Parallel Implementation of Particle MCMC
Methods on a GPU*

Soren Henriksen * Adrian Wills* Thomas B. Schon **
Brett Ninness*

* School of FElectrical Engineering and Computer Science, University of
Newcastle, Callaghan, NSW, 2308, Australia (Tel: +61 2 49216028;
e-mail: {soren, Adrian. Wills, Brett. Ninness} @newcastle.edu.au).

** Division of Automatic Control, Linkoping University, SE-581 83
Linkdping, Sweden (Tel: +46 138 281373; e-mail: schon@isy.liu.se).

Abstract: This paper examines the problem of estimating the parameters describing system
models of quite general nonlinear and multi-variable form. The approach is a computational
one in which quantities that are intractable to evaluate exactly are approximated by sample
averages from randomized algorithms. The main contribution is to illustrate the viability and
utility of this approach by examining how high computational loads can be simply managed
using commodity hardware. The proposed algorithms and solution architectures are profiled on

concrete examples.

Keywords: Nonlinear dynamical systems, nonlinear estimation, Particle filter, Markov Chain
Monte Carlo, parallel computation, Graphics Processing Unit.

1. INTRODUCTION

This work considers the estimation of general but never-
theless parametrized nonlinear state-space models of the

form
Tepr ~ fo(ze1 | 24), (1a)
Yt ~ h@(yt \ -'L't)- (1b)

Here # € R? denotes the unknown parameterization
that is to be estimated based on measurements y;.ny =

{y1,...,yn}, and z; € R™ denotes the underlying state
vector.

This sort of estimation problem is a central one and
has received significant research attention over the past
several decades, mainly with regard to specific instances
of the general structure (1) such as for example linear, or
Hammerstein-Wiener cases.

Recently, there has been a surge of interest in addressing
the general structure (1) within the statistics, economet-
rics and wider scientific communities [Andrieu et al., 2010,
Flury et al., 2011, Jones et al., 2010]. Central aspects of
this work are that a Bayesian approach is employed, and
that the potentially complicated issue of computing func-
tions of posterior distributions is attacked via computing
approximations based on randomized algorithms.

To be more specific, consider the following nonlinear state-
space model, which has become a benchmark since its
introduction in Nett et al. [1978],

Tip1 = oz + 91% + 05 cos(1.2t) + Oswy, (2a)
t

yt = 04:1/‘? + 95615, (2b)

]~ ([o] - fo 7)) (20

* This work was supported by: the Australian Research Council
through their Discovery Project Program; and CADICS, a Linneaus
Center funded by the Swedish Research Council and the project
Calibrating Nonlinear Dynamical Models (Contract number: 621-
2010-5876) also funded by the Swedish Research Council.

P., at 10° MCMC Tterations
0.3

Sample Run
/\A True Density -------

0.25

pom=tT

0.2

Z 015
=%

/____,ﬁ.,./‘

0.1

0.05 \

0 5 10 15 20 25

Oe

Fig. 1. Plot of p(05 | y1.n) for the nonlinear example (2).

where the true parameters are

6* = (0.5,25,8,1.0,0.05,v/10) " (3)
This paper will consider forming an estimate of € via
computation of the posterior density p(f | y1.n) or func-
tions of this density, such as the expectation E{6 | y1.n}.
Precise expressions for these quantities are not available,

so instead approximations will be used, such as illustrated
in Figure 1.

This illustrates an approximation (solid line) based on a
randomized algorithm of the posterior marginal density
(05 | y1.n) of the last element of (3) which is the standard
deviation o, of the measurement noise term e;.

In Figure 1 this approximation is compared with the
posterior marginal shown as a dashed line. An essential
point is that this “truth” is computed using the same
randomized algorithm as for the solid line, but having run
for (perhaps many) more iterations until convergence has
occurred.

That is, while information measures such as posteriors in
Figure 1 for general nonlinear structures such as (1) (or
even linear ones) have traditionally been avoided based on
the impossibility of analytical calculation, they can now
be computed due to the modern availability of cheap and
powerful computing resources.

