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ABSTRACT

The marginalized particle filter is a powerful combination
of the particle filter and the Kalman filter, which can be
used when the underlying model contains a linear sub-
structure subject to Gaussian noise. This paper surveys
state of the art for theory and practice.

1. INTRODUCTION

Consider the problem of state estimation using the fol-
lowing model with a mixture of linear and nonlinear dy-
namics
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with the following statistical assumptions
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The most principal approaches are to use the extended
Kalman Filter (EKF) [13] that linearizes the nonlinear
dynamics or the particle filter (PF) [8,12,24] which ap-
plies to general nonlinear models, and does not utilize
the linear dynamics in (1).

The marginalized particle filter (MPF), or Rao- Black-
wellized particle filter, [2, 3, 5,9, 23, 27] combines the good
features of the Kalman filter (KF) and the PF. The pos-
terior distribution of the state vector x! appearing lin-
early in (1a) are represented by its mean vector and co-
variance matrix computed by the Kalman filter. The
PF computes the posterior of ™ using a set of samples,
where each sample has one associated KF. Figure 1 il-
lustrates this as an waterfall view of the posterior distri-
bution.

The paper is based on [28] and it discusses state-of-
the-art of MPF theory and some applications.
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Fig. 1. Representation of posterior distribution in the
MPF seen as a waterfall view. The nonlinear state, here
T, is represented by a set of discrete samples, each sam-
ple associated with a Gaussian distribution for x;.

2. THEORY AND ANALYSIS

The theory and analysis are here split in the following
areas:

e Background theory. The basic algorithms are found
in [2,5,9,27]. The different twists that occur when
certain terms in (1a) disappear are thoroughly dis-
cussed in [27]. The most important term is Cy (z})x!:
without that term the Ricatti equation becomes
the same for all KF’s, leading to substantial sav-
ings in computations.



e Variance reduction. One important advantage of
MPF is the variance reduction that follows from
the relation

Var (g(U,V)) =
Var (E (¢(U, V)|V)) + E (Var (¢(U, V)|V)),

In the MPF setup, U and V are represented by
the linear and nonlinear states, respectively. This
is sometimes referred to as Rao-Blackwellization,
see e.g., [25]. The last term disappear in the MPF,
which leads to the variance reduction.

o Complezity analysis. The complexity for the two
cases mentioned above (with same or different Ri-
catti equations for the KF’s) is analyzed in [18].

There are certainly more topics that fit within the MPF
framework, for instance quantization, [16], data associa-
tion, and simultaneous localization and mapping (SLAM)
aspects, [1].

3. APPLICATIONS

Positioning applications:

o Underwater terrain-aided positioning [14,15]

Aireraft terrain-aided positioning [27)

Automotive map-aided positioning [29]

GPS navigation [11]
SLAM [21,22]

Target tracking applications:
o Automotive target tracking [10]
e Bearings-only target tracking [17]

e Radar target tracking [28]

Other applications:
o Communication applications [6,30]
o System identification [7,19,20, 26]

o Audio applications [4].

Acknowledgment

This work was supported by VINNOVA’s Center of Ex-
cellence ISIS (Information Systems for Industrial Control
and Supervision), and by the Swedish Research Council

(VR).

4. REFERENCES

[1] Lecture notes from SLAM summer school. H. Chris-
tensen (editor). KTH, Stochholm, Sweden, Aug.
2002.

[2] C. Andrieu and A. Doucet. Particle filtering for par-
tially observed Gaussian state space models. Jour-
nal of the Royal Statistical Society, 64(4):827-836,
2002.

[3] C. Andrieu, A. Doucet, and E. Punskaya. Sequen-
tial Monte Carlo Methods in Practice, chapter Se-
quential Monte Carlo Methods for Optimal Filter-
ing. Statistics for Engineering and Information Sci-
ence. Springer Verlag, 2001.

[4] C. Andrieu and S. Godsill. A particle filter for model
based audio source separation. In Proceedings of the
International Workshop on Independent Component
Analysis and Blind Signal Separation (ICA 2000),
Helsinki, Finland, June 2000.

[5] R. Chen and J. Liu. Mixture Kalman filters. Journal
of the Royal Statistical Society, 62(3):493-508, 2000.

[6] R. Chen, X. Wang, and J. Liu. Adaptive joint de-
tection in flat-fading channels via mixture Kalman
filtering. IEEE Transactions on Information The-
ory, 46(6):2079-2094, 2000.

[7] M. J. Daly, J. P. Reilly, and M. R. Morelande. Rao-
Blackwellised particle filtering for blind system iden-
tification. In Proceedings of the IEEFE International
Conference on Acoustics, Speech, and Signal Pro-

cessing, Philadelphia, PA, USA, Mar. 2005.

[8] A. Doucet, N. de Freitas, and N. Gordon, edi-
tors. Sequential Monte Carlo Methods in Practice.
Springer Verlag, 2001.

