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Abstract—This paper presents a new solution to the loop
closing problem for 3D point clouds. Loop closing is the problem
of detecting the return to a previously visited location, and
constitutes an important part of the solution to the Simultaneous
Localisation and Mapping (SLAM) problem. It is important to
achieve a low level of false alarms, since closing a false loop
can have disastrous effects in a SLAM algorithm. In this work,
the point clouds are described using features, which efficiently
reduces the dimension of the data by a factor of 300 or more. The
machine learning algorithm AdaBoost is used to learn a classifier
from the features. All features are invariant to rotation, resulting
in a classifier that is invariant to rotation. The presented method
does neither rely on the discretisation of 3D space, nor on the
extraction of lines, corners or planes. The classifier is extensively
evaluated on publicly available outdoor and indoor data, and is
shown to be able to robustly and accurately determine whether a
pair of point clouds is from the same location or not. Experiments
show detection rates of 63% for outdoor and 53% for indoor data
at a false alarm rate of 0%. Furthermore, the classifier is shown
to generalise well when trained on outdoor data and tested on
indoor data in a SLAM experiment.

I. INTRODUCTION

Over the past two decades, the Simultaneous Localisation
and Mapping (SLAM) problem has received considerable at-
tention [1, 2]. A central and highly important part of SLAM
is loop closing, i.e. detecting that the robot has returned to a
previously visited location. In this paper we consider robots
equipped with laser range sensors, and define the problem of
loop closure detection as determining whether or not the laser
point clouds are from the same location. See Figure 1 for an
illustration of the problem.

In previous work we showed that the problem of detecting
loop closure from 2D horizontal laser point clouds could be
cast as a two class (either same place or not) classification task
[3]. By introducing 20 features, we were able to learn a clas-
sifier for real-time loop closure detection. The classification
technique used is based on the machine learning algorithm
AdaBoost [4], which builds a classifier by concatenating
decision stumps (one level decision trees). The result is a
powerful nonlinear classifier which has good generalisation
properties [5, 6].

The main contribution of the paper is the extension of
previous work on 2D horizontal point clouds [3] to full
3D point clouds. 41 features are defined and used to create
decision stumps. The stumps are combined into a classifier
using AdaBoost. We evaluate our approach for loop closing
on publicly available data and compare our results to pre-
viously published results. The loop closure classifier is used
in a SLAM framework using an Exactly Sparse Delayed-state
Filter (ESDF) [7], and is shown to generalise well between
environments.

II. RELATED WORK

This section summarizes previous work on loop closure
detection using range sensors, in both 2D and 3D, as well
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Fig. 1: Illustration of the loop closure detection problem. Are
the laser point clouds from the same location? Color is used
to accentuate height.

as cameras. The detection results are summarised in Table I,
where we compare our results to the results reported in
related work. Neither one of the methods presented here uses
prior knowledge of the relative pose for the data pair that is
compared, however tests were performed in slightly different
manner, making a direct comparison of the results difficult.

TABLE I: Comparison of previous results and our results.
Detection rate (D) for given levels of false alarm rate (FA).

Source FA [%] D [%] Comment

[8] 0 37 Images, City Centre
0 48 Images, New College

[9] 1 51 2D point clouds
[3] 1 85 2D point clouds
[10] 0 47 3D point clouds

Our results 0 63 3D point clouds

Previously we presented loop closure detection by com-
pressing point clouds to feature vectors which were then
compared using an AdaBoost learned classifier [3]. Detection
rates of 85% were achieved at 1% false alarm rate. The point
clouds were described using 20 rotation invariant features
describing different geometric properties of the point clouds.

A similar classification approach based on point cloud
features and AdaBoost has been used for people detection
[11] and place recognition [12]. For people detection the
point clouds were segmented and each segment classified as
belonging to a pair of legs or not, detection rates of over 90%
were achieved. For place recognition, three classes were used
(corridor, room and doorway) [12], hence the results do not
easily compare to the two class loop closure detection results
presented here.

An example of loop closure detection for 2D point clouds is
the work by Bosse et al [9]. They use consecutive point clouds
to build submaps, which are then compressed using orientation
and projection histograms as a compact description of submap
characteristics. Entropy metrics and quality metrics are used to
compare point clouds to each other. A 51% detection rate for
1% false alarm rate is reported for suburban data. Extending



the work on 2D data, keypoints are designed which provide
a global description of the point clouds [13], thus making it
possible to avoid pairwise comparison of all local submaps
which can prove to be very time consuming for large data
sets.

