables with zero means and finite variances. Here, the problem is
to infer θ from noise measurements, y. The inference is performed in the statisti-
cal framework. In the non-Bayesian approach, which is the scope of this section,
no prior knowledge of the unknown parameters are assumed. Thus, no prior
distribution is associated with the parameters. The estimated parameters θ̂ are
given by

θ̂ ,


θ̂1
θ̂2
...
θ̂n

 . (2.2)

Two common alternatives to find θ̂ in (2.2) from measurements (2.1) are max-
imum likelihood and least squares estimators. Both methods are based on statis-
tical procedures that are explained in more detail in the following. In brief, the
least squares method is used to estimate the coefficients in a model by minimizing
the sum of squares of the differences between fitted values and observed values
regardless of the form of the distribution of the errors. The least squares produces
the best linear unbiased estimate of those coefficients, in linear models. However,
if the form of the distribution of the errors is known, the maximum likelihood es-
timator (mle) can alternatively be used to estimate those coefficients. Although
the optimization criterion is different between the two methods, it will be shown
that under certain assumptions they are equivalent.

2.1.2 Maximum Likelihood Estimator

Maximum likelihood estimation (mle) is a well-known method for estimating
nonrandom parameters that uses given observations to estimate the parameters.
Let y = [y1, . . . , ym]T be a random vector of observations with probability density
function (pdf) p(yi ; θ).

The joint distribution of the measurement, assumed to be independent, iden-
tically distributed (i.i.d.), is given by the product of the marginal densities

p(y1, . . . , ym; θ) =
m∏
i=1

p(yi ; θ). (2.3)
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The joint density is an m-dimensional function of the data y1, . . . , ym given the
parameter vector θ satisfying

p(y1, . . . , ym; θ) ≥ 0, (2.4a)∫
. . .

∫
p(y1, . . . , ym; θ)dy1 . . .dym = 1. (2.4b)

For a given realization y, the likelihood function of y is considered as a func-
tion of θ, i.e.

L(θ|y) =
m∏
i=1

p(yi ; θ) = p(y; θ). (2.5)

Note that the likelihood function is a function of the parameters θ and not
the data y and thus is not a proper pdf, i.e. generally∫

. . .

∫
L(θ | y1, . . . , ym)dθ1 . . .dθn , 1. (2.6)

The mle finds the parameter values by maximizing the likelihood function
that serves as a measure of the evidence from the data. The mle of the unknown
true parameter θ is the one that maximizes (2.5) over Θ

θ̂ML = arg max
θ∈Θ

L(θ | y) = arg max
θ∈Θ

p(y; θ). (2.7)

It is often easier to maximize the log-likelihood function ln L(θ | y) instead of
direct maximization of L(θ | y). Since ln( · ) is a monotonically increasing func-
tion, the value of θ that maximizes ln L(θ | y) also maximizes L(θ | y).

2.1.3 Least Squares Estimator

The least squares estimator (lse) is another well-known method for estimating
nonrandom parameters that uses given measurements. lse estimates parameters
by minimizing the squared discrepancies between the measured data and their
expected values.

Let h(u, θ) = [h(u1, θ), . . . , h(um, θ)]T and e = [e1, . . . , em]T be points in R
n.

The generic model defined in (2.1) specifies a surface MΘ = {h(u, θ) : θ ∈ Θ} in
R
n. The lse estimate θ̂LS of the unknown parameters is the one that minimizes

the distance from y toMΘ . Thus, the lse of θ, considering (2.1), can be expressed
as

θ̂ LS = arg min
θ∈Θ

 m∑
i=1

|yi − h(ui , θ)|2
 , (2.8)

where | · | denotes the Euclidean norm. In the special case where (2.1) is linear in
the parameters θ, i.e.

h(u, θ) = H(u)θ, (2.9)
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there exists a closed form solution to (2.8) given by

θ̂ LS = (H(u)TH(u))−1H(u)T y. (2.10)

However, numerical iterative algorithms are usually required whenever the
model is nonlinear.

2.1.4 Gaussian Noise Scenarios

The criterion in (2.8) does not enforce any assumption on the measurement error.
In cases where measurement errors, ei , are (i.i.d) zero-mean Gaussian random
variables

ei ∼ N (0, σ2), (2.11)

then the lse (2.8) estimator is identical to the mle, where for i = 1, . . . , m

yi ∼ N (h(ui , θ), σ2). (2.12)

The likelihood function of θ is then

L(θ | y) = p(y; θ) = p(y1, ..., ym; θ)

=
m∏
i=1

N (yi ; h(ui , θ), σ2) =
(

1
√

2πσ2

)m
e
− 1

2σ2
∑m
i=1[yi−h(ui ,θ)]2

, (2.13)

and the minimization (2.8) is equivalent to the maximization of (2.13), θ̂ LS =
θ̂ML.

2.2 State-Space Estimation

This section begins with a brief introduction to stochastic state-space models.
Prediction, filtering, and smoothing of the states are treated separately and ex-
plained in Section 2.2.2. The exact and optimal solution to state estimation prob-
lems under linearity and known Gaussian noise statistics assumptions is given
by the Kalman filter (kf) as explained in Section 2.2.3. Section 2.2.4 relaxes the
linearity assumption and provides algorithms for nonlinear state-space models.

2.2.1 Stochastic State Space Models

State-space models (ssms) relate the observed measurements to the latent state
variable. The latent variables are not observed, but are reconstructible from the
measured data. In the ssm framework, the measurement equation and system
dynamics are modeled separately, where the latter predicts how the states of the
system evolve over time.

The system dynamics are often continuous in time while observations are
taken at discrete time instants. In this work, the system dynamics are restricted
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Figure 2.1: Block diagram of the state estimation problem [9].

to discrete time descriptions. These are obtained by discretization of the con-
tinuous time dynamics where differential equations are replaced with difference
equations.

To better model the characteristics of real systems, a method for predicting
behaviors with some kind of randomness is required. Thus, a stochastic ssm is
used to model a signal by introducing stochastic variables into the ssm [7]. The
randomness can be modeled in both continuous and discrete times. However,
stochastic variables in discrete time are studied in this work. An introduction to
stochastic ssm is given in [7, 59].

General Descriptions

A generic form of stochastic ssm equations for the k-th time index can be given
as

xk+1 = fk(xk ,wk), (2.14a)

yk = hk(xk , ek), (2.14b)

where xk ∈ Rn is the current state vector, and wk ∈ Rnw is the unmeasured distur-
bance input to the system. xk+1 is the upcoming state, and ek ∈ R

ne is the mea-
surement noise and yk ∈ Rm contains measurements. The state difference (2.14a)
uses a function fk( · ), to account for the relation between the current state and
the process noise with the upcoming state. The measurement equation (2.14b)
utilizes a function hk( · ) to connect the current state and the measurement noise
ek to yk .

The initial state x0, the noise signals wk and ek are the stochastic variables of
the ssm. The probabilistic state-space model and the stochastic variables wk , and
ek are defined as

xk ∼ p(xk | xk−1), (2.14c)

yk ∼ p(yk | xk), (2.14d)

wk ∼ p(wk), (2.14e)

ek ∼ p(ek), (2.14f)

x0 ∼ p(x0). (2.14g)
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Generally, marginal probability densities are used as in (2.14) with complemen-
tary information about correlation between x0, wk , and ek . The notation in (2.14g)
means that x0, for instance, has a distribution with density p(x0).

Some assumptions are made for the problems considered in this work. First,
time index starts at k = 0 and the first measurement is taken at the next time,
k = 1. At each time instance k, both functions fk( · ) and hk( · ) are known. The
noise, wk and ek , characteristics as well as the distribution of x0 are also assumed
to be known. For simplicity, the noises are assumed to be zero mean Gaussian
independent random variables. Moreover, the initial state x0 is assumed to be
independent to the measurement and process noises.

As stated earlier, (2.14) corresponds to a very generic ssm, spanning a broad
range of features. For example, there is no restriction on functions fk( · ) and
hk( · ) in terms of time-varying or time-invariant characteristics. Furthermore,
nonlinearity in both functions can be of any kind. Stochastic variables can also
follow any arbitrary distribution. However, a common special case of (2.14) is the
stochastic ssmwith nonlinear states in the dynamic model with a white Gaussian
noise entering the model additively. It is called the additive white Gaussian noise
state-space model

xk+1 = fk(xk) + wk , (2.15a)

yk = hk(xk) + ek , (2.15b)

where transition function, fk( · ), and measurement function, hk( · ), are both ar-
bitrary nonlinear functions. The dynamic and the measurement models of the
system are represented by their corresponding pdfs as p(xk+1|xk) and p(yk |xk),
respectively. The initial state is defined as

x0 ∼ N (x̄0,P0), (2.16)

and the white Gaussian noise wk and ek are independent and with the following
distributions

wk ∼ N (0,Qk), (2.17a)

ek ∼ N (0,Rk). (2.17b)

The presented approximate filtering techniques in Section 2.2.4 employ (2.15)
with a Gaussian noises assumption. In cases where the dimension of the process
noise, nw is smaller than the dimension of the states, n, the wk is pre-multiplied
by a matrix to match the dimensions. Although a similar matrix can be defined
and applied on measurement equation, it rarely happens that ne < m. Since the
obtained measurements are all assumed to be uncertain and noise corrupted, the
measurement noise covariance matrix is positive definite. This implies that the
measurement noise can be fully characterized by p(ek) and no further modifica-
tions are required.

Linear model

Imposing the linearity assumption on the dynamic and measurement models
simplifies the computations considerably. The well-known linear Gaussian state-
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space model is obtained by assuming the functions fk(x) and hk(x) to be linear as

xk+1 = Fkxk + Gkwk , (2.18a)

yk = Hkxk + ek , (2.18b)

where Fk is a transition matrix and Hk is a measurement matrix. These two ma-
trices are assumed to be independent of the state xk .

The inference in the linear model is significantly simplified. The reason is that
a linear transformation of the Gaussian distributed initial state, does not change
the posterior distribution. That is, all subsequent predictions and states will also
be Gaussian distributed.

The optimal unbiased state estimation algorithm, utilizes (2.18) with arbitrary
noise distributions and known first two moments to find the estimated states with
the lowest mean squared error. The well-known Kalman Filter (kf) introduced in
Section 2.2.3 gives the optimal state estimates for linear systems with Gaussian
noise.

In cases of nonlinear state-space models, approximate filtering algorithms
treat nonlinearities in different ways. Markov Chain Monte Carlo approaches
directly estimate the distribution of the states which undergo a nonlinear trans-
formation. Another method is to first derive the approximate linearized equa-
tions and then treat them as a linear state-space model. The Extended Kalman
Filter (ekf) uses this approach and is introduced in Section 2.2.4.

2.2.2 State Estimation

Given a set of measurements Y1:` = [y1, . . . , y`], the estimation problem casts
in to the one that infers the state estimates X̂1:` = [x̂1, . . . , x̂`] of the true states
X1:` = [x1, . . . , x`].the stochastic difference equation model (2.18) is used for state
estimation.

In the Bayesian framework, states are interpreted as random variables with
a certain distribution. Given the prior knowledge of the stochastic processes wk ,
and ek , the objective of the Bayesian state estimation problem is to find the con-
ditional posterior density p(xk | Y1:`).

The posterior estimation, given all measurements up to `, gradually becomes
computationally intractable when ` gets large. To tackle this problem, Bayesian
state estimation is solved under an additional assumptions to deal with this issue.
That is, the state xk , follows a Markov process

p(xk | x0, . . . , xk−1) = p(xk | xk−1). (2.19)

Nevertheless, the discussion of practical algorithms is postponed to the next
section and here, we continue to describe the concepts behind Bayesian the state
estimation problem. Generally, there are three marginal distributions that can be
considered as a solution to state estimation problems; filtering, prediction and
smoothing. These different distribution are distinguished by the temporal rela-
tion between the time, k, at which states are estimated and the available measure-
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Figure 2.2: Illustration of different estimation problems. the state of interest
is indicated with black bar at time k. The available measurements up to time
` are illustrated by gray color [73].

ments time interval, `, as illustrated in Fig. 2.2 and more thoroughly discussed
in [9, 73].

• Prediction
The prediction phase of the Bayesian filter computes the prediction distri-
butions. The first row in Fig. 2.2 illustrates a prediction scheme, in which
` < k. The first step in the prediction is to obtain the transition density
p(xk+n|xk) using the system model (2.18a) and the statistical properties of
wk .

The predictive posterior density p(xk+n|Y1:`) of the future state xk+n, n steps
after the current time step `, given the available measurements, Y1:`, are
then obtained by

p(xk+n | Y1:`) =
∫
p(xk+n | xk)p(xk | Y1:`)dxk , (2.20)

where the density p(xk | Y1:`) at the previous time step is propagated to n
steps ahead through the transition density. More details are given in [9, 73].

• Filtering
In the filtering problem, k is equal to ` and the posterior density distribu-
tion which is going to be estimated now takes the form p(xk |Y1:k). This can
be defined as an online sequential problem where the filtering density can
be computed quickly by applying the Bayes’ rule to the prediction density.

The second row in Fig. 2.2 illustrates the Bayesian filtering problem where
` = k. The gray part represents the available measurement sets which
reaches up to and includes time k.
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• Smoothing
Bayesian smoother computes smoothing distributions. The third row in
Fig. 2.2 illustrates Bayesian smoothing problem in which ` > k. The smooth-
ing distributions are the marginal distributions of state xk given certain
measurement interval, Y1:`.

As mentioned in the beginning of this section, the final goal is to find a point
estimate of the states represented by X̂1:` together with some measure of uncer-
tainty assigned to each estimate. One approach is to estimate the full posterior
density, p(xk | Y1:k), as introduced in the filtering above, and then define a point
estimate and the uncertainty indicator from the statistics of the approximated
distribution.

The Kalman filtering algorithm applies to linear Gaussian systems and com-
putes the full posterior N (xk ; x̂k|k ,Pk|k). This allows for extracting an estimate of
the state x̂k|k and covariance Pk|k . The reason is that a linear transformation of a
Gaussian distribution is also a Gaussian whose sufficient statistics are the value
of interest. However, as mentioned before, nonlinear and/or non-Gaussian mod-
els require approximations and cannot be handled by the Kalman filters. In case
of nonlinear models, the extended Kalman filters can be applied.

2.2.3 Kalman Filter

The Kalman Filter is a very popular algorithm for estimating the state of linear
systems. This filter is named after Rudolph E. Kalman, one of the primary de-
velopers of its theory who introduced the method in [44]. The major contribu-
tion of the proposed method to the field of linear filtering was removing the
stationary requirements. At that period, the Wiener filter and frequency domain
approaches were the main approach in the electrical engineering field and they
require the process to be stationary. Kalman provided recursive formulas suited
for time-varying linear filtering problems. More details about the kf history can
be found in [43].

The kf is an optimal estimator in the sense that it minimizes the estimated
error covariance given that some presumed conditions are met. Furthermore, as
mentioned in [5], for linear systems with arbitrary noise, the kf is the unbiased
linear minimum variance estimator. In fact, kf is a linear filter which updates the
mean and the covariance of the estimate to minimize the error of the estimated
parameters or states.

