Ultra-Wideband Calibration for Indoor Positioning

Jeroen D. Hol*T, Thomas B. Schon' and Fredrik Gustafsson'
*Xsens Technologies B.V., Enschede, The Netherlands
Division of Automatic Control, Link6ping University, Sweden

Abstract—The main contribution of this work is a novel
calibration method to determine the clock parameters of the
UWRB receivers as well as their 3D positions. It exclusively uses
time-of-arrival measurements, thereby removing the need for the
typically labor-intensive and time-consuming process of surveying
the receiver positions. Experiments show that the method is
capable of accurately calibrating a UWB setup within minutes.

Index Terms—Calibration, maximum likelihood estimation,
ultra-wideband, indoor positioning.

I. INTRODUCTION

Ultra-wideband (UWB) is a relatively new and promising
localization technology, especially for indoor applications.
Among its more mature applications are the so-called asset
tracking systems in for instance health-care or manufacturing.
Commercially available systems [1, 2] typically consist of
a network of synchronized UWB receivers which track a
large number of small, battery powered and inexpensive UWB
transmitters. Reported indoor position accuracies lie in the
order of decimeters, but suffer from multipath effects and non-
line-of-sight (NLOS) conditions.

The trilateration problem, i.e., determining the position of a
transmitter, is a well-studied topic for which many algorithms
are reported in literature, see for instance [3, 4, 5, 6]. Al-
though a correct calibration of the setup is a prerequisite for
accurate positioning results, it is typically taken for granted
and calibration is very seldom discussed. To the best of the
authors knowledge, current calibration methods have been
developed by the hardware manufacturers and are documented
in their manuals. These methods require receiver positions and
transmitter positions to be surveyed. The surveying of posi-
tions typically is a time-consuming and error-prone process
which requires additional equipment. It is only feasible for
permanent setups, which severely limits the deployment of
UWRB positioning systems. The main contribution of this paper
is a flexible and easy-to-use calibration algorithm capable of
calibrating a UWB setup without additional measurements and
hardware in a couple of minutes, thereby enabling flexible and
portable UWB positioning systems.

II. PROBLEM DEFINITION

Ultra-wideband technology makes use of radio with very
short pulses, typically in the order of 1 ns, resulting in a high
spatial resolution. The positioning technologies can roughly
be subdivided into three categories: systems using time de-
lay, systems using angle-of-arrival and systems using signal
strength [4]. In this paper we focus on time-based methods,
where position is inferred from the time it takes for a signal
to travel from the transmitter to the receiver.

The UWB setup consists of a network of synchronized
and stationary (rigidly fixed, mounted) receivers, all taking

very precise time-of-arrival (TOA) measurements of signals
originating from a transmitter. That is, the TOA measurement
Ymnk 1S the time (according to its local clock) when receiver m
receives the k-th pulse from transmitter n. It can be modeled
as

Ymnk = Tnk + ||rm - tnkHQ + ATm, + 5mnk + Emnk, (l)

where 7, is the time-of-transmission of the k-th pulse from
transmitter n, ¢, is the position of the transmitter of the k-
th pulse from transmitter n, r,, is the position of the m-th
receiver and A7, is the clock-offset of the m-th receiver.
dmnk > 0 is a possibly nonzero delay due to non line-of-sight
conditions or multipath and e, is Gaussian noise. Without
loss of generality, all quantities in (1) are expressed in meters.
The experimentally observed measurement noise is virtually
independent of range, contrary to what typically is observed
for signal strength measurements, hence we assume e,,,,,x to be
independent identically distributed (i.i.d.) Gaussian noise, that
is, €mnt ~ N(0,02). In the remainder of this paper we assume
‘clean’ measurements, i.e., d,,,%x = 0. The subscripts m, n and
k will be dropped when their value can be inferred from the
context. The transmitter clocks are not sufficiently accurate to
know their precise time-of-transmissions 7 and since only one-
way communication is possible they cannot be synchronized
to the receiver clocks. Therefore, every time-of-transmission
7 has to be treated as an unknown parameter. This makes the
UWB measurements very similar to GPS pseudo-ranges [7].
The process of determining the transmitter position from
the UWB measurements is referred to as trilateration or
multilateration, for which several approaches can be found in
the literature. A common technique is to eliminate the time-
of-transmission 7 from (1) by constructing time difference of
arrival (TDOA) measurements from pairs of measurements.
The resulting set of hyperbolic equations can then be ef-
ficiently solved for position [3, 5]. The drawback of this
approach is that the constructed TDOA measurements are no
longer independently distributed. An alternative, but equivalent
approach is to treat 7 as an unknown and solve for both posi-
tion and time. Assuming Gaussian noise, maximum likelihood
estimation takes the form of a nonlinear least squares problem,
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which can be efficiently solved using standard algorithms from
nonlinear numerical optimization [8, 9].

