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The aim — Part 2

The aim in part 2 is to introduce expectation maximisation (EM) and
Markov chain Monte Carlo (MCMC).

This will be done by showing how simple linear system identification
problems can be solved using these methods.

In part 4 we will then show how EM and MCMC can be used to solve more
challenging nonlinear system identification problems.

In other words, we present the methods in this part and hint (there is still
much more that remain to be discovered here) at their real potential for
nonlinear system identification developed in Part 4.
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Outline

Maximum Likelihood (ML) modeling

1. Maximum likelihood modelling
2. Expectation maximisation (EM)
a) Introduction and derivation
b) Identifying LGSS models using EM
3. Bayesian modelling
4. The Monte Carlo idea
5. Markov chain Monte Carlo (MCMC)

a) Identifying LGSS models using the Gibbs sampler
b) The Metropolis Hastings sampler
c) The Gibbs sampler
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Maximum likelihood provides a systematic way of computing point
estimates of the unknown parameters 6 in a given model, by
exploiting the information present in the measurements {y;}L ; and
the corresponding inputs {u;}1_, (if present).

Computing ML estimates of the parameters in an SSM amounts to:

1. Model the obtained measurements v, ...,y as a realisation
from stochastic variables y1, ..., yr.

2. Assume y¢ ~ hyp(y | x¢) and x; ~ fo(x¢ | x¢—1).
3. Assume that stochastic variables y1, . . ., yr are conditionally iid.
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Maximum Likelihood — Goal 5(51)

The goal in maximum likelihood is to find the 8 that best describes
the distribution from which the data comes from.

Alternatively this can be interpreted as finding the parameter 6 that
makes the available measurements as likely as possible.
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Maximum Likelihood — The likelihood function

Definition ((log-)likelihood function)

The likelihood function Lg(y1.7) is the pdf of the measurements y.7,
with the values for the obtained measurements y1.7 inserted,

Lo(y1.1) £ po(y1.T = y1.7)
and
lo(y1.7) = log Lg(y1.T)

is referred to as the log-likelihood.
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Latent Variables — Example

Expectation Maximization (EM) — Strategy and Idea s(51)

A latent variable is a variable that is not directly observed. Other
common names are hidden variables, unobserved variables or
missing data.

The latent variables in an SSM

X1 Nfe(xt+1 | xt),
Y ~ hg(xe11 | x1),

are given by the unknown states, i.e., Z = x1.T.
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The strategy underlying the EM algorithm is to separate the original
ML problem into two linked problems, each of which is hopefully
easier to solve than the original problem.

This separation is accomplished by exploiting the structure inherent
in the probabilistic model.

The key idea is to consider the joint log-likelihood function of both
the observed variables Y £ y1.7 and the latent variables Z,

ﬁg (Z, Y) = lngg(Z, Y)
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Expectation Maximization (EM) — The algorithm

9(51)

Algorithm 1 Expectation Maximization (EM)

1. Initialise: Set i = 1 and choose an initial 1.
2. While not converged do:

(a) Expectation (E) step: Compute

Q(6,8') = Eq [logpa(Z,Y) | Y] = [logpa(Z,Y)py(Z | Y)dZ
(o) Maximization (M) step: Compute

0"+ = argmax Q(6,6')
0cO

(€) i+ i+1
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EM Example — LGSS identification

Consider the following scalar LGSS model

Xt+1 = let + vy, (Ut) N ((0) (0_1 0 ))
ye=5x+e, o 0/7\0 01
For simplicity, let the initial state be fully known, x; = 0. Finally, the
true parameter value for 6 is given by 6* = 0.9.

The identification problem is now to determine the parameter 6 on
the basis of the observations Y = {y1,...,yr} and the above
model, using the EM algorithm.

The latent variables Z are given by the states

=X £ {xl,...,xTH}.
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11(51)

EM Example — LGSS identification

The expectation (E) step:
0(6,6') 2 Ey {logpe(X,Y) | Y} = / log po (X, Y)pe (X | Y)dX.
Let us start investigating ps (X, Y).

po(X,Y) = po(xr11, X1, y1, YT-1)
= po(xr1,y7 | X7, Y1-1)po(XT, YT-1),

According to the Markov property we have
po(xr+1,y1 | X1, YT-1) = Po(XT41, Y1 | XT),
resulting in

pe(X,Y) = po(xri1,y7 | X1)Pe (X1, YT-1).
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EM Example — LGSS identification