The kf uses the measurements that are linearly correlated to the state, to pro-
vide instantaneous estimate of the dynamic system. Both the measurements and
the state of the linear system are perturbed by white Gaussian noise. In situations
where the noise is not Gaussian, the kf is still the best linear unbiased estimator
while nonlinear estimators may have better performance.

Being the optimal estimator together with being tailored for implementation
purposes make kf a celebrated solution. Furthermore, kf is convenient for on-
line real-time processing that further broadens its applicability. Unlike available
snapshot solutions where each measurement is processed separately, the kf fuses
multiple information to provide a better estimate. Using the system dynamics
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modeled by physical laws of motion, for example, known control inputs, and the
possibility of fusing measurements from different types, make the kf a powerful
tool in estimation applications.

The states of linear state-space systems described by (2.18) can be estimated
by the kf. There are many alternative ways to represent the kf equations as
described and derived in [5] and [43]. In this thesis, the kf is presented with
alternating time update phase and the measurement updated phase, where the
dynamics of the system is handled and the measurements are fused in the esti-
mate, respectively.

The kf prediction step based on the dynamic model given by (2.18) can be
expressed as

x̂k|k−1 = Fk x̂k−1|k−1 (2.21a)

Pk|k−1 = FkPk−1|k−1FTk + GkQkGT
k , (2.21b)

where x̂k|k−1 is the mean and Pk|k−1 is the covariance matrix of the Gaussian prior.
This prediction gives the new prior distributionN (x̂k|k−1,Pk|k−1) and is computed
from the previous Gaussian posterior N (x̂k−1|k−1,Pk−1|k−1). In the measurement
update phase the prior will be updated whenever a measurement is available.
This process can be shown as

ŷk = Hk x̂k|k−1, (2.22a)

εk = yk − ŷk , (2.22b)

Sk = HkPk|k−1HT
k + Rk , (2.22c)

Kk = Pk|k−1HT
k S−1

k , (2.22d)

x̂k|k = x̂k|k−1 + Kkεk , (2.22e)

Pk|k = (I −KkHk)Pk|k−1, (2.22f)

where εk and Sk are called innovation/residual and innovation/residual covari-
ance matrix, respectively. εk denotes the difference between the prediction and
its observed output, while Sk represents the uncertainty of the predicted output.
The Kk is the Kalman gain and is a factor of the correction. x̂k|k and Pk|k are the
mean and the covariance matrix of the Gaussian posterior, respectively. I is an
identity matrix. There are many ways to formulate the covariance update (2.22f)
to have a better preserving symmetry and positive definite terms. For instance,
Pk|k can be represented as sum of two positive definite symmetric matrices which
is called Joseph form and is formulated as

Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
T + KkRkKT

k . (2.23)

However, it requires more matrix manipulations compared to (2.22f). The kf
algorithm starts with a time update and is initialized with

x̂0|0 = x0, (2.24a)

P0|0 = P0. (2.24b)
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2.2.4 Extended Kalman Filter

Although the Kalman filter is an optimal solution to the state estimation prob-
lems, some limiting assumptions are applied in its derivation; the predicted state
and the measurement are jointly Gaussian distributed. The conditional Gaussian
distribution rules have been used to obtain the equations for the measurement
update. Therefore, kf can be applied only to linear models. Thus, kf is not appli-
cable to many real life problems where either the dynamics or the measurement
models, or both, are nonlinear. The reason is that the joint prediction density,
p(xk , yk | Y1:k−1), is not Gaussian for nonlinear systems even if the noise sources
are Gaussian. In these situations, the problem needs to be treated with other
approximate filtering algorithms. ekf in nonlinear models is demonstrated and
evaluated in early studies in [74, 78, 41].
ekf is an extension to the kf with the possibility of handling nonlinear mod-

els. It handles the nonlinearities in the models by approximating the nonlinear
models with corresponding linear models. That is, the nonlinear equations are
first linearized and then the approximate filtering densities are computed.

Linearization is performed using the first order Taylor series expansion on a
nominal state x̄. In cases where the whole nominal state sequence X̄1:k is avail-
able, linearization can be performed offline. Then, the standard kf can be used.
However, this approach might yield poor performance if the nominal trajectory
deviates from the true X1:k . To overcome this issue, the ekf uses the available
information found and estimated by the filter as the linearization points, con-
secutively. In this method, the latest estimate is regarded as the best available
information on the state and is used for linearization in the next iteration.

Using the first order Taylor expansion on the nonlinear ssm (2.15) and sim-
plifying the expressions by assuming that the process noise is additive, (2.15a)
and (2.15b) can be used in the time and the measurement update phases, respec-
tively. The prediction phase for the ekf algorithm is given as follows

x̂k|k−1 = f(x̂k−1|k−1), (2.25a)

Pk|k−1 = f′(x̂k−1|k−1)Pk−1|k−1f′(x̂k−1|k−1)T + g′(x̂k−1|k−1)Qkg′(x̂k−1|k−1)T , (2.25b)

where f′( · ) is the gradient of f( · ) with respect to x and g′( · ) is the gradient of
f( · ) with respect to w, which are as

f′(x̂k−1|k−1) =
(
∂
∂x

f(x,w)|x=x̂k−1|k−1,E(w)=0

)
,

g′(x̂k−1|k−1) =
(
∂
∂w

f(x,w)|x=x̂k−1|k−1,E(w)=0

)
.

The new prior distribution, N (x̂k−1|k ,Pk−1|k), is computed based on the previous
Gaussian posterior N (x̂k−1|k−1, Pk−1|k−1). The next step is the measurement up-
date which updates the prior and is performed whenever a measurement is avail-
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able as

ŷk = h(x̂k|k−1), (2.27a)

εk = yk − ŷk , (2.27b)

Sk = h′(x̂k|k−1)Pk|k−1h′(x̂k|k−1)T + Rk , (2.27c)

Kk = Pk|k−1h′(x̂k|k−1)T S−1
k , (2.27d)

x̂k|k = x̂k|k−1 + Kkεk , (2.27e)

Pk|k = (I −Kkh′(x̂k|k−1))Pk|k−1, (2.27f)

where h′( · ) is the Jacobian of the h( · ) function

h′(x̂k|k−1) =
(
∂
∂x

h(x, e)|x=x̂k|k−1,E(e)=0

)
.

The ekf algorithm starts with providing the time update phase and assigning
the initial value for the states and the covariance matrix similar to kf. That is,
x̂0|0 = x0 and P0|0 = P0. As discussed earlier, the linearization in the measure-
ment update at time k is based on the predicted state x̂k|k−1. The second order
ekf, also known as ekf with bias compensation, is one example where the Hes-
sian of the nonlinear equation is computed at each iteration to achieve a better
approximation. One shortcoming of such algorithms is the necessity of higher
order differentiations that can cause vastly increased computational complexity
and costs.



3
Pedestrian Dead Reckoning

Positioning

Position and orientation information can be obtained by integrating inertial sen-
sor (accelerometer and gyroscope) measurements. The integration process is
called Dead Reckoning (dr). For example, the processing phase can be advanc-
ing the previously determined position over elapsed time based on known or
estimated speed. The main advantage of dr is that it is independent of extra in-
frastructures and radio signals. This allows dr to be applied in many navigation
applications such as pedestrian navigation and localization, marine navigation,
automotive and autonomous navigation.

The price of being independent of extra infrastructures is the well-known dis-
advantage of all pure dead reckoning techniques; the cumulative errors. This
makes pure dr methods become infeasible for most purposes while radio signal-
based navigational systems provide highly accurate position information. For
example, gps-based navigation systems can provide position estimates with few
meters accuracy. These methods, however, rely on the received signals and are
prone to erroneous estimates in poor snr conditions or even failure in environ-
ments where the signal is blocked [3].

Nowadays, ubiquitous smartphones are embedded with inertial sensors such
as accelerometer, gyroscope, and magnetometer. The sensors can be used for
pedestrian navigation by means of dead reckoning. For navigational purposes,
the accelerometer can be used as a pedometer to detect the steps and traveled
distance and the built-in magnetometer as a compass heading provider. The gyro-
scope also provides information about how the phone is carried. Pedestrian dead
reckoning (pdr) can be considered as an add-on to the other navigation methods
in a similar way to automotive navigation or extend the navigation techniques
into areas where other navigation systems are unavailable.

Fusing all pieces of information received from imu sensors, it is possible to
have a simple pdr implementation given that the subject holds an imu unit in
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the hand in front of the body and walks with constant speed. The magnetome-
ter measurements can be transformed into directional information and each step
causes the position to move forward a fixed distance in the estimated direction.
However, there are many challenges that must be considered in order to have
more accurate estimates. The accuracy of the algorithm is limited by the sensor
precisions and magnetic disturbances. In addition to hardware and environmen-
tal factors, the algorithm design parameters need to be carefully tuned. For in-
stant, how the algorithm detects a step from sensor measurements depends on a
threshold that is set on signal magnitude. How this threshold is defined together
with other design algorithms such as unknown gait parameters, like the length
of each step, unknown phone position, the way that the phone is being carried,
and user’s motion mode identification are all among the challenges of pdr that
are studied in detail in this chapter and Chapters 5 and 6.

In Section 3.1 of this chapter, we first describe all sensors whose measure-
ments are used in this thesis for positioning and navigational purposes. Then,
Section 3.3 presents general odometric models for pdr and introduces support-
ing measurements used to increase accuracy and reliability of the system.

3.1 Sensors

Depending on the application, different types of sensors can be used to provide
the desired information used for positioning. The sensed and reported quantity
relates to the parameter or state of interest that is to be estimated. For example,
in autonomous cars, sensors can be placed such that they provide information
about the position and orientation of the car. Similarly, sensors can be used to
obtain information about position and orientation of people that can further be
applied to pdr algorithms.

Two kinds of sensors are commonly used in localization problems. One set of
sensors measure those quantities that are indirectly related to the subject. The
magnetometer is an example of this type measuring the surrounding magnetic
field. The directional information can be inferred from the measurements. Other
examples are cameras filming the surrounding, etc. The second set of sensors,
measure values that are directly related to the subject. For example, the move-
ment of the subject, orientation, etc. Inertial sensors for instance measure angu-
lar rate and acceleration that can be used for pose estimation.

Significant developments of imus in recent years have enhanced their accu-
racy, made them smaller, and lowered their price. This allows easy access to
these units as either embedded in almost all recent smartphones or as dedicated
devices. Fig. 3.1 is an example of a sensor produced by Xsens which contains
imu sensors. We first describe the three main imu sensors that are mainly used
for positioning purposes. In this thesis, we use the accelerometer and gyroscope
sensors for estimating the pdr parameters and position estimation. In some appli-
cations, it might be necessary to use a magnetometer as a complementary sensor
in addition to accelerometer and gyroscope [52].
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Figure 3.1: An Xsens motion sensor containing an imu. Courtesy of Xsens
Technologies.

Accelerometer

Accelerometers provide accelerations which can be used to define an estimate of
the position of the sensor. In accelerometers, the quantity that is measured is
the specific force acting on the sensor. Both the earth’s gravity and the sensor’s
acceleration contribute to the measured force by the sensor. However, the sensor’s
acceleration has generally much smaller value compared to the earth’s gravity,
g = 9.81 m/s2.

The earth’s gravity will, therefore, form a large contribution of the measured
value by the accelerometer, while the motion of the sensor has a relatively small
contribution. Subtracting the earth’s gravity, the reported value is the non gravi-
tational force. The accelerometer measurement model is given as [84]

yacc
k = Q(qk)(a − g) + bacc

k + eacc
k , (3.1)

where g = [0, 0, g]T is the gravitation vector in Earth fixed condition, a is the sen-
sor’s acceleration. bacc

k denotes accelerometer bias, and eacc
k is the magnetometer

measurement noise. Q and qk are the rotation matrix and unit quaternions, re-
spectively. Unit quaternions use a 4-dimensional description of the orientation.
More details about orientation representations is presented in [52].

Gyroscope

Gyroscopes provide angular rates which can be used to define an estimate of the
orientation of the sensor. The measured value is the angular velocity, i.e. rate of
turn. By integrating of the signal allows for adding up the changes in orientation
over time. The gyroscope measurement model is given by [84]

y
gyro
k = ωz,k + bgyro

k + egyro
k , (3.2)
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where ωz,k is the yaw rate which is the gyroscope measurement in the horizontal
plane, bgyro

k denotes gyroscope bias, and egyro
k .

The accuracy of measurements is a trade off between size and price of the
sensor. For example, optical gyroscopes provide precise measurements but are
hard to reduce much in size. Another technology used for producing gyroscope
is the Micro-Electro-Mechanical Systems (mems) aimed to create smaller devices.
mems gyroscopes all rely on the same principle, that of vibrating objects under-
going rotation.

Magnetometer

Measurements provided by a magnetometer have contributions both from the
local earth magnetic field and all other magnetic material producing local distur-
bances. In cases where the earth’s field is stronger than local and mostly time
varying-disturbances, information about magnetic north, thus the geographical
north, can be inferred from the measurements. Magnetometers therefore, typi-
cally serve the purpose of a compass and provide useful information about the
sensor’s heading. The magnetometer measurement model is given as [84]

y
mag
k = Q(qk)m

0 + emag
k , (3.3)

wherem0 is the earth magnetic field in world coordinates. emag
k is the magnetome-

ter measurement noise. Q and qk are the rotation matrix and unit quaternions,
respectively.

Magnetometers can be used as complementary sensors to deal with biased and
noisy measurements of accelerometer and gyroscopes. Integration of the angular
velocity to obtain orientation and then integrating the acceleration to estimate
the position introduce integration drift as a result of the noisy measurements
provided by inertial sensors.

3.2 Sensor Fusion

Estimating properties of interest, xk , using some or all of the measurements yk
introduced above, is a sensor fusion problem. The process model, defining how
xk evolves over time, and measurement model, defining how yk relates to xk , are
used to infer the properties xk from the measurements yk . Often, xk is called
state and represents the sought system property. States to be estimated can corre-
spond to a wide variety of quantities from unknown constant properties such as
weight to time varying position or orientation of a unit or even the surrounding
environment. Orientation of the unit together with its position and velocity are
the typical components of the states in this thesis.

One way to estimate each entity of the state vector xk is to use information
given by the sensors individually. Another alternative, used in the sensor fusion
framework, is to fuse all the information obtained from inertial sensors, magne-
tometers, and gps measurements and filter them to get the joint estimate of all
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Figure 3.2: Illustration of a sensor fusion framework [15].

entities of the states xk . The output of the filter is both the estimated states x̂k
and a measure of how uncertain the estimates are.

Applying sensor fusion algorithms to obtain the joint estimate x̂k leads to
performance improvements compared to the estimates obtained by each sensor.
Evaluation of the performance is based on multiple criteria such as more certain
and robustness and number of sensors needed.

Fig 3.2 illustrates a generic overview of the fusion algorithm. For the frame-
work to provide x̂k , three components are needed; measurements yk that relate
to the system states xk through measurement models, model of the system dy-
namics, and a state estimation system that provides x̂k . In this framework, rather
than treating each sensor measurement individually, all measurements from all
sensors, either of the same type or measurements of different types, are used as
the input to the state estimation box.