Note that the trilateration procedure (2) assumes known
values for the receiver parameters  and A7. In this paper
we will derive an algorithm that is capable of estimating these
parameters using a maximum likelihood approach. That is, we



want to estimate the 3D receiver positions {r,, })_, as well
as the receiver clock-offsets {A7,,}2_, for all M receivers.

IIT. CALIBRATION

In this section we describe an existing calibration method
and show how we extend it to a flexible and easy-to-use
calibration algorithm.

A. Existing methods

The current state-of-the-art calibration methods focus on
estimating the receiver clock-offset Ar,,. They require a
dataset consisting of (K) transmissions from one or more
(N > 1) transmitters at known positions ¢, to a number of
(M) receivers, also at known positions 7,,. Given £, and 7,,,
the clock-offset differences A7, — A7y are straightforwardly
given from (averaged) TDOA measurements,

Zmnk = Ymnk — Ylnk = ||rm - tnkHQ
- ||"'1 _tnkHQ—’—ATm_ATl"_Umnkzy 3)

since the ranges are known and can be eliminated. Slightly
more advanced methods use multiple tags and estimate the
clock-offset taking into account the correlated noise. The
downside of this algorithm is that all involved positions have to
be specified, and surveying them typically is a labor-intensive
and time-consuming process.

The above procedure can be formulated as a constrained
maximum likelihood (ML) problem. To do so, we first define
the parameter vector € as

0 = ({tnv {Tnk}ﬁ(zl}g:l, {rm, ATm}%:l) . “)

Since we assume Gaussian measurement noise, the probability
density function of the measurements is given as

1
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where according to (1) the normalized residuals €, are given
as
€mnk(0) = ot (Tnk + |7 + tn”g + A7y — y7rmk)~ (6)

Using (5) and (6), the maximum likelihood problem for
estimating 6 becomes
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m=1n=1k=1
st.  t,—t, =0 n=1,...,N (7b)
TPm —Tm=0 m=1,..., M (7¢)
AT1 = (7d)

The constraints (7b)—(7d) specify the surveyed positions of the
receivers and the transmitters, and without loss of generality
the clock of the first receiver is selected to be the central
clock. The latter is necessary since a common constant can
be added to the clock-offsets and subtracted from the time-
of-transmissions without affecting the normalized residuals.
Note that although the problem (7) is formulated using a large
parameter vector, the constraints (7b) and (7c) reduce it to
finding {7,,x} and {A7,,}. The above derivation (5)—(7) can
equivalently be derived for TDOA measurements, resulting in
a weighted objective for (7a).

B. Proposed method

To arrive at our proposed calibration method, note that the
constraints (7b) and (7c) are not essential to solve the problem
and can be removed. Hence, it is possible to estimate the
complete parameter vector 6, including the receiver and tag
positions, from the dataset {y,,,x } and skip the surveying step
completely. Similarly to selecting a central clock, we have
to define the coordinate system in which the positions are
expressed. Without loss of generality, we define it using three
(non-collinear) receivers. Summarizing the above, we propose
to formulate the calibration problem as
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(8a)

m=1n=1k=1
st. Apr,m=0 m=1,...,3 (8b)
ATl =0 (80)

The constraint (8b) defines the coordinate system using the
matrices
Ay =le; eres]’, Ay=leses]’, As=ei, (9

where {e;}?_, is the standard basis for R3. To simplify
notation in the remainder of this paper we write (8) more
compactly as

(10a)
(10b)
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where we have introduced the stacked normalized residual
vector €(0) and collected the constraints (8b) and (8c) in the
linear system A@ = b, with A and b chosen accordingly.

