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Abstract—In this paper we propose a 6DOF tracking system
combining Ultra-Wideband measurements with low-cost MEMS
inertial measurements. A tightly coupled system is developed
which estimates position as well as orientation of the sensor-
unit while being reliable in case of multipath effects and NLOS
conditions. The experimental results show robust and continuous
tracking in a realistic indoor positioning scenario.

I. INTRODUCTION

Ultra-wideband (UWB) is a relatively new and promising
localization technology, especially for indoor applications.
Among its more mature applications are the so-called asset
tracking systems in for instance health-care or manufacturing.
Commercially available systems [1, 2] typically consist of
a network of synchronized UWB receivers which track a
large number of small, battery powered and inexpensive UWB
transmitters. Reported indoor position accuracies lie in the
order of decimeters, but suffer from multipath effects and
non-line-of-sight (NLOS) conditions. These effects are most
prominent while tracking moving objects or persons and
give rise to distorted and bumpy trajectories. Although the
obtained performance is often sufficient for the aforementioned
applications, many potential application areas have higher
performance requirements.

To improve the tracking performance (especially the po-
sitioning accuracy) we propose to combine UWB with a
low-cost micro electro mechanical system (MEMS) inertial
measurement unit (IMU) consisting of a 3D rate gyroscope
and a 3D accelerometer. The main justification for adding an
IMU — providing accurate position tracking for short periods
of time, but drift prone for longer timescales — is to obtain
a robust system, capable of detecting and rejecting multipath
effects and NLOS situations. Additional benefits of adding an
IMU include improved tracking results, especially for dynamic
quantities like velocity, and that the orientation becomes
observable as well. This results in a system providing a 6
degrees of freedom (DOF) general purpose tracking solution
for indoor applications.

To the best of the authors’ knowledge there are only a
few reports in the literature on combining UWB and inertial
sensors. The more recent contributions include a hybrid 2D
positioning tracking algorithm [3] and an EKF for pedestrian
tracking [4]. Both approaches are loosely coupled and only
estimate a limited number of DOF. By a loosely coupled
approach we refer to a solution where the measurements from
one or several of the individual sensors are preprocessed before
they are used to compute the final result. A tightly coupled
approach on the other hand refers to an approach where all
the measurements are used directly to compute the final result.
In this paper we propose a full 6DOF tracker estimating both

Fig. 1. The sensor unit, integrating an IMU and an UWB transmitter into a
single housing.

position and orientation based on tightly coupled fusion of
UWB and inertial sensors. However, note that in order to ob-
tain heading (i.e., the angle around the vertical) observability,
there has to be some amount of acceleration present.

II. PROBLEM FORMULATION

In this section we will give a more detailed formulation
of the tracking problem we are trying to solve. We start by
properly introducing the setup that is used.

Our setup is based on a commercially available asset
tracking system. However, instead of working with an UWB
transmitter only, we integrated it with an IMU in a single unit,
shown in Fig. 1. The devices are synchronized at hardware
level, significantly simplifying the signal processing. The
pulses transmitted by the sensor unit are detected by a network
of UWB receivers with synchronized clocks.

This setup gives rise to the following coordinate frames,
illustrated in Fig. 2.
• Navigation frame (n): The sensor unit position and ori-

entation (pose) is estimated with respect to this stationary
coordinate frame. It can be defined arbitrarily, here it is
aligned with the room, with the vertical axis pointing up.
The UWB receiver positions are known in this frame and
are, without loss of generality, assumed to be constant.

• Body frame (b): This is the coordinate frame of the
moving IMU. Its origin is located in the center of the
accelerometer axes, and it is aligned to the casing. All
the inertial measurements are resolved in this coordinate
frame.

These coordinate frames are used to express quantities in as
well as to denote their origin. For instance, bn is the position
of the body coordinate frame expressed in the navigation frame
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Fig. 2. The sensor unit, shown at two time instants, consists of an IMU (b)
and a UWB transmitter (t). Transmitted signals are picked up by the UWB
receivers (r) in the navigation (n) frame.

and qbn,ϕbn,Rbn are the unit quaternion, the rotation vector
and the rotation matrix, respectively, all interchangeable and
describing the rotation from the navigation frame to the body
frame. A good overview of various rotation parameterizations
is given in [5]. Other quantities of interest are the positions
of the UWB transmitter and receivers, denoted t and rm,
respectively. The UWB transmitter and the IMU are rigidly
connected, i.e., tb is a known constant.