Repeated use of the above ideas straightforwardly yields

T
po(X,Y) = po(x1) [ Tpo(xesr ve | ).

t=1

According to the model, we have

() 1) =2 (00 ()= (5 a3))
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EM Example — LGSS identification

The resulting Q-function is

, T T-1
Q(6,0") x —Ey {fo | Y} 0% + 2E, { Y xixg | Y} 0
t=1 t=1
— _¢i92 + leie,
where we have defined

qoiééEei{xf\Y},

There exists explicit expressions (linear state smoothing problem) for
these expected values (see the lecture notes for details).
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. T-1
! é Z Eei {XtXt+1 | Y} .
t=1
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EM Example — LGSS identification

The maximization (M) step:

0'+! = argmax Q(6,6').
9

Hence, the M step simply amounts to solving the following quadratic

problem,
0"t = argmax — ¢'6% 4 2¢'6,
0

which results in

i
i1 _ ¥
o=
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EM Example — LGSS identification

15(51)

Algorithm 2 EM for LGSS

1. Initialise: Set i = 1 and initialise #' = 0.1 and 6° = 0.6.
2. While £y (Y) — £gii (Y)| > 1076 do:

(a) Expectation (E) step: Compute

i

¢:

1=

T
Ey {x$ | Y}, ¢ = Y Eg {xixeir | Y}
t=1

t

I
=

(o) Maximization (M) step: Find the next iterate according to

g1 = ¥
q)l
() i<i+1
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EM Example — LGSS identification

m Different number of samples T used.
m Monte Carlo studies, each using 1000 realisations of data.
m Initialize the parameter at ' = 0.1.

T | 100 200 500 1000 2000 5000

10000

6 | 0.8716 | 0.8852 | 0.8952 | 0.8978 | 0.8988 | 0.8996

0.8998

No surprise, since ML is asymptotically efficient.
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EM Example — LGSS identification

EM Example — LGSS identification
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EM - Fully parameterised LGSS model

Consider a fully parameterised LGSS model

()~ (¢ )fa) () (@) (G5 o))

or more compactly, & | x; ~ N (& | Tz, IT).

The initial state x; distributed according to N (x; | , P1). The
parameters to be identified are (using set notation)

6 ={T, u, 11, P1}.

Follow exactly the same strategy used in previous example (see

lecture notes for details).
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Bayesian modeling

The goal in Bayesian modeling is to compute the posterior
0, x1. T) = .7) (or one of its marginals).
p(8,x11 | yi:r) = p(n | y1r) ( ginals)

Ul

>

Bayesian modeling amounts to
1. Find an expression for the likelihood p(y1.7 | 7).

2. Assign priors p(77) to all unknown stochastic variables # present
in the model.

3. Determine the posterior distribution p(7 | y1.1)-
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Posterior predictive distribution

In many applications we are not directly interested in the values of
the parameters 6. Instead we are interested (for example) in being
able to make predictions.

The posterior predictive distribution p(y7+1 | y1.7) is found by
marginalising p(yr.1, 1p | y1.7) W.rt. 7p = {5, x741} = {6, x1.741},

pyr+1 | yir) = / p(yr+1,1p | yr:7)dnp
= /h(yT+1 | x741,0)p(np | y1:7)dngp,
where

p(p | y11) = f (x4 | 21, 0)p (17 | yr1)-
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A first Bayesian model

Let us consider the following scalar LGSS model

U ~ N(O, 92),
ey ~ N(0,0l)

Xt+1 = O1x¢ + 0.5u¢ + vy,
yr = 0.5x; + ey,
The input sequence generated as u; ~ A (0,0.1) is assumed
known.
(Unrealistic) assumption: the states x1.741 are available.
Task: Find the posterior distribution for the unknown parameters in
the above LGSS model,
p(61,62 | D) =p(6 | D),

where D = {y1.1, X1.741 }.
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22(51)

Bayesian modeling (again)

23(51)

Likelihood computations, continued (I/11)

Recall that Bayesian modeling amounts to,
1. Find an expression for the likelihood p(D | 6).