Since our proposed calibration method does not require any
surveying of positions, there are no restrictions on the size of
the dataset and it becomes feasible to collect a dataset with
a large number (N > M) of transmitters. Furthermore, we
choose to work with one transmission per transmitter, i.e.,
K = 1. Such a dataset of N stationary transmitters, each
transmitting a single pulse, is equivalent to that of a single
transmitter transmitting N pulses at different positions. That
is, the data collection procedure merely consists of moving a
single transmitter in the measurement volume. This yields an
efficient and simple procedure to collect a big dataset in little
time.

C. Solvers

The optimization problem (10) is a nonlinear least squares
problem with equality constraints. This class of problems is a
well-known topic in optimization literature for which standard
algorithms exist [8, 9], including (infeasible start) Newton
methods and trust region methods.

Most optimization methods can be interpreted in the fol-
lowing sense. Given an initial guess, a local approximation
is made. By solving this local problem a search direction is
determined which is used to find a new and improved solution.
The process is then repeated until convergence is obtained. For



the problem under consideration, a common approximation is
given by

(11a)
(11b)
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where J = Dy € denotes the gradient of the normalized resid-
uals with respect to the parameter 6. Note that all quantities
are evaluated at 0. For this problem, the first order optimality
(KKT) conditions [8, 9], can be written as
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with v the dual variable associated with the constraint (11b).
Solving for (A6, v) in (12) yields a primal-dual search direc-
tion, which can be used in combination with an appropriately
chosen step-size s to update the solution as 6 := 6 + sA#6.

The problem under consideration (11) is very sparse and
contains a lot of structure. By exploiting this structure with for
instance a sparse LDL-factorization or by applying a block-
matrix solver in combination with a QR-factorization of .J,
efficient implementations are obtained.

At the optimum, the KKT conditions (12) can be used to
obtain the following gradient

DO =D A0 =—(K 1) JT. (13)

Now, application of Gauss’ approximation formula [10], in
combination with the fact that normalized residuals have
Cov(e) = 1, yields

Cov(8) = [D. 0] Cov(e)[D, 0]

= (K Y JTTK D =K D, 14

The last equality can be shown by expanding the (1, 1)-block
of K~1 as

(K =[I-X](J"),
X =JT ) TAT(AJT)7tATY LA

(15a)
(15b)

Note that (15) shows that the covariance of the constrained
problem is closely related to (J7'.J)~!, which is the covariance
of the unconstrained problem.

As the size of the problem increases, the inversion of /C can
become infeasible. However, it is still possible to efficiently
calculate parts of it. First, factor /C as

K=LDL" (16)

using a LDL-decomposition. Note that L is a lower triangular
matrix with unit diagonal, and D is a block diagonal matrix
consisting of 1 x 1 and 2 x 2 blocks. Rearranging (16), we
have

LTKk'=Dp 'L, (17)
where the lower triangular part of D~'L~! is easily calcu-
lated. Hence, we can apply the method described in [11, 12]
to efficiently calculate the elements of JC~! for which L or D
are nonzero.

D. Starting point

The solvers described in the previous section can efficiently
solve (8), but require a reasonable initial estimate to converge
to the correct optimum since the problem is non-convex. Our
approach is to find a starting point for (8) by solving a series
of optimization problems.

The first step is to collect a dataset using M transmitters
that are placed in close proximity of the M receivers. This
implies that r,, ~ t,,, which allows us to extend (8) with this
additional information and solve

(18a)

m=1n=1k=1
s.t Apr,, =0 m=1,...,3 (18b)
A =0 (18c)
Pm—tn=0 m=1,.... M (18d)

Solving this problem also requires a starting point, but when
started in an arbitrary disjoint receiver configuration, i.e.,
t; # t;, it converges to the correct configuration or a (partially)
mirrored version. To prevent the latter from happening, we
start the optimization (18) given an approximate receiver
configuration — a noisy, rotated and scaled version of the
actual set of receiver positions.

