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Abstract

In this work we apply sequential Monte Carlo methods, i.e., particle �l-
ters and smoothers, to estimate the state in a certain class of mixed lin-
ear/nonlinear state-space models. Such a model has an inherent condition-
ally linear Gaussian substructure. By utilizing this structure we are able to
address even high-dimensional nonlinear systems using Monte Carlo meth-
ods, as long as only a few of the states enter nonlinearly. First, we consider
the �ltering problem and give a self-contained derivation of the well known
Rao-Blackwellized particle �lter. Thereafter we turn to the smoothing prob-
lem and derive a Rao-Blackwellized particle smoother capable of handling
the fully interconnected model under study.

Keywords: SMC, Particle �lter, Particle smoother, Rao-Blackwellization
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Abstract

In this work we apply sequential Monte Carlo methods, i.e., particle
�lters and smoothers, to estimate the state in a certain class of mixed
linear/nonlinear state-space models. Such a model has an inherent con-
ditionally linear Gaussian substructure. By utilizing this structure we
are able to address even high-dimensional nonlinear systems using Monte
Carlo methods, as long as only a few of the states enter nonlinearly. First,
we consider the �ltering problem and give a self-contained derivation of
the well known Rao-Blackwellized particle �lter. Thereafter we turn to
the smoothing problem and derive a Rao-Blackwellized particle smoother
capable of handling the fully interconnected model under study.

1 Introduction

A common problem in many di�erent �elds of science is that of estimating the
state of a dynamical system, based on noisy observations from the system. If
the system under study is linear and a�icted with Gaussian noise, the posterior
distribution of the states, conditioned on the observations, is available in closed
form, which allows for optimal inference. However, if the system is nonlinear
and/or non-Gaussian, this is no longer the case. To be able to deal with such
systems, we thus need to resort to approximations. One popular approach is
to use sequential Monte Carlo (SMC) methods, which rely on random sam-
ples from the sought distributions, see e.g., [2, 4]. SMC is known to perform
well for systems of fairly low dimension, but for high-dimensional systems the
performance can be seriously degraded.

In this document we shall consider a special kind of nonlinear systems, con-
taining conditionally linear Gaussian substructures (see Section 2). By uti-
lizing this structure, it is possible to address even high-dimensional systems
using Monte Carlo methods. This idea, known as marginalization or Rao-
Blackwellization, is well known in the literature. This is especially true when
it comes to Rao-Blackwellized particle �ltering (RBPF), which is discussed in
for instance [11, 3]. Rao-Blackwellized particle smoothing (RBPS) is somewhat
more immature, but two di�erent smoothers are presented in [5] and [1] respec-
tively. In [9] the RBPS derived in this work is used in an expectation maxi-
mization algorithm to estimate unknown parameters in a mixed linear/nonlinear
state-space model.
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The purpose of this work is to give an explanatory derivation of the RBPF
given in [11], and the RBPS, previously given in [5], in a uni�ed, self-contained
document. We shall also extend the smoother of [5] to be able to handle the fully
interconnected model (1) under study. To the best of the authors' knowledge,
this is the �rst time that a RBPS applicable to this kind of model is presented.

2 Problem Formulation

Consider the following mixed linear/nonlinear state-space model

at+1 = fa(at) +Aa(at)zt + wat , (1a)

zt+1 = fz(at) +Az(at)zt + wzt , (1b)

yt = h(at) + C(at)zt + et. (1c)

The model is nonlinear in at, which will be denoted the nonlinear states, and
a�ne in zt, which will be denoted the linear states1. The process noise is
assumed to be white and Gaussian according to

wt =

[
wat
wzt

]
∼ N (0, Q(at)), Q(at) =

[
Qa(at) Qaz(at)

(Qaz(at))
T Qz(at)

]
(1d)

and the measurement noise is assumed to be white and Gaussian according to

et ∼ N (0, R(at)) . (1e)

The initial state z1 is Gaussian according to

z1 ∼ N
(
z̄1|0(a1), P1|0(a1)

)
. (1f)

The matrices Q(at), R(at) and P1|0(a1) are all assumed to be non-singular (for
all values of their arguments). The density of a1, p(a1), is assumed to be known.

Given a set of observations y1:s , {y1, . . . , ys} we wish to do inference in
this model. More precisely we seek to compute conditional expectations of some
functions of the states

E [g(a1:t, z1:t) | y1:s] .

We shall con�ne ourselves to two special cases of this problem, �ltering and
smoothing, characterized as follows:

1. Filtering: At each time t = 1, . . . , T , compute expectations of functions
of the state at time t, conditioned on the measurements up to time s = t,
i.e.,

E [g(at, zt) | y1:t] . (2)

2. Smoothing: At each time t = 1, . . . , T − 1, compute expectations of
functions of the states at time t and t+1, conditioned on the measurements
up to time s = T > t, i.e.,

E [g(at:t+1, zt:t+1) | y1:T ] . (3)

1This type of model is often called conditionally linear Gaussian, even though conditionally
a�ne Gaussian would be a more suiting name. However, the di�erence is of minor importance,
and we shall use the former name in this report as well.
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The reason for why we, in the smoothing case, consider functions of the states
at time t and t+1 is that expectations of this kind often appear in methods that
utilizes the smoothing estimates, e.g., parameter estimation using expectation
maximization [12]. Clearly, functions of the state at just time t or t + 1 are
covered as special cases.

3 Importance Sampling and Resampling

In the interest of giving self-contained presentation, this section will give a short
introduction to importance sampling (IS) and sampling importance resampling
(SIR), which is the core of the well known particle �lter (PF).

3.1 Importance sampling

Assume that we wish to evaluate the expected value of some function of a
random variable g(z), where z ∼ p(z), i.e., we seek

Ip(g(z)) , Ep[g(z)] =

∫
g(z)p(z) dz. (4)

Now, if this integral is intractable we can approximate it with the Monte
Carlo (MC) expectation

ÎMCp (g(z)) =
1

N

N∑
i=1

g(zi), (5)

where {zi}Ni=1 are independent samples from p(z). This sum will under weak
conditions converge to the true expectation as N tends to in�nity.

It is convenient to introduce an approximation of the continuous distribution
p(z) based on the samples zi, as

p(z) ≈ p̂MC(z) =
1

N

N∑
i=1

δ(z − zi), (6)

where δ(·) is the Dirac δ-function. p̂(z) will be referred to as a point-mass
approximation of p(z) since it has �probability mass� only in a �nite number of
points. If (6) is plugged into (4), the approximation (5) is obtained.

The problem that one often faces is that it is hard to sample from the
desired distribution p(z) (which we will refer to as the target distribution).
However, this can be handled using importance sampling. Introduce a proposal
distribution q(z), which we easily can draw samples from. The support of the
proposal should cover the support of the target, but besides from this we can
choose it arbitrarily. We then have

Ip(g(z)) =

∫
g(z)p(z) dz =

∫
g(z)

p(z)

q(z)
q(z) dz = Iq

(
g(z)

p(z)

q(z)

)
≈ ÎMCq

(
g(z)

p(z)

q(z)

)
=

1

N

N∑
i=1

g(zi)
p(zi)

q(zi)
, (7)
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where {zi}Ni=1 are independent samples from q(z). We see that this leads to the
same approximation as in (5), but the samples are weighted with the quantities

wi ,
1

N

p(zi)

q(zi)
, (8)

known as importance weights. This corrects for the bias introduced by sampling
from the wrong distribution. For this method to work it is important that the
proposal density resembles the target density as good as possible.