For the similar problem of object recognition using 3D
points, regional shape descriptors have been used [14, 15].
Object recognition must handle occlusion from other objects,
similarly to how loop closure detection must handle occlusion
from moving objects, however object recognition often rely
on an existing database of object models. Regional shape
descriptors have also been used for place recognition for 3D
point clouds [16]. Here, place recognition is defined as the
problem of detecting the return to the same place and finding
the corresponding relative pose [13, 16], i.e. it includes both
relative pose estimation, and what we here define as loop
closure detection.

Magnusson et al have presented results for loop closure
detection for outdoor, indoor and underground mine data [10].
Their method is based on the Normal Distribution Transform
(NDT) [17], which is a local descriptor of the point cloud.
The point cloud is discretised using bins and the points in
each bin are described as either linear, planar or spherical.
The NDT is exploited to create feature histograms based on
surface orientation and smoothness. For the outdoor data 47%
detection is achieved with no false alarms.

Cummins and Newman have presented results on loop
closure detection using images [8], with detection rates of up
to 37% and 48% at 0% false alarm for the City Centre and the
New College datasets [18], respectively. However, it should be
noted that it is difficult to compare results from different types
of sensors. Cummins and Newman also present interesting
methods to handle occlusion, a problem that is often present
in dynamic environments. In more recent work, they show
results for a very large 1000km data set [19]. A 3% detection
rate is achieved at 0% false alarm rate, which is still enough
detection to produce good mapping results.

III. LOOP CLOSURE DETECTION

This section presents the loop closure detection algorithm.
A mobile robot equipped with a laser range sensor moves
through unknown territory and acquires point clouds pk at
times tk along the trajectory. A point cloud pk is defined as

pk = {pki }Ni=1, pki ∈ R3, (1)

where N is the number of points in the cloud. For simplicity,
index k is dropped from pki in the remainder of the paper.
After moving in a loop the robot comes to a previously visited
location, and the two point clouds, acquired at different times,
should resemble each other. A comparison of the point clouds
is performed in order to determine if a loop closure has
occurred or not. To facilitate this comparison, two types of
features are first introduced. From the features a classifier is
then learned using AdaBoost. The learned classifier is used to
detect loop closure in experiments. A block diagram overview
of the loop closure detection is shown in Figure 2.

A. Data
For experiments, two data sets have been used, both are

publicly available [20]1. The first one, Hannover 2 (hann2 ),

1Thanks to Oliver Wulf, Leibniz University, Germany and Martin Magnus-
son, AASS, Örebro University, Sweden for providing the data sets.
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Fig. 2: Overview of loop closure detection algorithm. The
input is a pair of point clouds and the output is a loop closure
classification decision.

contains 924 outdoor 3D scans from a campus area, covering
a trajectory of approximately 1.24 km. Each 3D point cloud
contains approximately 16600 points with a maximum mea-
sureable range of 30m. From this data set 3130 positive data
pairs (point clouds from the same location) and 7190 negative
data pairs (point clouds from different locations) are taken.
With 924 point clouds, several more pairs could have been
found in the data, however the number of training data was
limited to the 10320 pairs to keep computational times during
experiments tractable. The positive data pairs were chosen as
the scan pairs taken less than 3m apart [10]. The negative data
were chosen as a random subset of the remaining data pairs,
i.e. those more than 3m apart.

The second data set, AASS-loop (AASS ), contains 60
indoor 3D scans from an office environment, covering a tra-
jectory of 111 m. Each 3D point cloud contains approximately
112000 points with a maximum measureable range of 15m.
From this data set 16 positive and 324 negative data pairs are
taken. The positive data pairs are those taken less than 1m
apart [10], the negative data pairs are a random subset of the
remaining data pairs. Due to the limited number of positive
data pairs, we chose to not use all negative data. The impact
of few data pairs is adressed further in Section IV.

Both data sets were acquired using 2D planar laser range
finders, and 3D point clouds were obtained using pan/tilt units.
Each 3D point cloud thus consists of a collection of 2D planar
range scans. The points in each 3D point cloud are be ordered
according to the order in which the points are measured by the
sensor setup. Some of the features defined in Section III-B use
this ordering of the points when the feature value is computed.