3.3 Model Framework

The generic state vector used in pdr problems consists of three components

xk =

xkyk
ψk

 , (3.4)

where xk and yk are the Cartesian position and ψk is the heading, see [35]. The
input signals are given as

uk =
(
vk
ψ̇k

)
, (3.5)
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Figure 3.3: Using the accelerometer and gyroscope to estimate the position
and orientation. The initial values for the position and orientation are as-
sumed as known value [52].

where vk is the velocity and ψ̇k is the yaw rate. The dynamic model are described
by

xk+1 = xk + T vk cos(ψk), (3.6)

yk+1 = yk + T vk sin(ψk), (3.7)

ψk+1 = ψk + T ψ̇k , (3.8)

where T is the sampling interval. These inertial signals are given by sensors
either mounted on or being carried by the subject. Depending on the application,
other components might be added to the generic state vector (3.4). Typically,
magnetometer readings are used as measurements whose model is given in (3.3).

Measurements signals from both a tri-axial accelerometer and a tri-axial gyro-
scope sensors are used for position and pdr parameters estimations. The integrat-
ing these signals gives position and orientation of the device equipped with the
imus as illustrated in Fig. 3.3 shows. As this figure suggests, the position of the
sensor is estimated by double integration of the acceleration signal without the
contribution of the earth’s gravity. This requires subtracting the earth’s gravity
from the accelerometer measurements. Thus, to do the subtraction, the orienta-
tion of the device needs to be known a priori. Hence, when inertial sensors are
used to estimate the position, the estimation of the orientation is the first step.

As Fig. 3.3 shows, there are two integration steps to estimate the sensor’s po-
sition and orientation using inertial sensors. The drift introduced by integrating
measurement errors degrades the accuracy of position and orientation estima-
tion considerably. Consequently, complementary measurements need to be used
together with inertial sensors’ measurement to improve the estimation quality.
Subsequently, different supporting measurements such as gps outdoor, angle de-
pendent rss outdoor, rss fingerprint maps indoor, and proximity sensors are
added to the measurement model to provide more accurate estimation. The state
vector is also application dependent and the generic state (3.4) is extended by
other components accordingly. For example, one might add the travelled dis-
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tance, length of a taken step, threshold for step detection, etc. In the subsequent
chapters, various problem formulations leading to an extended state vector will
be described in more details.

3.4 Supporting measurements

Supporting measurements could be obtained by additional sensors and/or re-
ceiver antennas that the mobile device is equipped with. They are supposed to
improve both the accuracy and reliability of the positioning algorithms. These
supportive measurements, however, might not necessarily be synchronized with
the imu. Further, they might not always be available during the entire localiza-
tion process. Therefore, they will be included in the measurement model when-
ever they are available.

3.4.1 GPS outdoor

The Global Positioning System is the most well-known Global navigation satellite
system (gnss). The accuracy of the gps receivers found in smartphones is around
5 meters [29]. gps receivers use multiple satellites and trilateration to determine
the position and time of a user.
gps satellites continuously transmit signals down to the Earth over dedicated

radio frequencies. The gps receiver, among other data, receives a time stamp
from the satellites momentary visible, along with satellite ephemeris data which
contains the satellites positions in the sky. The gps receiver antenna can then
accurately calculate its position and time if it hears at least four satellites [62].

The gps uses the World Geodetic System (wgs84) as its reference coordinate
system [28]. By converting the Geodetic, wgs84, to Cartesian East-North-Up
(enu) coordinates, the estimated position can be either fused to the measurement
model directly or used to calculate the speed.

Accurate position (and time) estimation using gpsmeasurements, however, is
not guaranteed when the received satellite signals are weak. This is the shortcom-
ing of gnss systems and can lead to poor position estimates or even a failure.

3.4.2 RSS Outdoor

Wireless networks can be used as a localization infrastructure in various ways.
The received signal strength, knowing the signal strength transmitted by the
sender, can be translated to distance between the sender and the receiver and
further used to estimate the propagation parameters as well as the radio’s posi-
tion.

The received signal is stronger close to the sender than in further distances.
The average of the received signal for free space propagation can be modeled as
a function of the distance between sender and receiver [69],

P r = P0K

(
d
d0

)−B
, (3.9)
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The rss (in dBm) is given as

P r(dBm) = 10 log Pr = 10 log P0 + 10 logK − 10B log
d
d0
, (3.10)

where d is the distance from the receiver to the transmitter, in meters and d0 is
the reference distance point. The degree of attenuation is given by a path loss
exponent B and K is a unit-less constant that depends on the antenna character-
istics. Moreover, it can also be shown that the average of the large-scale path loss
from the receiver to the transmitter is a function of distance by using a path loss
exponent, B as

L(d) ∝
(
d
d0

)B
, (3.11)

and can be expressed in dB as

L(d) = L(d0) + 10B log
d
d0
, (3.12)

where L(d0) is the reference path loss, selected based on the propagation environ-
ment. For notational convenience, L(d0) is denoted by A in the sequel. For more
details consult [69].

In a cellular system, with known base station positions, the position of the
receiver can be estimated using the approximated distance. That is, the receiver is
located on a circle with the radius of the approximated distance d around the base
station. Using multiple base stations, we can estimate the exact position through
lateration. This technique can be used in an open space or outdoor environment

d0

Reference 
point

d

Figure 3.4: Free space propagation.

for determining a mobile user position. However, indoor environments are more
difficult as the channel cannot be modeled easily. Typically, in indoor scenarios,
rss is used in combination with fingerprinting.

3.4.3 RSS Fingerprint Maps Indoor

The fingerprinting approach based on Wi-Fi has become an interesting research
topic based on 2-D modeling [46, 87]. This positioning solution, stores rss of
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specific locations in a fingerprint database. These signal fingerprints are then
matched to measured rss at the user’s location to estimate its position. In this
way, fingerprinting determines the location of the user by comparing the obtained
rss values to a radio map.

The final position estimate, in this method, is provided in two phases as il-
lustrated in Fig. 3.5. The radio map is formed in the first, offline, phase of the
fingerprinting method. In this phase, a database containing spatial reference in-
formation together with their environmental radio characteristics are gathered to
form the radio map. In the second, online, phase, the user device measures the
same radio characteristics at its current location and the results are compared to
the stored values.

The accuracy of this method highly depends on the radio map acquired us-
ing the offline survey of the environment. A precise radio map can make this
approach very efficient. The need for a precise radio map is, however, the main
disadvantage of the fingerprinting approach as a setup time and costly signal
strength system calibration is required. Additionally, the scalability can also be a
problem as the obtained fingerprints of a wide area requires a high data volume
to be managed. Finally, configuration properties such as the initial location of the
access points needs to remain fixed otherwise a new database needs to be created.
Many researchers have addressed these issues to improve fingerprint matching
technology across all aspects [27, 23, 89].
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Figure 3.5: Fingerprinting based positioning [63].

3.4.4 Proximity Sensors

Proximity sensors are capable of sensing the environment and detecting objects
in their vicinity by emitting electromagnetic signals. A proximity sensor flashes
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out a beam of electromagnetic radiation and monitors reflections. Any sensed
reflection would then imply the existence of an object in the vicinity. The emit-
ted signals from proximity sensors are of different types depending on the used
technology.

Indoor wireless localization industry benefits from these sensors mostly upon
the release of the Bluetooth-Low-Energy (ble) protocol when Bluetooth beacon
proximity sensors are introduced. The long scan time of traditional Bluetooth (∼
10 s) was a limiting factor, this has been overcome by the new ble technology
which is supported by most current devices. The light weight of ble beacons
together with their small size and low cost may increase their potential to become
a dominant wireless localization technology [22].

Indoor localization can be performed by using periodic or event-triggered rss
measurements provided by bles [25]. Based on a pre-defined threshold Pth, prox-
imity information in the network can be obtained as [25]

Proximity ,
{

0, RSS ≤ Pth
1, RSS > Pth

(3.13)

Such reports can then be utilized as an indicator of a target in the vicinity.
Knowing the coverage range of the sensor allows for narrowing down the search
area for the target’s location. That is, the exact location estimate of the target can
be found in a second stage by only considering the, rather small, area estimated
using the proximity sensor.
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4
Antenna Gain Parameter Estimation

The methods introduced in Section 2.1 are used to solve the parameter estimation
problem introduced in this chapter. We present a method to jointly estimate the
antenna gain and propagation model parameters using positioned rss measure-
ments. This application, its related background theory and the proposed solution
were previously published by the author in (FUSION2015) [47, ©2015 IEEE].

A semi-parametric model for rss measurements is introduced that can be
used to predict the base station antenna coverage in cellular radio networks. The
model is composed of an empirical log-distance model and a deterministic an-
tenna gain model that accounts for possible non-uniform base station antenna
radiation. A least-squares estimator is proposed to jointly estimate the path loss
and antenna gain model parameters. Simulations as well as experimental results
verify the efficacy of this approach. The method can provide improved accuracy
compared to conventional path loss based estimation methods.

This chapter starts with introducing a semi-empirical model for rssmeasure-
ment in Section 4.1. Then, Section 4.2 addresses requirements for the joint propa-
gation model and antenna parameter estimation representation. Section 4.3 eval-
uates the performance of the proposed model using simulations. Finally, the re-
sults obtained by applying the method on real-field data are given in Section 4.4.

4.1 RSS Measurement Model

The rss measurement can be formulated in the form (2.1). For convenience, we
restate it in a general form as

y = h(u, θ) + e, (4.1)

where h(u, θ), in this scenario, is a propagation model as a function of both posi-
tion u and unknown parameters θ. θ describes the radio channel that accounts

35
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for propagation effects, such as attenuation, diffraction, or reflection, that the
electromagnetic wave is affected by, when traveling between the mobile station
(ms) and the base station (bs). To clarify, u denotes a known (vector) variable pro-
viding relative position dependent information of the ms and the bs and/or the
environment, θ is the unknown deterministic antenna and propagation parame-
ters vector and e represents a statistical noise term (here assumed to be additive)
that accounts for effects that cannot be captured by the propagation model.

The propagation models can be broadly categorized into three types; deter-
ministic, empirical, and semi-empirical models [14]. The deterministic models
are based on techniques such as ray tracing or ray launching that require accu-
rate knowledge of the environment such as high resolution building data. These
models are very accurate, but also the most complex ones. Empirical models
use heuristic equations that have been derived from extensive measurement cam-
paigns. These models are very simple, but less accurate than their deterministic
counterparts. Among the most popular empirical models are the Okumura-Hata
and cost 231 models [14, 36, 18]. Semi-empirical models are composed of both
deterministic and empirical models and provide a good compromise between ac-
curacy and complexity.

In the following, we introduce a semi-empirical propagation model for the
rssmeasurement. It combines an empirical distance-dependent propagation loss
(or path loss) model L(u) with a deterministic model Gant(u) representing the
possible non-uniform radiation of the bs antenna with respect to thems position
(antenna gain model). We further make the common assumption that the rss
measurement is time-averaged, such that temporal effects resulting from small-
scale fading can be neglected. Hence, the proposed semi-empirical model for the
rssmeasurement in logarithmic scale (dBm) can be written as

y = PT − {L(u) − Gant(u)} + e, (4.2)

where u is the vector holding the relative position information of the ms with
respect to the bs antenna, PT is the bs transmit power in dBm, and e is a statistical
term which accounts for the errors resulting from quantization, slow fading and
other effects that are not captured by the propagation model. The error term e is
modeled with a zero-mean Gaussian distribution with variance σ2.

4.1.1 Path Loss Model

A path loss model presents signal attenuation in space. In this work, the log-
distance model is used as it forms the basis of most models available in the liter-
ature [69, 46]. The log-distance model is given by

L(d) = A + 10B log10

(
d
d0

)
, (4.3)

where A is the reference path loss, B is the path loss exponent, d is the Euclidean
distance between the ms and bs, and d0 represents the distance at which the
reference path loss A is determined. The value of d0 generally depends on the
cell size, and values that can be typically found are 100 m or 1 km.



4.2 Joint Path Loss and Antenna Parameter Estimation 37

4.1.2 Antenna Gain Model

Base station antenna modeling mainly concerns crude models that capture the
far-field (at some distance from the antenna) gain in various directions. Models,
that have become popular in recent years are separated into one horizontal plane
model Gh(φ) and one vertical plane model Gv(ϕ), and the combined antenna
gain is merely the two model contributions added together in logarithmic scale
according to

Gant(φ, ϕ) = Gh(φ) + Gv(ϕ). (4.4)

Simplified models neglect the vertical component and model only the horizon-
tal antenna gain. In this work, we consider the antenna gain model proposed
in [30] and that is also adopted for the radio network evaluations in 3gpp. The
horizontal gain model is given by

Gh (φ) = Gmax −min

12
(
φ − φ0

φh

)2

, Gh,min

 , (4.5)

where Gmax denotes the maximum antenna gain in dBi, −180◦ < φ ≤ 180◦ is the
antenna azimuth angle defined in the xy-plane, counted counter-clockwise from
the positive x-axis, φh is the antenna’s horizontal bandwidth in degree, which
represents the bandwidth at which the antenna gain is half of the maximum gain
(also known as half-power beamwidth), φ0 is the antenna angle in degree point-
ing into the direction of maximum gain (antenna boresight angle), and Gh,min
denotes the front-to-back ratio measured in dB, given the relative difference be-
tween antenna beam direction gainGh (φ0) = Gmax and the backlobe gainGh (φ0+
180◦) = Gmax − Gh,min. The vertical antenna gain is modeled with

Gv(ϕ) = max

−12
(
ϕ − ϕetilt

ϕv

)2

, Gv,min

 , (4.6)

where −90◦ < ϕ ≤ 90◦ is the negative antenna elevation angle relative to the
horizontal plane, i.e. ϕ = 90◦ is downwards, ϕ = 0◦ is along the horizontal plane,
and ϕ = −90◦ is upwards. The angle ϕetilt given in degree is the electrical antenna
downtilt that models the angle downwards from the horizontal plane at which
the antenna is electrically directed, ϕv is the antenna’s half-power beamwidth in
the vertical direction, and Gv,min is the side lobe level in dB of the vertical pattern
that represents the side lobe gain level in relation to the antenna vertical beam
direction gain. As an example, Fig. 4.1 illustrates the horizontal antenna gain
model (4.5), together with real data from an antenna, see [30] for an additional
example including the vertical antenna gain model.

4.2 Joint Path Loss and Antenna Parameter
Estimation

The joint contribution of the attenuation due to path loss and the antenna gain
enter the measurement equation additively. Hence identification of some param-
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Figure 4.1: Illustration of horizontal antenna gain pattern [47, ©2015 IEEE].

eters is not possible due to unobservability. For instance, it is not possible to es-
timate the reference path loss A and the maximum antenna gain Gmax separately.
Another issue with the joint parameters estimation is that the antenna gain is
modeled different inside and outside the main lobe using min(, ) and max(, ) func-
tions which results in non-linear equations. Under the assumption that the main
lobe components are dominant, the contribution of the antenna gain simplifies
to

G̃ant(φ, ϕ) = Gmax − 12
(
φ − φ0

φh

)2

− 12
(
ϕ − ϕetilt

ϕv

)2

. (4.7)

With this simplification, the maximum likelihood estimate of the parameters
becomes tractable, and can be found according to

θ̂ML = arg max
θ∈Θ

p(y; θ), (4.8)

where y is an independent and identically distributed (i.i.d.) sequence of m rss
measurements and θ are the unknown parameters. Under the Gaussian noise
assumption the maximum likelihood solution is equivalent to the least squares
estimator. The rss measurement becomes linear in the following unknown pa-
rameters θ = [A, B, φ−2

h , ϕ−2
v ]T , where it has been assumed that the antenna main

direction φ0, the electrical downtilt ϕetilt, the transmission power PT and the
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maximum antenna gain Gm all are known. The least squares estimate is given as

θ̂ LS = θ̂ML = (HTH)−1HTZ, (4.9)

where

H ,


1 10 log10( d1

d0
) 12(φ1 − φ0)2 12(ϕ1 − ϕetilt)2

...
...