This paper addresses this issue, with a focus on how
Markov Chain Monte Carlo (MCMC) methods [Robert
and Casella, 2004, 2011] and Sequential Monte Carlo
(SMC) methods (A.K.A. particle filtering) [Gordon et al.,
1993, Doucet and Johansen, 2011] may be implemented
and combined on cheap, but high performance “Graphics
Processing Unit” (GPU) cards. Related work on this topic
includes the papers by Hendeby et al. [2010], Lee et al.
2010).

These GPU’s are inexpensive because they service a high
volume consumer demand for interactive gaming, which re-
quires high speed numerical computation for 3D-projected
graphics. As such these GPU’s have evolved to provide
hundreds of parallel processing cores, each clocked in the
gigahertz range.

As illustrated in this paper, these GPU units can also
be employed to implement computationally demanding
system identification methods. To achieve this it is nec-
essary to recognize that GPU architectures are based on
a SIMD (Single Instruction Multiple Data) machine, and
so at any one time many cores must execute the identical
instruction, but on different data.

To effectively make use of this computational power, the
entire algorithm needs to be structured in an appropriate
parallel fashion. Due also to memory bandwidth limita-
tions, it is important to also to have many more process
threads ready to execute than what there are processor
cores. Consequently, for best performance the algorithm
must be s‘cructuredy for the order of thousands of parallel
computation streams, and this motivates considering new
apﬁroaches for the implementation of randomized algo-
rithms.

This paper studies these issues, profiles a particular solu-
tion strategy, and by doing so illustrates the potential of
what is possible by moving to the employment of GPU-
based parallel computing architectures.

2. RANDOMIZED ALGORITHMS

The essential approach of this paper is to consider how to
develop a random number generator to deliver realisations
for the posterior of the parameters 6 given the data yi.y;

viz.
Ox ~ (0| y1.n), (4)

and then use M realisations to compute approximations
for arbitrary functions f : § — C™ with dimension m also
arbitrary via

M
B{7(6) | yin} ~ 37 D0 F(6). (5)
k=1

A very simple and general method for achieving this is
the Metropolis—Hastings algorithm defined below, which
dates back to the 1950’s [Robert and Casella, 2004] and

provides realisations such that via the strong law of large

numbers, equality in the approximation (5) occurs in the
infinite limit:

lim
M—oo

M
% Z f(6r) = E{f(9) | y1.n} with probability 1.
k=1
(6)

Algorithm 1 Metropolis—-Hastings Sampler

1: Initialise 6y at some value such that p(6y | y1.n) > 0
and set k = 1;

2: At iteration k, consider a candidate value & for 6
which is drawn from a proposal density (& | Ok—1).
That is, find a possible realisation for 6, as

ke ~ 7(' | 9k—1); (7)
3: Compute the acceptance probability
: Or—
a(é | Ok—1) = P&k | y1n) v(Ok—1 | &), @®)

P(Ok—1 | y1:n) V(& | Ok—1)’

4: Accept the proposed & and set 0, = £, with proba-
bility «(& | Ox—1), otherwise leave 6 unchanged by
Setting Hk = Hk_l;

4: Increment k£ and return to step 2.

The key computational difficulty is the evaluation of

N
p(0 | yin) = ¢ p(0) [] p(ye [y1:6-1,0), 9)
t=1

where c is a #-independent constant. In the linear system
case, the prediction density p(y: | y1.t—1,6) can be simply
computed using a Kalman filter. In the general nonlinear
case (1) the equivalent time and measurement update
equations are impossible to compute exactly.

To address this difficulty, this paper employs an SMC
(particle filter) approximation of p(y; | y1.4-1,6). At first
reading, this appears to be an ad-hoc convenience.

