
On Parameter and State Estimation for Linear
Differential-Algebraic Equations

Markus Gerdin, Thomas B. Schön 1, Torkel Glad, Fredrik Gustafsson, Lennart Ljung

Automatic Control
Linköping University

SE-581 83 Linköping, Sweden

Abstract

The current demand for more complex models has initiated a shift away from state-space models towards models described by
differential-algebraic equations (DAEs). These models arise as the natural product of object-oriented modeling languages, such
as Modelica. However, the mathematics of DAEs is somewhat more involved than the standard state-space theory. The aim
of this work is to present a well-posed description of a linear stochastic differential-algebraic equation and more importantly
explain how well-posed estimation problems can be formed. We will consider both the system identification problem and the
state estimation problem. Besides providing the necessary theory we will also explain how the procedures can be implemented
by means of efficient numerical methods.
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1 Identification, Modeling and Stochastic
Differential-Algebraic Equations

System identification is about estimating models from
observed signals from a system. It is of increasing inter-
est to combine this with physical modeling, that is to
use model structures that are founded in physical under-
standing of the system. This is often called grey box iden-
tification. The classical way of dealing with this has been
to construct state-space models where unknown con-
stants enter as parameters to be estimated. See, among
many references, e.g., [17], Section 4.3, [4], [12], and [20].
There are also software packages for identifying such
grey box models, both linear and non-linear ones, e.g.,
[18], [4], [20].

However, today’s modeling efforts are no longer focused
on state-space models. Demands on modularity and
building of complex models from model libraries have
favored object-oriented modeling. See, e.g., [8], [22]. In
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an object-oriented modeling approach, the user does the
work by connecting simple models, often by graphical
programming. The program collects all the basic model
equations and the connection equations and sorts them
to be used for efficient simulations (and other applica-
tions). It is not intended that the user should be involved
in this organization of equations, or even see the result.

It is natural to have the same approach to grey box
identification:

• Build the physical model by connecting simple build-
ing blocks

• Point to the physical parameters that are unknown in
these blocks

• Mark points where it is likely that disturbances (un-
measured inputs) enter

• Mark which external signals that are known (mea-
sured inputs)

• Declare which signals that are measured (outputs) and
the measurement accuracies

• Enter the measured signals and let the computer es-
timate the unknown parameters

But do not bother about dealing with, or even seeing a
complete, organized model.

For this it will be essential to work with model rep-
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resentations that are close to those of object-oriented
modeling tools, like Modelica. These work with inter-
nal variables which we will collect in a vector z(t), and
external signals, which will be denoted by ũ. The equa-
tions that describe the basic models and the connections
are mathematical relations involving these variables and
their derivatives. It is sufficient to consider just first or-
der derivatives of z, since higher order derivatives and
derivatives of ũ can be handled by extending the vector
z. (This is also how Modelica treats the equations.) In
this paper we shall only consider linear models, which
means that any collection of equations can be summa-
rized as

Eż(t) = Fz(t) + Gũ(t). (1)
This is a linear differential-algebraic equation (DAE).
It is also known as a descriptor form representation of
the model. See, e.g., [6], [5], [16] for the general theory
around these.

In general, all physical constants that are required to
describe the models and the model connections are not
known, so the matrices E,F, G will typically contain
unknown parameters.

If E in (1) is invertible, the DAE can easily be converted
to a regular state-space model. Otherwise, various trans-
formations can be used that bring out the model prop-
erties, see e.g., [6], and the appendices of this paper. An
essential feature in this is that a DAE may hide implicit
differentiations of ũ.

It is essential to distinguish between two types of exter-
nal signals ũ:

• One that corresponds to measured inputs, denoted by
u. These may be control inputs chosen by the user, or
measurable disturbances.

• One that corresponds to unmeasured inputs, denoted
by w. These are typically disturbance signals, that are
known to occur at certain model connections, but are
not measurable. Instead they are typically described
as stochastic processes.

A DAE which contains external variables w that are
modeled as stochastic processes will be called a Stochas-
tic Differential-Algebraic Equation (SDAE).

The modeling process thus results in an SDAE, which
contains unknown parameters. The identification prob-
lem is to estimate these. For that, the measured inputs u
will be used together with other measurements of com-
binations of the internal variables. For this problem a
number of questions arise:

• Can a likelihood function for the estimation of the pa-
rameters be formulated, taking into account the dis-
turbance signals w, and the statistics of the measure-
ments?

• Is there a guarantee that the implicit differentiations
of w that may be hidden in an SDAE do not lead
to non-treatable mathematical objects, like differenti-
ated white noise?