B. Features
The main reason for working with features is dimensionality

reduction - working with nf features is easier than working
with the full point clouds since nf � N . In this work, two
types of features are used. The first type, f1j , is a function
that take a point cloud as input and returns a real number.
Typically, features that represent geometric properties of the
point cloud are used, e.g. volume of point cloud or average
range. The features of the first type are collected in a vector
f1k ∈ Rnf1 , where k again refers to the time tk when the point
cloud was acquired. The second type of feature used, f2j , are
range histograms with various bin sizes bj . In total nf = 41
features are used, nf1 = 32 of type 1 and nf2 = 9 of type 2.

In order to facilitate comparison of two point clouds from
times tk and tl, the features of both types are compared. For
the first type, elementwise absolute value of the feature vector
difference is computed,

F1
k,l =

∣∣f1k − f1l
∣∣ . (2)

The underlying idea here is that point clouds acquired at the
same location will have similar feature values f1k and f1l , and
hence each element of F1

k,l should be small. For the second



type of feature, for each bin size bj the correlation coefficient
for the two corresponding range histograms is computed. Here,
the underlying idea is that point clouds acquired at the same
location will have similar range histograms, and thus the
correlation coefficient should be close to 1. The correlation
coefficients are collected in a vector F2

k,l, and the comparisons
of both types of features are concatenated in a vector as
Fk,l =

[
F1
k,l,F2

k,l

]
. Fk,l will henceforth be referred to as the

set of extracted features for two point clouds indexed k and l.
In 2D 20 features were used [3], some of these features have

been generalised to 3D (e.g. area to volume) while others have
been kept as they were inherently in 2D (e.g. average range).
Similar 2D features have been used for people detection and
place recognition [11, 12]. A few of the utilised features are
defined using the range from sensor to point, thus introducing
a depedency on the sensor position from which the point
cloud was acquired. An interesting implication of this is that
the method could possibly be limited to situations where the
robot is following a defined roadway, e.g. a street or an office
hallway, and may not succeed in a more open area, e.g. a
surface mine. In this work it is shown that the method can
detect loop closure from point clouds with up to 3m relative
translation, see Section IV for experimental results. It remains
within future work to fully evaluate how the method scales
against translations > 3m, i.e. how the method handles point
clouds with partial overlap.

Given a point cloud pk, 14 constants need to be specified for
computing the features. The first one, denoted rmax, is the max-
imum measurable range, which is determined by the sensor
that was used for data acquisition. For the hann2 and AASS
data sets we set rmax = 30m and rmax = 15m respectively.
Remaining thresholds need to be specified manually. For both
data sets, the parameters were set to: gdist = 2.5m, gr1 = rmax,
gr2 = 0.75rmax and gr3 = 0.5rmax. Bins of size 0.1, 0.25, 0.5,
0.75, 1, 1.5, 2, 2.5 and 3 metres were used for the range
histograms. For each point pi, the range ri is computed as the
distance from the origin (sensor location) to the point. Any
point with ri > rmax is translated towards the origin so that
ri = rmax before the features are computed. The following
features are used:

1) - 2) Volume: Measures the volume of the point cloud
by adding the volumes of the individual laser measurements.
Each point is seen as the centre point of the base of a pyramid
with its peak in the origin. Let α and β be the laser range
sensor’s vertical and horisontal angular resolution, and let li =

2ri tan
(
α
2

)
and wi = 2ri tan

(
β
2

)
be length and width of the

pyramid base, and hi = ri the height at point i. The volume
of the pyramid is vi = liwihi

3 . The volume is computed as

vmax =
4

3
tan

(α
2

)
tan

(
β

2

)
r3max (3a)

f11 =
1

Nvmax

N∑
i=1

vi =
1

N

N∑
i=1

(
ri
rmax

)3

(3b)

The volume is normalised by dividing by the maximum
measurable volume Nvmax, i.e. the volume when all ranges
equal rmax. Notice that the explicit values of α and β do not
matter. f12 is the volume computed using points with ri < rmax.

3) - 4) Average Range: Let the normalised range be rn
i =

ri/rmax. f13 is the average rn
i for ranges ri < rmax and f14 is

the average rn
i for all ranges.