...
...

1 10 log10( dmd0
) 12(φm − φ0)2 12(ϕm − ϕetilt)2

 , (4.10)

and

Z ,


PT + Gmax − y1

...
PT + Gmax − ym

 . (4.11)

An unbiased estimate of the noise variance σ̂2 is given by

σ̂2 =
1

m − 1

m∑
i=1

(ẑi − zi)2, (4.12)

where ẑi ’s are found by plugging in the least squares solution into Ẑ = Hθ̂ LS.
As already stated earlier, the bs transmit power PT and maximum antenna gain
Gmax can not be estimated separately from the path loss parameter A. Therefore,
it is reasonable to assume them a priori known, or to approximate them using
nominal values taken from antenna specification documents, or by lumping these
parameters together forming the new (unknown) parameter Ã = PT − A + Gmax,
that is to be estimated instead.

For the main lobe assumption to hold, the horizontal and vertical angles needs
to be close to the antenna main beam direction. This implies the following bound-
ary conditions to be satisfied

|φ − φ0| < φh

√
Gh,min

12
, (4.13a)

|ϕ − ϕetilt| < ϕv

√
−Gv,min

12
. (4.13b)

Clearly, the boundary conditions depend on the unknown parameters φh and
φv, making it difficult to motivate considering only those rss measurements in
the estimation process that fulfill the above requirements. However, it is always
possible to use smaller values for the parameters in (4.13) deviating from the
nominal values that can be typically found in antenna specification documents,
implying a smaller main lobe area from which rssmeasurements can be used in
the estimation process. However, these parameters should be carefully selected
in order to avoid deteriorating the estimation results, for instance by assuming a
too small main lobe area.
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4.3 Simulated Data Experiments

In this section, the performance of the algorithm proposed in the previous sec-
tion is tested on simulated data. The rssmeasurements are generated from (4.2)
using the parametrized antenna gain model, see (4.5) and (4.6). In Table 4.1,
the path loss and antenna gain model parameters are listed that have been used
in the simulations. The antenna parameters correspond to typical values that
can be found in antenna specifications. The path loss exponent B is typically
between 2 (free-space propagation) and 4 (dense urban environment) and has
been chosen slightly above the free-space propagation, in order to better reflect
outdoor bs deployments in rural areas. For the antenna parameters given in Ta-
ble 4.1, it is possible to derive the boundary conditions (4.13), where rss mea-
surements shall be collected in order to not violate the simplified antenna gain
model assumption (4.7). It is easy to show that for an antenna with the param-

Table 4.1: List of path loss and antenna model parameters [47, ©2015 IEEE].
Parameter Description Value

PT bs transmit power 32 dBm
A Reference path loss 100 dB
B Path loss exponent 2.3 dB
d0 Reference Distance 1000 m
σ Error standard deviation 4 dB

Gmax Maximum gain 18 dBi
φh Horizontal beamwidth 65◦

φ0 Boresight angle 0◦

Gh,min Front-to-back ratio 30 dB
ϕetilt Vertical downtilt 9◦

ϕv Vertical beamwidth 7◦

Gv,min Side lobe level −18 dB
hbs bs height 30 m

eters given in Table 4.1, the requirements for the main lobe area are given by
−103◦ ≤ φ ≤ 103◦ and 0.4◦ ≤ ϕ ≤ 17.6◦, respectively. The azimuth requirement
corresponds to more than the entire 120◦ sector the antenna normally covers
(Note, that in cellular radio networks each cell site is normally equipped with
three antennas each covering a 120◦ sector). With a relative antenna height of
30 m, this means that the elevation requirements are valid for distances from the
bs between 30 m/ tan(17.6◦) ≈ 95 m and 30 m/ tan(0.4◦) ≈ 4030 m. On the other
hand, if we assume smaller values for the half-power beamwidth, e.g. φh = 60◦

and φv = 6◦, the main lobe area from which rss measurements could be used in
the estimation process, would shrink to −95◦ ≤ φ ≤ 95◦ and 1.7◦ ≤ ϕ ≤ 16.4◦,
yielding distances from the bs between 102 m and 1040 m, which is still accept-
able.

Based on the above results, i.i.d. rssmeasurements are generated by distribut-
ing ms positions uniformly within the main lobe area. Here, we distinguish be-
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tween the true boundary conditions and the approximate boundary conditions
that have been introduced above. The estimation results are shown in Table 4.2
and 4.3, respectively.
It can be observed that the estimation results improve as the number of rssmea-

Table 4.2: Estimation results for true boundary conditions [47, ©2015 IEEE].
Parameter A [dB] B [dB] φh [◦] ϕv [◦] σ [dB]

True 100 2.3 65 7 4
Est. (m = 1e3) 99.46 2.23 64.88 6.83 4.07
Est. (m = 2e3) 99.86 2.27 64.92 6.93 3.96
Est. (m = 5e4) 100.37 2.33 64.99 7.11 4.03

surements m used in the least-squares solution is increased. It can be also seen
that there is essentially no difference whether the true boundary conditions or
the approximate boundary conditions are used to select the rss measurements
for the parameter estimation process.
As an example, the estimation results of the path loss parameters are shown in

Table 4.3: Estimation results for approximate boundary conditions [47,
©2015 IEEE].

Parameter A [dB] B [dB] φh [◦] ϕv [◦] σ [dB]

True 100 2.3 65 7 4
Est. (m = 1e3) 100.25 2.35 64.83 7.09 3.97
Est. (m = 2e3) 99.87 2.36 64.99 6.91 4.06
Est. (m = 5e4) 100.05 2.32 64.98 7.02 4.01

Fig. 4.2 for the method using the approximate boundary conditions. It can be
observed that the estimated path loss slope is in good agreement with the true
slope. Note, that the rss measurements still contain the contribution from the
antenna gain and thus the true and estimated slope do not follow the trend of the
rss values. For comparison purposes, we have also included the path loss slope
when the estimator is only estimating the path loss parameters, i.e. Gant = 0 in
the estimator model. In this case, we have a model mismatch and the path loss
slope follows the trend of the rssmeasurements, as expected.

For the model mismatch case, we also included the estimation results for dif-
ferent number of rss measurements taken from the approximate boundary con-
ditions, which are shown in Table 4.4. It is now also observed that the error stan-
dard deviation is much larger, which is due to the compensation of unmodeled
antenna gain variations. The benefits of adopting a joint antenna and propaga-
tion model in comparison to only a propagation model is this evident.
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Figure 4.2: Path loss estimation results for simulated data using approximate
boundary conditions and m = 1000 [47, ©2015 IEEE].

4.4 Real Data Experiments

The proposed joint antenna and propagation model described in the previous
section is also verified with real-field measurements. The measurements are col-
lected in a rural/suburban area, with an Android app for logging A-gps and
rss [39]. The smartphone was configured to camp on a 3gpp lte/e-utran net-
work, which means that the logging reflects Reference Signal Received Power.

In order to identify the parameters accurately, a direct los between the ms
and bs is preferable. One base station is chosen in an area where buildings and
similar structures that can obscure a direct los are rather sparse. The selected
base station is equipped with antennas mounted on a mast which is 30 m high.
The bs serves three cells each covering 120 degrees, and one of the cells (with an
antenna boresight direction φ0 = −30◦) is used for evaluation purposes. The an-
tenna associated to the cell has a halfpower beamwidth of 60 degrees. However,
note that this is the beamwidth observed near the antenna. Signal scattering will
spread the signals, effectively creating an antenna that is perceived to be wider
by a distant observer. It is therefore expected that the estimated horizontal half-
power beamwidth is slightly wider than the nominal beamwidth of 60 degrees,
and the vertical halfpower beamwidth wider than the nominal bandwidth of 7
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Table 4.4: Estimation results for model mismatch and approximate bound-
ary conditions [47, ©2015 IEEE].

Parameter A [dB] B [dB] σ [dB]

True 100 2.3 4
Est. (m = 1e3) 103.37 3.98 8.40
Est. (m = 2e3) 103.21 3.84 8.55
Est. (m = 5e4) 103.39 4.01 8.68

degrees.
The measurements are collected over several trajectories around the site as

depicted in Fig. 4.3. In the same figure, the rss values are also presented with
colors.
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Figure 4.3: The rss values collected along different trajectories around the
antenna. Antenna location is shown by the big circle [47, ©2015 IEEE].

Measurements were selected that are assumed to be in the horizontal main
lobe of the antenna, with boundary conditions |φ −φ0| ≤ 50◦. The region is quite
flat and the trajectories are not in close vicinity of the antenna. Therefore there is
not much variety in vertical angles. The contribution from the vertical antenna
gain is expected to be smaller than 0.1dB under the assumption of nominal value
of the parameters. Hence its effect is neglected for the scenario, and the vertical
antenna gain component is omitted from the joint model. The estimated parame-
ters under these assumptions are given in Table 4.5. As expected, the estimated
effective horizontal antenna halfpower beamwidth φh is wider than the nominal
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beamwidth due to scattering. Furthermore, the residual standard deviation of 7
dB is in the expected range of 6–10 dB [34].

Table 4.5: Estimation results for real data experiments using only horizontal
antenna gain pattern [47, ©2015 IEEE].

Parameter A [dB] B [dB] φh [◦] σ [dB]

Est. (m = 1252) 152.6 2.9675 79.5823 7.0265

Fig. 4.4 illustrates the fit of the propagation model component, which indi-
cates a good fit. These brief evaluations indicate the relevance and benefits of
joint antenna and propagation model parameter estimation.
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Figure 4.4: rss measurements together with estimated path loss model [47,
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5
Gait parameter Estimation Learning

This chapter, extends the general state estimation problem introduced in Chap-
ters 2 and 3 to solve a personal navigation problem. In this framework, the state
of the system is further extended by imu sensors and a step length parameter. An
earlier version of this application, some part of its background theory and also
parts of the proposal solution were previously published by the author in (FU-
SION2016) [48, ©2016 IEEE]. In this chapter we will presents the results given
by the approaches proposed by author in [48]. Additionally, an extended version
of these approaches are presented in detail in this chapter.

We propose an improved pedestrian dead reckoning (pdr) algorithm that
learns gait parameters in time intervals when gps is available, for instance from
gps or an indoor positioning system (ips). Then, the learned gait parameters
are used for state estimation when no position measurement is available. Inter-
nal gait parameters in the pdr algorithm, such as the step length and the step
detection threshold are estimated by a novel filtering approach. The proposed
approach is based on a multi-rate Kalman filter bank that estimates the gait pa-
rameters when position measurements are available to enhance the performance
of the pdr in time intervals when such measurements do not exist. One moti-
vating example is the scenario in which navigation is requested when the user’s
path contains both outdoor and indoor intervals, the gps measurement is not al-
ways available. The effectiveness of the new approach is investigated on several
simulated data as well as real world experiments.

We start by introducing pdrmodels which are extended versions of the model
presented in [48] in Section 5.1. The step length has been used in these proposed
methods as a state, therefore we need to detect the steps in advance. Section 5.2
introduces the step detection algorithm and step length estimation methods. The
filtering solution of the considered application is explained in Section 5.3. Sec-
tion 5.4 discusses the dead reckoning improvements by learning the gait param-

45



46 5 Gait parameter Estimation Learning

eters on a number of real-world experiments.

5.1 Pedestrian Odometry

In pedestrian navigation systems, the double-integrating strap-down method suf-
fers from an error in the position estimate. This error propagates and increases
quadratically with time [88]. Integrating gait parameters could be a solution to
this issue. The gait parameters can be utilized in pdr algorithms to improve the
performance.

Traditionally, pdr algorithms detect gait parameters, such as number of de-
tected steps and step length, in order to determine the travelled distance. This
approach is applied for navigation applications in many studies, e.g [71, 72]. The
basic longitudinal model is given by

ds+1 = ds + L + ns, (5.1)

where ds is the total walked distance, s is the step index, L is the step length
and ns is noise. Estimating a pedestrian’s step length and determining a suitable
threshold for step detection from imu accelerometer measurements need to be
treated appropriately as is discussed in Section 5.2. However, we first introduce
the extended versions of the pedestrian odometric model in the following subsec-
tions.

5.1.1 Extended Pedestrian Odometric Model

States of the extended pedestrian odometric model contain extra components de-
fined by the dimension of the system. One dimensional models, known as lon-
gitudinal models, add only the travelled distance d while in two dimensional,
horizontal, models the step length, angular rate, and bias are also added to the
conventional pedestrian odometric model.

Longitudinal model

A longitudinal multi-rate model is proposed that is updated each time a step is
detected or a gps position estimate becomes available. The underlying motion
model is the standard constant velocity (cv) model extended with step length.
This model has a state vector x = [d, v, L]T with travelled distance d, velocity v
and step length L. This model was introduced in [48].

The dynamic model from one event tk (either gps position observed or step
detected) to the next event at tk+1 is given by

xtk+1
= F(tk+1 − tk)xtk + G(tk+1 − tk)wtk+1

, (5.2)

where wtk+1
denotes process noise

wtk+1
∼ N (0,Q), Q =

[
σ2
a 0

0 σ2
L

]
. (5.3)
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The matrices F and G are given by

F(T ) =

1 T 0
0 1 0
0 0 1

 , G(T ) =


T 2

2 0
T 0
0 1

 . (5.4)

where T is the sampling time. In this model, the measurement data is asyn-
chronous, i.e. the time elapsed between two filter updates will depend on which
measurement (step detected or gps position observed) is currently processed.
The general form of a measurement model is given by

yk = Hkxk + ek , (5.5)

where Hk is a mapping matrix and ek denotes measurement noise. In case a
gps position estimate is available, it is converted to a corresponding velocity as
follows

vtl =
‖p̂tl − p̂tl−1

‖
tl − tl−1

, (5.6)

where ‖ · ‖ denotes the L2 norm and p̂tl and p̂tl−1
denote the gps position estimates

available from the current time instance tl and the previous time stamp tl−1. It is
then possible to express the model for the gpsmeasurement as follows

yGPS
tl = Htlxtl + eGPS

tl , (5.7)

where eGPS
tl

is noise assumed to be zero-mean Gaussian distributed with variance
σ2

v,GPS, and Htl = [0, 1, 0]. Since there are no direct observations for step detec-
tion available, we define an artificial measurement that is used whenever a step is
detected (the step detection algorithm is given in Section. 5.2). The step detection
measurement model is given by

y
step
ts

= Htsxts + estep
ts

, (5.8)

where Hts = [0, ∆ts,−1], ∆ts = ts − ts−1 is the time difference between two consec-
utive step detections regardless of how many gps measurements are detected in
between, and e

step
ts

is noise assumed to be zero-mean Gaussian distributed with
variance σ2

step.
This longitudinal model is linear in the state, and the solution for this prob-

lem fits the linear Kalman filter.

