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ABSTRACT

In this paper a comparison is made between four frequently
encountered resampling algorithms for particle filters. A the-
oretical framework is introduced to be able to understand and
explain the differences between the resampling algorithms.
This facilitates a comparison of the algorithms with respect to
their resampling quality and computational complexity. Us-
ing extensive Monte Carlo simulations the theoretical results
are verified. It is found that systematic resampling is favourable,
both in terms of resampling quality and computational com-
plexity.

1. INTRODUCTION

The resampling step is a crucial and computationally expen-
sive part in a particle filter [1]. Hence, a well argued choice
of resampling method is justified as the entire method bene-
fits from reduced complexity and/or improved quality of the
resampling step. In the literature quite a few different resam-
pling methods can be found. The most frequently encoun-
tered algorithms are multinomial resampling [2], stratified re-
sampling [1, 3], systematic resampling [3, 4] and residual
resampling [5]. Convergence results have been derived for
some of them, see e.g., [6, 7]. However, discussions deal-
ing with how and why the resampling algorithms work are
scattered among many papers and books and, to the best of
the author’s knowledge, a detailed overview discussing their
principles is missing. This paper aims at filling this gap, by
analysing and comparing frequently used resampling algo-
rithms and their implementations. The algorithms are com-
pared with respect to resampling quality and computational
efficiency, both theoretically and using simulations.

2. RESAMPLING ALGORITHMS

The resampling step modifies the weighted approximate den-
sity pN to an unweighted density p̂N by eliminating particles
having low importance weights and by multiplying particles

having high importance weights. More formally:

pN (x) =
N∑

i=1

wiδ(x − xi)

is replaced by

p̂N (x) =
N∑

k=1

1
N

δ(x − x∗k) =
N∑

i=1

ni

N
δ(x − xi)

where ni is the number of copies of particle xi in the new set
of particles {x∗k}. Convergence can be proved by assuming
that the resampled density is ‘close’ to the original density [1,
6]. That is, for any function g(·) it holds that

E

[(∫
g(x)pN (x)dx−

∫
g(x)p̂N (x)dx

)2
]

N→∞−−−−→ 0.

There are many different methods to generate the x∗k. In the
particle filter literature four ‘basic’ resampling algorithms can
be identified:

1. Multinomial resampling
Generate N ordered uniform random numbers

uk = uk+1ũ
1
k

k , uN = ũ
1
N

N , with ũk ∼ U[0, 1)

and use them to select x∗k according to the multinomial
distribution. That is,

x∗k = x(F−1(uk))

= xi with i s.t. uk ∈

[
i−1∑
s=1

ws,

i∑
s=1

ws

)
,

where F−1 denotes the generalised inverse of the cu-
mulative probability distribution of the normalised par-
ticle weights.

2. Stratified resampling
Generate N ordered random numbers

uk =
(k − 1) + ũk

N
, with ũk ∼ U[0, 1)



and use them to select x∗k according to the multinomial
distribution.

3. Systematic resampling
Generate N ordered numbers

uk =
(k − 1) + ũ

N
, with ũ ∼ U[0, 1)

and use them to select x∗k according to the multinomial
distribution.

4. Residual resampling
Allocate n′i = bNwic copies of particle xi to the new
distribution. Additionally, resample m = N −

∑
n′i

particles from {xi} by making n′′i copies of particle xi

where the probability for selecting xi is proportional to
w′

i = Nwi − n′i using one of the resampling schemes
mentioned earlier.

All these algorithms are unbiased and can be implemented in
O(N) as the random numbers are ordered, but have differ-
ent computational complexities. The methods apply different
sample generation methods as illustrated in Fig. 1. Hence,
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Fig. 1. Ten standard uniform samples generated using multi-
nomial resampling (x), stratified resampling (+) and system-
atic resampling (·).

the different algorithms have different resampling qualities,
as illustrated by the following analysis.