2. Assign priors p(#) to all unknown stochastic variables 6 present
in the model.

3. Determine the posterior distribution p(6 | D).

The aim is to write the likelihood p(D | 6) in such a way that we can
easily assign a prior to 8 that has the same functional form (w.r.t. 6)
as the likelihood.
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x0T e\ L 7 (p2_07
p(D|6) x - x6” 2 exp< 202) \/Q_zexp( 26, <91 2091))

where we have defined

T
v £ Y (xigax: — 0.5x)

T
@ 2 Z (x%+1 + 0.25u% — xt+1ut> .

h..
Il
—

Question: guided by this, how do we chose the prior p(6) to have
the same functional form as p(D | 0)?
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Likelihood computations, continued (lI/11)

Completing the squares results in

1 1 v 2
p(D | 0) —_92/(7 exp (—292/0 (91 — E) )

0<N(91|%,%92)

2
oon( 4 (1-5)

260217523 - %)

1 T-3 2
o<N(91 | g,gez)zg (92 [ g_"f_)
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Reminder — the inverse Gamma distribution

The inverse gamma distribution is defined on the positive real line
and it is characterised by the so called shape parameter a and the
scale parameter b,

x~ZG(a,b), a>0b>0,

and the pdf is given by

a
ZG (x|ab) = %x_(”“) exp (—Z) , x>0,

where T'(a) is the gamma function, i.e., T(a) = [;~ t*~le~'dt.
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Assign prior and compute posterior 27(51)

Our strategy dictates that we should choose the prior such that it has
the same functional form as the likelihood p(D | 6), i.e., normal
inverse gamma,

p(01,02) = p(61 | 62)p(02) = N (61 | m,c0>) ZG (0> | a,b)
=NZIG (61,0, | m,c,a,b),

Compute the posterior
p(6 | D) <p(D | 6)p(6)
« N'IG (91,92 | ﬁ,E,E,E) NTG (61,0, | m,c,a,b)
«x N'ZG (64,0, | m*,c*,a*,b")

(see the lecture notes for details)
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Conjugate priors

The posterior distribution p(# | D) and the prior distribution p(77) are
said to be conjugate distributions if they are both distributed
according to the same distribution.

The prior is then referred to as the conjugate prior for the present
likelihood p(D | 17).

Put in slightly different words, if the posterior distribution and the prior
distribution have the same functional form, the prior is said to be the
conjugate prior for the underlying likelihood.
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Monte Carlo methods
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Approximation methods

Many of the models we are currently interested in do not allow for
closed form expressions. We are forced to approximations. Broadly
speaking there are two classes,

1. Deterministic analytical approximations: Either approximate
the model or restrict the solution to belong to an analytically
tractable form. Examples, variational Bayes (VB), expectation
propagation (EP).

2. Stochastic approximations: Keep the model and
approximate the solution without imposing any restrictions other
than the computational resources available.

Analytical approximations of the model and/or the solution have been

very common.

In this course we work with stochastic approximations.
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Monte Carlo methods

The Monte Carlo idea

Monte Carlo methods provides computational solutions, where the
obtained accuracy is only limited by our computational resources.

Monte Carlo methods respects the model and the general solution.
The approximation does not impose any restricting assumptions on
the model or the solution.
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The integral

1(8(2)) 2 By 82)] = [

z
is approximated by

Iu(s(2))

The strong law of large numbers tells us that

In(g(z)) = I(g(2)),
and the central limit theorem state that

VM (lus(@) ~16()) 4 o

M — oo,

M — oo.

Ug

AUTOMATIC CONTROL
REGLERTEKNIK
LINKOPINGS UNIVERSITET

Thomas Schén
Part 2 - EM and Monte Carlo methods explained via linear system identification




The Monte Carlo idea — illustration

n(z) =0.3N(z|2,2) +0.7N (z | 9,19)

0.14

5000 samples 50000 samples

Obvious problem: In general we are not able to directly sample

from the density we are interested in.
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33(51)

Background: Representing an LGSS model (I/ll)

An LGSS model is defined by

Xt+1 = Axy + Buy + vy,
yi = Cxt + Duy + ey,

where
X1 2 P1 0 0
| ~Nll0o],[0 Q s
e 0 0 ST R

which equivalently can be written as

Xt41 Xt41 A B\ (x Q S
() b2 () 1@ ) () (S %
x1 ~ N (x| w,P1)
AUTOMATIC CONTROL
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Background: Representing an LGSS model (llI/1l)

35(51)

Problem formulation and solution idea

Introducing the following notation

a [ X1 a [ Xt AAB
o () w2 (i) re(eo)

allows us to write the LGSS model more compacily,

lI>

(%)

‘:t == th +wt1 Wy ~ N(OIH)I
X1 NN(JC1 | ,M,Pl).