It is often the case that the target (and possible also the proposal) density
only can be evaluated up to a scaling factor. Let p(z) = p̌(z)/Zp and q(z) =
q̌(z)/Zq where p̌(z) and q̌(z) can be evaluated, but Zp and Zq are unknown
constants. If this is plugged into (7) we obtain

Ip(g(z)) ≈ Zq
Zp

1

N

N∑
i=1

g(zi)
p̌(zi)

q̌(zi)
. (9)

To obtain an approximation of the unknown constant Zq/Zp we can use the
same set of samples and note that

Zp
Zq

=
1

Zq

∫
p̌(z) dz =

1

Zq

∫
p̌(z)

Zqq(z)

q̌(z)
dz

=

∫
p̌(z)

q̌(z)
q(z) dz ≈ ÎMCq

(
p̌(z)

q̌(z)

)
=

1

N

N∑
i=1

p̌(zi)

q̌(zi)
=

N∑
i=1

w̌i, (10)

where we have introduced the unnormalized importance weights

w̌i ,
1

N

p̌(zi)

q̌(zi)
. (11)

An approximation of the (normalized) importance weights is then

wi =
Zq
Zp

1

N

p̌(zi)

q̌(zi)
=
Zq
Zp
w̌i ≈ w̌i∑N

i=1 w̌
i
. (12)

From now on we shall drop theˇ from the target and the proposal distribu-
tions, but keep in mind that the normalization of the importance weights is due
to the unknown scaling factors.

We can use the result of the importance sampling to approximate the target
as a point-mass distribution similar to (6), yielding

p(z) ≈ p̂IS(z) =

N∑
i=1

wiδ(z − zi), (13)

where zi are sampled from the proposal. The importance sampling method is
summarized in Algorithm 1.

3.2 Sampling importance resampling

As pointed out in the previous section, the IS sampling scheme will result in a
weighted sample from the target distribution, {zi, wi}Ni=1. If we for some reason
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Algorithm 1 Importance sampling

1. Choose an appropriate proposal density q(z).

2. Draw N independent samples from the proposal

zi ∼ q(z), i = 1, . . . , N.

3. Compute the importance weights and normalize

wi =
w̌i∑N
i=1 w̌

i
, w̌i =

p(zi)

q(zi)
. (14)

4. Approximate the target distribution as

p̂IS(z) =

N∑
i=1

wiδ(z − zi), (15a)

which can be used to compute expectations according to

Î ISp (g(z)) =

∫
g(z)p̂IS(z) dz =

N∑
i=1

wig(zi). (15b)

seek an unweighted sample from the target (this is for instance important in
SMC), we can employ sampling importance resampling (SIR).

The idea is very simple. Since IS gives us an approximation of the target
distribution (13), we can draw N new, independent samples from this distribu-
tion

ζj ∼ p̂IS(z), j = 1, . . . , N. (16)

Since (13) can be seen as a discrete distribution with support at N di�erent
points, each with probability wi, i = 1, . . . , N , sampling from this distribution
is straightforward. We simply set ζj = zi with probability wi, i.e., P (ζj = zi) =
wi for j = 1, . . . , N . The sample {ζj}Nj=1 will be an approximate sample from
the target p(z). Since the approximation (13) improves as N tends to in�nity,
so will the quality of the sample {ζj}Nj=1.

4 Rao-Blackwellized Particle Filter

The Rao-Blackwellized particle �lter (RBPF) is a Monte Carlo method used to
compute expectations of the type (2). The �lter uses SIR in a way that exploits
the structure in model (1). The sought expectations can be expressed as

E [g(at, zt) | y1:t] =

∫∫
g(at, zt)p(at, zt | y1:t) datdzt

=

∫∫
g(at, zt)p(zt | a1:t, y1:t)p(a1:t | y1:t) da1:tdzt. (17)
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The trick is that the distribution p(zt | a1:t, y1:t) (i.e., the �ltering distribu-
tion for the linear states conditioned on the nonlinear state trajectory a1:t and
the measurements y1:t) can be computed analytically. We thus only need to
use sampling techniques for the nonlinear states, which reduces the variance of
the estimator. This is known as Rao-Blackwellization after the Rao-Blackwell
theorem, see [8]. Let us rewrite (17) as

E [g(at, zt) | y1:t] =

∫ (∫
g(at, zt)p(zt | a1:t, y1:t) dzt

)
p(a1:t | y1:t) da1:t

=

∫
E [g(at, zt) | a1:t, y1:t] p(a1:t | y1:t) da1:t

≈
N∑
i=1

witE
[
g(ait, zt) | ai1:t, y1:t

]
(18)

where we have made use of the IS approximation (15). Observe that the ex-
pectations in (18) are with respect to zt, conditioned on the nonlinear state
trajectory (and the measurements).

The task at hand can thus be formulated as follows; given y1:t = {y1, . . . , yt},
draw N samples from the distribution p(a1:t|y1:t) using importance sampling.
For each of these samples {ai1:t}Ni=1, �nd the su�cient statistics for the density
p(zt | ai1:t, y1:t). Do this sequentially for t = 1, . . . , T .

4.1 Updating the linear states

We shall start the derivation of the RBPF by showing how we can obtain the
distribution p(zt | a1:t, y1:t) sequentially. As already stated this distribution will
be available in closed form. More speci�cally it will turn out to be Gaussian,
and we thus only need to keep track of its �rst and second moments.

The derivation will be given as a proof by induction. By the end of this
section we shall see that p(z1 | a1, y1) is Gaussian and can thus be written
according to p(z1 | a1, y1) = N (z1; z̄1|1(a1), P1|1(a1)) where we have de�ned
z̄1|1(a1) and P1|1(a1) as the mean and covariance of the distribution, respectively.
Hence, assume that, for t ≥ 2,

p(zt−1 | a1:t−1, y1:t−1) = N
(
zt−1; z̄t−1|t−1(a1:t−1), Pt−1|t−1(a1:t−1)

)
, (19)

where the mean and covariance are functions of the state trajectory a1:t−1 (nat-
urally, they do also depend on the measurements y1:t−1, but we shall not make
that dependence explicit). We shall now see that this implies

p(zt | a1:t, y1:t) = N
(
zt; z̄t|t(a1:t), Pt|t(a1:t)

)
(20)

and show how we can obtain the su�cient statistics for this distribution.
Using the Markov property and the state transition density given by the

model (1), we have

p(zt, at | zt−1, a1:t−1, y1:t−1) = p(zt, at | zt−1, at−1)

= N
([
at
zt

]
;

[
fa(at−1)
fz(at−1)

]
+

[
Aa(at−1)
Az(at−1)

]
zt−1,

[
Qa(at−1) Qaz(at−1)

(Qaz(at−1))T Qz(at−1)

])
(21)
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which is a�ne in zt−1. A basic result for Gaussian variables, given in Corol-
lary A.1 in Appendix A, is that an a�ne transformation of a Gaussian variable
will remain Gaussian. If we apply this result to (19) and (21) we get

p(zt, at | a1:t−1, y1:t−1)

= N

([
at
zt

]
;

[
αt|t−1(a1:t−1)
ζt|t−1(a1:t−1)

]
,

[
Σat|t−1(a1:t−1) Σazt|t−1(a1:t−1)

(Σazt|t−1(a1:t−1))T Σzt|t−1(a1:t−1)

])
,

(22a)

with (the dependencies on at−1 and a1:t−1 have been dropped to keep the no-
tation simple)

αt|t−1(a1:t−1) = fa +Aaz̄t−1|t−1, (22b)

ζt|t−1(a1:t−1) = fz +Az z̄t−1|t−1, (22c)

Σat|t−1(a1:t−1) = Qa +AaPt−1|t−1(Aa)T , (22d)

Σazt|t−1(a1:t−1) = Qaz +AaPt−1|t−1(Az)T , (22e)

Σzt|t−1(a1:t−1) = Qz +AzPt−1|t−1(Az)T . (22f)

This is simply a prediction of the state at time t, conditioned on a1:t−1 and
y1:t−1. In (22b)�(22c) the system dynamics is simulated and (22d)�(22f) shows
how the uncertainty in the prediction depends on the process noise and the prior
uncertainty in the linear state.