3. RESAMPLING QUALITY

As mentioned in the introduction, the quality of resampling
is implicitly defined in the sense of the distance between the
integrals

I(g) = EpN
[g] =

∫
g(x)pN (x) =

N∑
i=1

g(xi)wi (1a)

Î(g) = Ep̂N
[g] =

∫
g(x)p̂N (x) =

1
N

N∑
k=1

g(x∗k) (1b)

for arbitrary functions g. Variance is natural measure for this
distance, but other measures can be used as well. Depending
on the particular resampling algorithm it might be possible to
rewrite (1b) to

Î(g) =
N∑

i=1

ni

N
g(xi), Î(g) =

1
N

N∑
k=1

g(x(F−1(uk)). (2)

Integrals such as (1) are the subject of Monte Carlo integra-
tion theory [8]. The simplest method is to draw uk ∼ U[0, 1).
This case,

Îu(g) =
1
N

N∑
k=1

g(x∗k), x∗k ∼ pN , (3)

has the properties that it is unbiased, E[Îu(g)] = I(g), and
Var Îu(g) = N−1 VarPN

g. There exist several tools to re-
duce the distance between the integrals (1a) and (1b).

3.1. Set restriction

Set restriction is a powerful method to reduce integration vari-
ance [8]. The reasoning is rather simple: variance is defined
by

Var Î = E{x∗k}[Î(g)− I(g)]2

= E{ni}

[ N∑
i=1

ni −Nwi

N
g(xi)

]2

, (4)

where (2) has been used. In the case that the ni are distributed
according to the multinomial distribution the set of possible
values for each ni is given by Si = {0, . . . , N}. By restrict-
ing this set to values which lie closer to Nwi the variance is
reduced.

3.2. Stratification

Stratification is a method that originated from survey sam-
pling [9]. The domain of the random variable is partitioned
into different strata, that is D =

⋃p
j=1Dj where Dk ∩Dl = ∅

for k 6= l. By drawing Nj samples x∗jk from the normalised
restricted density in each strata pj an estimator is given by

Îs(g) =
p∑

j=1

ρj

Nj

Nj∑
k=1

g(x∗jk), x∗jk ∼ pj , (5)

where ρj is the probability of region Dj . This estimate is
unbiased, E[Îs(g)] = I(g). Using proportional allocation,
that is, Nj = Nρj , the integral (5) has the property that
Var Îs(g) = N−1 E[VarPj g] ≤ N−1xVarPN

g, see e.g.,
[7, 10]. Hence, the variance of (5) does not increase com-
pared to (3). On the contrary, a decrease in variance is quite
possible.

3.3. Theory of uniform distributions

The theory of uniform distributions, see for instance [11],
provides an intuitive method. This theory is based on the
Koksma-Hlawka inequality [12]

|Î(g)− I(g)| ≤ D∗
N (u1, . . . , uN )VHK(g), (6)



which separates the effects of the random numbers uk from
that of the function g. Here VHK(g) is the total variation of
g in the sense of Hardy and Krause. Note that VHK only
depends on g. The star discrepancy D∗

N is defined as

D∗
N ({ui}) = sup

a∈[0,1)d

∣∣∣∣ 1
N

N∑
i=1

1(0,a](ui)− |[0, a)|
∣∣∣∣ (7)

where 1 is the indicator function defined by

1A(x) =

{
1 x ∈ A

0 x 6∈ A
(8)

and | · | denotes volume. The star discrepancy D∗
N is a nu-

merical measure of how uniform a set of points is distributed
in the unit cube. It compares the fraction of points in a box
to the volume of this box. Clearly this difference will be
smaller when the points are more uniform distributed. Now,
the Koksma-Hlawka inequality (6) relates a smaller discrep-
ancy to better integration accuracy, implying that more uni-
form samples have better integrating properties.

3.4. Discussion

The resampling algorithms discussed in Section 2 differ in
which of the methods discussed above they apply. Multino-
mial resampling is the basic approach of (3). Stratified resam-
pling applies, as its name implies, stratification. More pre-
cisely, the interval [0, 1) is partitioned into N regions from
which one sample is drawn. This partitioning results in a
variance reduction. An alternative explanation for this im-
proved quality is provided by inspecting the ’uniformity’ of
the samples. As illustrated by Fig. 1 the samples are more
uniformly distributed for stratified resampling than for multi-
nomial resampling. Hence, the quality is improved. This view
has been extended further in systematic resampling which has
the lowest possible discrepancy. Systematic resampling can
be interpreted by set reduction as well: a line segment of
length ` always contains bN`c points placed a distance N−1

apart and at most one point more. Hence, systematic re-
sampling restricts the set values of ni from {0, 1, . . . , N} to
{bNwic, bNwic + 1}. Due to the fact that systematic re-
sampling produces its samples dependently is it hard to con-
duct a proper variance analysis of the algorithm. An artifi-
cial example showing an increased variance is given in [7].
Residual resampling uses set restriction to improve the vari-
ance. The probability space is modified in such a way that
now ni ∈ {bNwic . . . , N} ⊂ {0, 1, . . . , N}.