• How should algebraic relationships between the vari-
ables z be handled when estimating initial conditions?

These are the questions that will be discussed in the
current contribution.

2 Problem Formulation

Consider the linear SDAE

E(θ)ż(t) = F (θ)z(t) + G(θ)u(t) +
nw∑
l=1

Jl(θ)wl(t, θ)

(2a)
z(t0, θ) = z0(θ) (2b)

dim z(t) = n (2c)

where θ is a vector of unknown parameters which lie in
the domain DM and wl(t, θ) is a scalar Gaussian second
order stationary process with spectrum

Φwl
(ω, θ) (3)

which is rational in ω with pole excess 2pl. This means
that

lim
ω→∞

ω2plΦwl
(ω, θ) = Cl(θ)

0 < Cl(θ) < ∞ θ ∈ DM.

The input u(t) is known for all t ∈ [t0, T ]. It will also be
assumed that it is differentiable a sufficient number of
times. The condition that the input is known for every
t typically means that it is given at a finite number of
sampling instants, and its intersample behavior between
these is known, like piecewise constant or piecewise lin-
ear. It will be assumed that det(sE − F ) is not zero for
all s. This condition guarantees that a unique solution
z(t) exists if there is no noise, which can be realized by
calculating the transfer function of the system. See also
[6].

An output vector is measured at sampling instants tk:

y(tk) = H(θ)z(tk) + e(tk) (4)

where e(tk) is a Gaussian random vector with covariance
matrix R2(k), such that e(tk) and e(ts) are independent
for k 6= s and also independent of all the processes wl.

The problem treated in this paper is to estimate the
unknown parameters θ using u(t) and y(tk). As men-
tioned earlier, problems might arise with differentiated

2



noise or with elements of the internal variables z(t) be-
ing equal to white noise (which has infinite variance). It
must therefore be required that the model structure (2)
is well-posed:

Definition 1 Let z(t, θ) be defined as the solution to (2)
for a θ ∈ DM. The problem to estimate θ from knowledge
of u(t), t ∈ [t0, T ] and y(tk), k = 1, . . . , N ; tk ∈ [t0, T ]
is well-posed if H(θ)z(tk, θ) has finite variance for all
θ ∈ DM.

Note that the initial value z0(θ) may not be chosen freely
when computing z(t, θ). See Remark 3 in the next sec-
tion. The possibly conflicting values in z0(θ) will be ig-
nored, and actually have no consequence for the compu-
tation of z(t, θ) for t > t0.

For a well-posed estimation problem the likelihood func-
tion can be computed, L

(
y(t1), . . . , y(tN ); θ

)
, which is

the value of the joint probability density function for the
random vectors y(tk) at the actual observations. This
will be discussed in Section 5.

3 Main Result

The main result of this contribution is the characteriza-
tion of a well-posed model structure, which is presented
in this section. Before presenting the result, some nota-
tion must be introduced. Let the range and null space of
a matrix A be denoted by

R(A) and N (A)

respectively. Furthermore, the following definition of an
oblique projection will be used.

Definition 2 Let B and C be spaces with B ∩ C = {0}
that together span Rn. Let the matrices B̄ and C̄ be bases
for B and C respectively. The oblique projection of a
matrix A along B on C is defined as

A/B C ,
(
0 C̄

)(
B̄ C̄

)−1

A. (5)

Note that the projection is independent of the choice of
bases for B and C.

This definition basically follows the definition in [23, Sec-
tion 1.4.2]. However, we here consider projections along
column spaces instead of row spaces. Also, the condi-
tions on the spaces B and C give a simpler definition.
The more general version in [23] is not necessary here.

The main result can now be formulated as follows:

Theorem 3 Consider the model (2). Let λ(θ) be a scalar
such that λ(θ)E(θ) + F (θ) is invertible. Let

Ē(θ) =
(
λ(θ)E(θ) + F (θ)

)−1
E(θ). (6)

Then the estimation problem (2)–(4) is well-posed if and
only if

[
Ēj(θ)

(
λ(θ)E(θ) + F (θ)

)−1
Jl(θ)

]/
R
(
Ēn(θ)

)N (Ēn(θ)
)

∈ N
(
H(θ)

)
j ≥ pl,∀l (7)

where 2pl is the pole excess of the spectrum (3) of wl.

PROOF. See Appendix A.