However, a major new result by Andrieu et al. [2010], is
that the employment of such a randomized SMC-based
approximation of p(f|yi.n) in (8) preserves the conver-
gence property (6). The resulting algorithm is dubbed in
Andrieu et al. [2010] the “Particle Marginal Metropolis-
Hastings” (PMMH) method.

It is the focus of what follows in this paper, and hence
formally defined as follows in Algorithm 2. The two key
steps in the implementation of this algorithm are:

(1) The generation of samples from pg(z1.n | Yy1.5);
(2) The computation of an estimate of the likelihood

p@(yl:N)~

To address the first implementation issue - item 1, this
paper will employ an SMC algorithm targeting the density
(1t | y1:4), using ¢ (x4 | 21.4) = f(@¢ | 24-1) as proposal
density and resampling at every time step. This particular
SMC algorithm is commonly referred to as the bootstrap
particle filter in the literature, first introduced by Gordon

et al. [1993]. This is defined in Algorithm 3 below where

it should be noted that whenever the index i is used, it is
shorthand for “for alli =1,...,L”.

To address the second implementation issue in item 2
above, note that by Bayes’ rule, the likelihood py(y1.n)
can be written as

Algorithm 2 Particle Marginal Metropolis-Hastings

(PMMH) Sampler

1: Initialize, r = 0:

2: Set 6(0) arbitrary.

3: Use an SMC algorithm targeting p(x1.x | y1.n) tO
sample X1.5(0) ~ Py(o)(z1:n | y1:n) and to compute
an estimate]39(0) (y1.n) of the likelihood.

4: whiler >1d

Sample ¢’ ~ q{H | 6(r —1)}.

6: Use an SMC algorithm targeting pg: (1.5 | y1.n8) tO
sample X7 v ~ Dor(z1.n | y1.5) and to compute an
estimate Py (y1.n5) of the likelihood.

7. Compute the acceptance probability

o= ﬁ@’(yl:N)p(al) q{@(r - 1) | 9,} (10)
Pote 1 (1 P00 — 1) 48 [66 —)}

8: With probability a set 0(r) = 0 Xi.n(r) =
X1.ns Doy (W1:n) = Por(y1:n), otherwise, set 6(r) =
O(r — 1), Xun(r) = Xun(r — 1),ppry(y1:n) =
2/9\0(7”—1) (le)

9: end while

o

Algorithm 3 Bootstrap Particle Filter

1: Initialize, t = 1:
2: Sample X ~ go(xo).
3: fort=1:N do _ ‘
4: Sample X] ~ f(x¢ | X¢—1) and set X, =
{X{C:tfh th}
5. Compute the importance weights
; h X}
Wi = L“%|Qj. (11)
Zj:l he(y: | Xi)
6: Resample {W}, X{,} to obtain L equally weighted
particles {1/L, Xi,}.
7: end for

0(Y1:N) Hpe (Yt | yr:4-1), (12)
and via the law of total probablhty
P L) = [plon | pler [pne)dzre (13
The SMC algorithm produces realisations
X! ~p(xe | yri—1) (14)

and hence via the model (1) and the strong law of large
numbers, we can approximate
L

ZZyHX

Py | yra—1) (15)

with equality, with probablhty one, as the number of
particles L — oo.

As already mentioned, but repeated now for emphasis and
clarity, the very surprising and important result in Andrieu

et al. [2010] is that even though (15) is an approximation
for finite number of particles L, the convergence result (6)

still holds as the Metropolis—Hastings method is run for
more iterations M, but with L fixed.

While this is of theoretical interest, it also has impor-
tant practical consequences. The algorithm just proposed,
involves that for each of the M Metropolis—Hastings it-
erations, a particle filter with L particles needs to be
evaluated for each of N data samples.

This implies an M x L x N computational load, and
the result of Andrieu et al. [2010] is important in that
it establishes that even with L fixed, the Metropolis—
Hastings method will converge with increasing M to the
true posterior density with respect to the available length
N finite data yq.y.