Horizontal model

Here a 2-D multi-rate horizontal model is proposed. It is based on a Coordinated
Turn (ct) model with polar velocity extended with step length. A preliminarily
version of this model has been introduced in [48].

The nonlinear ct allows for a varying turn rate and also a varying target speed.
The proposed model has a state vector x with seven components: position x, po-
sition y, polar velocity v, heading ψ, heading rate ψ̇, yaw rate ω̇ bias b, and step
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length L. The resulting differential equation for the state is given by

ẋ =



ẋ
ẏ
v̇
ψ̇
ω̇
ḃ
L̇


=



v cos(ψ)
v sin(ψ)

a
ω
α
0
0


, (5.9)

where a is linear acceleration and α is turn rate. The differential equations require
discretization in order to apply discrete-time filtering techniques. The result has
the form

xtk+1
= f(xtk , tk+1 − tk) + g(xtk , tk+1 − tk)wtk+1

, (5.10)

where wtk+1
is assumed to be uncorrelated zero-mean Gaussian noise with covari-

ance matrix Q = diag([σ2
a , σ

2
α , σ

2
L ]). The discretization of (5.9) yields

f(x, T ) =



x + 2v
ω sin(ωT2 ) cos(ψ + ωT

2 )
y + 2v

ω sin(ωT2 ) sin(ψ + ωT
2 )

v
ψ + ωT
ω
b
L


, (5.11)

where we have assumed a and α to be zero. The zero-order-hold discretiza-
tion [33] is applied in order to find g(x, T ) which is given by

g(x, T ) =



T 2

2 cos(ψ) 0 0 0
T 2

2 sin(ψ) 0 0 0
T 0 0 0
0 T 2

2 0 0
0 T 0 0
0 0 1 0
0 0 0 1


. (5.12)

For the horizontal model it is assumed that 2-D gps position estimates, step de-
tection as well as turn rates from gyroscopes are available as measurements. The
model for the gps position estimates is given by

yGPS
tl =

[
1 0 0 0 0 0 0
0 1 0 0 0 0 0

]
xtl + eGPS

tl , (5.13)

where eGPS
tl

is noise on the gps position estimates, which is assumed to be zero-
mean Gaussian distributed with covariance matrix RGPS = diag([σ2

p,GPS, σ
2
p,GPS]).
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The measurement model for the step detection is analogous to the longitudinal
model (5.8) and is given by

y
step
ts

=
[
0 0 ∆ts 0 0 0 −1

]
xts + estep

ts
, (5.14)

The gyroscope measurement model is given in 3.2. For convenience, we restate it
in special form for our case as

y
gyro
tg

= ωz,tg + bgyro
tg

+ egyro
tg

, (5.15)

where ωz,tg is the yaw rate which is the gyroscope measurement in the horizontal
plane, bgyro denotes gyroscope bias, and tg denotes the time instance when gy-
roscope measurements are available, and egyro

tg
denotes noise assumed to be zero-

mean Gaussian with variance σ2
gyro. The gyroscope measurement model with bias

given by

y
gyro
tg

=
[
0 0 0 0 1 1 0

]
xtg + egyro

tg
. (5.16)

In contrast to the longitudinal model, the horizontal model is nonlinear in the
states due to the nonlinear process model. Hence, nonlinear filters have to be
used for state estimation, and we will make use of the Extended Kalman filter in
our proposed pdr solution.

5.2 Step detection

As mentioned earlier, step detection is one of the challenging issues of using pdr
algorithm for navigating pedestrians. Here, we overview the recent research work
that have been done concerning this problem and then propose an algorithm for
estimating the gait parameter.

Most used signals for step detection purposes are those corresponding to ac-
celeration and angular rate. Depending on the application at hand two detection
algorithm are used. In scenarios with body-mounted devices, static detection is
performed while in case of hand-held devices zero-cross detection and peak de-
tection are applied. Mistaken detections in these methods are due to multiple
peak values per step. To address this false detection problem, [58, 83, 75, 76, 71]
look at the norm of the total acceleration rather than looking only at the vertical
acceleration component.

Another possible source of error in step detection algorithms is the orientation
of the sensor that is used for measuring signals. For instance, imus embedded
in portable devices. To avoid disturbances caused by this arbitrary orientation
on the vertical signal component, [45] projects acceleration in local coordinate
system to a global one. In this way, it is possible to resolve issues occurred due to
the placement of the device.

Accurate estimation of the number of steps from the peaks of accelerometer
signal could be possible by applying a filter. That is, by means of a low pass
filter, one can modify the output waveform of the tri-axial accelerometer and
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then count the number of peaks. In this regard, [58] takes a window length of
size 10. Applying a band-pass filter rather than a low-pass is also studied in the
literature. [94] applies such a filter with a low and high cut-off value. Then, by
comparing steps and the threshold value, they estimate the number of steps.

Pre-processing the raw accelerometer signal is investigated by [45]. After the
pre-process phase a high-pass filter is applied to the acceleration on z-axis in
global coordinates to remove effects of Earth’s gravity. They finally perform a low-
pass filtering procedure to reduce random noise. [40] on the other hand, apply a
fast Fourier transform to smooth the raw acceleration signal for step detection.

In case of hand-held devices, extra attention is needed because it is often
swing in the user’s hand. The swinging pattern generates incorrect peaks that
need to be addressed. [58] introduces two thresholds τ and σ for time and peaks
to remove the errors involved in step counting. Depending on the sample fre-
quency and data analyses and test results, they adjust values of these thresholds.
Taking advantages of the motion pattern is another proposal solution [76]. They
apply different peak thresholds in different step detection algorithms based on
the motion pattern. In [71], it is shown that it is possible to use a motion recogni-
tion first and then use accelerometer and gyroscope signal in order to detect the
steps.

5.2.1 Step Detection Algorithm

As it is considered in many research works, the three-axis accelerometer signal
contains all the data required to detect the occurrence of a step. The vertical axis,
relative to the ground, contains all information corresponding to the step specific
peak. However, the orientation of the sensor may cause some disturbances on the
vertical signal component. For instance, in case the imu is embedded in hand-
held devices such as smartphones. In order to avoid disturbances, the norm of
the total acceleration is used instead of looking only at the vertical acceleration
component. Algorithm 1 illustrates the step detection algorithm. In this algo-
rithm, the variables ax, ay and az denote the tri-axial accelerometer components.
In order to improve the quality of the signal, a Butterworth band-pass filter with
a proper cut-off frequency is applied to attenuate all frequencies outside the band-
pass.

Defining a suitable threshold h in order to correctly detect steps is one diffi-
culty of pdr algorithms. The threshold needs to be adjusted for different people
with different characteristics. In order to make our point clear, we have designed
an experiment in which three people with different attributes (height and weight)
and walking behaviors have participated. All of them walked along the same rect-
angular trajectory. In order to have a better classification per person, they were
asked to walk in a slow pace and count their steps, so that these can be used as
the ground truth. As Fig. 5.1 shows the threshold for each user is unique. Further-
more, choosing a too large threshold will underestimate the number of detected
steps. For instance, the number of detected steps for user 2 drops rapidly for
thresholds larger than 1 m/s2. A change of the user’s speed is another aspect that
may affect the threshold. Fig. 5.2 illustrates the step detection performance for
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Algorithm 1 Step Detection [48, ©2016 IEEE].

• Input: Three-axis Accelerometer Signal

1. Compute the norm of the accelerometer signal:

a =
√
a2
x + a2

y + a2
z .

2. Band-pass filter the resulting signal using a fourth-order Butterworth
filter with cut-off frequency [0.2, 2.75] Hz.

3. If the filtered signal exceeds a defined threshold h, a step is considered
detected.

4. Among all sets of accelerations that are larger than the threshold, be-
fore the signal again drops below the threshold, the one with the high-
est value is selected as the step.

• Output: Step detections
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Figure 5.1: Number of steps detected vs. step detection threshold h for users
with different height (H) and weight (W). The crosses indicate true number
of steps [48, ©2016 IEEE].

different paces of a single user. We observe that different speeds yield different
step detection curves, and choosing the right threshold becomes important. It
is worth noting that in all of our experiments the user is walking all the time.
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Figure 5.2: Number of steps detected vs. step detection threshold h for two
different users with different walking modes. The crosses indicate true num-
ber of steps [48, ©2016 IEEE].

This means, that below a certain threshold the step detection curves become (rel-
atively) flat. Hence, one could argue that a properly chosen (small enough) fixed
threshold might be sufficient to obtain good step detection performance. How-
ever, in reality the user is not walking all the time. The user motion will rather
be interrupted by shorter (or longer) periods of stand still, which yields step de-
tection curves that are no longer flat and would result in a significant increase of
false detections if the threshold is chosen too small. The effect of different motion
modes is illustrated in Fig. 5.3 where two users were asked to walk with different
modes and as in the previous case, the ground truth is their counts of taken steps.
The step detection curves are no longer flat and a too small threshold results in
too many false detections.

5.2.2 Step Length Estimation

Lately, much research has been conducted on step length estimation [45, 58, 83,
40]. One method for estimating the step length is to consider the relations be-
tween output waveform of the tri-axial accelerometer and step length that is
known as the empirical formula in this method, the step length is computed by
using the difference between maximum and minimum output waveform of a tri-
axial accelerometer in each step respectively. Then, a calibration factor based on
the ratio of the real and estimated reference trajectory distances must be applied.

The estimation approach using the compositional algorithm of empirical for-
mula and back propagation (bp) neural network is studied in [58, 83]. In bp neu-
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Figure 5.3: Number of steps detected vs. step detection threshold h for a
single user with different walking paces. The crosses indicate true number
of steps.

ral network, the accuracy of estimating the step lengths cannot be guaranteed
since the model estimate of the step length is not accurate.

In [40], the calibration factor of the empirical formula is selected adaptively.
That is, instead of using a constant factor for all steps, a polynomial function of
the average step velocity is used for calibration factor derivation. The degree of
the polynomial is then given by an N -fold cross-validation being applied on the
dataset.

Linear formula is another common method for step length estimation. In case
of walking or running pedestrians, [94] applies the linear formula to estimate the
step length. Pre-initializd parameters required in this method are obtained by
analyzing a large amount of experiment data.

Depending on the motion pattern, [94] uses different formulas to estimate the
step length. Going up or down the stairs is studied there. The horizontal length
of the stair and the threshold determined by the step speed are used for step
length estimation.

A short time Fourier transform (stft) based method is introduced in [71]. In-
dependently of the step detection process, they use stft to extract the frequency
content of the device’s signal. Based on this detected frequency and linear rela-
tionship between frequency and step length the step length is estimated.

In our proposed algorithm, the step length is considered as a state in our
model and will be estimated in both online and offline ways using multi-rate fil-
tering and filter bank. It means that the step length estimation process does not
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require any pre-initialized parameters and also it is compatible with the pedes-
trian speeds which may vary due to changing the walking pattern.

5.3 Filter Bank

There are applications where the system needs to have multiple operational mod-
els. The estimator for such systems can then consist of a bank of parallel filters
each applied to one mode of the system. The generic model (2.14) then becomes

xk+1 = fk(xk ,wk , δk), (5.17a)

yk = hk(xk , ek , δk), (5.17b)

where δk denotes the mode at time instant k. The filter bank treats different filters
individually. Assuming that each filter is the correct one, the estimator computes
the likelihood of each filter. The state estimates obtained from all the filters are
then blended and weighted by their likelihood. One challenge in constructing
filter banks is to avoid exponential growth of the number of parallel filters. For
more information consult [37].

To keep the number of filters in a feasible range, different methods exists.
Interacting multiple model (imm), Generalized peseudo-Bayesian filter [12], and
the adaptive forgetting through multiple models [6] are major available methods.

The filter bank that is used in this work is tailored to our case and is slightly
different from the standard form of multiple model adaptive estimators. The
number of the parallel filters is fixed and the true threshold is considered as an
unknown parameter and parallel filters run with different hypotheses. Subse-
quently, all mode probabilities need to be evaluated to find the best fit threshold.

The mode probabilities are estimated by the filter bank in both offline and on-
line fashions. In the offline case, the threshold has been estimated by minimizing
a likelihood cost function where the proposed approach processes batches of real
data for each experiment. The result of this work have been presented in [48].
In the online case, the proposed approach processes the data sequentially and all
mode probabilities are merged to find the best fit threshold at each time. imm
filter is the method that is used for merging the mode probabilities in our study.
The transition probability matrix (tpm), π, in imm filter is assumed to be known.
In the rest of this section offline and online filter bank estimators are described
in more details.

5.3.1 Offline Kalman Filter Bank

The block diagram of the proposed pdr algorithm that learns gait parameters is
shown in Fig. 5.4. The algorithm basically consists of four blocks. In the step
detection filter block, N different thresholds are applied to a bank of step de-
tectors, whose inputs are the accelerometer signals. The detected steps, as the
output of this filter, are passed to the Kalman filter bank block consisting of N
multi-rate (Extended) Kalman Filters, that process the step detections, gps posi-
tion estimates (and gyroscope measurements). The results of this filter bank are
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then passed to the state estimation and threshold selection block. The threshold
selection block is processing N threshold dependent innovation vectors εk(h) and
corresponding innovation covariances Sk(h) to obtain a threshold estimate ĥ for
the step detector based on minimizing some likelihood cost function. In the state
estimation block, the N estimated states together with the error covariances and
other filter parameters are inputs to a mixing stage that produces the final filter
output consisting of a state vector estimate x̂ and corresponding error covariance
P [33].
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Figure 5.4: Block diagram of pdr algorithm with gait parameter learn-
ing [48, ©2016 IEEE].

As mentioned earlier, the majority of blocks have been only tested by process-
ing batches of real data for each experiment. In particular, all blocks except the
state estimation block, which was not tested, were each processed offline using
batches of data. This means that the step detection filter processed all data at
once. The output of this filter, a batch of detected steps, was then fed into the
Kalman filter bank to output a batch of innovations and covariances. The thresh-
old estimation block has been adapted to process batches of data. More specifi-
cally, the threshold estimate ĥ for each experiment is obtained by minimizing the
following likelihood cost function

ĥ = arg min
h

∑N
k=1 ε

T
k (h)S−1

k (h)εk(h) + log Sk(h)

N
, (5.18)

where N is the length of the batch. A small h, gives many false detected steps
resulting in large innovations. Conversely, a large h results in that many steps
being missed, yielding large innovations again. While the proposed analysis is
not fully sequential, it gives a very good insight on the potential of the proposed
approach for pdr and gait parameter learning.
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Figure 5.5: Likelihood cost function vs. step detection threshold h. The
crosses indicate the estimated threshold ĥwhere the likelihood cost function
is minimized [48, ©2016 IEEE].