Using Theorem A.2 we can marginalize (22) to obtain

p(at | a1:t−1, y1:t−1) = N
(
at;αt|t−1(a1:t−1),Σat|t−1(a1:t−1)

)
(23)

and from Theorem A.1 we can condition (22) on at to get

p(zt | a1:t, y1:t−1) = N
(
zt; z̄t|t−1(a1:t), Pt|t−1(a1:t)

)
, (24a)

with

z̄t|t−1(a1:t) = ζt|t−1 + (Σazt|t−1)T (Σat|t−1)−1(at − αt|t−1), (24b)

Pt|t−1(a1:t) = Σzt|t−1 − (Σazt|t−1)T (Σat|t−1)−1(Σazt|t−1). (24c)

The above expressions constitutes the time update of the �lter. The prediction
of the nonlinear state, which will be used in the sampling (see Section 4.2), is
given by (23). Once the nonlinear state trajectory is augmented with a new
sample we can condition the prediction of the linear state on this sample, ac-
cording to (24). In doing so we provide some information about the linear state,
through the connection between the linear and the nonlinear parts of the state
vector. From (24) we see that the estimate is updated accordingly and that
the covariance is reduced. This update is very similar to a Kalman �lter mea-
surement update, and is therefore sometimes denoted the �extra measurement
update� of the RBPF. Observe however, that we have not used any information
about the current measurement yt up to this point. This is what we will do
next.

From (1) we have the measurement density

p(yt | a1:t, zt, y1:t−1) = p(yt | at, zt) = N (yt;h(at) + C(at)zt, R(at)) , (25)
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which is a�ne in zt. We can thus use Corollary A.1 and the result (24) to obtain
the measurement likelihood

p(yt | a1:t, y1:t−1) = N (yt; ŷt(a1:t), St(a1:t)) , (26a)

with

ŷt(a1:t) = h+ Cz̄t|t−1, (26b)

St(a1:t) = R+ CPt|t−1C
T , (26c)

and also the posterior of zt conditioned on the new measurement

p(zt | a1:t, y1:t) = N
(
zt; z̄t|t(a1:t), Pt|t(a1:t)

)
, (27a)

with

z̄t|t(a1:t) = z̄t|t−1 +Kt(yt − ŷt), (27b)

Pt|t(a1:t) = Pt|t−1 −KtCPt|t−1, (27c)

Kt(a1:t) = Pt|t−1C
TS−1t . (27d)

Now, if we de�ne y1:0 , ∅, so that p(z1 | a1:1, y1:0) = p(z1 | a1) and analo-
gously for other distributions, we see that the expression (24a) coincides with
the prior (1f) at t = 1. The computations in (24) � (27) will thus hold at
t = 1, which in turn implies that p(z1 | a1, y1) = N (z1; z̄1|1(a1), P1|1(a1)) and
the assumption (19) is valid for t ≥ 2.

4.2 Sampling the nonlinear states

As we saw in the previous section, the �ltering distribution for the linear states
zt could be computed analytically when conditioned on the nonlinear state tra-
jectory a1:t. However, the �ltering distribution for a1:t is not available in closed
form and we must thus resort to approximations. In this work we use Monte
Carlo approximation, in which a distribution is represented by a number of sam-
ples from it. In this section we shall see how we sequentially can sample from
the �ltering distribution for the nonlinear states p(a1:t | y1:t) using importance
sampling.

Let us assume that t ≥ 2. Sampling at time t = 1 can be done from straight-
forward modi�cations of the results given here. Hence, the target distribution
can be expressed as

p(a1:t | y1:t) ∝ p(yt | a1:t, y1:t−1)p(a1:t | y1:t−1)

= p(yt | a1:t, y1:t−1)p(at | a1:t−1, y1:t−1)p(a1:t−1 | y1:t−1).
(28)

To sample from this target distribution, we choose a proposal distribution, which
factorizes according to

q(a1:t | y1:t) = q(at | a1:t−1, y1:t) q(a1:t−1 | y1:t−1)︸ ︷︷ ︸
previous proposal

. (29)

Observe that this is not a generally applicable factorization of a probability
density function, due to the missing conditioning on yt in the second factor.
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Sampling from (29) can be done by �rst sampling from q(a1:t−1 | y1:t−1)
(which is already done at time t − 1) and then append samples from q(at |
ai1:t−1, y1:t),

ait ∼ q(at | ai1:t−1, y1:t),
ai1:t = {ai1:t−1, ait}. (30)

The importance weights are given by, using (23) and (26),

wit =
p(ai1:t | y1:t)
q(ai1:t | y1:t)

∝
p(yt | ai1:t, y1:t−1)p(ait | ai1:t−1, y1:t−1)

q(ait | ai1:t−1, y1:t)
p(ai1:t−1 | y1:t−1)

q(ai1:t−1 | y1:t−1)︸ ︷︷ ︸
=wi

t−1

= wit−1

N
(
yt; ŷt(a

i
1:t), St(a

i
1:t)
)
N
(
ait;αt|t−1(ai1:t−1),Σat|t−1(ai1:t−1)

)
q(ait | ai1:t−1, y1:t)

.

(31)

Since we only know the importance weights up to proportionality they should,
according to (12), be normalized so that

N∑
i=1

wit = 1. (32)

4.3 Resampling

Just as in �standard� particle �ltering we need to resample the trajectories to
avoid degeneracy, see for instance [3]. The basic idea is to discard particles
with low weights and duplicate particles with high weights. This is done in
a resampling step, similar to what is discussed in Section 3.2. Many di�erent
resampling procedures have been proposed, see e.g., [2]. Any method of choice
can be used in the RBPF.

4.4 RBPF algorithm

We summarize the Rao-Blackwellized particle �lter in Algorithm 2. To simplify
the notation, for functions in argument at or a1:t, e.g., R(at) and z̄t|t(a1:t), let

us write Rit , R(ait) and z̄
i
t|t , z̄t|t(a

i
1:t) etc.

In the interest of giving a somewhat more compact presentation, the algo-
rithm is only given for time t ≥ 2 and does not show how to do the initialization
at t = 1. However, this initialization is very similar to the steps given in the
algorithm. In step 1, we choose a proposal q(a1 | y1), since we do not have any
�old� trajectory to condition on. Step 2 is not needed since we have an initial
�prediction� of the linear states, z̄1|0(a1), P̂1|0(a1) from the prior distribution
(1f). In step 3, the weights are given by

w̌i1 =
N
(
y1; ŷi1, S

i
1

)
p(ai1)

q(ai1 | y1)
, wit =

w̌it∑N
i=1 w̌

i
t

,

with ŷi1 and Si1 as in Algorithm 2. Finally, step 4 and step 5 are identical to
Algorithm 2.
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Algorithm 2 RBPF (for t ≥ 2)

1. Sampling: Choose a proposal q(at | a1:t−1, y1:t), draw new samples and
append to the nonlinear state trajectories. For i = 1, . . . , N ,

ait ∼ q(at | ai1:t−1, y1:t),
ai1:t = {ai1:t−1, ait}.