5) - 6) Standard Deviation of Range: f15 is the standard
deviation of rn

i for ranges ri < rmax and f16 is the standard
deviation of rn

i for all ranges.
7) - 9) Sphere: A sphere is fitted to all points in the cloud

in a least squares sense, which returns the centre of the fitted
sphere pc and the radius of the fitted sphere rc. f17 is rc/rmax,
f18 is the residual sum of squares divided by Nrc,

f18 =
1

Nrc

N∑
i=1

(rc − ‖pc − pi‖)2, (4)

where ‖ · ‖ is the Euclidean norm. f19 is ‖pc‖rmax
.

10) - 12) Centroid: Let p̄ be the mean position of the point
cloud, computed for all points ri < rmax. f110 = ‖p̄‖, f111 is
the mean distance from p̄ for points ri < rmax and f112 is the
standard deviation of the distances from p̄ for points ri < rmax.

13) - 14) Maximum Range: f113 is the number of ranges
ri = rmax and f114 is the number of ranges ri < rmax.

15) - 17) Distance: Let the distance between consecutive
points be δpi = ‖pi − pi+1‖. f115 is the sum of δpi for all
points. f116 is the sum of δpi, for consecutive points with
ri, ri+1 < rmax. f117 is the sum of all δpi < gdist, for
consecutive points with ri, ri+1 < rmax.

18) Regularity: f118 is the standard deviation of δpi, for
consecutive points with ri, ri+1 < rmax.

19) - 20) Curvature: Let A be the area covered by the
triangle with corners in pi−1, pi and pi+1, and let di−1,i,
di,i+1 and di−1,i+1 be the pairwise point to point distances.
The curvature at pi is computed as ki = 4A

di−1,idi,i+1di−1,i+1
.

Curvature is computed for pi ∈ I, where I = {pi :
ri−1, ri, ri+1 < rmax, di−1,i, di,i+1, di−1,i+1 < gdist}. f119 is
the mean curvature and f120 is the standard deviation of the
curvatures.

21) - 22) Range Kurtosis: Range kurtosis is a measure of
the peakedness of the histogram of ranges. Sample kurtosis is
computed for all points ri < rmax as follows

mk =
1

Nri<rmax

∑
i : ri<rmax

(ri − r̄)k, (5a)

f121 =
m4

(m2)
2 − 3, (5b)

where r̄ is mean range, and Nri<rmax is the number of ranges
ri < rmax. f122 is range kurtosis computed for all points in the
cloud.

23) - 26) Relative Range: Let the relative range be rr
i =

ri/ri+1. f123 is the mean of rr
i and f124 is the standard deviation

of rr
i for all ranges. f125 and f126 are the mean and the standard

deviation of rr
i, respectively, computed for ri, ri+1 < rmax.

27) - 32) Range Difference 1-6: Mean and standard
deviation of range difference rd

i = |ri − ri+1|. The features are
calculated for all ranges less than or equal to a varying range
gate gr. gr1 gives f127 (mean) and f128 (standard deviation), and
gr2 and gr3 gives f129 to f132. The features are normalised by
division by the respective gri .

33) - 41) Range Histogram: f233 to f241 are range his-
tograms. Bins of sizes bj are used to tabulate the ranges.

C. Classification and Boosting
AdaBoost is a machine learning algorithm that is used to

learn a classifier from the 41 features. As input to the learning



algorithm, n hand-labeled training data pairs {(Fi1,i2 , yi)}
n
i=1

are provided. yi is a binary variable, yi = {0, 1} for negative
and positive laser pairs, respectively. Fi1,i2 is the set of
extracted features from the i:th training data pair.

The learning phase of AdaBoost is an iterative procedure
that consecutively adds weak classifiers to a set of previously
added weak classifiers to find a good combination that together
constitutes a strong classifier. The weak classifiers adopted are
decision stumps defined as:

c(Fk,l, θ) =

{
1 if pf < pλ
0 otherwise

(6)

with parameters θ = {f, p, λ}, where p is the polarity (p =
±1), f is the particular feature selected and λ is a threshold.
Learning proceeds for T iterations, details and motivation for
how T is chosen is presented in Section IV-A. The output
from AdaBoost is a strong classifier

c (Fk,l) =

{
1 if

∑T
t=1 αtc (Fk,l, θt) ≥ K

∑T
t=1 αt

0 otherwise
(7)

where αt are weights for the weak classifiers c(Fk,l, θt) added
during learning, and K ∈ [0, 1] is a user specified threshold.
The strong classifier (7) is used in SLAM experiments to
detect loop closure. A detailed description of AdaBoost goes
beyond the scope of this paper, the reader is refered to the
references [3, 4]. An overview of the classifier learning is given
in Figure 3.