Fig. 5.5a and 5.5b present results for the threshold selection block. Here,
the (batch) of measurement data corresponding to three different users all walk-
ing slowly but with different physical characteristics and the data correspond-
ing to the single user with different walking paces have been processed. The
data batches used are the same that have generated Fig. 5.1 and Fig. 5.2. It can
be observed that all cost functions are different and yield different estimated ĥ
values when the likelihood cost function is minimized. In Table 5.1, the esti-
mated thresholds from minimizing the likelihood cost function are compared to
the “true” thresholds obtained from counting the total number of steps during
the experiments. It can be observed that the estimated thresholds ĥ are in good
agreement with the true ones, and hence the criterion given in (5.18) seems to be
a good indicator to choose the step detection threshold.

Table 5.1: Estimated step detection threshold ĥ versus true threshold [48,
©2016 IEEE].

True Threshold Estimated threshold
[m/s2] [m/s2]

User 1 2.06 2.0
User 2 0.81 0.8
User 3 0.61 0.4

Slow pace 0.51 0.6
Moderate pace 3.46 3.4

Fast pace 1.56 1.4
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5.3.2 Online Kalman Filter Bank

This section proposes an online pdr algorithm featuring gait parameters learning
using imm. In order to simplify the procedure first a single step of the imm filter
is presented as an algorithm and then the whole algorithm is presented in a block
diagram and each block is described in detail.

IMM Filter

A single step of the imm filter is given here. Let {x̂jk|k ,P
j
k|k , µ

j
k}
N

j=1
denote the pre-

vious sufficient statistics. Then, a single step of the imm algorithm to obtain
current sufficient statistics {x̂ik+1|k+1,P

i
k+1|k+1, µ

i
k+1}

N
i=1 is described in the sequel

in Algorithm 2 [9, 10].

Online Kalman Filter Bank Using IMM

The block diagram of the proposed online pdr algorithm featuring gait parame-
ters learning is shown in Fig. 5.6. The block diagram consists of six blocks. The
“mixing probability calculation” block processes N mode probabilities µik to ob-

tain mixing probability µjik presented in the “Mixing” step in Algorithm 2. π in
the mixing probability equation is the tpm, and as mentioned earlier, it is set
to an identity matrix where no switching are assumed between the modes. The
“Mixing block” processes N updated estimates x̂jk|k , covariances Pjk|k , and mixing

probabilities µji , which is the output of the mixing probability calculation block,
to obtain mixed estimates x̂0i

k and covariances P0i
k presented in the “Mixing” step

in Algorithm 2.
In the“step detection filte” block, N different thresholds are applied to a bank

of step detectors, whose inputs are the accelerometer signals. The detected steps,
as the output of this filter, and mixed estimates x0i

k and covariances P0i
k , as the

output of the mixing block, are passed to the Kalman filter bank block which is
equipped with N multi-rate (extended) Kalman filters.

The kf bank block processes the step detection, mixed estimates x0i
k , covari-

ances P0i
k and gps position estimates (and gyroscope measurements). The up-

dated estimate x̂ik+1, covariance Pik+1 and innovation covariance Sik+1 are the out-
puts of the Kalman filter bank block which the relative equations presented in
“Mode Matched Measurement Update” and “Mode Matched Prediction Update”
in Algorithm 2.

The “mode probability calculation” block, processes N previous mode proba-
bilities, innovation covariances Sik+1, and estimated gps positions ŷik+1|k to update
the mode probability. The results of the filter bank are then passed to the “Mix-
ing” and “Output estimation calculation” block. The latter block processes the
mode probability and estimated states together with the error covariances, and
other filter parameters to obtain the final filtering output consisting of a state
vector estimate x̂k+1 and its corresponding covariance Pk+1.
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Algorithm 2 imm Filter [86, 9]

• Input: previous sufficient statistics

• Mixing: Compute the mixing probability µjik , mixed estimates x̂0i
k|k and co-

variances P0i
k|k :

µ
ji
k|k =

πjiµ
j
k∑N

l=1 πliµ
l
k

,

x̂0i
k|k =

N∑
j=1

µ
ji
k|k x̂jk|k ,

P0i
k|k =

N∑
j=1

µ
ji
k|k

[
Pjk|k + (x̂jk|k − x̂0i

k|k)(x̂
j
k|k − x̂0i

k|k)
T
]
.

• Mode Matched Prediction Update: Compute the x̂ik+1|k and Pik+1|k

x̂ik+1|k = F(i)x̂0i
k|k ,

Pik+1|k = F(i)P0i
k|kFT (i) + G(i)QGT (i).

• Mode Matched Measurement Update: Compute the update estimate
x̂k+1|k+1 , covariance Pk+1|k+1 and update the mode probability µik+1

ŷik+1|k = H(i)x̂ik+1|k ,

Sik+1 = H(i)Pik+1|kH(i)T + R,

Ki
k+1 = Pik+1|kHT (i)(Sik+1)−1,

x̂ik+1|k+1 = x̂ik+1|k + Ki
k+1(yk − ŷik+1|k),

Pik+1|k+1 = Pik+1|k+1 −Ki
k+1Sik+1KiT

k+1,

µik+1 =
N (yk+1; ŷik+1|k ,S

i
k+1)

∑N
j=1 πjiµ

j
k∑N

l=1N (yk+1; ŷlk+1|k ,S
l
k+1)

∑N
j=1 πjlµ

j
k

.

• Output Estimate Calculation: Compute the overall x̂k+1|k+1 and Pk+1|k+1

x̂k+1|k+1 =
N∑
i=1

µik+1x̂ik+1|k+1,

Pk+1|k+1 =
N∑
i=1

µik+1

[
Pik+1|k+1 + (x̂ik+1|k+1 − x̂k+1|k+1)(x̂ik+1|k+1 − x̂k+1|k+1)T

]
.

• Output: current sufficient statistics.
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The output calculation step in Algorithm 2 gives the output of the whole pro-
cess. However, it does not affect the sufficient statistics for the next loop as illus-
trated in “output estimation calculation” block in Fig. 5.6.
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Figure 5.6: Block diagram of one step of the online Kalman filter bank using
imm algorithm for N models.
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5.4 Dead reckoning in different environments

All the proposed approaches in this chapter are verified by both simulated data
and real field experiments.

5.4.1 Simulated Environment

Generated data is used to verified the models under perfect conditions, noise
free. It is also allows for using the true value for the parameter as reference and
compare with the estimate.

Longitudinal model

The results of the simulated data for the longitudinal model are represented in
the Fig. 5.7 and Fig. 5.8. Fig. 5.7 shows the mode probabilities and estimated step
length for three different thresholds. The true step length in this scenario is 0.75
m. The process noise covariance matrix for this model is Q = diag([0.1, 0.001])
and the measurement noise for gps and step length are 0.1 m and 0.01 m, respec-
tively. Setting a reasonable threshold results in accurate step length estimate.
Meanwhile, applying a very low/high threshold makes the estimated quantities
to diverge from true value. Fig. 5.7a indicates “reasonable threshold” with solid
red line which has the highest probability and as shows in Fig. 5.7b the step
length estimation is highly accurate.
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Figure 5.7: The results are the “Kalman Filter bank” block outputs repre-
sented in Fig. 5.6. The data is generated for the longitudinal model and the
online Kalman filter bank approach is used.

By mixing the threshold results, the step lengths and the travelled distances
are estimated accurately as illustrated in Fig. 5.8. Fig 5.8a represents the step
length estimation results which is the output result of the “output estimation
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Figure 5.8: The data is generated for the longitudinal model and the online
Kalman filter bank approach is used.

calculation” block in Fig. 5.6. Moreover, Fig. 5.8b represents the root mean square
error of estimated travelled distance vs true travelled distance.

Horizontal model

Data was also generated to apply to the horizontal model. The true step length
in this scenario is 0.75 m. The process noise covariance matrix for this model is
Q = diag([10, 0.1, 0.0000001]) and the measurement noise for gps, gyroscope and
step length are 0.1 m, 10 and 0.001 m, respectively. The thresholds are set with
the same value as longitudinal model. In Fig. 5.9a the “reasonable threshold”
indicated with solid red line represents the highest probability in Fig. 5.9b. The
estimated step lengths for this threshold are the closest to the true step length.

By mixing the threshold results, the step lengths and position are estimated
accurately as illustrated in Fig. 5.10. Fig. 5.10a represents the step length estima-
tion results which is the output from the “output estimation calculation” block
in Fig. 5.6. Moreover, Fig. 5.10b represents the estimated position over the true
position where the estimated trajectory follows the true path.
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Figure 5.9: The results of the “Kalman Filter bank” block in Fig. 5.6. The
data is generated for the horizontal model and using the online Kalman filter
bank approach.
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Figure 5.10: The results of the “output estimation calculation” block in
Fig. 5.6. The data is generated for the horizontal model and using the on-
line Kalman filter bank approach.



5.4 Dead reckoning in different environments 63

5.4.2 Real Environment

The models proposed in Section 5.1.1 and [48] are evaluated using experimen-
tal data. Measurements were collected in a parking lot at Linköping university,
using the sensor fusion Android app [57, 38] to log gps, accelerometer and gyro-
scope measurements. Several experiments were conducted with people of differ-
ent heights and weights. Each person repeated the experiment in different walk-
ing modes; walking, running and standing still. All the data were collected over
the same trajectory that contains four sharp corners. Moreover, the cellphone
were carried flat in the hand for all scenarios.

Offline Kalman Filter bank results

Table 5.2 presents the results from applying the longitudinal model described in
Section. 5.1.1 to the collected data. The elements of the process noise covariance
matrix for this model were selected as σ2

a = 10 (m/s2)2 and σ2
L = 0.002 m2, and

the measurement noise variances for gps and step length are σ2
v,GPS = 9 (m/s)2

and σ2
step = 0.04 m2, respectively. The results of adaptively determining the step

detection threshold are compared to the results when fixing the threshold to suit
user 1. In Table 5.2, the estimates are compared to the ground truth values for the
gait parameters and the travelled distance. It shows that the estimates obtained
with the fixed threshold for user 1 are comparable to those obtained with the
adaptive scheme. However, the fixed threshold did work less well for the second
user. In that case, choosing a too large step detection threshold results in too few
steps being detected. Hence, the threshold that suits user 1 works less well with
user 2. As can be seen, not only the number of steps are affected but also the step
length adapts to satisfy the condition for the travelled distance.

Fig. 5.11 presents results using the horizontal model described in [48]. The
elements of the process noise covariance matrix for this model were selected as
σ2
a = 10 (m/s2)2, σ2

α = 0.5 rad2 and σ2
L = 0.002 m2, and the measurement noise

variance for gps was selected as σ2
p,GPS = 9 m2, for gyroscope as σ2

gyro = 0.64 rad2

and for step length as σ2
step = 0.04 m2. In this figure, the pdr estimation is shown

with adaptive and fixed gait step detection threshold (again chosen to suit user
1 well) when two users walked slowly. The threshold for step detection has been
estimated for Fig. 5.11a and Fig. 5.11c. Conversely, in Fig. 5.11e the fixed thresh-
old is used and applied to the same measurement set as used in Fig. 5.11c. The
gps signal (green dots) is only assumed available for a few seconds in the begin-
ning and middle of experiments. As can be seen in the figure, using the adaptive
step detection threshold provides reasonably good position estimates even dur-
ing periods without gps coverage. At the same time, Fig. 5.11e shows how large
influence poorly chosen gait parameters can have on the end result, when com-
pared to adaptively choosing the parameters. It should be noted that in these
limited experiments, simply choosing a very low step detection threshold would
improve the result. However, we anticipate this not to be the case in more real-
istic settings with uneven gait and regular stops which motivates the choice of
parameters here.
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Table 5.2: Estimated gait parameters and travelled distance versus true
one [48, ©2016 IEEE].

Traveled
distance

[m]

Number
Of

Steps

Position
error at the
end point

[m]

Threshold
[m/s2]

Ground Truth
User 1 248 333 0 2.06

User 1 with
adaptive

gait parameters
246.1 329 6.9 2

User 1 with
fixed

gait parameters
245.2 321 8.6 4

Ground Truth
User 2 242 346 0 0.81

User 2 with
adaptive

gait parameters
240.1 352 9.8 0.8

User 2 with
fixed

gait parameters
227.7 141 32.8 2

The step lengths estimated with adaptive threshold, Fig. 5.11d and Fig. 5.11b,
are fairly constant. In this figure green lines indicate availability of the gps signal,
as in the previous case. Fig. 5.11f shows the negative effect on the step length
when the steps are incorrectly detected due to a poor step detection threshold.
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(a) User 1 with adaptive parameters.
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(b) The estimated step lengths, the
green lines indicate time slots of avail-
able gps signals.

-80 -60 -40 -20 0
X-position [m]

-30

-20

-10

0

10

20

Y
-p

o
s
it
io

n
 [

m
]

GPS reference signal

Estimated trajectory

Available GPS signal

Start point

End point

(c) User 2 with adaptive parameters.
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(d) The estimated step lengths, the
green lines indicate time slots of avail-
able gps signals.
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(e) User 2 with fixed parameters.
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(f) The estimated step lengths, the green
lines indicate time slots of available gps
signals.

Figure 5.11: Illustration of the estimated trajectory with pdr vs. gps refer-
ence trajectory. Green dots indicate where gps signals were assumed avail-
able. The user starts walking South and in total makes four sharp turns until
the end point is reached. People walked slowly and with constant speed dur-
ing the data collection [48, ©2016 IEEE].
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Online Kalman Filter bank results

The online Kalman filter bank results are presented in this section. The results
of the longitudinal model are gathered for different walking modes; in the sim-
ple scenario, the user walks with constant pace during the whole measurement,
while complex scenarios mimic a more realistic application in which users change
their motion mode between walking, standing still, and running. In the follow-
ing figures, different modes are distinguished by their initial letter; “W” stands
for walking, “SS” for standing still and “R” for running. The process noise covari-
ance matrix for this model is Q = diag([10, 0.00000001]) and the measurement
noises, standard deviations, for the gps and step length are 0.2 m and 0.01 m,
respectively. The tpmmatrix is a 3 × 3 identity matrix since three hypotheses are
used in this scenario. The results obtained for the simple walking mode are sum-
marized in Fig. 5.12. Fig. 5.12a and Fig. 5.12b represent the mode probability
with and without gps signal for three different thresholds. According to these fig-
ures, the mode probability for the second threshold has the highest value that is
very well in-line with our expectations compared to the other two thresholds that
stand for extreme low and high values. The results of estimated step lengths for
these two situations (with gps and gps denied), are illustrated in Fig. 5.12c and
Fig. 5.12d, respectively. The step length estimate remains constant for all mea-
surements in both situations, as expected since the user is always walking with
constant speed throughout the whole experiment. The step lengths are estimated
to be around 0.8 m which is very reasonable for a normal person.

The travelled distance estimation error for both environments is computed
and illustrated using a cumulative distribution function (cdf) in Fig. 5.12e and
Fig. 5.12f. According to these figures, the travelled distance is estimated with
rather low error, even when the gps is not always available. The ground truth is
calculated from position measurements provided by the gps.

The complex walking pattern in the longitudinal model is also evaluated and
the results are reported in Fig 5.13. Similar conclusions as in the simple walking
mode are valid in these scenarios as well. As these figures show, the pdrwith gait
parameter learning gives good estimation for step length and travelled distance
even during periods without gps coverage.
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(b) Mode probability for three different
thresholds in gps denied environment.
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(c) The estimated step length. gps is
available during entire experiment.
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(d) The estimated step length in gps de-
nied environment. Green solid line in-
dicate where gps signals were assumed
available.
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(e) The cdf of root mean square error
for estimated travelled distance. gps is
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0 0.005 0.01 0.015 0.02 0.025

Travelled  distance  Error [m]

0

20

40

60

80

100

C
D

F

(f)The cdf of root mean square error for
estimated travelled distance in gps de-
nied environment.