Remark 1: If λE(θ)+F (θ) is singular for all λ at some
θ ∈ DM, the DAE (1) is singular, which means either
that the DAE is not solvable, or that a part of z is not
uniquely determined by the DAE. See further [6].
Remark 2: The theorem states that (7) is equivalent to
well-posedness of the estimation problem for each λ(θ)
that gives invertible λ(θ)E(θ) + F (θ). This means that
any λ(θ) with invertible λ(θ)E(θ)+F (θ) can be used to
examine well-posedness.
Remark 3: z(t, θ), t > t0, and the likelihood function
depend on z0(θ) only in terms of

z0(θ)/N
(
Ēn(θ)

)R(Ēn(θ)
)
. (8)

The part of z0(θ) that is removed by the projection (8)
cannot be chosen freely, but is of no consequence for the
estimation problem. See Section 5.

For a demonstration on how the result can be applied,
the reader is referred to the example in Section 7.

4 Measuring Signals with Infinite Variance

It may happen that a selected output has infinite in-
stantaneous variance. This happens when condition (7)
is violated. This is best illustrated by an example: Let
the SDAE be

ż1(t) = −2z1(t) + v1(t) (9a)
0 = −z2(t) + v2(t) (9b)

where vl(t) are continuous-time white noises. We would
like to measure z1 +z2. This is not a well-posed problem
since z2 has infinite variance. A convenient way of dealing
with this in a modeling situation would be to explicitly
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introduce a presampling low pass filter, to introduce the
measured variable

z3(t) =
1

0.01p + 1
(
z1(t) + z2(t)

)
.

Including this new variable in the SDAE gives

ż1(t) = −2z1(t) + v1(t)
ż3(t) = −100z3(t) + 100z1(t) + 100v1(t)

0 = −z2(t) + v1(t)

with the sampled measurements

y(tk) = z3(tk) + e(tk).

This is a well-posed problem. The method suggested here
is related to so-called integrating sampling, see e.g., [2,
page 82].

5 The Log-Likelihood Function and the Maxi-
mum Likelihood Method

To implement the maximum likelihood method for pa-
rameter estimation, it is necessary to compute the like-
lihood function. The likelihood function for the esti-
mation problem is computed from the joint probabil-
ity density function of the observations y(tk). It is cus-
tomary to determine this from the conditional densities
p(y(tk)|y(t0) . . . y(tk−1), u(·), θ). (See, e.g., Section 7.4 in
[17].) In other words, we need the one-step ahead pre-
dictions of the measured outputs.

By representing the disturbances wl(t, θ) as outputs
from linear filters, driven by white noise vl (which is
possible, since they have rational spectral densities),
and transforming the SDAE equations (2)–(4) to stan-
dard form, see (B.14)–(B.17), we obtain the following
representation of y(tk) (provided that the estimation
problem is well-posed):

ẋ(t) = A(θ)x(t) + B(θ)u(t) + L(θ)v(t) (10a)
y(tk) = C(θ)x(tk) (10b)

+
m∑

l=1

(
Dl(θ)

dl−1

dtl−1
u(tk)

)
+ e(tk)

v(t) =
[
v1(t) v2(t) · · · vnv (t)

]T
(10c)

Ev(t)vT (s) = R1δ(t− s) (10d)
Ee(tk)eT (ts) = R2(k)δtk,ts (10e)

The output y(tk) is not affected by white noise v(t) or its
derivatives since the estimation problem is well-posed.
Note that (10a) should be interpreted as a stochastic
integral according to, e.g., Itô or Stratonovich, but here
we choose the more convenient notation of (10a). This is

a standard linear prediction problem with continuous-
time dynamics and continuous-time white noise and
discrete-time measurements. The Kalman filter equa-
tions for this are given, e.g., in [13], and they define
the one-step ahead predicted outputs ŷ(tk|θ) and the
prediction error variances Λ(tk, θ). With Gaussian dis-
turbances, we obtain in the usual way the log-likelihood
function

VN (θ) =
1
2

N∑
k=1

(
y(tk)− ŷ(tk|θ)

)T Λ−1(tk, θ) (11)

×
(
y(tk)− ŷ(tk|θ)

)
+ log det Λ(tk, θ).

The parameter estimates are then computed as

θ̂ML = arg min
θ

VN (θ). (12)

In practice, the important question of how the state-
space description should be computed remains. As dis-
cussed in Section 8, the form (10) can be computed us-
ing numerical software. But if some elements of the ma-
trices are unknown, numerical software cannot be used.
Another approach could be to calculate the canonical
forms using symbolical software. This approach has not
been thoroughly investigated, and symbolical software
is usually not as easily available as numerical software.
The remedy is to make the conversion using numerical
software for each value of the parameters that the identi-
fication algorithm needs. Consider for example the case
when the parameters are to be estimated by minimiz-
ing (11) using a Gauss-Newton search. For each parame-
ter value θ that the Gauss-Newton algorithm needs, the
transformed system (10) can be computed.