G | xe ~ N (Gt | Tz, IT),
X1 NN(X1 | y,Pl).

The parameters are defined as (using set notation)

6 ={T,IL u, P}.
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Task: Identify the LGSS model by computing p(6 | Y) when

0 = {T,T1} and Y = yy.7 (for simplicity, we assume that the initial
state is known)

Let us consider the expanded task, where we are trying to compute
p(0,X | Y), with X = x1.741. Note that p(6 | Y) is a marginal of
p(6,X | Y).

Solution idea: Obtain samples 6%, X* from the posterior pdf by
iterating the following two steps

1. Given 6%, generate a sample from the state trajectory
Xk~ p(X ] Y, 65).
2. Then, given X* generate a sample 6%*!

9k+1 ~ p(e | Xk, Y)
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Definition — Matrix Normal random matrix

The matrix valued normal distribution is a generalisation of the vector
valued normal distribution.

Definition (Matrix normal distribution)

The random matrix X € R?*" has a matrix normal distribution with
mean matrix M € R?*™ and covariance matrix A~! ® Y., where
Al =0eR"™™and T = 0 € R jf

Vec (X) ~ N (X | Vec (M), A~ ®z) .

The pdf is given by

|A[2 - (_lTr((X_M)Tz—l(x—M)A))

S ol B
m/2
(2m)dm/2 ||/ 2
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MN (X |M,A,Z) =

Thomas Schén
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Sampling the parameters

The first step of the Bayesian principle is done and the likelihood is
p(D|T,I1) = MN (B | TZ, 1)

The second step is to decide on a suitable prior. We will be pragmatic
and make use of a conjugate prior, the matrix normal inverse
Wishart (MNZ)WV) prior (the generalisation of the N'ZG prior).

It is a hierarchical prior that makes use of the fact that
p(T,11) = p(T | IT)p(I1) and places an MN prior on T
conditioned on I'T and an ZW prior on I1.

(See lecture notes for detailed derivations of the MNZW posterior
distribution.)
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LGSS example (I/ll) 3951) | LGSS example (lI/11) 40(51)

1. Given 6%, generate a sample from the state trajectory
Xk~ p(X ] Y, 65).
2. Then, given X* generate a sample 65+1
gkl p(6 | XK Y)
Let us now try this solution using T = 3000 samples from

037 0.89 052 0.56
1 0 0 0
=10 1 0 0
0o 0 1 0

vi=(1 01 —049 0.01)x +e,

Xt +we, Wy~ N (0, 00514) ,

ey ~ N (0, 001) .
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Initialize using a subspace algorithm. Run the loop 10000 times.
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LGSS identification — Gibbs sampler

So far, only pragmatic, but it seems to work! This results in many
questions, for example,

1. Was this just luck?
2. Does it always work?
3. Can we prove that it will always work?

It is a so called Gibbs sampler that provably converge to the target
distribution!!

This can be used to answer some challenging questions, for more
details see (and its references)

Adrian Wills, Thomas B. Schén, Fredrik Lindsten and Brett Ninness, ion of Linear Sy using a Gibbs Sampler.
Proceedings of the 16th IFAC Symposium on System Identification (SYSID), Brussels, Belgium, July 2012.
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What’s the point with the AR(1) example? (I/ll)

42(51)

Task: How do we generate samples from the stationary distribution
s(x) =N (x | 0, #)’7 Put in other words, the target distribution
7t(x) is given by the stationary distribution 77°(x), i.e.,

mt(x) = m°(x).

Two solutions for this problem:

1. Simulate sufficiently many samples from the Markov chain and discard the
initial samples. The remaining samples will then be approximately distributed
according to the target distribution (we just proved that x! is distributed
according to 7z(x) for a large enough ).

2. We proved that the stationary distribution is Gaussian. Generate samples
directly from this distribution.

Clearly a somewhat contrived example (obviously solution 2 is
preferred) but, solution 1 is a simple illustration of the strategy

underlying all MCMC methods.
AUTOMATIC CONTROL
REGLERTEKNIK
LINKOPINGS UNIVERSITET

Thomas Schén
Part 2 - EM and Monte Carlo methods explained via linear system identification

What’s the point with the AR(1) example? (lI/1l)

43(51)

Metropolis Hastings (MH) sampler

In the example, the Markov chain was fully specified and it was
possible to explicitly compute the stationary distribution.