The objective of this work is to develop a method to track
the position and orientation of the sensor unit, i.e., to estimate
• The position of the body expressed in the navigation

frame, bn.
• The orientation of the body with respect to the navigation

frame, qbn.
In order to estimate these quantities tightly coupled sensor
fusion is used, illustrated by Fig. 3. That is, the ‘raw’ sensor
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Fig. 3. Tightly coupled sensor fusion. The ‘raw’ measurements from the M
UWB receivers and the IMU are directly used for sensor fusion.

measurements — measurements from the sensing components
such as accelerometer, gyroscope and time of arrival (TOA)
measurements — are directly used for sensor fusion, instead of
already filtered output quantities like position or acceleration.
Hence, there is no explicit triangulation module as typically
found in (loosely coupled) UWB positioning systems. Instead,
the triangulation of position is implicitly performed by the
sensor fusion algorithm.

The advantages of using a tightly coupled approach are two-
fold. Firstly, preprocessing of measurements typically results
in loss of information. This is mainly due to approximations
of statistical distributions, but in extreme cases measurements
are ignored, for instance when there are not enough TOA
measurements for triangulation. By directly using the sensor
measurements nothing has to be disregarded and maximal
advantage is taken of the available information. Secondly,
tightly coupled sensor fusion can perform hypothesis testing

for the individual sensors and efficiently deal with outliers
[6]. This is especially useful for UWB measurements, where
outliers occur regularly due to multipath effects and/or NLOS
conditions. Tightly coupled sensor fusion can disregard the
affected measurements while still utilizing the remaining ones.
Additionally, the available inertial information gives accurate
predictions of the UWB measurements, which allows for
improved outlier detection. Hence, a tightly coupled system
is more robust.

The basic ingredient of any sensor fusion method is a state
space model of the underlying process. This is the topic of the
next section.

III. MODELING

The sensor fusion approach briefly introduced in the pre-
vious section requires a model of the sensor unit. We aim to
provide a thorough background and start with an analysis of
inertial and UWB sensors in Section III-A and Section III-B,
respectively. Together with the dynamics, discussed in Sec-
tion III-C, these models form the basis for an Extended
Kalman Filter (EKF) in Section III-D.

A. Inertial sensors
An inertial measurement unit consists of accelerometers and

rate gyroscopes. The gyroscopes measure angular velocity or
rate-of-turn ω. The accelerometers do not measure accelera-
tions directly, but rather the so-called external specific force
f to which the linear acceleration b̈ as well as the earth’s
gravitational field g contribute.

The measurements from the accelerometers and gyroscopes
can be used to compute the position and orientation of an
object relative to a known starting point using inertial naviga-
tion [7–9]. In a strap-down configuration such as our sensor
unit, the measurements are resolved in the body coordinate
frame, rather than in an inertial reference frame. Hence, the
orientation qnb can be calculated by integrating the angular
velocity ωbnb. The position bn can be obtained by double
integration of the acceleration b̈

n
, which in turn is found

by rotating the external specific force f b using the known
orientation qnb and subtracting the acceleration due to gravity.
This procedure is illustrated in Fig. 4.
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Fig. 4. Schematic of a strap-down inertial navigation algorithm.

The angular velocity ωbnb and the external specific force f b

are measured by the gyroscope and the accelerometer. These
measurements include bias and noise terms which cause errors
in the calculated position and orientation. This integration drift
is inherent to all inertial navigation. Using MEMS inertial
sensors, the integration drift is relatively large. Hence, the
orientation estimate and especially the position estimate, are



only accurate and reliable for a short period of time. This is the
reason why MEMS IMU’s are typically used in combination
with a stabilizing sensor such as GPS, vision or UWB.

Summarizing the above discussion, the gyroscope measure-
ments are modeled as

uω = ωbnb + δbω + ebω. (1)

Here, ωbnb is the angular velocity, body to navigation, ex-
pressed in the body frame, δbω is a slowly time-varying
bias term and ebω is i.i.d. Gaussian noise. Furthermore, the
accelerometer measurements are modeled as

ua = f b + δba + eba = Rbn(b̈
n
− gn) + δba + eba, (2)

where f b is the external specific force expressed in the body
coordinate system, δba is a slowly time-varying bias and eba is
i.i.d. Gaussian noise. The second expression in (2) splits the
specific force into its contributions from the linear acceleration
of the sensor b̈

n
and the gravity vector gn, both expressed in

the navigation frame. These vectors have been rotated to the
body frame using the rotation matrix Rbn.