If the initial condition of the system is unknown, it
should be estimated along with the parameters. For
state-space systems, this is done by parameterizing the
initial state, x(t0) = x0(θ). For linear SDAE systems
care must be taken when parameterizing the initial
value. From (A.3) we get that

z(t0) =
[
T1(θ) T2(θ)

] [xs(t0)

xa(t0)

]
. (13)

It is also obvious from the transformed system equa-
tions (A.4a) and (A.7) that xs(t0) can be parameterized
freely, while xa(t0) is specified by the input and noise
signals. The part of z(t0) that can be parameterized is
thus

z(t0)/R(T2)R(T1) = z(t0)/N
(
Ēn(θ)

)R(Ēn(θ)
)

where Ē(θ) is the matrix defined in (6). Note that since
xa is determined by (A.7), any initial conditions that are
specified for xa can be ignored in the identification pro-
cedure since they do not affect the likelihood function.
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6 State Estimation

In many applications it is useful to estimate variables
that are not measured. The standard method to estimate
such variables for state-space systems is the Kalman fil-
ter. In this section it will be discussed how the Kalman
filter can be used to estimate the internal variables z(t)
of a linear SDAE. As for the identification case, the prob-
lem must be well-posed. The results follow directly from
the earlier discussion, so we will be rather brief. Consider
the linear SDAE

Eż(t) = Fz(t) + Gu(t) +
nw∑
l=1

Jlwl(t) (14a)

z(t0) = z0 (14b)
dim z(t) = n (14c)

where wl(t) is a Gaussian second order stationary pro-
cess with spectrum Φwl

(ω) which is rational in ω with
pole excess 2pl. The input u(t) is known for all t ∈ [t0, T ],
and is differentiable a sufficient number of times. An out-
put vector is measured at sampling instants tk:

y(tk) = Hz(tk) + e(tk) (15)

where e(tk) is a Gaussian random vector with covariance
matrix R2(k), such that e(tk) and e(ts) are independent
for k 6= s and also independent of all the processes wl.

As for the parameter estimation problem, it must be
required that y(tk) has finite variance. For the estimation
problem to make sense, it must also be required that the
part of z(t) that is to be estimated has finite variance.
The part of z(t) that is to be estimated will be written
as Mz(t) for some constant matrix M .

Definition 4 Let z(t) be defined as the solution to
(14). The problem to estimate Mz(t) from knowledge of
u(t), t ∈ [t0, T ] and y(tk), k = 1, . . . , N ; tk ∈ [t0, T ] is
well-posed if Hz(tk) and Mz(tk) have finite variance.

As discussed earlier, the initial value z0 may not be cho-
sen freely, but the possibly conflicting values have no
consequence for the computation of z(t) for t > t0.

As for the parameter estimation problem, it is possible
to examine if a problem is well-posed using certain sub-
spaces:

Theorem 5 Consider (14)–(15). Let λ be a scalar such
that (λE + F ) is invertible. Let

Ē = (λE + F )−1E. (16)

Then the estimation problem (14)–(15) is well-posed if

and only if

[
Ēj(λE + F )−1Jl

]/
R(Ēn)

N (Ēn) ∈ N

(
H

M

)
j ≥ pl,∀l

(17)

PROOF. This result follows directly from Theorem 3.

As discussed previously, the disturbances wl(t) can be
written as outputs from linear filters, driven by white
noise vl. Transforming the linear SDAE to standard
form, see (B.14)–(B.17), gives the following representa-
tion of y(tk) and z(tk). The equation for Mz(t) is not
explicitly given in the appendix, but it can be treated
as a second measurement without measurement noise.

ẋ(t) = Ax(t) + Bu(t) + Lv(t) (18a)

Mz(t) = C̄x(t) +
m∑

l=1

(
D̄l

dl−1

dtl−1
u(t)

)
(18b)

y(tk) = Cx(tk) +
m∑

l=1

(
Dl

dl−1

dtl−1
u(tk)

)
+ e(tk)

(18c)

v(t) =
[
v1(t) v2(t) · · · vnv (t)

]T
(18d)

Ev(t)vT (s) = R1δ(t− s) (18e)
Ee(tk)eT (sk) = R2(k)δtk,ts (18f)

As noted earlier, this filtering problem can be solved
using the Kalman filter (e.g., [13]).