2. Prediction: Predict the state and condition the linear state on the newly
drawn ait. For i = 1, . . . , N ,

αit|t−1 = fa,it−1 +Aa,it−1z̄
i
t−1|t−1,

z̄it|t−1 = fz,it−1 +Az,it−1z̄
i
t−1|t−1 + (Σaz,it|t−1)T (Σa,it|t−1)−1(ait − αit|t−1),

P it|t−1 = Σz,it|t−1 − (Σaz,it|t−1)T (Σa,it|t−1)−1(Σaz,it|t−1),

with

Σa,it|t−1 = Qa,it−1 +Aa,it−1P
i
t−1|t−1(Aa,it−1)T ,

Σaz,it|t−1 = Qaz,it−1 +Aa,it−1P
i
t−1|t−1(Az,it−1)T ,

Σz,it|t−1 = Qz,it−1 +Az,it−1P
i
t−1|t−1(Az,it−1)T .

3. Weighting: Evaluate and normalize the importance weights

w̌it =
N
(
yt; ŷ

i
t, S

i
t

)
N
(
ait;α

i
t|t−1,Σ

a,i
t|t−1

)
q(ait | ai1:t−1, y1:t)

wit−1, i = 1, . . . , N,

wit =
w̌it∑N
i=1 w̌

i
t

,

with

ŷit = hit + Cit z̄
i
t|t−1,

Sit = Rit + CitP
i
t|t−1(Cit)

T .

4. Update the linear states: Compute the su�cient statistics for the
linear states, given the current measurement. For i = 1, . . . , N ,

z̄it|t = z̄it|t−1 +Ki
t(yt − ŷit),

P it|t = P it|t−1 −K
i
tC

i
tP

i
t|t−1,

Ki
t = P it|t−1(Cit)

T (Sit)
−1.

5. Resampling: Use a resampling scheme of choice and update the impor-
tance weights {wit}Ni=1 accordingly.
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5 Rao-Blackwellized Forward Filter Backward

Simulator

In this section we shall derive a Rao-Blackwellized particle smoother (RBPS).
This smoother was �rst derived in [5], but for a slightly di�erent model structure,
in which the nonlinear state dynamics are independent of the linear states. In
this section we will make the derivation for the fully interconnected model (1).
In Section 5.4, the relationship between the smoother given here and the one
presented in [5] is discussed.

The smoother is a so called forward �lter backward simulator (FFBSi) type
of smoother since it is based on a forward pass of the standard RBPF presented
above, and a backward simulation where new �smoothed� samples are drawn
from the grid spanned by the forward �ltering (FF) pass.

5.1 Derivation

The Rao-Blackwellized FFBSi (RB-FFBSi) is a Monte Carlo method used to
compute expectations of the type (3), i.e.,

E [g(at:t+1, zt:t+1) | y1:T ]

=

∫∫
g(at:t+1, zt:t+1)p(at:t+1, zt:t+1 | y1:T ) dat:t+1dzt:t+1

=

∫∫
g(at:t+1, zt:t+1)p(zt:t+1 | at:T , y1:T )p(at:T | y1:T ) dat:T dzt:t+1. (33)

As previously mentioned, the reason for why we consider functions of the states
at time t and t+1 is that expectations of this kind often appear in methods that
utilizes the smoothing estimates, e.g., parameter estimation using expectation
maximization [12]. Expectations of functions of the state at either time t or t+1
are clearly special cases and are thus also covered. However, it can be instructive
to consider such functions explicitly anyway. We shall thus focus the derivation
of the smoother on �nding (approximate) expressions for the densities

p(at:T | y1:T ) for t = 1, . . . , T, (34a)

p(zt | at:T , y1:T ) for t = 1, . . . , T, (34b)

p(zt:t+1 | at:T , y1:T ) for t = 1, . . . , T − 1. (34c)

We shall assume that we have performed the forward �ltering already. We
have thus, for t = 1, . . . , T , obtained N nonlinear state trajectories with cor-
responding importance weights, {ai1:t, wit}Ni=1, sampled from the distribution
p(a1:t | y1:t). We have also, for each of these trajectories, evaluated the su�-
cient statistics for the linear states,

{z̄t|t(ai1:t), Pt|t(ai1:t)}Ni=1. (35)

As indicated by (35), the su�cient statistics are functions of the nonlinear state
trajectory. This implies that if we take a di�erent path forward through the
nonlinear part of the state-space, this will in�uence our belief about the linear
states. However, in the FFBSi we will sample trajectories backward in time
which typically will be di�erent from the forward trajectories (see Figure 1 and

11



Figure 2 for an illustration). During the backward simulation we can hence not
allow ourselves to condition on the entire forward nonlinear state trajectory. To
circumvent this we will make the following approximation.

Approximation 1 At each time t = 1, . . . , T , the �ltering distribution for
the linear state zt does not depend on the entire nonlinear state trajectory, but
merely on the endpoint of this trajectory, i.e.,

p(zt | a1:t, y1:t) = p(zt | at, y1:t) = N
(
zt; z̄t|t(at), Pt|t(at)

)
(36a)

with

z̄t|t(at) = z̄t|t(a1:t), (36b)

Pt|t(at) = Pt|t(a1:t), (36c)

where z̄t|t(a1:t) and Pt|t(a1:t) are given by the RBPF recursions.

The above approximation can be motivated by considering the point-mass
approximation of the �ltering distribution from the RBPF,

p(zt, a1:t | y1:t) ≈
N∑
i=1

witN
(
zt; z̄t|t(a

i
1:t), Pt|t(a

i
1:t)
)
δ(a1:t − ai1:t). (37)

If we marginalize this distribution over a1:t−1 we obtain

p(zt, at | y1:t) ≈
N∑
i=1

witN
(
zt; z̄t|t(a

i
1:t), Pt|t(a

i
1:t)
)
δ(at − ait), (38)

which implies

p(zt | at = ait, y1:t) ≈ N
(
zt; z̄t|t(a

i
1:t), Pt|t(a

i
1:t)
)
. (39)

From (39) we get precisely Approximation 1. The expression (39) is indeed an
approximation, as opposed to (20) which is exact. The reason for this is that in
the marginalization (38), the point-mass (particle) approximation representing
the distribution in the a1:t−1-dimensions of the state-space is �injected� into the
linear states as well. It should be mentioned that Approximation 1 is required
also in the original RB-FFBSi derived in [5].

The task at hand is now to draw the backward trajectories, i.e., samples from
the smoothed distribution ãjt:T ∼ p(at:T | y1:T ), j = 1, . . . , N and thereafter

evaluate p(zt | ãjt:T , y1:T ) and p(zt:t+1 | ãjt:T , y1:T ) (the latter only for t < T ) for
each sample. We see that the task is already ful�lled at time t = T , since the FF
then supplies the sought samples and distributions (under Approximation 1).
These samples are however, due to the importance sampling nature of the RBPF,
associated with corresponding weights. The RB-FFBSi does not use importance
sampling, but is instead designed to sample on the grid spanned by the FF. This
can be seen as a kind of resampling of the FF where the �future� measurements
are taken into account. To initialize this procedure at time t = T we shall thus
conduct an initial resampling of the FF.

The derivation is now presented as a proof by induction. We shall assume
that we have the samples {ãjt+1:T }Nj=1 and that the distributions for the linear
states are given by

p(zt+1 | at+1:T , y1:T ) = N
(
zt+1; z̄t+1|T (at+1:T ), Pt+1|T (at+1:T )

)
(40)

and show how to complete the recursions at time t.