Extract
features AdaBoost

Fi1,i2
yi

pi1 ,pi2
yi

c (Fk,l)

Fig. 3: Overview of classifier learning. The input is hand
labeled pairs of training data and the output is a learned
classifier.

IV. EXPERIMENTAL RESULTS

This section contains results from experiments2. The classi-
fier is evaluated in terms of detection-rate D, missed detection-
rate MD and false alarm-rate FA, defined as follows:

D =
# positive data pairs classified as positive

# positive data pairs

MD =
# positive data pairs classified as negative

# positive data pairs

FA =
# negative data pairs classified as positive

# negative data pairs

For the loop closing problem, we are concerned with minimis-
ing the number of false alarms while keeping the detection rate
as high as possible. In previous work, D has been reported at
1% FA [3, 9], in other work D has been reported at 0% FA
(or equivalently at 100% precision) [8, 10]. While it is very
important to keep FA low, it is possible to find and reject
false alarms in subsequent stages, e.g. when the relative pose
is found via point cloud registration [3, 9], or using a cascade
of several methods [13]. However, even if a combination of
methods is used, the false alarms have to be rejected at some

2Matlab code is published online, contact the authors for a link.

stage since closing a false loop could prove disastrous for the
localisation and/or mapping process. Further, finding a subset
of loop closures is most often sufficient to produce good results
[8–10, 19]. Therefore, we find the detection rate at 0% false
alarm to be most interesting. However, for completeness and
ease of comparison, we present results at both 0% and 1%
false alarm.

The experiments in Sections IV-A to IV-C were conducted
using k-fold cross validation on the hann2 and AASS data
sets. It is important to note that in each experiment the
validation portion of the data was fully disjoint from the
training portion. The partitioning into folds was performed
by randomly permuting the order of the data. Since differ-
ent permutations give slightly different results, k-fold cross
validation was performed multiple times, each time with a
new data order permutation. The presented results are sample
mean from the cross validations. While the validation and
training data in these experiments are fully disjoint, they are
from the same data set and thus from the same environment.
Experiments where the validation and training data are from
separate environments are presented in Section IV-D.

A. Number of training rounds T
The first experiment was conducted to determine an ap-

propriate number of training rounds T for AdaBoost. Strong
classifiers were trained on the hann2 data for different values
of T between 1 and 250, and the error rates from 200 10-fold
cross validations were examined. Results from the experiment
are shown in Figure 4. From this figure, T = 50 was
determined to be an appropriate number of training rounds.
T = 50 is used in all subsequent experiments.
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Fig. 4: Error rates for hann2 data for different number of
training rounds T in AdaBoost. Total error level (both MD
and FA) stops declining after T = 50 training rounds.

B. Loop Closure Feature Analysis
During the learning phase, in each training round AdaBoost

selects the feature that best improves classifier performance.
The same feature can be added to the classifier multiple times,
and features chosen in early training rounds will have a larger
weight αt than features chosen in later training rounds. Test 1
in Table II shows which features were chosen in the first five
training rounds for both data sets, respectively.

To further examine which features are best for detecting
loop closure, we started by training a strong classifier on all
features. For hann2, the resulting total test error rate was
1.10% and for AASS the total test error rate was 1.92%.
We then proceeded to remove each feature one at a time and
train classifiers on the remaining features. By examining the
resulting test error rates, we could determine which features
had the most negative effect on the error rates after being



TABLE II: Best features for loop closing

TEST 1

Training round 1 2 3 4 5
Added feature, hann2 35 1 7 27 20
Added feature, AASS 33 40 32 36 41

TEST 2, hann2
Feature removed 21 8 10 28 35
Total error [%] 1.29 1.15 1.14 1.13 1.13

TEST 2, AASS
Feature removed 41 22 33 32 40
Total error [%] 2.27 2.24 2.16 2.08 2.04

removed from the set of features. In Table II Test 2 summarises
the results for the five most important features for both data
sets.