The problem of estimating internal variables in DAE
and modeling SDAE has to some extent been discussed
by other authors. In [19], it is guaranteed that the noise
is not differentiated by assuming that the system is in-
dex 1 (see, e.g., [5]). The assumption that the system is
index 1 is more restrictive than is necessary, and rules
out some applications such as many mechanics systems.
[19] also notes that some internal variables actually may
be generalized stochastic processes, that is, equal to a
white noise process. [25] makes the same assumption as
[19], but also treats a class of nonlinear SDAE.

In [7] index 1 is assumed and a Kalman filter is con-
structed. However, in the estimation procedure the au-
thors seem to overlook the fact that some variables may
have infinite variance. In [15], the original system spec-
ification may specify derivatives of white noise, but a
controller is designed that removes any derivatives. In
[11] the restrictive assumption that R(F G) ⊆ R(E)
guarantees that no derivatives appear, although this is
not stated explicitly. In [3] nonlinear semi-explicit SDAE
(see, e.g., [5]) are discussed. Here well-posedness is guar-
anteed by only adding noise to the state-space part of
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the system. In [21] a transformation to a standard form
is used to study when the filter problem is well-defined.
Finally, in [10] the state estimation approach described
in this section is discussed in more detail.

7 An Example

This section presents an example that demonstrates the
principles of the results discussed in the paper. Consider
two bodies, each with unit mass, moving in one dimen-
sion with velocities v1 and v2 and subject to external
forces w1 and w2 respectively. If the two bodies are joined
together the situation is described by the following set
of equations

v̇1(t) = f(t) + w1(t)
v̇2(t) = −f(t) + w2(t)

0 = v1(t)− v2(t)
(19)

where f is the force acting between the bodies. It is typ-
ical of the models obtained when joining components
from model libraries that too many variables are in-
cluded. (In this simple case it is of course obvious to the
human modeler that this model can be simplified to that
of a body with mass 2 accelerated by w1 + w2.) In the
notation of (2) we have, with z = [v1 v2 f ]T ,

E =


1 0 0

0 1 0

0 0 0

F =


0 0 1

0 0 −1

1 −1 0

 J1 =


1

0

0

 J2 =


0

1

0

 .

With λ = 1 we get

Ē =
1
2


1 1 0

1 1 0

1 −1 0


which gives

R(Ē3) = sp




1

1

0


 ,N (Ē3) = sp




1

−1

0

 ,


0

0

1


 .

Calculating the left hand side of condition (7), we get

[
Ēj(λE + F )−1J1

]/
R(Ē3)

N (Ē3) =

{
1
2

(
0
0
1

)
j = 0

0 j > 0.[
Ēj(λE + F )−1J2

]/
R(Ē3)

N (Ē3) =

{
1
2

(
0
0
−1

)
j = 0

0 j > 0.

If w1 and w2 are white noise (pole excess zero, p1 = 0
and p2 = 0), condition (7) is satisfied as soon as the last
column of H is zero, showing that all linear combina-
tions of v1 and v2 are well-defined with finite variance.
Selecting y = f is not allowed since f has infinite vari-
ance. If both w1 and w2 have pole excess greater than
zero, all H satisfy the condition.

8 Numerical Methods

The transformation to (B.11) which is required to com-
pute the forms (10) and (18) can be computed numer-
ically with tools from the linear algebra package LA-
PACK [1]. LAPACK is a is a collection of routines writ-
ten in Fortran77 that can be used for systems of linear
equations, least-squares solutions of linear systems of
equations, eigenvalue problems, and singular value prob-
lems. LAPACK is more or less the standard way to solve
this kind of problems, and is used by commercial soft-
ware like Matlab.

Some ideas related to the method presented in this sec-
tion for computing the canonical form, have earlier been
published in [24]. The presentation here is however more
detailed, and uses the software from the freely available
LAPACK package.

The computation is performed by first transforming the
system to generalized real Schur form and then solving a
generalized Sylvester equation as described in the num-
bered list below.

(1) Start with a linear SDAE system:

Eż(t) = Fz(t) + Gu(t) + Jv(t) (20a)
y(tk) = Hz(tk) + e(tk) (20b)

The goal is to find the transformation PEQQ−1ż(t)
= PFQQ−1z(t) + PGu(t) + PJv(t) that converts
it to the form[

I 0

0 N

]
Q−1ż(t) =

[
A 0

0 I

]
Q−1z(t) +

[
Gs

Ga

]
u(t)

+

[
Js

Ja

]
v(t) (21a)

y(tk) =
[
Cs Ca

]
Q−1z(tk) + e(tk).