12
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Figure 1: Particle trajectories for N = 4 particles over T = 5 time steps after a
completed FF pass. The sizes of the dots represent the particle weights.
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Figure 2: The simulation of a single backward trajectory. Upper left; one of
the FF particles is drawn randomly at t = 5, shown as a blue asterisk (*).
The particle weights at t = 4 are thereafter recomputed and another particle
is drawn and added to the backward trajectory. Upper right and lower left;
the trajectory is appended with new particles at t = 3 and t = 2, respectively.
Lower right; a �nal particle is appended at t = 1, forming a complete backward
trajectory. Observe that the trajectory di�ers from the ancestral line of the
particle as it was in the FF.
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5.2 Sampling

Our target distribution (for the nonlinear states) can be factorized as

p(at:T | y1:T ) = p(at | at+1:T , y1:T ) p(at+1:T | y1:T )︸ ︷︷ ︸
previous target

. (41)

We can thus, as will be shown, sample ãjt ∼ p(at | ã
j
t+1:T , y1:T ) and append the

samples to the previous ones, ãjt:T = {ãjt , ã
j
t+1:T }.

It turns out that it is in fact easier to sample from the joint distribution (see
Appendix B)

p(zt+1, a1:t | at+1:T , y1:T ) = p(a1:t | zt+1, at+1:T , y1:T ) p(zt+1 | at+1:T , y1:T )︸ ︷︷ ︸
known Gaussian from time t+ 1

(42)
We can easily sample z̃jt+1 ∼ p(zt+1 | ãjt+1:T , y1:T ) and thereafter ãj1:t ∼
p(a1:t | z̃jt+1, ã

j
t+1:T , y1:T ) (which we will show next) to obtain a sample,

{z̃jt+1, ã
j
1:t}, from the joint distribution. We can then simply discard everything

but ãjt .
The �rst factor in (42) is given by (see Appendix C)

p(a1:t | zt+1, at+1:T , yt:T ) = p(a1:t | zt+1, at+1, y1:t). (43)

This result is rather natural; given the states at time t + 1, there is no extra
information available in the states at time τ > t+ 1 or in the measurements at
time τ > t. We can write

p(a1:t | zt+1, at+1, y1:t) =
p(zt+1, at+1 | a1:t, y1:t)p(a1:t | y1:t)

p(zt+1, at+1 | y1:t)
∝
/
in argument a1:t

/
∝ p(zt+1, at+1 | a1:t, y1:t)p(a1:t | y1:t), (44)

where, from (22), the �rst factor is given by

p(zt+1, at+1 | a1:t, y1:t)

= N

([
at+1

zt+1

]
;

[
αt+1|t(a1:t)
ζt+1|t(a1:t)

]
,

[
Σat+1|t(a1:t) Σazt+1|t(a1:t)

(Σazt+1|t(a1:t))
T Σzt+1|t(a1:t)

])
.

(45)

For the second factor in (44), our best approximation is a point-mass distribution
(from the FF),

p(a1:t | y1:t) ≈
N∑
i=1

witδ(a1:t − ai1:t). (46)

The way in which we can sample from (44) is thus to draw among the particles
given by the FF, with probabilities updated according to the samples z̃jt+1 and

ãjt+1. Summarizing the above we obtain

p(a1:t | z̃jt+1, ã
j
t+1:T , y1:T ) ≈

∑N
i=1 w

i
tp(z̃

j
t+1, ã

j
t+1 | ai1:t, y1:t)δ(a1:t − ai1:t)∑N

k=1 w
k
t p(z̃

j
t+1, ã

j
t+1 | ak1:t, y1:t)

=

N∑
i=1

wi,jt|T δ(a1:t − a
i
1:t), (47)
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with

wi,jt|T ,
witp(z̃

j
t+1, ã

j
t+1 | ai1:t, y1:t)∑N

k=1 w
k
t p(z̃

j
t+1, ã

j
t+1 | ak1:t, y1:t)

. (48)

The backward simulation is illustrated in Figure 1 and Figure 2.

5.3 Smoothing the linear states

Once we have sampled the nonlinear backward trajectories {ãjt:T }Nj=1, the next
step is to �nd the su�cient statistics for the linear states, that will turn out to
be approximately Gaussian,

p(zt | at:T , y1:T ) ≈ N
(
zt; z̄t|T (at:T ), Pt|T (at:T )

)
. (49)

This will be done in the following way:

1. Use the FF solution to �nd the distribution p(zt | zt+1, at:T , y1:T ) which
is Gaussian and a�ne in zt+1.

2. Approximate the distribution p(zt+1 | at:T , y1:T ) as the conditional smooth-
ing distribution for the linear states at time t + 1, p(zt+1 | at:T , y1:T ) ≈
p(zt+1 | at+1:T , y1:T ).

3. Combine p(zt | zt+1, at:T , y1:T ) and p(zt+1 | at:T , y1:T ) to get the condi-
tional joint (in zt and zt+1) smoothing distribution for the linear states
at time t, p(zt:t+1 | at:T , y1:T ) and also the marginal �version� of this
p(zt | at:T , y1:T ).

We will now address these three steps in order.

5.3.1 Step 1 - Using the �lter information

We shall now �nd an expression for the distribution

p(zt | zt+1, at:T , y1:T ) = p(zt | zt+1, at, at+1, y1:t) (50)

(see Appendix C for the derivation of this equality). We have the transition
density

p(zt+1, at+1 | zt, at, y1:t) = p(zt+1, at+1 | zt, at)

= N

([
at+1

zt+1

]
;

[
fa(at)
fz(at)

]
︸ ︷︷ ︸
,f(at)

+

[
Aa(at)
Az(at)

]
︸ ︷︷ ︸
,A(at)

zt,

[
Qa(at) Qaz(at)

(Qaz(at))
T Qz(at)

]
︸ ︷︷ ︸

=Q(at)

)

(51)

and, using Approximation 1, the �ltering distribution

p(zt | at, y1:t) = N
(
zt; z̄t|t(at), Pt|t(at)

)
. (52)

This is an a�ne transformation of Gaussian variables, and from Corollary A.1
we thus get

p(zt | zt+1, at, at+1, y1:t) = N
(
zt; z̄

+
t|t(at:t+1), P+

t|t(at:t+1)
)
, (53)
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with

z̄+t|t(at:t+1) = P+
t|t(at:t+1)

(
A(at)

TQ(at)
−1
([
aTt+1 zTt+1

]T − f(at)
)

+ Pt|t(at)
−1z̄t|t(at)

)
. (54)

To expand the above expression we introduce

Q(at)
−1 =

[
Λa(at) Λaz(at)

(Λaz(at))
T Λz(at)

]
(55a)[

W a(at) W z(at)
]

= A(at)
TQ(at)

−1

=
[
(Aa(at))

TΛa(at) + (Az(at))
T (Λaz(at))

T . . .

(Aa(at))
TΛaz(at) + (Az(at))

TΛz(at)
]

(55b)

yielding (dropping the arguments at and at+1 in the �rst two rows to keep the
notation uncluttered)

z̄+t|t(at:t+1) = P+
t|t

(
W a(at+1 − fa) +W zzt+1 −W zfz + P−1t|t z̄t|t

)
= P+

t|tW
zzt+1 + P+

t|t

(
W a(at+1 − fa)−W zfz + P−1t|t z̄t|t

)
︸ ︷︷ ︸

,c+
t|t(at:t+1)

= P+
t|t(at:t+1)W z(at)zt+1 + c+t|t(at:t+1).

