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ABSTRACT
The marginalized particle filter is a powerful combination
of the particle filter and the Kalman filter, which can be
used when the underlying model contains a linear sub-
structure subject to Gaussian noise. This paper surveys
state of the art for theory and practice.

1. INTRODUCTION

Consider the problem of state estimation using the fol-
lowing model with a mixture of linear and nonlinear dy-
namics
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with the following statistical assumptions
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et ∼ N(0, Rt), (1e)

xl
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The most principal approaches are to use the extended
Kalman Filter (EKF) [13] that linearizes the nonlinear
dynamics or the particle filter (PF) [8, 12, 24] which ap-
plies to general nonlinear models, and does not utilize
the linear dynamics in (1).

The marginalized particle filter (MPF), or Rao- Black-
wellized particle filter, [2, 3, 5, 9, 23, 27] combines the good
features of the Kalman filter (KF) and the PF. The pos-
terior distribution of the state vector xl appearing lin-
early in (1a) are represented by its mean vector and co-
variance matrix computed by the Kalman filter. The
PF computes the posterior of xn using a set of samples,
where each sample has one associated KF. Figure 1 il-
lustrates this as an waterfall view of the posterior distri-
bution.

The paper is based on [28] and it discusses state-of-
the-art of MPF theory and some applications.
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Fig. 1. Representation of posterior distribution in the
MPF seen as a waterfall view. The nonlinear state, here
x2, is represented by a set of discrete samples, each sam-
ple associated with a Gaussian distribution for x1.

2. THEORY AND ANALYSIS

The theory and analysis are here split in the following
areas:

• Background theory. The basic algorithms are found
in [2, 5, 9, 27]. The different twists that occur when
certain terms in (1a) disappear are thoroughly dis-
cussed in [27]. The most important term is Ct(xn

t )xl
t:

without that term the Ricatti equation becomes
the same for all KF’s, leading to substantial sav-
ings in computations.



• Variance reduction. One important advantage of
MPF is the variance reduction that follows from
the relation

Var (g(U, V )) =
Var (E (g(U, V )|V )) + E (Var (g(U, V )|V )) ,

In the MPF setup, U and V are represented by
the linear and nonlinear states, respectively. This
is sometimes referred to as Rao-Blackwellization,
see e.g., [25]. The last term disappear in the MPF,
which leads to the variance reduction.

• Complexity analysis. The complexity for the two
cases mentioned above (with same or different Ri-
catti equations for the KF’s) is analyzed in [18].

There are certainly more topics that fit within the MPF
framework, for instance quantization, [16], data associa-
tion, and simultaneous localization and mapping (SLAM)
aspects, [1].

3. APPLICATIONS

Positioning applications:
• Underwater terrain-aided positioning [14, 15]

• Aircraft terrain-aided positioning [27]

• Automotive map-aided positioning [29]

• GPS navigation [11]

• SLAM [21, 22]

Target tracking applications:
• Automotive target tracking [10]

• Bearings-only target tracking [17]

• Radar target tracking [28]

Other applications:
• Communication applications [6, 30]

• System identification [7, 19, 20, 26]

• Audio applications [4].
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