(21b)

(2) Compute the generalized real Schur form of the ma-
trix pencil λE − F so that

P1(λE − F )Q1 = λ

[
E1 E2

0 E3

]
+

[
F1 F2

0 F3

]
(22)
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where E1, E3, F1, and F3 are upper triangular ma-
trices, possibly with some 2 × 2 blocks on the di-
agonal corresponding to complex eigenvalues. The
diagonal elements should be sorted so that diago-
nal elements of E1 contain only non-zero elements
and the diagonal elements of E3 are zero. Note
that F3 will have non-zero diagonal elements since
det(sE − F ) 6≡ 0.

This computation can be made with one of the
LAPACK commands dgges and sgges.

(3) To get from the block triangular form (22) to a
block diagonal form, solve the generalized Sylvester
equation

E1R + LE3 = −E2 (23a)
F1R + LF3 = −F2 (23b)

to get the matrices L and R. The generalized
Sylvester equation (23) can be solved from the
linear equation system

[
In ⊗ E1 ET

3 ⊗ Im

In ⊗ F1 FT
3 ⊗ Im

][
vec(R)

vec(L)

]
=

[
− vec(E2)

− vec(F2)

]
,

see [14]. Here In is an identity matrix with the same
size as E3 and F3, Im is an identity matrix with the
same size as E1 and F1, ⊗ represents the Kronecker
product and vec(X) denotes an ordered stack of the
columns of a matrix X from left to right starting
with the first column. Since this system of equations
can be large, efficiency can be gained by using the
specialized LAPACK commands stgsyl or dtgsyl
for solving (23).

The blocks E2 and F2 can now be removed:

[
I L

0 I

][
E1 E2

0 E3

][
I R

0 I

]

=

[
E1 E1R + E2 + LE3

0 E3

]
=

[
E1 0

0 E3

]
[
I L

0 I

][
F1 F2

0 F3

][
I R

0 I

]

=

[
F1 F1R + F2 + LF3

0 F3

]
=

[
F1 0

0 F3

]

(4) To summarize, (21) is obtained according to

P =

[
E−1

1 0

0 F−1
3

][
I L

0 I

]
P1 Q = Q1

[
I R

0 I

]
N = F−1

3 E3 A = E−1
1 F1

[
Gs

Ga

]
= PG

[
Js

Ja

]
= PJ[

Cs Ca

]
= HQ.

Note that E1 and F3 are invertible since they are
upper triangular with non-zero diagonal elements
and that N is nilpotent since the diagonal elements
of E3 are zero.

9 Conclusions

The main result of this contribution is Theorem 3,
where we provide necessary and sufficient conditions for
an estimation problem, formed from a linear stochastic
differential-algebraic equation, to be well-posed. Fur-
thermore, we have provided a motivation of the meaning
of a well-posed linear stochastic differential-algebraic
equation. The application of Theorem 3 to solve the
system identification and state estimation problems was
also described. We also provide guidelines for an efficient
implementation of the results using numerical methods.
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A Proof of Theorem 3

In this appendix Theorem 3 is proved. Recall that λ(θ)
is a scalar such that λ(θ)E(θ) + F (θ) is invertible and

Ē(θ) =
(
λ(θ)E(θ) + F (θ)

)−1
E(θ). (A.1)

First we will prove two propositions:

Proposition 6 Consider the linear SDAE (2) with the
matrix Ē(θ) transformed into Jordan form:

Ē(θ) =
[
T1(θ) T2(θ)

] [Es(θ) 0

0 N(θ)

] [
T1(θ) T2(θ)

]−1

(A.2)
where the zero eigenvalues are sorted to the lower right
so that Es is invertible and N is nilpotent of order m.

Then the transformation

z =
[
T1(θ) T2(θ)

]
︸ ︷︷ ︸

T (θ)

[
xs

xa

]
︸ ︷︷ ︸

x

(A.3)
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gives a system description of the form

Es(θ)ẋs =
(
I − λ(θ)Es(θ)

)
xs

+ Gs(θ)u +
nw∑
l=1

Jl,s(θ)wl(θ) (A.4a)

N(θ)ẋa =
(
I − λ(θ)N(θ)

)
xa + Ga(θ)u

+
nw∑
l=1

Jl,a(θ)wl(θ) (A.4b)

where

[
Jl,s(θ)

Jl,a(θ)

]
= T−1(θ)

(
λ(θ)E(θ) + F (θ)

)−1
Jl(θ) (A.5)

[
Gs(θ)

Ga(θ)

]
= T−1(θ)

(
λ(θ)E(θ) + F (θ)

)−1
G(θ). (A.6)

PROOF. Adding λ(θ)E(θ)z to each side of Equa-
tion (2a) and then multiplying from the left with
(λE(θ) + F (θ))−1 gives

Ē(θ)
(
ż + λ(θ)z

)
= z +

(
λ(θ)E(θ) + F (θ))−1

×

(
G(θ)u +

nw∑
l=1

Jl(θ)wl(θ)

)
.