We are of course interested in the reverse situation, where we want
to generate samples from a (typically rather complicated) target
distribution 77(z).

The task is now to find a transition kernel such that the resulting
Markov chain has the target distribution 77(z) as its stationary
distribution.

This can be done in many different ways and constructive
strategies for doing this are provided by the Gibbs sampler and the
Metropolis Hastings sampler.

Thomas Schon
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The Metropolis Hastings (MH) sampler provides a constructive way
of producing a Markov chain that can be used to obtain samples
approximately distributed according to the target distribution.

More pragmatically speaking, the MH sampler generates samples
{zl}f‘i 1 Which can for example be used to approximately compute
integrals.

Thomas Schén
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45(51)

Metropolis Hastings (MH) sampler — Intuition

The basic idea underlying the Metropolis Hastings sampler is
surprisingly simple.

Starting from an initial state of the Markov chain z!, a new candidate
sample z’ is generated using a proposal distribution g(z’ | z*).
This proposed sample z’ is then accepted with a certain probability,
the so called acceptance probability

a(7,7') = min (1, %) )

If the sample is accepted, the new state of the Markov chain is set to
the proposed sample z2 = z/, otherwise it is simply set to the

1
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Metropolis Hastings (MH) sampler — Algorithm 46(51)

Algorithm 3 Metropolis Hastings (MH) sampler

1. Initialise: Set the initial state of the Markov chain z!.
2. Fori = 1 to M, iterate:

a. Sample z/ ~ g(z | Z').
b. Sample u ~ 1[0, 1].
c. Compute the acceptance probability
m(z)q(z' | 2)
n(z)q(z | 2)
d. Set the next state z'*! of the Markov chain according to

z'  otherwise

a(z,z') = min (1,0((2’,zi)> , where a(Z,7') =

Thomas Schén
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previous value, z2 = z!.
47(51)

Metropolis Hastings (MH) sampler

Note that the MH sampler only requires two things,

1. It requires the definition of a proposal distribution (- | -) that
can be used to generate candidate samples.

2. It must be possible to point-wise evaluate the target distribution
up to a possibly unknown normalization factor.

Point-wise evaluation of the target density 7t(6) for a specific 6 = 0

plysr | O)p(6)

7'1'(@) = p(é | yltT) = p(ylzT)
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Example — MH sampler for LGSS identification

48(51)

Consider the following LGSS model

Xt+1 = Ox¢ 4+ 0.5u; + vy,
yr = 0.5x; + ey,
p(0) =U[-1,1],

UVt ~ N(0,0l),
e ~ N(0,0l),

where the input sequence u; ~ N (0,0.1) is assumed to be known.

Task: set up an MH sampler targeting p(6 | y1.7). In other words,
simulate a Markov chain with p(6 | y1.7) as its stationary distribution.

The first task it to decide on a proposal distribution, let us use a so

called random walk proposal,
0 =60 +v, vi~N(0yq),

or put in other words, g(¢’ | 6') = N (6’ | 6, 9).
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Example — MH sampler for LGSS identification
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The second task is to find an expression for the acceptance
probability, which boils down to computing

(0,60 = 0O 10) _ w(0) _ (@] yra)
m(0)g(0" [ 67)  7(6")  p(0 | yrr)
The resulting expression for the acceptance probability is

plyrr | 8)p(6 )_P(9 Hp(ytlyrt—lﬁ’)
plyrr | 6)p(67) ) i1 PWe | Y1, 8)

where the required one step prediction densities are straightforwardly
provided by the KF according to

P | y1e-1,0) = N (i | 05%, 1(8),05%Py,_1(0) +01),

where 0 is used as a placeholder for 8’ or 67, respectively.
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w(0,0") =
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Gibbs sampler

The Gibbs sampler is a particularly popular special case of the
Metropolis Hastings sampler, applicable when the conditional
distributions

mi(z | z-1)

are tractable and easy to sample from. Here, z_; denotes all the
elements in z, but the I'" one.
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Gibbs sampler

51(51)

Algorithm 4 Gibbs sampler (GS)
1. Initialise: Set the initial state z! = (21, z}, ..
2. Fori = 1to M, iterate:

1. Draw zhLl ~p(z1 |2, ...

. Zk).

,Zh)

2. Draw zy'! ~ p(zo | 2712, .

,Z4)

K. Draw zi ™ ~ p(zx | 247, .., 2%)

See the lecture note for properties of the MH and the Gibbs

samplers.
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