Figure 5.12: Results for longitudinal model with real data for simple walk-
ing pattern.
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(c) The estimated step length. gps is
available during entire experiment.
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(d) The estimated step length in gps de-
nied environment. Green solid line in-
dicate where gps signals were assumed
available.
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Figure 5.13: Results for longitudinal model with real data for complex walk-
ing pattern.
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The results for the horizontal model are presented in both simple and com-
plex walking patterns. The process noise covariance matrix for this model is
Q = diag([100, 0.8, 0.0000001, 0.00001] and the measurement noises standard
deviations for gps is 10 m, for gyroscope is 0.8 rad and for step length is 0.01
m. The tpmmatrix is 3 × 3 identity matrix.

The result of the mode probability, step length estimation and estimated posi-
tion form the horizontal model with simple walking mode for both gps and gps
denied environments are illustrated in Fig. 5.14. Fig. 5.14a and Fig. 5.14b repre-
sent the mode probability with and without gps signals, respectively. As these
figures show, the highest mode probability is for the threshold indicated with red
solid line which has a reasonable value since the user is walking with constant
speed during this experiment. Fig. 5.14c and Fig. 5.14d illustrate the step length
estimation for both gps and gps denied situations. The estimated step length is
constant and around 0.85 m which is close to the estimated step length by the
longitudinal model. The estimated step length in gps denied environment is al-
most the same as the one that has been estimated when gps is always available.
Fig. 5.14e shows the estimated position when gps is available for the whole mea-
surements where the walking path estimation has a high accuracy. In Fig. 5.14f,
the gps is only available for a short periods, indicated with green dots. The esti-
mation follows the trajectory but with a small drift.

Fig. 5.15 represents the horizontal model with the complex walking mode for
the same environments; with gps signal and gps denied. Fig. 5.15a and Fig. 5.15b
represent the mode probability with and without gps signal. As these figures
show, the threshold with value one, has the highest probability mode. Fig. 5.15c
and Fig. 5.15d show the estimated step length for the horizontal model with com-
plex walking mode. As can be seen in these figures, the estimated step length
does not have a constant trend because of the varying walking modes. The walk-
ing mode is indicated in the figures and the estimated step length increases and
decreases in accordance with the change in the walking mode and thus the fluc-
tuation in the estimated step length appears. Fig. 5.15e and Fig. 5.15f represent
the position estimation for the gps and gps denied situations. Highly accurate
position estimates when gps is always available and a drift in the estimates when
gps availability is limited, as in the simple walking mode case, can be observed.
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(c) The estimated step length. gps is
available during entire experiment.
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(d) The estimated step length in gps de-
nied environment. Green dots indicate
where gps signals were assumed avail-
able.
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(e) The estimated position vs true posi-
tion. gps is available during entire ex-
periment.
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(f) The estimated position vs true posi-
tion in gps denied environment. Green
dots indicate where gps signals were as-
sumed available.

Figure 5.14: Results for horizontal model with real data for simple walking
pattern.
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(c) The estimated step length. gps is
available during entire experiment.
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(d) The estimated step length in gps de-
nied environment. Green dots indicate
where gps signals were assumed avail-
able.
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tion in gps denied environment. Green
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Figure 5.15: Results for horizontal model with real data for complex walking
pattern.





6
Motion and Device Mode

Classification

In this chapter, we study human motion and device mode classification. Clas-
sification of motion mode (walking, running, standing still) and device mode
(hand-held, in pocket, in backpack) is an enabler in personal navigation systems
(pns) for the purpose of saving energy and design parameter settings and also for
its own sake. This application and its proposal solution were accepted to publish
in (IPIN2017) [49, ©2017 IEEE].

Our main contribution is to publish one of the most extensive datasets for
this problem, including inertial data from eight users, each one performing three
pre-defined trajectories carrying four smartphones and seventeen inertial mea-
surement units on the body. All kind of metadata is available such as the ground
truth of all modes and position. A second contribution is the first study on a
joint classifier of motion and device mode, respectively, where preliminary but
promising results are presented.

The rest of the chapter is organized as follows: Section 6.1 explains experi-
mental setup in detail, followed by a description of available data in Section 6.2.
In Section 6.3 data analysis and initial classification results are presented.

6.1 Experiment Setup

Our investigation is based on an extensive experimental study where different
users repeated the same trajectories and sequences of modes. We logged data
from low cost micro-electromechanical systems (mems) sensors including accel-
eration, angular rate, magnetic field, barometric pressure and also gps as a posi-
tion reference. Data were measured by using four smartphones and 17 inertial
measurement units (imus) configured in a body suit. The imus generate data
of somewhat higher accuracy than the smartphones, and the body suit software
makes use of advanced biomechanical models to provide accurate description of

73
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true motion of all body parts, which in turn could be used to simulate data from
any other part of the body. Ground truth of the device and motion mode is avail-
able from the experimental setup. Table 6.1 summarizes different device and
motion modes. In order to simplify referring to each of these scenarios, Table 6.1
also assigns a specific class to each of them. We believe this to be one of the most
extensive datasets publicly available for pns.

Table 6.1: Motion-Device mode Classification [49, ©2017 IEEE].
XXXXXXXXXXXXXXXDevice Mode

Motion
Mode Standing Still

(SS)
Walking

(W)
Running

(R)

Fixed hand (1)

Class SS

Class W1 Class R1
Swinging hand (2) Class W2 Class R2

Pocket (3) Class W3 Class R3
Backpack (4) Class W4 Class R4

In this section, we first introduce the hardware used in the experiments, then
all measurement scenarios are described in detail. Finally, characteristics of all
participants are presented to give a better comparison on signal behavior for dif-
ferent subjects with different attributes.

6.1.1 Sensors

The hardware can be grouped into two categories; high and low quality;mvn and
Nexus 5, respectively. Subsequently, the signals from the mobile phones will be
compared with the mvn system to have a better classification for mobile signals.

Xsens MVN Motion Capture

The Xsens mvn system has been used to capture the whole body motion. In the
experiments the “mvn Awinda” system has been used. It contains 17 wireless
Motion Trackers (mtw), an Awinda station, and mtw full body velcro straps.

The mtw is a miniature inertial measurement unit containing a 3-D linear
accelerometer, a 3-D rate gyroscope, a 3-D magnetometer, and a barometer.

The 17 trackers are placed at strategic locations on the body (secured by the
straps), to measure motion of each body segment. Fig. 6.1 shows the location of
the straps and attached mtw. The mvn system is controlled by the mvn studio
software. A snapshot of the mvn system is shown in Fig. 6.2.

Nexus 5

Four Nexus 5 smartphones are carried by the subjects in the experiments. The
Nexus 5 is equipped with multiple sensors; The sensors that are considered in
this work are the A-gps, the 3-D linear accelerometer, the 3-D rate gyroscope,
and the barometer.
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Figure 6.1: MVN Awinda Straps by courtesy of Xsens [49, ©2017 IEEE].

The sensor fusion Android app [57, 39], installed on the Nexus 5 phones, is
used to log the sensors measurements from the phones.

All phone locations used in the experiment are presented in Table 6.1. A
summary of the details about both the mvn system and the phone is provided in
Table 6.2; application, sampling frequency, sensor’s positions, and imu sensors.

Table 6.2: Measurement device specifications [49, ©2017 IEEE].

Device Application
Sampling
Frequency

[Hz]
Position Sensors

Xsens
mvn

Awinda 60

Head
Shoulders

Upper Arms
Fore Arms
Upper Legs
Lower Legs

Hands
Feet

Pelvis

Accelerometer
Gyroscope

Magnetometer
Barometer

Nexus 5
Sensor
Fusion

app
100

Hand
Front Pocket
Back Pocket

Backpack

gps
Accelerometer

Gyroscope
Magnetometer

Barometer



76 6 Motion and Device Mode Classification

Figure 6.2: MVN Studio BIOMECH application [49, ©2017 IEEE].

6.1.2 Scenarios

Measurements were collected in a building at Twente university. During the
experiments the subjects walked three different paths, with a mixture of differ-
ent motion modes, as represented in Table 6.1. We followed certain rules when
gathering the data so that the obtained measurements should mimic reality. For
instance, to avoid any abnormal behavior the subjects were asked to carry one
smartphone in the hand at each time. One run-through of the scenarios includ-
ing a preparation phase lasts around 45–60 min.

Fig. 6.3 illustrates three different paths on top of the map of the area where
measurements were obtained. The paths on the maps are for illustrative purposes
and are inexact. For each path in Fig. 6.3, the subject holds one mobile phone in
the hand, two more phones in front and back pockets, and one in the backpack.
In this section, we thoroughly present the three measurement scenarios studied
in this work. One scenario contains outdoor-only measurements, while the other
two scenarios combine both outdoor and indoor paths. All three scenarios share
the property that the measurement begins and ends at the same point, in an out-
door environment.

Outdoor-only, Standing Still, Walking and Running

The simplest scenario corresponds to Fig. 6.3a where the whole measurement is
performed outdoors where the gps signal is available. In this scenario, measure-
ments are performed while the subject covers several motion and device modes,
corresponding to Case 1 in Table 6.3.

Outdoor-indoor, Walking

As in the previous scenario, the measurement starts and ends at the same point
outside the building. However, a bit in to the track, the subject gets into the
building and walks across a corridor, as illustrated in Fig. 6.3b. In this scenario,
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SS

(a) Outdoor-only scenario with all classes (Case 1).

(b) Outdoor-Indoor scenario containing
the W1 class (Case 2).

W

Stair	
Ascending

SS

SS

(c) Outdoor-Indoor scenario containing
all classes. Forward and backward paths
are indicated with red and purple colors,
respectively (Case 3 and Case 4).

Figure 6.3: Different measurement scenarios. The start and end points are
indicated by green and cyan dots, respectively. All the motion modes and
classes are defined based on Table 6.1 [49, ©2017 IEEE].

measurements are performed while the subject walks the whole path and holds
the smartphone flat and fixed in the hand, corresponding to Case 2 in Table 6.3.
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Outdoor-indoor, Standing Still, Walking and Running

In this scenario, we consider the most complex behavior in terms of motion
modes and also the experiment path. Along the path depicted in Fig. 6.3c, the
subject starts outside the building, then gets into the building and passes one
corridor, takes the stairs up and passes a certain distance, followed by taking the
stairs down and getting back to the starting point. The designed path in this
scenario, is measured for two different cases:

• Case 3: The subject walks along the path for both sets of device modes
presented in Table 6.3 (each set is performed separately).

• Case 4: The subject has several motion modes along the path for both sets
of device modes presented in Table 6.3 (each set is performed separately).

6.1.3 Participants

The described experiments were performed by twelve volunteers, 7 males and
5 females, with ages ranging from 25 to 45 years old. Due to some technical
and practical issues (gps signal loss outdoors, physical difficulties making it im-
possible for subjects to perform all the experiments), only 6 men and 2 women
performed all the explained scenarios.

6.2 Available Data

This section provides a detailed explanation of how the data was collected fol-
lowed by a description of the ground truth. Finally, we clarify the data structure
as well as provide instructions on accessing different parts of the available data
summarized in Table 6.3.

6.2.1 Collected Data

Data is gathered from the scenarios in Sec. 6.1.2 using the hardware specified in
Sec. 6.1.1. Before each experiment/data collection, themvn Awinda is calibrated.
The calibration can be done bymvn studio in a less disturbed magnetic field area
while the subject is standing in a fixed pose for around 5 seconds. Table 6.3 sum-
marizes all the different scenarios. It is worth noting that the laptop connected
to the Awinda station must be near the subjects while recording measurements
due to short signal range. Fig. 6.4 shows a subject while doing an experiment.
She is wearing Xsens suit and carrying several phones.

The available data for both smartphone and Xsens suits together with units
of each measurement are presented in Table 6.4. Both the raw sensory data as
well as the virtual imu measurements from the Biomechanical (BM) model are
extracted from mvn studio and provided in the dataset. Although mtws are
equipped with a barometer, themvn studio cannot extract this feature, therefore,
the mtw data for the barometer is not used.
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Table 6.3: Measurement scenarios. Device and motion modes are presented
in Table 6.1. Paths corresponding to each case are depicted in Fig. 6.3 [49,
©2017 IEEE].

Scenario
Device
Mode

Motion
Mode Participants

Duration
(average)

[s]

Case 1 1,2,3,4 W,R,SS
5 Males

2 Females 190

Case 2 1,3,4 W
6 Males

2 Females 200

Case 3
1,3,4;
2,3,4

W
Upstairs

Downstairs

6 Males
2 Female 280

Case 4
1,3,4;
2,3,4

W,R,SS
Upstairs

Downstairs

6 Males
2 Female 270

The phone data is only available in raw version. The gps signal from the
phones is converted to East-North-Up (enu) coordinates, with the first measured
gps position considered as the reference point.

6.2.2 Ground Truth

The ground truth plays an important role in the classification process. The classi-
fier uses part of the data for which the corresponding class is known as training
data in order to establish the discriminating criteria. The part of the ground
truth which was not used for training purposes will afterwards be used for the as-
sessment of the classification accuracy. The remaining data with unknown class
could then be assigned to a class.

The classification accuracy refers to the correspondence between the class la-
bel assigned to each sample and the “true" class obtain by the ground truth. Fuzzy
class boundaries and incorrectly assigned classes are two main degrading factors
of classification accuracy. Additionally, if the ground truth does not represent all
classes adequately the classification result and the corresponding accuracy may
be unpredictable.

As Fig. 6.2 shows, mvn studio provides a movie of all the subject activities.
We visually inspect these movies to determine the time of switch between the
modes. However, the provided output of the mvn studio is a downsampled ver-
sion of the signal. Thus, the visually obtained times need to be matched by the
samples of the signal. We use the extracted output of the mvn studio that gives
the exact time of each sample with milisecond(s) accuracy. All the samples are
then labeled to appropriate classes using the derived time stamps used to form
the ground truth.

The ground truth is separately formed for high and low quality devices using
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(a) The subject is walking constantly with almost
constant speed and carrying a smartphone in flat
and fixed hand.

(b) The subject is running and carrying phone in
swinging hand.

Figure 6.4: Photo from measurement campaign [49, ©2017 IEEE].

the labels obtained. Depending on the device mode, signals obtained from appro-
priate mtws should be considered. For example, if the goal is to investigate the
scenario in which the smartphone is being carried in hand, the hand-mounted
sensor is the one that mimics that behaviors best. Another example is the case
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Table 6.4: Dataset details given from both smartphone and mtws. Signals
from mtws are available in two versions; “Raw" data and filtered by some
Biomechanical algorithms (bm). Smartphone data is only available in “Raw"
version [49, ©2017 IEEE].