Nevertheless, the associated computational load is still
high, and a contribution of this paper is to examine
how this may be efficiently implemented using GPU-based
computation.

3. PARALLEL GPU IMPLEMENTATION

MCMC and particle filters are both inherently quite paral-
lelisable algorithms. In the case of MCMC, instead of one
long Markov Chain, a number of shorter parallel chains
may be 1mplemented Apart from some loss of efficiency
in reaching chain “burn-in” for all chains, the algorithm
performance per kernel evaluation remains largely static.
This may be achieved as the individual chains may operate
largely in independence of one another.

Similarly, a particle filter appears quite suitable for imple-
mentation in parallel hardware. There are many particles
that conceptually exist in parallel, which each need to be
propagated along a number of time steps.

There are three main components of the computation for
each time step of a particle filter and they are propagation,
weighting, and resampling. The first two of these, the
propagation and weighting are quite straightforward to
implement in a parallel manner. With one thread per
particle, the values for each particle may be computedp
once with a SIMD machine.

For propagation, each state moves independently accord-
ing to the model state update equation. In the example
nonlinear system posed in the introduction, the state up-
date described in (2) implies that for the i-th particle,
./1;7
14 (a})?

The parameter vector {61, 63,035,604}, and the input signal
value u;, are common to all particles in the filter. Where
this filter is used as part of an MCMC algorithm with
multiple parallel chains. There will be a group of particles
for each chain, where each group will operate with a

different parameter vector, according to the state of the
associated Markov chain.

.TiJrl = 91.’1?% + 92 + O3us + 94wt (16)

The noise term w!, is simply a realisation drawn from the
state noise density, with each particle receiving a different
realisation.

The weighting step of the particle filter algorithm involves
computing the likelihood of the measured output for the
current state. For the example system, this is according
to (2). The likelihood computation is achieved by first
evaluating the residual,

& = yr — Os(xy)%. (17)
Then pc(é;), the probability density function of the mea-

surement noise, maﬁ_be evaluated. For zero-mean normally
distributed noise, this is simply,

1 e?
exp | ——%= .
2ro? b 202

As in the case of the fpropaga‘mon step, this computation
may be efficiently performed entirely in parallel.

peler) = (18)

The remaining step is that of resampling. This is where
a new set of unit-weight particles are drawn according to
the weighted distribution of the present particles. This is
where a number of problems are presented for a paral-
lel implementation. There is now significant interaction

between each of the particles, and even the mapping of
one thread per particle is in question, as some particles
disappear, and others are multiply sampled to produce
several new particles.

The conventional sequential approach is to start by form-
ing a cumulative sum of the weights from the existing
particles. This performs the dual role of a means for resam-
pling out of the cumulative distribution function (CDF),
and also computing a sum of the weights to allow for nor-
malization. A cumulative sum is very efficient on a scalar
processor, simply requiring L sum and store operations for
L particles. However, in a parallel architecture, this cannot
simply be achieved in L parallel operations. The nearest
alternative is using a tree-structured adder, requiring an
order of log, L iterations over L parallel threads. One such

t=2
|
|
I
+ : | t=1
7 7
ey [| e
s | | | 7 |
s I I 54 I
+ I + : + I + t=0
I I
I I I
| | |
o o o o o o o o
1 0 1

000 001 010 011 100 101 1

Thread —

Fig. 2. Tree structured cumulative sum adder.

approach is illustrated in Figure 2. Each of the particle
weights are laid along the horizontal axis, and the stages
of addition are shown vertically. At the first time step,
adjacent weights are accumulated. Over further iterations,
different combinations of results are summed to produce
the final cumulative sum. The solid lines represent the op-
erations needed to simply find the sum of the values, while
the dashed lines show the additional operations required
for the intermediate cumulative sum results.

This addition structure uses only 50% of the available
resources, and alternate arrangements allow for this com-
putation with half the number of threads. However, as L
threads are executing anyhow, this becomes the efficient
way of doing it, without the overheads of altering the struc-
ture for a relatively small computational gain. Given that
there are only log, L addition operations, any additional
overheads in setting up loops and pointers can be very
costly.