(56)

Furthermore, the covariance matrix is given by

P+
t|t(at:t+1) =

(
Pt|t(at)

−1 +A(at)
TQ(at)

−1A(at)
)−1

=
(
Pt|t(at)

−1 +W a(at)A
a(at) +W z(at)A

z(at)
)−1

(57a)

or alternatively

P+
t|t(at:t+1) = Pt|t(at)− Pt|t(at)A(at)

T
(
Q(at) +A(at)Pt|t(at)A(at)

T
)−1

×A(at)Pt|t(at). (57b)

5.3.2 Step 2 - Approximating the smoothed distribution

From the above discussion we have that p(zt | zt+1, at:T , y1:T ) is Gaussian and
a�ne in zt+1. Thus, if also p(zt+1 | at:T , y1:T ) would be Gaussian, we could
apply Theorem A.3 to obtain the sought smoothing distribution. This will be
done in Section 5.3.3.

However, the distribution p(zt+1 | at:T , y1:T ) is typically not Gaussian. To
circumvent this we shall use the following approximation.

Approximation 2 For all backward trajectories, {ãjt:T }Nj=1 we shall assume
that

p(zt+1 | ãjt:T , y1:T ) ≈ p(zt+1 | ãjt+1:T , y1:T ) = N
(
zt+1; z̄jt+1|T , P

j
t+1|T

)
. (58)
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The approximation implies that we assume that the smoothing estimate for
zt+1 is independent of which FF particle ait that is appended to the backward
trajectory. This approximation can be motivated by the fact that a particle
ait is more probable to be drawn if it has a good �t to the current smoothing
trajectory. Hence, it should not a�ect the smoothing estimate at time t + 1
to any signi�cant extent, a claim that has been con�rmed empirically through
simulations (see Section 6). It should be mentioned that this approximation is
required also in the original RB-FFBSi derived in [5].

5.3.3 Step 3 - Combining the information

We now have

p(zt | zt+1, at:T , y1:T ) = N
(
zt; z̄

+
t|t(at:t+1), P+

t|t(at:t+1)
)
, (59a)

z̄+t|t(at:t+1) = P+
t|t(at:t+1)W z(at)zt+1 + c+t|t(at:t+1), (59b)

which is a�ne in zt+1 and

p(zt+1 | at:T , y1:T ) = N
(
zt+1; z̄t+1|T (at+1:T ), Pt+1|T (at+1:T )

)
. (60)

We can thus use Theorem A.3 to obtain

p(zt:t+1 | at:T , y1:T ) = N
((

zt
zt+1

)
;

(
z̄t|T
z̄t+1|T

)
,

(
Pt|T Mt|T
MT
t|T Pt+1|T

))
, (61a)

with

z̄t|T (at:T ) = P+
t|t(at:t+1)W z(at)z̄t+1|T (at+1:T ) + c+t|t(at:t+1), (61b)

Pt|T (at:T ) = P+
t|t(at:t+1) +Mt|T (at:T )(W z(at))

TP+
t|t(at:t+1), (61c)

Mt|T (at:T ) = P+
t|t(at:t+1)W z(at)Pt+1|T (at+1:T ). (61d)

Finally, using Theorem A.2 we obtain the marginal distribution

p(zt | at:T , y1:T ) = N
(
zt; z̄t|T (at:T ), Pt|T (at:T )

)
. (62)

We summarize the RB-FFBSi procedure in Algorithm 3.

5.4 A special case

In this work we have considered the mixed linear/nonlinear model (1). Another,
very much related, model often found in the literature (e.g., [5, 1]) is

at+1 ∼ p(at+1 | at), (63a)

zt+1 = fz(at) +Az(at)zt + wzt , (63b)

yt = h(at) + C(at)zt + et, (63c)

with

wzt ∼ N (0, Qz(at)), (63d)

et ∼ N (0, R(at)) . (63e)
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Algorithm 3 RB-FFBSi

1. Initialize:

(a) Run a forward pass of the RBPF and store the following quantities
for i = 1, . . . , N :

• The particles, ai1:t (t = 1, . . . , T )

• z̄it|t and P
i
t|t (t = 1, . . . , T )

• αit+1|t, ζ
i
t+1|t, Σa,it+1|t, Σaz,it+1|t and Σz,it+1|t (t = 1, . . . , T − 1)

(b) Resample the FF at time t = T , P (ãjT = aiT ) = wiT , j = 1, . . . , N .

(c) Set t := T − 1.

2. Sampling: For each backward trajectory, {ãjt+1:T }Nj=1:

(a) Draw

z̃jt+1 ∼ p(zt+1 | ãjt+1:T , y1:T ) = N (zt+1; z̄jt+1|T , P
j
t+1|T ).

(b) For each particle in the FF, i = 1, . . . , N , evaluate (48) using (22)

wi,jt|T =
witp(z̃

j
t+1, ã

j
t+1 | ai1:t, y1:t)∑N

k=1 w
k
t p(z

j
t+1, ã

j
t+1 | ak1:t, y1:t)

.

(c) Set ãj1:t = ai1:t with probability wi,jt|T , i.e., P (ãj1:t = ai1:t) = wi,jt|T .

(d) Discard ãj1:t−1 and set ãjt:T = {ãjt , ã
j
t+1:T }.

3. Linear states: For each backward trajectory, {ãjt:T }Nj=1:

Update the su�cient statistics according to

z̄jt|T = P+j
t|t W

z,j z̄jt+1|T + c+jt|t ,

P jt|T = P+j
t|t +M j

t|T (W z,j)TP+j
t|t ,

M j
t|T = P+j

t|t W
z,jP jt+1|T ,

where

c+jt|t = P+j
t|t

(
W a,j(ajt+1 − fa,j)−W z,jfz,j + (P jt|t)

−1z̄jt|t

)
,

P+j
t|t =

(
(P jt|t)

−1 +W a,jAa,j +W z,jAz,j
)−1

,

and

W a,j = (Aa,j)TΛa,j + (Az,j)T (Λaz,j)T ,

W z,j = (Aa,j)TΛaz,j + (Az,j)TΛz,j .

4. Termination condition: If t > 1, set t := t − 1 and go to step 2,
otherwise terminate.
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Hence, the transition density for the nonlinear states (at) is arbitrary, but it
does not depend on the linear states (zt). In [5] a RB-FFBSi is derived for this
model. If the transition density p(at+1 | at) is Gaussian we can write

p(at+1 | at) = N (at+1; fa(at), Q
a(at)) , (64)

and model (63) is then a special case of model (1) corresponding to Aa ≡ Qaz ≡
0. It can be instructive to see how Algorithm 3 will turn out for this special
case.

Since the process noise covariance Q(at) now is block diagonal we get the
information matrices Λa(at) = Qa(at)

−1, Λz(at) = Qz(at)
−1 and Λaz(at) ≡ 0.

Furthermore, since Aa(at) ≡ 0, we get from (55)

W a(at) ≡ 0, (65a)

W z(at) = Az(at)
TQz(at)

−1, (65b)

which in (56) and (57) gives

c+t|t(at:t+1) = −P+
t|tW

zfz + P+
t|tP

−1
t|t z̄t|t, (66a)

and

P+
t|t(at:t+1) =

(
P−1t|t + (Az)T (Qz)−1Az

)−1
= Pt|t − Pt|t(Az)T

(
Qz +AzPt|t(A

z)T
)−1

AzPt|t

= Pt|t − TtAzPt|t, (66b)

where we have de�ned

Tt(at:t+1) , Pt|t(A
z)T

(
Qz +AzPt|t(A

z)T
)−1

= Pt|t(A
z)TP−1t+1|t. (66c)

The last equality follows from (22) and (24).
Now, consider the product

P+
t|tW

z = Pt|t(A
z)T (Qz)−1 − TtAzPt|t(Az)T (Qz)−1

= Pt|t(A
z)T

(
I − P−1t+1|tA

zPt|t(A
z)T
)

(Qz)−1

= Pt|t(A
z)TP−1t+1|t

(
Pt+1|t −AzPt|t(Az)T

)︸ ︷︷ ︸
=Qz

(Qz)−1

= Pt|t(A
z)TP−1t+1|t = Tt. (67)

The expressions in (61) can now be rewritten

z̄t|T (at:T ) = Ttz̄t+1|T − Ttfz + P+
t|tP

−1
t|t z̄t|t

= z̄t|t + Tt
(
z̄t+1|T − fz −Az z̄t|t

)
= z̄t|t + Tt

(
z̄t+1|T − z̄t+1|t

)
, (68a)

where the last equality follows from (22) and (24),

Pt|T (at:T ) = Pt|t − TtAzPt|t + TtPt+1|TT
T
t

=
/
AzPt|t = Pt+1|tT

T
t

/
= Pt|t − Tt

(
Pt+1|t − Pt+1|T

)
TTt , (68b)

19



and �nally

Mt|T (at:T ) = TtPt+1|T . (68c)

The above expressions for z̄t|T and Pt|T can be recognized as the Rauch-Tung-
Striebel (RTS) recursions for the smoothed estimate in linear Gaussian state
space models [10].