As can be seen in Table II, for AASS, the features that are
added in early training rounds also have the largest negative
effect when removed. Those features, numbers 33, 40, 32
and 41, correspond to range histograms with bin sizes 0.1,
2.5 and 3 m, respectively, and standard deviation of range
difference for ranges shorter than or equal to gr3 = 0.5rmax.
For hann2, the results are less consistent, however feature 35,
corresponding to range histogram with bin size 0.5 m, appears
to be most effective at separating the two classes of data pairs.

Furthermore, Tests 1 and 2 show that the most important
features for loop closure detection are not the same for the two
data sets. Since hann2 is an outdoor data set and AASS is an
indoor data set, this could mean that the classifier does not
generalise well when trained and tested on data from different
environments. This issue is addressed further in Section IV-D,
where it is shown that the classifier in fact does generalise
well from outdoor to indoor data.

C. Classifier Characteristics

This experiment was conducted to evaluate the classifier
characteristics, i.e. the classifier’s ability to achieve good levels
of D for low levels of FA. For hann2, 10-fold cross validation
was performed for 750 different permutations of the data
pairs. Due to the smaller number of positive data, for AASS
4-fold cross validation was performed for 10000 different
permutations of the data pairs. By varying the threshold K
in (7), different levels of D and FA are achieved when
the validation data is classified. The results are presented in
Table III, and in Figure 5 as Receiver Operating Characteristic
(ROC) curves, where D is plotted against FA. In the table
detection rates are given ± one standard deviation, and with
the maximum and minimum values that were recorded. As a
comparison, results from related work are included for both
data sets [10]. It should be noted though, that while subsets
of the data sets are used here, results at 1% FA are reported
for the entire data sets in [10]. Thus, the results should be
interpreted with care. In Figure 5, the area under the ROC-
curve is approximately 0.999 for hann2 and 0.936 for AASS.

TABLE III: Classification characteristics, all numbers in %

Data set FA D Min/Max D [10]
hann2 0 63± 6 28/76 47

1 99± 0.1 98/99 81

AASS 0 53± 14 0/88 70
1 78± 6 56/88 63
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Fig. 5: ROC-curve showing D for different levels of FA.

As is seen in Table III, 0% was the lowest D for 0% FA
for AASS. This happened in 5 out of 10000 cross validations.
Furthermore, the mean D is lower than related work [10], and
the standard deviation of D is higher than for hann2. For this
data set the number of positive data pairs is low, compared to
the number of negative data pairs (16 vs. 324), which is an
intuitive reason for the worse performance. The training data
is crucial to the AdaBoost learning, and it is possible that there
is not enough positive pairs to be able to achieve a high degree
of class separation.

To test this hypothesis, 16 positive and 300 negative data
pairs were randomly selected from the large set of hann2
data pairs, and a classifier was learned and evaluated using
4-fold cross validation on the subset of data. Out of 1000
such random subsets, 30 gave classifiers with 0% D for 0%
FA (mean D was 72%± 19% for 0% FA). While this result
is not sufficient to conclude that the low number of positive
data pairs is the sole reason for the worse results for AASS
compared to related work and hann2, it does support the
hypothesis that the relatively low number of positive training
data has a strong negative effect on the learned classifiers
ability to achieve a good degree of class separation. The ROC-
curve corresponding to this test is labeled hann2 subset in
Figure 5. Comparing to the curve for the full hann2 data set
shows a clear negative effect.

D. SLAM Experiment

This experiment was conducted for two reasons, one is to
see how the classifier would perform in a SLAM setting, the
other is to see how the classifier performs when it is trained on
outdoor data and then tested on indoor data. The positive and
negative data pairs from hann2 were used to train a classifier.
The classifier was then used to classify data pairs from the
AASS data set.

The implemented SLAM framework is by now well known,
hence only specific design choices are provided. The reader
is refered to the references for exact implementation details.
A delayed state extended information filter, called ESDF [7],
is implemented. The state vector contains a history of 6-DOF
poses, each with (x, y, z)-position and Euler angles (φ, θ, ψ)
representing roll, pitch and heading as the angles are defined
in [21]. Motion and measurement models are defined using
the coordinate frame notation by Smith, Self and Cheeseman
[22]. Robot motion is computed using 3D-NDT [23], initialised



by odometry3. After loop closure is detected, ICP [24–26]
initialised by the estimated relative pose from the ESDF is used
to compute the relative pose. This is sufficient for the particular
data set used here, however a general solution would require
a method which is independent of the estimated relative pose.