Variable Names Unit mtw data Phone data
3D AccR (Raw) [m/s2] * *

3D AngVelR(Raw) [rad/s] * *
3D OriR (Raw) [◦] * *
3D MagR (Raw) [Gauss] * *

gps [m] - *
Pressure [Pa] - *

Mtw Position [cm] * -
Velocity [m/s] * -

3-D Acc (bm) [m/s2] * -
3-D AngVel(bm) [rad/s] * -

3-D Ang.Acc (bm) [rad/s2] * -
Ori (bm) [◦] * -

Joint Angle [◦] * -
Ground Truth (gt) - * *

where the phone is in pocket where the most appropriate mtw revealing same
properties is the one mounted on the upper leg. Similarly, we further assumed
the mtw on the pelvis to simulate the scenario where the phone is being carried
in backpack.

6.2.3 Acquire Data

The dataset containing the scenarios is defined in Table 6.3 and is available from [1].
The logged data from the phones and the mvn studio are extracted with 100 and
60 Hz sampling frequencies, respectively. Data from both devices are merged
into a matlab ‘.mat’-file. The naming of experiments is in line with the struc-
ture given in Table 6.3. This file contains the structure of the data and attributes
corresponding to each subject. For example, all measurements related to Case 4,
are stored in Case4 dataset and Case4.Subject(1) provides the data for all
sensors and attributes associated with subject 1.

Table 6.4 represents all available data for both devices in the measurement
scenarios dataset. During the post-analysis phase of the data, some signals were
identified as either corrupted or missing. As a result, the dataset contains some
empty fields. The dataset contains 4 measurement scenarios with 7–8 measure-
ment sets each, depending on the number of participants. To further simplify
working with the dataset, a toy example with matlab code to extract the data is
provided together with the dataset. The first measurement scenario (Case 1) for
first subject is set as default. More details about setting variables and extracting
desired outputs is provided in a README file attached to the dataset.
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6.3 Data Analysis

We apply a classification algorithm to the data to assign them to the defined
classes in Table 6.1. This is done in two steps; feature extraction on the raw
signals, followed by a classification step.

6.3.1 Feature Extraction

Feature extraction is a way to try to better bring out the inherent information in
the available data, and reduce the dimensionality of the raw/pre-processed data
in order to be able to apply classification algorithms on it.

The feature extraction phase is performed by dividing the inertial data in slid-
ing windows of N samples with no overlap. The window size must be selected
such that it satisfies two different objectives. On one hand, it must be long enough
to cover at least one gait cycle. On the other hand, it should be short enough to
identify sudden motion mode transitions. In this work, we set the window size to
0.5 seconds. This translates to 50 and 30 samples for phone and motion trackers,
respectively, imposed by their sampling frequencies.

In the rest of this section we define the features we feed to the classifier and
provide more specific examples from the dataset. All given examples correspond
to Case 1 described in Table 6.3 where the subject intentionally switches between
the fixed and swinging device modes.

Signal Norm

For a generic signal S[n], ‖S‖max denotes the maximum norm over the sampling
window as follows

‖S‖max = max
n
‖S[n]‖.

The norm contains useful information used to discriminate between different
modes. More precisely, any change of motion mode results in a large difference
in the values of accelerometer norm, ‖a‖max. This enables the identification of
a change in the motion mode. In addition, large difference in the values of the
gyroscope norm ‖ω‖max can be translated into a switch in the device mode.

To further illustrate the behavior of ‖a‖max relative to the change in the mo-
tion mode see Fig. 6.5, where the norms of signals are depicted while the smart-
phone is in both fixed and swinging modes. These signals correspond to Case 1
in Fig. 6.3. Fig. 6.5b further presents how the gyroscope norm, ‖ω‖max, assists in
device mode discrimination.

Signal Energy

Let S[n] be a generic signal, e.g. a single accelerometer/gyroscope direction or
accelerometer/gyroscope norm. The energy of the signal ES is obtained by tak-
ing the squared norm of S[n] and summing and normalizing it over the sliding
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Figure 6.5: Signal norm for 4 different motion trackers together with the sig-
nal from the smartphones. The subject performed the Case 1 from Fig. 6.3.
Black lines separate the different classes. Related class for each section is
indicated in the figures. The subject carried a smartphone in the right hand
and one in the front right pocket. The device carried by hand is switching
between fixed and swinging mode [49, ©2017 IEEE].

window

ES =
1
N

N−1∑
n=0

S[n]2.

The obtained energy is a useful feature allowing us to distinguish fixed or moving
device modes due to rapid response to mode transition. For example, the gyro-
scope will have higher energies in swinging hand device mode than the fixed
hand scenario.

Fig. 6.6 shows the energy signal for both accelerometer and gyroscope. As
shown in Fig. 6.6a each transition between motion modes results in a noticeable
change in the energy of the accelerometer signal. The effect of the device mode
on the energy signal is illustrated in Fig. 6.6b, where it is shown that switching
from fixed to swinging mode increases the angular velocity energy drastically.
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Figure 6.6: Energy signal for 4 different motion trackers together with the
signal from the smartphones. The sensor locations and measurement sce-
nario are the same as the one described in Fig. 6.5 [49, ©2017 IEEE].

Signal variance

For any generic signal S[n] the average of the squared differences from the mean,
the variance signal, is defined as follows

σ2
S =

1
N − 1

N−1∑
n=0

‖S[n]‖ −
1
N

N−1∑
n=0

‖S[n]‖


2

.

The variance signal assists to discriminate between high and low intensity move-
ments. For example, the estimated variance of both accelerometer and gyroscope
is highly informative while the objective is to distinguish between swinging mode
with any other less intense movement scenario.

Fig. 6.7 shows the signal variance of both accelerometer and gyroscope. One
advantage of the variance signal is to enhance robustness of the classification al-
gorithm in motion mode recognition. Running leads to more intense movements
than both walking and standing still. Higher peaks in the signal variance, as
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Figure 6.7: Signal variance for 4 different motion trackers together with the
signal from the smartphones. The sensor locations and measurement sce-
nario are the same as the one described in Fig. 6.5 [49, ©2017 IEEE].

shown in Fig. 6.7a, can then be identified once the user switches to this mode.
Additionally, the signal variance analysis can be used to recognize device mode
switches. The variation of the variance signal illustrated in Fig. 6.7b shows how
changing between classes with different device modes, W1 and W2 for example,
can be distinguished.
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Frequency Analysis

This feature allows us to identify any movement such as periodic movement from
aperiodic ones. Different activities have different frequencies, resulting in a vary-
ing power spectrum that assists in activity identification. Thus, the analysis of
the frequency domain of inertial signals recorded with hand-held devices allows
capturing the periodicity of the accelerometer/gyroscope signals due to the sub-
ject’s activity. Presence or absence of peaks in the spectogram of the inertial
signals gives useful insights whether the subject is having a periodic movement
or standing still.

The spectogram of the gyroscope signal is obtained using Short Time Fourier
Transform (stft) and is reported in Fig. 6.8. The periodicity of the walking and
running mode is visible in the frequency peaks of the spectogram while it is pos-
sible to identify a static case around time 300.
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Figure 6.8: Spectogram of the smartphone’s gyroscope signal carried in the
right hand. The subject performed the Case 1 from Fig. 6.3 [49, ©2017 IEEE].
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6.3.2 Classification

As a final step in characterizing the data, a classifier is applied to the features to
try to extract the motion and device modes as defined in Table 6.1.

Different machine learning algorithms can be used for the classification. For
example, [80] applies a decision tree for classification purposes while [94] uses
multi-layer perceptron (mlp) and a support vector machine (svm) to improve the
performance in terms of recognition of human activity.

Two datasets, are formed for phone and motion tracker signals as described in
Sec. 6.2.2, separately. Each set contains eight features constructed from four sig-
nal attributes introduced in Sec. 6.3 for both gyroscope and accelerometer. Since
the classes are labeled accurately for each dataset, a supervised learning approach
is applied. A multivariate decision tree classifier is trained using matlab; Ma-
chine learning toolbox. The classifier is validated with 10-fold cross-validation.

The performance of the classifier for both devices are summarized in the con-
fusion matrices given in Tables 6.5a and 6.5b. In the mtw data, having a sensor
to mimic the behavior of the phone data carried by backpack is challenging. As
Table 6.5a reports, the mode detection success rate formtw sensors are over 70%
for all classes. SS and W1 classes are missclassified with W4 class corresponding
to the pelvis sensor. To explain this observation, one needs to note how the pelvis
sensor is rigidly mounted on the body. This leads to miss-classification with other
low intensity modes. With phone data, the classification results are promising as
represented by Table 6.5b. All the classes are detected correctly with over 75%
for walking and standing still modes and over 56% for running mode. Running
mode recognition is challenging as the phone has movement. Missclassification
of R1 with R4 and W1 with W4 can be explained by the fact that the phone is
fixed in either of these situations.
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Table 6.5: Confusion matrix of the modes classification represents in Ta-
ble 6.1 using the binary decision tree classifier using cross-validation with
10 folds. The table shows how different annotated activities are classified in
[%] [49, ©2017 IEEE].

(a) Data from 4 different motion trackers

Recognised activity
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R1 83 8 0 6 0 0 0 0 0
R2 5 72 1 0 0 0 0 1 0
R3 0 2 96 0 0 0 0 0 0
R4 5 0 0 85 1 0 0 0 1
SS 0 2 0 1 79 2 0 0 1
W1 0 0 1 1 5 78 1 0 13
W2 0 8 0 0 0 1 84 6 0
W3 7 8 1 3 2 1 13 92 0
W4 0 0 1 4 13 17 1 0 84

(b) Data from phones.

Recognised activity
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R1 58 3 0 0 0 0 0 2 0
R2 1 60 4 4 0 0 1 2 0
R3 0 13 83 0 1 0 0 0 0
R4 20 3 0 56 0 0 0 2 0
SS 1 0 6 0 84 4 3 2 1
W1 3 0 0 7 7 83 3 1 8
W2 1 3 6 7 2 1 77 14 0
W3 14 17 2 22 1 1 16 75 0
W4 0 0 0 4 5 11 1 0 90
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Conclusion and Future works





7
Concluding Remarks

Mobile positioning applications are enabled by using measurements provided by
almost all recent smartphones. In this thesis, we contribute to the development
of models for different measurements and investigate how their parameters can
be estimated. Given that the parameters are known, the position of the mobile
user can be estimated. The position of a mobile device can be inferred from
models relating the measurements provided by sensors and receivers equipped
in the measuring device to its position. The positioning performance depends on
the quality of measurements on one hand and the accuracy of the models on the
other.

In this thesis, we investigated how to estimate unknown parameters of differ-
ent models. The measurements considered here can be provided by almost all
recent smartphones. Among different alternatives, we consider radio-based rss,
gps, and inertial measurements. Unknown parameters of the models are then
estimated using a least square estimator or in a filtering framework.

To address the reliability issue of gnss methods, while taking advantage of
their accuracy, they were used upon availability of strong satellite signals. For
instance, positioned rss signals are used to estimate the unknown parameters of
the rss model in an offline phase. The estimated parameters can then be used
in rss-based positioning methods. Furthermore, a gait model is developed in
which the gait parameters and the position of the mobile users are estimated us-
ing inertial sensor measurements. However, solely relying on the inertial sensors
will lead to cumulative error in the estimations. To address this, in time intervals
when gps signals are available, we use them to correct our estimates.

The performance of the developed methods are evaluated on simulated as
well as real data and the results are presented. In the rest of this section, we first
provide concluding remarks in each application and then finalize the work with
some future research directions.
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7.1 Antenna gait parameters estimation

The semi-empirical joint antenna and propagation model parameter estimation
was described in Section 4.2. The associated parameter estimation problem can
be formulated as a least square problem, which enables efficient estimation of
the model parameters in Section 2.1.3. The developed model accounts for both
the rss decay rate using an empirical log-distance and the deterministic antenna
radiation models. The performance of the proposed method was evaluated us-
ing both simulation data and real rss measurements. The results indicated that
the joint antenna and propagation model provide significantly better accuracy
compared to a propagation model alone as reported in Section 4.3.

7.2 Pedestrian dead reckoning positioning

Inertial sensors measurements are another source of information that can be used
either in standalone positioning algorithms or together with other radio measure-
ments. To mitigate the main disadvantage of the standalone ins systems, be-
ing the integration drift caused by integrating inertial sensors measurements, a
framework for a pedestrian dead reckoning algorithm was developed. In this
application, we proposed two extended pdr models in Section 5.1.1 which were
the extended version of basic pdr, given in Section 3.3. The approach was based
on an offline and online multi-rate Kalman filter bank, given in Section 5.3, that
learned gait parameters in time intervals when gps position estimates were avail-
able. This improved the pdr in time intervals when the measurement is un-
available. The proposed methods had been evaluated using simulated data as
well as real experiment of imu measurements, given in Section 5.4 where it was
shown that promising results could be obtained especially when the step detec-
tion threshold was chosen adaptively.

In the offline approach, the algorithm assumed a subject moving with con-
stant speed. It is explained that the results deteriorate if a fixed threshold is used
that is not appropriately chosen to suit the current user. Given the experimental
data provided in this work a low step detection threshold would probably work
satisfactory.

To relax the constant velocity assumption, the online approach set no restric-
tion on the subjects speed and the experiment was done while different walking
models were considered; running, walking and standing still. However, it was
shown in the online Kalman filter bank in Section 5.4.2 that by having more vari-
ations in the user’s walking patterns and with regular stops or running, the step
detection and position estimation accuracy were affected.

7.3 Motion and Device Mode Classification

To overcome the negative effect of the multiple walking patterns and also to ex-
tend the algorithm to more realistic scenarios, the user’s motion modes need to be
known. An extensive dataset was presented for classification and investigation
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of the motion and device mode for pedestrian navigation systems, where many
device modes, a number of users and a few motion modes were logged for three
different trajectories. All the experiment setup and details about the dataset were
given in Section 6.1 and Section 6.2, respectively. All data were fully annotated
with ground truth classes, and other metadata such as position and accurate full
body motion using bio-mechanical models.

It was discussed how the motion and device mode relate to pedestrian dead-
reckoning algorithms, the working horse of pns, and how pns can otherwise ben-
efit from improved and extended mode classification in Section 6.3. The larger
part of the work described the field tests in detail. The last part, Section 6.3.2,
suggested a few features that can be computed from the logged data, and ap-
plied a straight forward classifier on these features. The result was promising,
yet preliminary. The dataset is publicly available [1], and we hope the research
community can benefit from this to improve the classification results further.

7.4 Future Work

A future extension of this work can be to combine the algorithms developed in
this thesis. This allows for a robust localization algorithm operating in outdoor
and indoor environments with and without gps signals. Using positioned rss
measurements is an example of how to make the algorithm robust against gps de-
nied signal conditions. Classification methods could also be efficiently combined
with the proposed gait parameter estimation algorithm to give a more accurate
step detection while the user’s motion mode varies along the trajectory. In a real
life navigation session the user’s motion can be a combination of walking, run-
ning, and standing still. Knowledge of the motion status of the user drastically
improves the gait parameter estimations leading to a more accurate positioning.
Classification methods, as we discussed in Chapter 6, allow for distinguishing
between the motion modes that can be added to the algorithm as a pre-process,
prior to the step detection phase. Thus, one interesting idea is to combine the
motion mode and device mode information with pdr positioning application to
improve, in an online fashion, the step detection and step length estimation algo-
rithms.
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