The previous theoretical analysis shows that the resam-
pling quality can be improved by using a different algorithm
than multinomial resampling. Variance results confirm that
residual and stratified resampling have lower variances. Al-
though not confirmed by a variance analysis, systematic re-
sampling is better than stratified resampling as it has the low-
est discrepancy.
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Fig. 2. Computational effort as a function of the number of
particles.

4. COMPUTATIONAL COMPLEXITY

The multinomial, stratified and systematic resampling algo-
rithms are very similar. They only differ in the how the or-
dered sequence of numbers is generated. All the algorithms
are O(N), which impies that it is sufficient to compare them
based on the complexity of the operations for one element.
Since fractional power and random number generation are
more complex operations than addition/subtraction or multi-
plication/division, multinomial resampling is the most expen-
sive resampling algorithm, followed by stratified resampling
and finally systematic resampling.

Residual resampling is more difficult to place. Experi-
ments show that approximately N/2 particles are determined
deterministically, leaving the other half to be determined us-
ing one of the algorithms discussed before. This complex-
ity reduction is cancelled by the recalculation of the weights
and other preparations. Hence, simulations have to point out
which position residual resampling has.

5. SIMULATIONS

In the previous sections four resampling algorithms are re-
viewed and, based on the briefly reviewed theoretical frame-
work, a comparison is made in terms of resampling quality
and computational complexity. The results of this compari-
son are validated using simulations.

The computational complexity of the algorithms is inves-
tigated by measuring the time required to perform resampling
of a random weight sequence. Fig. 2 shows the measured
times each resampling algorithm requires. Thus, to reduce
computational complexity, stratified resampling and system-
atic resampling are favourable, where the latter is slightly bet-
ter.

The multinomial likelihood function [13] is given by

P (N1 = n1, . . . , Nn = nn) =
N !

n1! · · ·nn!
wn1

1 · · ·wnn
n , (9)



where
∑n

i=1 ni = N . It attains its global maximum at ni =
Nwi for i = 1, . . . , N . Resampling algorithms applying set
reduction will on average have their ni closer to Nwi. Hence,
their average likelihood values will also be higher. Fig. 3
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Fig. 3. The mean value of the multinomial likelihood over
100 simulations is shown for 20 random weight sequences of
20 particles.

shows effects of the resampling algorithms on the mean like-
lihood value. Similar results are observed using sequences of
10, 40 or 80 particles (not shown). Multinomial resampling
has always the lowest likelihood value, illustrating the pres-
ence of set reduction with the other resampling algorithms.

The effects of the resampling algorithms on the root mean
square error (RMSE) has been investigated by considering the
following 2D tracking model of an aircraft

xt+1 =

 1 0 T 0 T 2/2 0

0 1 0 T 0 T 2/2
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1

xt + nt, (10a)

yt =

[ √
p2

x + p2
y

arctan(py/px)

]
+ νt (10b)

where the state, x =
[
px py vx vy ax ay

]T
, contains

position, velocity and acceleration. Range and bearing are
measured and nt ∼ N(0, Q) and νt ∼ N(0, R) are mutually
independent Gaussian noise sequences. The simulation pa-
rameters are given in Table 1. The simulations show that the

Table 1. Simulation parameters
Parameter Value Description
T 1 sample time
x0 [2000, 2000, 20, 20, 0, 0]T initial position
P0 diag[4, 4, 16, 16, 0.04, 0.04] Cov x0

Q diag[4, 4, 4, 4, 0.01, 0.01] Cov nt

R diag[100, 10−6] Cov νt

estimates slightly change depending on which resampling al-
gorithm is used, shown in Fig. 4. However, the effects are not
significant.
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Fig. 4. Average RMSE values for velocity and their standard
deviations as a function of the number of particles for the air-
craft model.

6. CONCLUSIONS

Considering resampling quality and computational complex-
ity, strafied and systematic resampling are favourable over
multinomial resampling. They reduce the computational com-
plexity while giving identical or perhaps slightly improved
particle filter estimates. Aditionally, from a uniform distribu-
tion perspective systematic resampling is theoretically supe-
rior.
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