Substituting z = Tx and multiplying from the left with
T−1 gives

T−1Ē(θ)T (ẋ + λx) = x + T−1(λE(θ) + F (θ))−1

×

(
G(θ)u +

nw∑
l=1

Jl(θ)wl(θ)

)

which is the desired form.

Proposition 7 The auxiliary variables xa can be solved
from (A.4b) to give

xa = −
(

I +
( d

dt
+ λ(θ)

)
N(θ) + · · ·+( d

dt
+ λ(θ)

)m−1

Nm−1(θ)
)
×(

Ga(θ)u +
nw∑
l=1

Jl,a(θ)wl(θ)
)

(A.7)

PROOF. Writing (A.4b) as

xa = N(θ)
(

d

dt
+ λ(θ)

)
xa

−
(

Ga(θ)u +
nw∑
l=1

Jl,a(θ)wl(θ)
)

(A.8)

and successively differentiating and multiplying by N(θ)
gives (omitting dependence on θ)

N

(
d

dt
+ λ

)
xa = N2

(
d

dt
+ λ

)2

xa

−N

(
d

dt
+ λ

)(
Gau +

nw∑
l=1

Jl,awl(θ)
)

...

Nm−1

(
d

dt
+ λ

)m−1

xa =

−Nm−1

(
d

dt
+ λ

)m−1(
Gau +

nw∑
l=1

Jl,awl

)

where we have used Nm = 0 in the last equation. A
successive substitution from these equations into (A.8)
then gives (A.7).

We now prove the main result, Theorem 3.

PROOF. Transforming the system into the form (A.4)
we see that the equation for xs can be interpreted as the
stochastic differential equation

dxs =
(
E−1

s (θ)− λ(θ)I
)
xsdt

+ E−1
s (θ)Gs(θ)udt + E−1

s (θ)
nw∑
l=1

Jl,s(θ)dwl (A.9)

so xs has finite variance. Since

H(θ)z = H(θ)T1(θ)xs + H(θ)T2(θ)xa

it must also be required that H(θ)T2(θ)xa has finite vari-
ance. Note that wl(θ) has finite variance if it is differen-
tiated at most pl − 1 times since it has pole excess 2pl.
(A.7) thus gives that H(θ)T2(θ)xa has finite variance if
and only if

H(θ)T2(θ)N j(θ)Jl,a(θ) = 0 j ≥ pl,∀l.

By using the notation [·]/X Y for the oblique projection
on the space Y along the space X andR(A) for the space
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spanned by the columns of the matrix A, this condition
can be written as (omitting dependence on θ)

0 = HT2N
jJl,a

= H
(
0 T2

)(
T1 T2

)−1 [
T1E

j
sJl,s + T2N

jJl,a

]
= H

[
T1E

j
sJl,s + T2N

jJl,a

]/
R(T1)

R(T2)

= H

[(
T1 T2

)(Ej
s 0

0 N j

)(
Jl,s

Jl,a

)]/
R(T1)

R(T2)

= H
[
Ēj(λE + F )−1Jl

]/
R(T1)

R(T2).

Since Es(θ) is invertible and N(θ) is nilpotent, (A.2)
gives that R(T2(θ)) = N (Ēn(θ)) and that R(T1(θ)) =
R(Ēn(θ)), so the condition can also be written[
Ēj(θ)

(
λ(θ)E(θ) + F (θ)

)−1
Jl(θ)

]/
R
(
Ēn(θ)

)N (Ēn(θ)
)

∈ N (H(θ)) j ≥ pl,∀l.

B Standard Form

To implement estimation procedures, it is useful to con-
vert a linear SDAE into a state-space-like form. One
method to do this will be presented in this appendix. It
will be assumed that the corresponding estimation prob-
lem is well-posed.

Consider the original linear SDAE

E(θ)ż(t) = F (θ)z(t) + G(θ)u(t) +
nw∑
l=1

Jl(θ)wl(t, θ)

(B.1)
z(t0, θ) = z0(θ) (B.2)

dim z(t) = n (B.3)

where wl(t, θ) is a Gaussian second order stationary pro-
cess with spectrum Φwl

(ω, θ) which is rational in ω with
pole excess 2pl. An output vector is measured at sam-
pling instants tk:

y(tk) = H(θ)z(tk) + e(tk) (B.4)

where e(tk) is a Gaussian random vector with covariance
matrix R2(k), such that e(tk) and e(ts) are independent
for k 6= s and also independent of all the processes wl.