B. Ultra-wideband

Ultra-wideband technology makes use of radio with very
short pulses, typically ≈ 1 ns, resulting in a very high spatial
resolution. The positioning technologies can be roughly subdi-
vided into three categories: systems using time delay, systems
using angle-of-arrival and systems using signal strength [10].
In this paper we focus on time based methods, where position
is inferred from the time it takes for a signal to travel from
the transmitter to the receiver.

The UWB setup consists of a network of synchronized
UWB receivers, all taking very precise TOA measurements
of signals originating from the transmitter in the sensor unit.
That is, the measurement of the m-th receiver is given by

ym = τ + ‖rnm − tn‖2 + eu,m, (3)

where τ is the time of transmission, rnm is the position of the
m-th receiver in the navigation frame, tn is the position of
transmitter in the navigation frame and eu,m is i.i.d. Gaussian
noise. All quantities in (3) are expressed in meters. The
transmitter clock is not accurate enough to know the precise
time of transmission τ , and since only one-way communica-
tion is possible it is not synchronized to the receiver clocks.
Therefore, the time of transmission τ has to be treated as an
unknown. This makes the UWB measurements very similar to
GPS pseudo-ranges [11].

The process of determining the transmitter position from the
UWB measurements is referred to as triangulation, for which
several approaches can be found in literature. A common
technique is to eliminate the time of transmission τ from (3) by
constructing time difference of arrival (TDOA) measurements
from pairs of measurements. The resulting set of hyperbolic
equations can then be efficiently solved for position [12, 13].
The drawback of this approach is that the constructed TDOA
measurements are no longer independently distributed. An
alternatively triangulation method is to treat τ as an unknown
and solve for position and time. Assuming Gaussian noise,

maximum likelihood estimation takes the form of a nonlinear
least squares problem,

min
tn,τ

M∑
m=1

(ym − τ − ‖rnm − tn‖2)
2
,

which can be efficiently solved [14].

C. Dynamics
The inertial and UWB measurement models are linked by a

process model, which describes the motion of the sensor unit.
Since it is hard to make informative assumptions regarding
general sensor unit movement, the inertial sensors are used as
inputs ut for the process model rather than treating them as
measurements. Following the derivation in [15], we have

bnt+1 = bnt + T ḃ
n

t +
T 2

2
b̈
n

t , (4a)

ḃ
n

t+1 = ḃ
n

t + T b̈
n

t , (4b)

qbnt+1 = e−
T
2 ωb

nb,t � qbnt , (4c)

where bn and ḃ
n

denote the position and velocity of the body
resolved in the navigation frame, qbn is a unit quaternion
describing the orientation of the body frame relative to the
navigation frame and T denotes the sampling interval. Further-
more, � is the quaternion multiplication and the quaternion
exponential is defined as

e(0,v) ,

(
cos ‖v‖, v

‖v‖
sin ‖v‖

)
. (5)

The acceleration b̈
n

t and angular velocity ωbnb,t are calculated
from the accelerometer measurement ua and the gyroscope
measurement uω according to

b̈
n

t = Rnb
t ua,t + gn −Rnb

t δ
b
a −R

nb
t e

b
a,t, (6a)

ωbnb,t = uω,t − δbω − ebω,t. (6b)

The inertial bias terms δba and δbω are slowly time-varying.
Hence, they are included in the process model as random walk,
according to

δba,t+1 = δba,t + vbδa,t, (7a)

δbω,t+1 = δbω,t + vbδω,t, (7b)

where vbδa
, vbδω

are i.i.d. Gaussian noises.
The time of transmission τ has to be included in the model

as well. Since the transmitter sends in regular intervals, τ is
modeled as an integrated random walk

τt+1 = τt + T τ̇t + vτ,t, (8a)
τ̇t+1 = τ̇t + vτ̇ ,t, (8b)

where vτ , vτ̇ are i.i.d. Gaussian noises. Here, vτ is used to
model the jitter inherently present in the clock.

The UWB measurement model (3) requires the transmitter
position tn. The sensor unit motion (4), however, is modeled
using the pose of the body coordinate system qbn, bn. Hence,
the relation

tnt = bnt +Rnbtb. (9)

is used to calculate tn.
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Fig. 5. Overview (a) and detail (b) of the trial with a test subject walking an eight-shaped trajectory. Shown are the estimated trajectory bn (–), triangulated
positions, classified according to whether the UWB measurements are clean (+) or contain outliers (◦), and the UWB receivers (�). The tightly coupled
approach successfully bridges the ‘gaps’ in the triangulated positions and is not affected by outliers.