Once the cumulative sum of the particle weights has been
calculated, there still remains the task of sampling from
the weighted distribution. With a cumulative distribution
function now available, inverse transform sampling may
be used to convert a uniform distribution into the desired
distribution.

The approach used here is systematic resampling, which
uses a variant of inverse transform sampling, requiring only
a single random number draw per set of particles.

After drawing one initial uniform number per particle

filter,
1
Es = U (07 L> y

the uniformly distributed samples for each particle are
chosen as

(19)

8; =¢€s+ I (20)
for the i-th newly-drawn particle. These uniformly dis-
tributed values will now need to be transformed according

to the target distribution by mapping to the inverse of

1+ - —
> ¢

fj 0_’_,_:

®
1
M

®
Es i: 4 1 1

Fig. 3. Systematic resampling out of the cumulative distri-
bution function.

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
Il Il

the CDF. Using inverse transform scaling, this involves
mapping the set {s;} through the inverse of the CDF, as
shown in Figure 3.

Scalar processor implementations typically walk through
the list of {s;} and the sum of weights, to perform the
inverse lookup into the CDF. This will take an order of L
steps to move through the L particles and weights. Again
this algorithm presents a challenge for parallel implemen-
tation, due to the dependence between the successive cal-
culated values.

A solution to this can be reached by now allocating one
thread of the parallel processor to each of the new particles
to be drawn. Then each of the threads can run a binary
search across the CDF to find the appropriate particle to
draw as the new sample. Just as the case of the cumulative
sum algorithm, the binary search requires log, L iterations.

In addition to these three basic stages of the particle filter,
there is also some additional serial code. In order to avoid
dynamic range problems with likelihood products, the log
o%, the likelihood is accumulated over all of the time steps.
This means computing the logarithm of the final element
of the cumulative sum at each step, and then summing all
of these over the number of steps of the particle filter.

An approach taken to make use of the parallel resources
for this example was to instead of directly computing the
logarithm, rather store the sum in memory into an array,
and then compute all the logarithms in parallel at the end
of the run, before summing with a parallel summer. A
complication in this is that there are a different number
of threads to what there are time steps, and it isn’t even
clear which of the two would be the greater.

The solution adopted was to maintain L memory locations,
each initialized to unity. With each time step, one element
of that array is multiplied by the likelihood, and after
reaching the end, will wrap back to the beginning again.
As there will only be at most a few likelihoods assigned to
each array location, there won’t be dynamic range issues in
the multiplications. The logarithms then can all execute in
parallel, and the overall process is quite efficient in utilizing
the parallel resources.

8.1 Example 1 - linear SISO first order state-space system

In this first example the PMMH Algorithm 2 is profiled
on the well-known linear state-space model in order to
demonstrate its utility and build confidence in the pro-
posed method. Importantly, for this case it is possible to
compute the required likelihood exactly using a Kalman
filter. As such, the PMMH approach outlined above will
be profiled against a standard Metropolis-Hastings MCMC

MCMC Convergence
101 T

10° TR

lp(a) = m(a)lo

1071 . HHHH NN

10! 102 103 104 105
Iterations

4. Total Variation distance between PMMH and p(0 |

Y) for different numbers of particles. The KFMH
convergence s also shown for comparison.

Fig.

approach (henceforth called the KFMH algorithm) that
employs the exact likelihood calculation.

The model is a first order linear single-input single-output
state-space system of the form

Ti1 = ozt + Or1ur + Oowy, (21a)

yr = x4 + O3us + Osey, (21b)

where the state x; € R, the input u; € R, the output

y; € R and the noise terms w; and e; are normally
distribution via

o] ~ 2 (6] o 1])-

The unit scaling of the state that appears in the measure-
ment equation (21b) was chosen to avoid identifiability
issues.