Furthermore, from (22)-(24) it is straightforward to show that

p(zt, at | a1:t−1, y1:t−1) = N (at; f
a, Qa)N

(
zt; z̄t+1|t, Pt+1|t

)
. (69)

As expected, the RB-FFBSi for the special case presented in this section coin-
cides with the one derived in [5].

6 Numerical Illustrations

In this section we will evaluate the presented �lter and smoother on simulated
data. Two di�erent examples will be presented, �rst a linear Gaussian system
and thereafter a mixed linear/nonlinear system. The purpose of including a
linear Gaussian example is to gain con�dence in the presented methods. This
is possible, since, for this case, there are closed form solutions available for
the �ltering and smoothing densities. Optimal �ltering can be performed using
the Kalman �lter (KF) and optimal smoothing using the Rauch-Tung-Striebel
(RTS) recursions [10].

For both the linear and the mixed linear/nonlinear examples, we can clearly
also address the inference problems using standard particle methods. For the
�ltering problem we shall employ the bootstrap particle �lter (PF) [7], which
will be compared with the RBPF presented in Algorithm 2. We shall use the
�bootstrap version� of the RBPF as well, meaning that the state transition
density will be used as proposal and that resampling is carried out at each time
step. For the smoothing problem we will employ the (non-Rao-Blackwellized)
FFBSi [6] as well as the RB-FFBSi presented in Algorithm 3.

6.1 A Linear Example

To test the presented �lter and smoother, we shall start by considering a linear,
second order system according to(

at+1

zt+1

)
=

(
1 0.1
0 1

)(
at
zt

)
+ wt, wt ∼ N (0, Q), (70a)

yt = at + et, et ∼ N (0, R), (70b)

with Q = 0.1I2×2 and R = 0.1. The initial state of the system is Gaussian
according to (

a1
z1

)
∼ N

((
0
1

)
,

(
1 0
0 1

))
. (71)

When using RBPF and RB-FFBSi the �rst state at is treated as if it is nonlinear,
whereas the second state zt is treated as linear.

20



The comparison was made by pursuing a Monte Carlo study over 1000 real-
izations of data y1:T from the system (70), each consisting of T = 200 samples
(measurements). The three �lters, KF, PF and RBPF, and thereafter the three
smoothers, RTS, FFBSi, RB-FFBSi, were run in parallel. The particle methods
all employed N = 50 particles.

Table 1 and Table 2 gives the root mean squared errors (RMSE) for the
three �lters and smoothers respectively.

Table 1: RMSE for �lters

Filter at zt

PF 8.69 43.5
RBPF 8.35 33.4
KF 8.08 33.4

Table 2: RMSE for smoothers

Smoother at zt

FFBSi 7.45 36.7
RB-FFBSi 7.09 22.8
RTS 6.72 22.7

The results are as expected. First, smoothing clearly decreases the RMSEs
when compared to �ltering. Second, Rao-Blackwellization has the desired e�ect
of decreasing the RMSE when compared to standard particle methods. When
looking at the �linear� state zt the RBPF and the RB-FFBSi performs very
close to the optimal KF and RTS, respectively. The PF and FFBSi shows much
worse performance.

The key di�erence between PF/FFBSi and RBPF/RB-FFBSi is that in the
former, the particles have to cover the distribution in two dimensions. In the
RBPF/RB-FFBSi we marginalize one of the dimensions analytically and thus
only need to deal with one of the dimensions using particles. For PF/FFBSi we
could of course obtain better approximation of the distribution by increasing
the number of particles. However, we will then run into the infamous curse of
dimensionality, requiring an exponential increase in the number of particles and
hence also in computational complexity, as the order of the system increases.

6.2 A Mixed Linear/Nonlinear Example

We shall now study a fourth order mixed linear/nonlinear system, where three
of the states are conditionally linear Gaussian,

at+1 = arctan at +
(
1 0 0

)
zt + wa,t, (72a)

zt+1 =

1 0.3 0
0 0.92 −0.3
0 0.3 0.92

 zt + wz,t, (72b)

yt =

(
0.1a2t sgn(at)

0

)
+

(
0 0 0
1 −1 1

)
zt + et, (72c)

with wt =
[
wa,t wTz,t

]T ∼ N (0, Q), Q = 0.01I4×4 and et ∼ N(0, R), R =
0.1I2×2. The initial state of the system is Gaussian according to

(
a1
z1

)
∼ N

((
0

03×1

)
,

(
1 01×3

03×1 03×3

))
. (73)
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The z-system is oscillatory and marginally stable, with poles in 1, 0.92 ± 0.3i
and the z-variables are connected to the nonlinear a-system through z1,t.

Again, 1000 realizations of data y1:T were generated, each consisting of T =
200 samples. Due to the nonlinear nature of this example we cannot employ the
KF and the RTS. Hence, in the comparison, presented in Table 3 and Table 4,
we have only considered the PF/FFBSi and the RBPF/RB-FFBSi, all using
N = 50 particles.

Table 3: RMSE for �lters

Filter at z1,t z2,t z3,t

PF 27.3 16.2 8.58 6.83
RBPF 14.1 9.19 6.75 5.55

Table 4: RMSE for smoothers

Smoother at z1,t z2,t z3,t

FFBSi 25.2 13.3 6.58 6.45
RB-FFBSi 10.2 4.86 3.81 4.24

The bene�ts of using Rao-Blackwellization becomes even more evident in
this, more challenging, problem. Since we can marginalize three out of the
four dimensions analytically, Rao-Blackwellization allows us to handle this fairly
high-dimensional system using only 50 particles.

7 Conclusions

The purpose of this work has been to present a self-contained derivation of a
Rao-Blackwellized particle �lter and smoother. An existing Rao-Blackwellized
particle smoother has been extended to be able to handle the fully intercon-
nected model (1) under study. The bene�t of using Rao-Blackwellization, when-
ever possible, is illustrated in two numerical examples. It is shown that Rao-
Blackwellization tends to reduce the root mean squared errors of the state esti-
mates, especially when the sate dimension is large. It can be concluded that one
of the main strengths of the presented �lter and smoother is that it enables the
use of particle methods for high-dimensional mixed linear/nonlinear systems, as
long as only a few of the states enter nonlinearly. This is a well known result,
presented previously in for instance [11], where a Rao-Blackwellized particle
�lter is used on a nine dimensional system in a real world example.
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A Manipulating Gaussian Random Variables

In this appendix we shall give a few results on how the multivariate Gaussian
density can be manipulated. The following theorems and corollary gives us all
the tools needed to derive the expressions for the so called linear states zt in
this work. The statements are given without proofs, since the proofs are easily
found in standard textbooks on the subject.