D. Sensor fusion

Combining (3)–(9) we obtain a discrete-time nonlinear
state-space model with state vector

x =
(
(bn)T , (ḃ

n
)T , (qbn)T , (δba)

T , (δbω)T , τ, τ̇
)T

. (10)

In this paper, we use it in combination with an extended
Kalman filter (EKF) [16] to fuse the TOA and inertial mea-
surements. The EKF handles the different sample rates and a
varying number of measurements straightforwardly. It runs at
the high data rate of the IMU (200 Hz) and the 50 Hz UWB
updates are only performed when measurements are available.

Outliers from NLOS and/or multipath effects are detected
using hypothesis testing on the residuals/innovations of the
EKF,

εt = yt − ŷt|t−1, (11)

the difference between the observed measurement yt and the
one-step ahead prediction from the model ŷt|t−1. In absence
of errors, the residuals are normal distributed as

εt ∼ N
(
0, CtP t|t−1C

T
t +Rt

)
, (12)

where P t|t−1 denotes the state covariance, Ct denotes the
measurement Jacobian and Rt denotes the covariance of the
measurement noise. This allows the calculation of confidence
intervals for the individual measurements and in case these
are violated, the measurement is considered an outlier and is
ignored.

IV. EXPERIMENTAL RESULTS

The proposed system has been used to track a test subject
walking around in a relatively large room, approximately
18× 8× 2.5 m in size. The room is equipped with 6 synchro-
nized UWB receivers at known locations that are attached to
the ceiling. The sensor unit has been mounted on a foot of the
test subject, a position with relatively high dynamics. Regular
occurring NLOS conditions due to occlusion by the body — a
medium with a reduced speed of light — as well as multipath
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Fig. 6. Histogram of the number of TOA measurements used in the EKF
after outlier rejection. Triangulation requires ≥ 5 TOAs and is only limitedly
possible.

effects from signals reflected by the floor result in difficulties
during triangulation.

In this section we present the results for a 35 s trial where
the test subject walked an eight-shaped path. Fig. 5 shows a
top view of the estimated trajectory. Note that the triangulated
positions (standalone UWB) contain many gaps as well as
many outliers. In contrast, the proposed system is capable to
estimate a continuous trajectory of the test subject. The tightly
coupled fusion of UWB and inertial measurements makes it
possible to make use of any number of UWB measurements
and is hence capable to bridge the ‘gaps’ where not enough
UWB measurements are available for 3D triangulation. Fur-
thermore, the classification of the UWB solutions in Fig. 5
show that our approach successfully detects and deals with
outliers in the UWB measurements.

The advantage gained by being able to utilize all available
information is quantified in Fig. 6. Although in theory 4 TOA
measurements are sufficient for a 3D position solution, in
practice at least 5 measurements are required for successful
triangulation of UWB measurements, implying that more than
half of the available UWB measurements would have to be
discarded. This results in prolonged periods without a position
solution where also loosely coupled UWB inertial approaches
are bound to fail.

The proposed system not only estimates the position of the
sensor unit, but also provides very smooth orientation and
velocity estimates, shown in Fig. 7 and Fig. 8. These are very
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Fig. 7. Estimated orientation qnb, expressed in Euler angles.
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hard or impossible to obtain using standalone UWB systems.
The presented results show that tightly coupled fusion of

UWB and inertial measurements results in accurate and robust
tracking. However, the estimated height is not as accurate
as can be expected, see Fig. 9. The test-subject walked
on the floor, implying that heights close to 0 m are to be
expected. Especially during motion the height variation of
the UWB solution is larger what can be expected according
to the dilution of precision (DOP). This could indicate that
calibration errors are present in the UWB system.

V. CONCLUSION

In this paper a 6DOF tracking algorithm is proposed esti-
mating both position and orientation based on tightly coupled
fusion of UWB and inertial sensors. Experiments show that a
robust and accurate system is obtained even in the presence
of multipath and NLOS conditions. The system is capable to
bridge periods with limited UWB measurements and success-
fully detects and deals with outliers in the individual TOA
measurements.
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Fig. 9. Estimated height bn
z . Shown are the estimated trajectory (–) and

triangulated positions (+,◦). The large variation in height is an indication for
the presence calibration errors.
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Engineering., Linköping University, Sweden, May 2008.

[16] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation.
Prentice-Hall, Inc, 2000.