(21¢)

A set of N = 100 outputs was generated using (21), with
parameter values chosen as

9 =1[0.9, 1.0, 0.1, 0.0, 0.1]" (22)
and with the initial state and input signal chosen as
xo ~ N (0, 0), up ~N(0, 1). (23)

Figure 4 shows the convergence of various PMMH runs
using a range of particles. Here, the total variation distance
is employed as a means to determine distance between
densities. This requires an accurate estimate of p(6 | Y)
with which to compare the PMMH generated densities. For
this purpose, the KFMH algorithm was allowed to run for
1019 MCMC iterations and the resulting density for 6 is
shown as the dashed line in Figure 5 (note that page limits
restrict the presentation of all parameter densities).

As expected, Figure 4 shows that the PMMH algorithm
employing 512 particles most closely matches the KFMH
algorithm. It is also worth noting that the PMMH algo-
rithm employing just 1 particle appears to be converging,
albeit slowly.

Figure 4 does not indicate the computational cost as a
function of the number of particles. To show this relation-
ship, a target value of total variation distance of 0.1 was
selected. An example density with TV = 0.1 is shown in
Figure 5 to illustrate the obtained accuracy.

P., at 10° MCMC Iterations
45

Sample Run
True Density -------
40

35 / \

30 /
25 /
= 20

\
: [
o/ \

0 N
0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94
0o

D

Fig. 5. PDF p(6y | Y) for the linear example (21) at a total
variation of 0.1

1 N AN T T T T T
1.4e+07 H () — 7 ”tz,' =10 1

1.2e407
S
=
—
ks le4-07
é} K
£ 8e+06
z
ot
% 6e+06
.2 //
8]
£ 4et06
ﬁo et 7

2e+06

0
10t 102 103
Particles

Fig. 6. Computational cost vs number of particles for the
linear example (21).

The PMMH algorithm was run until the total variation
distance achieved the required level of 0.1 for each choice
of particle number. Figure 6 shows the computational cost
as a function of the number of particles. From Figures 4
and 6 it can be seen that although 512 particles performs
better in terms of convergence in MCMC iterations, it does
not perform better in terms of computational load. Put
another way, if the total number of GPU cycles is limited,
then using 128 particles will achieve the best result on
this particular problem. While it would be dangerous to
conclude anything general from this, it does show that
even a modest number of particles can achieve very good
performance.

8.2 IFAC Ezample

A more challenging situation is now considered that in-
volves the nonlinear and time-varying system given in (2).
This example has been chosen since it is acknowledged
as a challenging estimation problem in many previous

MCMC Convergence

10t ¢

100 |

||p(90) - 71—(00)”1‘,1)

10! -
10! 102 108 104 10°
Iterations

Fig. 7. Total Variation distance between PMMH and p(6y |
Y') for different numbers of particles for the nonlinear
example (2).

studies in the area, see e.g. Netto et al. [1978], Gordon
et al. [1993], Doucet et al. [2000], Godsill et al. [2004],
Andrieu et al. [2010]. In contrast to the first example,
here it is not possible to compute the likelihood exactly.
Therefore, as a means of gauging the performance of the
PMMH algorithm, a baseline density was generated using

10° MCMC iterations and employing L = 512 particles.

Figure 7 shows the convergence rate in terms of total vari-
ation distance as a function of iterations. Again, a range
of particles are profiled and similarly to the first example,
employing more particles improves the convergence rate.
Note that employing only 1 particle results in a convergent
chain, as the theory predicts Andrieu et al. [2010].

Motivated by the reasoning for the first example, Figure 8
shows the computational cost versus number of particles.
This illustrates that 64 particles is the best choice for this
example since it achieves a total variation distance of 0.1
using the least number of GPU cycles. For comparison, the
baseline sensitivity is profiled against a density with total
variation distance of 0.1 in Figure 1.