In this experiment each point cloud pk was compared to
all previous point clouds {pi}k−1i=1 . In each time step the
pair with highest

∑T
t=1 αtct (Fk,l), is considered a match if∑T

t=1 αtct (Fk,l) ≥ K
∑T
t=1 αt, cf. (7). All other pairs are

considered to not be matches. Since the time to compare
two point clouds to each other is constant, comparing to all
previous point clouds results in a linearly increasing time com-
plexity as more point clouds are acquired. For the experiments
presented here, this has not been a problem, however for very
large data sets this could become problematic. An alternative
to comparing to all previous data, is to only compare to the
subset of data acquired at locations which are within the
current uncertainty ellipsoid, thus reducing the amount of time
needed to compare point clouds. Doing so is not without
problems though, since inconsistencies in the estimation of
trajectory mean and covariance, e.g. due to linearisation errors,
may lead to true loop closure locations falling outside the
uncertainty ellipsoid [27]. This is typically the case for larger
data sets, where the accrued drift in trajectory estimation
can lead to large estimation errors. Further, an important
purpose of any loop closure detection method is to support
the estimation in exactly such cases, when the estimation of
trajectory mean and covariance is inconsistent. Thus, relying
on mean and covariance to feed candidate pairs to the loop
closure method is inadviceable. As a possible remedy to the
linearly increase time demands of pairwise comparison to all
previous data, global descriptors could be used to obtain a
subset of the pairs [13, 19], for which pairwise comparison
can be made.

The result from the experiment is shown as a classification
matrix in Figure 6a. The (k, l)th element of the classification
matrix is

∑T
t=1 αtct(Fk,l)∑T

t=1 αt
. The corresponding ROC-curve is

labeled SLAM in Figure 5, with 44% D for 0% FA. There
is a high similarity between Figures 6b and 6c, showing that
the generalisation properties of the features and the classifier
are good. The classifier used in the experiment was trained on
outdoor data containing 16600 points per cloud, rmax = 30,
and then tested on indoor data containing 112000 points per
cloud, rmax = 15. Figure 6e shows a 2D projection of the
resulting map from the SLAM experiment, with the robot
trajectory overlaid. The robot trajectory is compared to dead
reckoning in Figure 6d. For this part of the experiment, a
minimum loop size of 5 poses was introduced, explaining why
the detected loop closure between poses 28 and 29 in Figure 6b
is not present in Figure 6e.

E. Time complexity

This experiment was conducted to determine the time com-
plexity of the proposed method. The code used in this work
was implemented in Matlab and run on a 2.83GHz Intel Core2
Quad CPU with 3.48 GB of RAM running Windows. It should
be noted that the implementation has not been optimized for
speed.

3These transformations are available together with the point clouds.

The computation times are presented in Table IV, the times
are averages from computing and comparing features for the
data pairs in each data set. As expected the time to compute
the features is longer for AASS, which contains on average
112000 points per cloud, than for hann2, which contains on
average 16600 points per cloud. Computing the 41 features
only needs to be performed once per point cloud. Comparing
the features from two point clouds takes just under 1ms, and
classifying a set of extracted features takes just under 1ms
when T = 50 weak classifiers are used in the strong classifier.
Training a strong classifier for T = 50 iterations takes 15s
when the hann2 data pairs are used.

TABLE IV: Time complexity, all times in ms

Compute features Compare Compute
hann2 AASS features c

(
Fk,l

)
19.34 225.10 0.845 0.78

V. CONCLUSIONS AND FUTURE WORK

This paper presented a new machine learning approach to
the loop closure detection problem using 3D laser range data.
41 features were defined and combined into a classifier using
AdaBoost. The classifier shows promising and competitive
results for an outdoor data set, as well as reasonable results
for an indoor data set. Furthermore, the classifier was shown
to generalise well, since it can be trained on data from one
environment and still perform well using data from another
environment.

The tests with subsets of the hann2 data pairs show that
the number of training data is important for the resulting
classifier properties. In future work we plan to investigate
further the dependence on the number of training data for
good class separation. An evaluation of how the method scales
with translation is also needed, especially to address how
the presented method handles partial point cloud overlap.
Future work also include an investigation of how the linearly
increasing time complexity, due to comparison to all previous
data, can be overcome.
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