The calibration parameters {r,,, A7, }}_, obtained from
solving (18) are biased, since the constraint (18d) only hold
approximately. However, they provide a viable starting point
for solving (8), and they can be used in (2) to determine initial
values for the transmitter parameters {,,, 7, }_,. With this
approach, a good starting point for (8) has been specified and
the methods described in Section III-C can be used to solve
it.

IV. EXPERIMENTAL RESULTS

The proposed calibration method, summarized in Algo-
rithm 1, has been used to calibrate a UWB setup (TimeDomain
Plus hardware) in a relatively large volume, approximately

Algorithm 1 UWB calibration

1) Construct a setup consisting of M stationary receivers.

2) Place M transmitters in close proximity to the receiver
antennas and collect a dataset D; = {ymnk }-

3) Solve (18) for D; to obtain {7, A0 }M | The opti-
mization is started in

60" = ({’Fna {0}1521}7]\;[:17 {’Fmvo}%[:l) )

where {7,,}}_, is a noisy, scaled and rotated version
of the actual set of receiver positions.

4) Collect a second dataset Dy = {y,ni} While moving a
single transmitter through the measurement volume.

5) Solve (2) on subsets of Ds using the calibration values
of Step 3 to obtain {t2, 70}

ny 'nfn=1"

6) Solve (8) for Dy. The optimization is started in
90 = ({to To}fzv:lv {TO ,AT%}%:l) )

n’'n m

using the results from Step 3 and Step 5.
7) Calculate the calibration accuracy using (14).
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Fig. 1. Top view of the receiver locations and the transmitter trajectory of
D>. We show the receiver configuration specified by the user 7,, (<), the
initial receiver positions r?n (0), the calibrated receiver positions 7, (e) and
the transmitter trajectory ¢, (-).
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Fig. 2. Normalized residuals € of Do for each receiver after calibration.
Both the empirical distribution (bar) and the theoretical distribution (line) are
shown.

8 x 8 x 2.5 m in size. The setup consists of a total of 8
synchronized UWB receivers, 7 are attached to the ceiling and
one is placed on the floor. Each receiver has a 1 Hz transmitter
attached to its housing. A 10 Hz transmitter is moved through
the measurement volume.

In this section we present the calibration results by applying
Algorithm 1 to a 6 s dataset of the transmitters attached to the
receivers (D7) and a 50 s dataset where a transmitter is moved
through the measurement volume (Ds). Figure 1 shows the
receiver positions at various stages in the algorithm together
with the transmitter trajectory. The approximate receiver con-
figuration 7, used in Step 3 of Algorithm 1 clearly has the
wrong scale and is rotated approximately 45°. Nevertheless,
the approximate receiver positions 70, obtained provide a
viable initial guess. Furthermore, the calibrated positions 7,
do agree very well with their surveyed positions.

In order to further validate the calibration results, the
normalized residuals e of the moving transmitter dataset Do
are studied. The normalized residuals of D, after Step 5 of

Algorithm 1, that is using the initial guess {70 6 A70}M_ |

turn out (not shown) to be biased, but are reasonably close
to their theoretical distribution. This indicates that the initial
calibration values from (18) indeed are a viable starting point.
Figure 2 shows the normalized residuals of D, after Step 6
of Algorithm 1, using the calibrated values {r,, At} _,.
Notice that the residuals are unbiased and that their distribution
is close to that of white noise. The exception is receiver II,
the only receiver on the floor. Because of the geometry of the
setup, this receiver is very dominant in the determination of the
height of the transmitter. Hence, the optimization can reduce
its residuals without additional costs by slightly adjusting the
height of the transmitter. The observation that the normalized
residuals after calibration are close to the theoretical distribu-
tion implies that the model, with the estimated parameters and
its assumptions, appears to be correct. This is in turn a very
good indication that correct calibration parameters have been
obtained.

V. CONCLUSION

In this paper a novel calibration method is proposed to
determine the clock parameters of the UWB receivers as
well as their 3D positions. It exclusively uses time-of-arrival
measurements, thereby removing the need for the typically
labor-intensive and time-consuming process of surveying the
receiver positions. Experiments show that the method is capa-
ble of accurately calibrating a UWB setup within minutes.
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