4. CONCLUSION

The recent work by Andrieu et al. [2010] has attracted
significant research attention due to the potential that this
PMCMC approach offers for solving difficult identification
problems. Et the same time, the approach fundamentally
depends on SMC methods, which are known to be compu-
tationally demanding.

This paper has demonstrated one possible means of ame-
liorating the computational burden of these methods by
employing a parallel computing platform, namely, the
graphics processing unit. The MCMC algorithm itself is
directly amenable to a parallel platform, while the SMC
methods require a little more attention to make them
suitable to parallel computing.

The dividend for this extra attention is that the PMCMC
method implemented on a GPU runs significantly faster
when compared with a single core CPU platform imple-
mentation. For the nonlinear example in this paper, the
GPU code ran approximately 40 times faster than the
single core CPU version. Understandably, these types of

2.5e+07 T
Ip() = m(e = 1071 ——

2e+-07

1.5e+07 J\ /

Iterationsx Particles for p(0o)

le+4-07
vy
5e+4-06
0
10t 10% 103
Particles

Fig. 8. Computational cost vs number of particles for the
nonlinear example (2).

claims are typically met with fierce criticism. The critical
point to make is that by employing a GPU architecture,
the PMCMC methods are even closer to becoming a stan-
dard tool for the system identification community.

REFERENCES

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain
Monte Carlo methods. Journal of the Royal Statistical Soci-
ety:Series B, 72(2):1-33, 2010.

A. Doucet and A. M. Johansen. A tutorial on particle filtering and
smoothing: Fifteen years later. In D. Crisan and B. Rozovsky,
editors, Nonlinear Filtering Handbook. Oxford University Press,
2011.

A. Doucet, S. J. Godsill, and C. Andrieu.
Carlo sampling methods for Bayesian filtering.
Computing, 10(3):197-208, 2000.

Thomas Flury, Neil Shephard, and Roman Holenstein. Bayesian
inference based only on simulated likelihood:Particle filter analysis
of dynamic economic models. Econometric Theory, 59:1-24, 2011.

S. J. Godsill, A. Doucet, and M. West. Monte Carlo smoothing
for nonlinear time series. Journal of the American Statistical
Association, 99(465):156-168, March 2004.

N. J. Gordon, D. J. Salmond, and A. F. M. Smith. A novel approach
to nonlinear/non-Gaussian Bayesian state estimation. In IEE
Proceedings on Radar and Signal Processing, volume 140, pages
107-113, 1993.

G. Hendeby, R. Karlsson, and F. Gustafsson. Particle filtering:
The need for speed. EURASIP Journal on Advances in Signal
Processing, 2010. Article ID 181403, doi:10.1155/2010/181403.

Emlyn Jones, John Parslow, and Lawrence Murray. A bayesian
approach to state and parameter estimation in a phytoplankton-
zooplankton model. Australian Meteorological and Oceanographic
Journal, 59:7-16, 2010.

A. Lee, C. Yau, M.B. Giles, A. Doucet, and C.C. Holmes. On the
utility of graphics cards to perform massively parallel simulation
of advanced monte carlo methods. J Comput Graph Stat., 19(4):
769-789, dec 2010.

M.L.Andrade Nett, L.Gimenao, and M.J.Mendes. A new spline
algorithm for non-linear filtering of discrete time systems. In
Proceedings of the 7th IFAC World Congress, Helsinki, 1978.

M. L. A. Netto, L. Gimeno, and M. J. Mendes. A new spline
algorithm for non-linear filtering of discrete time systems. In
Proceedings of the 7th World Congress of the International Fed-
eration of Automatic Control (IFAC), pages 2123-2130, Helsinki,
Finland, June 1978.

C. P. Robert and G. Casella. Monte Carlo Statistical Methods.
Springer texts in statistics. Springer, New York, USA, second
edition, 2004.

C. P. Robert and G. Casella. A history of Markov chain Monte Carlo-
subjective recollections from incomplete data. Statistical Science,
26(1):102-115, 2011.

On sequential Monte
Statistics and