Since the disturbances wl(t, θ) have rational spectra, it
is possible to write them as outputs from linear filters
driven by white noise, so that

żw(t) = Aw(θ)zw(t) + Bw(θ)v(t) (B.5a)
w(t, θ) = Cw(θ)zw(t) + Dw(θ)v(t) (B.5b)

where
v(t) =

[
v1(t) · · · vnv (t)

]T
(B.6)

is white noise with variance R1δ(t− s) and

w(t, θ) =
[
w1(t, θ) · · · wnw(t, θ)

]T
. (B.7)

By writing

J(θ) =
[
J1(θ) · · · Jnw

(θ)
]

(B.8)

(B.1), (B.4), and (B.5) can be combined to give[
E(θ) 0

0 I

][
ż(t)

żw(t)

]
=

[
F (θ) J(θ)Cw(θ)

0 Aw(θ)

][
z(t)

zw(t)

]

+

[
G(θ)

0

]
u(t) +

[
J(θ)Dw(θ)

Bw(θ)

]
v(t)

(B.9a)

y(tk) =
[
H(θ) 0

] [ z(tk)

zw(tk)

]
+ e(tk).

(B.9b)

It is a standard result (e.g., [6]) that there exist non-
singular matrices P (θ) and Q(θ) such that multiplying
(B.9a) from the left with P (θ) and doing the variable
transformation [

z(t)

zw(t)

]
= Q(θ)

[
xs(t)

xa(t)

]
(B.10)

gives a system of the form[
I 0

0 N(θ)

][
ẋs(t)

ẋa(t)

]
=

[
A(θ) 0

0 I

][
xs(t)

xa(t)

]

+

[
Gs(θ)

Ga(θ)

]
u(t) +

[
Js(θ)

Ja(θ)

]
v(t) (B.11a)

y(tk) =
[
Cs(θ) Ca(θ)

] [xs(t)

xa(t)

]
+ e(tk) (B.11b)

where N(θ) is a nilpotent matrix so that Nm(θ) = 0
for some m. That this transformation exists can also be
realized from, e.g., the Kronecker canonical form for a
matrix pencil, see e.g., [9].

Writing the second row of (B.11a) as

xa(t) = N(θ)
d

dt
xa(t)−Ga(θ)u(t)− Ja(θ)v(t) (B.12)
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and successively differentiating and multiplying by N(θ)
gives

N(θ)
d

dt
xa(t) = N2(θ)

d

dt
ẋa(t)

−N(θ)
d

dt

(
Ga(θ)u(t)− Ja(θ)

)
v(t)

...

Nm−1(θ)
dm−1

dtm−1
xa(t) =

−Nm−1 dm−1

dtm−1

(
Ga(θ)u(t)− Ja(θ)v(t)

)
where Nm(θ) = 0 has been used in the last equation.
Successively substituting this into (B.12) gives

xa(t) = −
(

I +
d

dt
N(θ) + · · ·+ dm−1

dtm−1
Nm−1(θ)

)
×
(
Ga(θ)u(t) + Ja(θ)v(t)

)
. (B.13)

Inserting into (B.11b) gives (omitting dependence on θ)

y(tk) = Csxs(tk) + Ca

×
m∑

l=1

(
dl−1

dtl−1
N l−1

(
Gau(tk) + Jav(tk)

))
+ e(tk).

If it is assumed that the SDAE forms a well-posed esti-
mation problem, y(tk) does not depend on white noise,
i.e., v(t). This means that y(tk) can be written as

y(tk) = Csxs(tk)+Ca

m∑
l=1

(
dl−1

dtl−1
N l−1Gau(tk)

)
+e(tk).

The above discussion gives that a linear SDAE that
forms a well-posed estimation problem can be written in
the state-space like form

ẋs(t) = A(θ)xs(t) + Gs(θ)u(t) + Js(θ)v(t) (B.14a)
y(tk) = Cs(θ)xs(tk) (B.14b)

+ Ca(θ)
m∑

l=1

dl−1

dtl−1
N l−1(θ)Ga(θ)u(tk) + e(tk)

where
v(t) =

[
v1(t) · · · vnv (t)

]T
(B.15)

is continuous-time white noise signals with variance

Ev(t)vT (s) = R1δ(t− s) (B.16)

and e(tk) is a sequence of discrete-time white noise with
variance

Ee(tk)eT (sk) = R2(k)δtk,ts . (B.17)

We call (B.14)–(B.17) the standard form for a linear
SDAE.
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