[9] A. Doucet, S. Godsill, and C. Andrieu. On sequen-
tial Monte Carlo sampling methods for Bayesian
filtering. Statistics and Computing, 10(3):197-208,
2000.

[10] A. Eidehall, T. B. Schon, and F. Gustafsson. The
marginalized particle filter for automotive tracking
applications. In Proceedings of the IEEE Intelli-
gent Vehicle Symposium, pages 369-374, Las Vegas,
USA, June 2005.

[11] A. Giremus and J. Tourneret.  Joint detec-
tion/estimation of multipath effects for the global
positioning system. In Proceedings of IEEE Inter-
national Conference on Acoustics, Speech, and Sig-
nal Processing, volume 4, pages 17-20, Philadelphia,
PA, USA, Mar. 2005.



[12]

[16]

[19]

[20]

[22]

N. J. Gordon, D. J. Salmond, and A. F. M.
Smith. Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. In IEE Proceedings on

Radar and Signal Processing, volume 140, pages
107-113, 1993.

T. Kailath, A. Sayed, and B. Hassibi. Linear Esti-
mation. Information and System Sciences Series.
Prentice Hall, Upper Saddle River, New Jersey,
2000.

R. Karlsson and F. Gustafsson. Surface and under-
water navigation using particle filters. 7o appear
IEEE Transactions on Signal Processing.

R. Karlsson and F. Gustafsson. Particle filter for
underwater navigation. In Proceedings of the Sta-
tistical Signal Processing Workshop, pages 509-512,
St. Louis, USA, Sept. 2003.

R. Karlsson and F. Gustafsson. Particle filtering
for quantized sensor information. In Proceedings
of the 13th European Signal Processing Conference,
Antalya, Turkey, Sept. 2005.

R. Karlsson and F. Gustafsson. Recursive Bayesian
estimation — bearings-only applications. IEE Pro-
ceedings on Radar, Sonar, and Navigation. Special
issue on target tracking: Algorithms and Applica-
tions, 152(5):305-313, Oct. 2005.

R. Karlsson, T. Schon, and F. Gustafsson. Complex-
ity analysis of the marginalized particle filter. IEEFE
Transactions on Signal Processing, 53(11):4408-
4411, Nov. 2005.

P. Li, R. Goodall, and V. Kadirkamanathan.
Parameter estimation of railway vehicle dynamic
model using Rao-Blackwellised particle filter. In

Proceedings of the FEuropean Control Conference,
Cambridge, UK, Sept. 2003.

P. Li, R. Goodall, and V. Kadirkamanathan. Esti-
mation of parameters in a linear state space model
using rao-blackwellise particle filter. IEEFE Proceed-
ings of Control Theory Applications, 151(6):727—
738, Nov. 2004.

M. Montemerlo, S. Thrun, D. Koller, and B. Weg-
breit. Fastslam: A factored solution to the simul-
taneous localization and mapping problem. In Pro-
ceedings of the AAAI National Conference on Arti-
ficial Intelligence, 2002.

K. Murphy. Bayesian map learning in dynamic envi-
ronments. In Advances in Neural Information Pro-
cessing Systems, pages 1015-1021, 2000.

[23]

[25]

[26]

K. Murphy and S. Russel. Sequential Monte Carlo
Methods in Practice, chapter Rao-Blackwellised par-
ticle Filtering for Dynamics Bayesian Networks.
Statistics for Engineering and Information Science.
Springer Verlag, 2001.

B. Ristic, S. Arulampalam, and N. Gordon. Be-
yond the Kalman Filter: particle filters for tracking
applications. Artech House, London, UK, 2004.

C. P. Robert and G. Casella. Monte Carlo Statistical
Methods. Springer texts in statistics. Springer, New
York, 1999.

T. Schon and F. Gustafsson. Particle filters for
system identification of state-space models linear
in either parameters or states. In Proceedings of
the 13th IFAC Symposium on System Identifica-
tion, pages 1287-1292, Rotterdam, The Nether-
lands, Sept. 2003. Invited paper.

T. Schoén, F. Gustafsson, and P.-J. Nord-
lund. Marginalized particle filters for mixed lin-
ear /nonlinear state-space models. IEEE Transac-
tions on Signal Processing, 53(7):2279-2289, July
2005.

T. Schon, R. Karlsson, and F. Gustafsson. The
marginalized particle filter in practice. In Pro-
ceedings 2006 IEEE Aerospace Conference, Big Sky,
USA, Mar 2006.

N. Svenzén. Real time implementation of map aided
positioning using a Bayesian approach. Master’s
Thesis No LiTH-ISY-EX-3297-2002, Department of
Electrical Engineering, Link&pings universitet, Swe-
den, Dec. 2002.

X. Wang, R. Chen, and D. Guo. Delayed-pilot sam-
pling for mixture Kalman filter with application in
fading channels. IEEE Transactions on Signal Pro-
cessing, 50(2):241-254, Feb. 2002.