A.1 Partitioned Gaussian

We shall start by giving two results on partitioned Gaussian variables. Assume
(without loss of generality) that we have partitioned a Gaussian variable, its
mean and its covariance as

x =

(
a
b

)
, µ =

(
µa
µb

)
, Σ =

(
Σa Σab
Σba Σb

)
, (74)

where for reasons of symmetry Σba = ΣTab. It is also useful to write down the
partitioned information matrix

Λ = Σ−1 =

(
Λa Λab
Λba Λb

)
, (75)

since this form will provide simpler calculations below. Note that, since the
inverse of a symmetric matrix is also symmetric, we have Λba = ΛTab.

Theorem A.1 (Conditioning) Let the stochastic variable x =
(
aT bT

)T
be Gaussian distributed with mean and covariance according to (74), then the
conditional density p(a | b) is given by

p(a | b) = N
(
a;µa|b,Σa|b

)
,

where

µa|b = µa + ΣabΣ
−1
b (b− µb),

Σa|b = Σa − ΣabΣ
−1
b Σba,

which using the information matrix can be written,

µa|b = µa − Λ−1a Λab(b− µb),
Σa|b = Λ−1a .

Theorem A.2 (Marginalization) Let the stochastic variable x =
(
aT bT

)T
be Gaussian distributed with mean and covariance according to (74), then the
marginal density p(a) is given by

p(a) = N (a;µa,Σa) .
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A.2 A�ne transformations

In the previous section we started with the joint distribution for a and b. We
then gave expressions for the marginal and the conditional distributions. We
shall now take a di�erent starting-point, namely that we are given the marginal
density p(a) and the conditional density p(b | a) (a�ne in a) and derive expres-
sions for the joint distribution of a and b, the marginal p(b) and the conditional
density p(a | b).

Theorem A.3 (A�ne transformation) Assume that a, as well as b condi-
tioned on a, are Gaussian distributed according to

p(a) = N (a;µa,Σa) ,

p(b | a) = N
(
b;Ma+ b̃,Σb|a

)
,

where M is a matrix (of appropriate dimension) and b̃ is a constant vector. The
joint distribution of a and b is then given by

p(a, b) = N
((

a
b

)
;

(
µa

Mµa + b̃

)
, R

)
,

with

R =

(
MTΣ−1b|aM + Σ−1a −MTΣ−1b|a
−Σ−1b|aM Σ−1b|a

)−1
=

(
Σa ΣaM

T

MΣa Σb|a +MΣaM
T

)
.

Combining the results in Theorems A.1, A.2 and A.3 we get the following corol-
lary.

Corollary A.1 (A�ne transformation � marginal and conditional)
Assume that a, as well as b conditioned on a, are Gaussian distributed according
to

p(a) = N (a;µa,Σa) ,

p(b | a) = N
(
b;Ma+ b̃,Σb|a

)
,

where M is a matrix (of appropriate dimension) and b̃ is a constant vector. The
marginal distribution of b is then given by

p(b) = N (b;µb,Σb) ,

with

µb = Mµa + b̃,

Σb = Σb|a +MΣaM
T .

The conditional distribution of a given b is

p(a | b) = N
(
a;µa|b,Σa|b

)
,

with

µa|b = Σa|b

(
MTΣ−1b|a(b− b̃) + Σ−1a µa

)
= µa + ΣaM

TΣ−1b (b− b̃−Mµa),

Σa|b =
(

Σ−1a +MTΣ−1b|aM
)−1

= Σa − ΣaM
TΣ−1b MΣa.
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B Sampling in the RB-FFBSi

The sampling step in the RB-FFBSi at time t appends a new sample ãjt to
a backward trajectory ãjt+1:T . Hence, from (41) we see that we wish to draw
samples from the distribution p(at | at+1:T , y1:T ). In this appendix we shall
see why it is easier to instead sample from the join distribution {ãj1:t, z

j
t+1} ∼

p(a1:t, zt+1 | at+1:T , y1:T ) and thereafter discard everything but ãjt .
First of all we note that the backward simulation makes use of the FF parti-

cles, i.e., we only sample among the particles generated by the FF. This means
that our target distribution can be written as a weighted point-mass distribution
according to

p(at | at+1:T , y1:T ) ≈
N∑
i=1

θiδ(at − ait), (76)

with some, yet unspeci�ed, weights θi. Clearly, the tricky part is to compute
these weights, once we have them the sampling is trivial.

To see why it is indeed hard to compute the weights, we consider the joint
distribution p(a1:t, zt+1 | at+1:T , y1:T ). Following the steps in (42)�(47), this
density is approximately

p(a1:t,zt+1 | at+1:T , y1:T )

≈ p(zt+1 | at+1:T , y1:T )

∑N
i=1 w

i
tp(zt+1, at+1 | ai1:t, y1:t)∑N

k=1 w
k
t p(zt+1, at+1 | ak1:t, y1:t)

δ(a1:t − ai1:t)

=

N∑
i=1

p(zt+1 | at+1:T , y1:T )wit|T (zt+1)δ(a1:t − ai1:t), (77)

where we have introduced the zt+1-dependent weights

wit|T (zt+1) ,
witp(zt+1, at+1 | ai1:t, y1:t)∑N
k=1 w

k
t p(zt+1, at+1 | ak1:t, y1:t)

. (78)

To obtain (76) we can marginalize (77) over a1:t−1 and zt+1, which results in

p(at | at+1:T , y1:T ) =

N∑
i=1

∫
p(zt+1 | at+1:T , y1:T )wit|T (zt+1) dzt+1︸ ︷︷ ︸

=θi

δ(at − ait).

(79)

Hence, if we want to sample �directly� from p(at | at+1:T , y1:T ) we need to
evaluate the (likely to be intractable) integrals involved in (79). If we instead
sample from the joint distribution p(a1:t, zt+1 | at+1:T , y1:T ) we can use the fact
that the marginal p(zt+1 | at+1:T , y1:T ) is Gaussian (and hence easy to sample
from). We then only need to evaluate wit|T (zt+1) at a single point, which is

clearly much simpler than evaluating the integrals in (79).
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C Complementary computations

In this appendix we shall derive the equalities in (43) and (50). Using the
Markov property and Bayes' rule we get

p(a1:t | zt+1, at+1:T , yt:T ) = p(a1:t | zt+1, at+1, at+2:T , y1:t, yt+1:T )

=
p(at+2:T , yt+1:T | a1:t, zt+1, at+1, y1:t)p(a1:t | zt+1, at+1, y1:t)

p(at+2:T , yt+1:T | zt+1, at+1, y1:t)

=
p(at+2:T , yt+1:T | zt+1, at+1)

p(at+2:T , yt+1:T | zt+1, at+1)
p(a1:t | zt+1, at+1, y1:t)

= p(a1:t | zt+1, at+1, y1:t), (80)

which gives (43). Furthermore

p(zt | zt+1, at:T , y1:T ) = p(zt | zt+1, at, at+1, at+2:T , y1:t, yt+1:T )

=
p(at+2:T , yt+1:T | zt, zt+1, at, at+1, y1:t)p(zt | zt+1, at, at+1, y1:t)

p(at+2:T , yt+1:T | zt+1, at, at+1, y1:t)

=
p(at+2:T , yt+1:T | zt+1, at+1)

p(at+2:T , yt+1:T | zt+1, at+1)
p(zt | zt+1, at, at+1, y1:t)

= p(zt | zt+1, at, at+1, y1:t), (81)

which proves (50). In the above computations we have assumed t ≤ T − 2. For
t = T − 1 simply remove at+2:T from all steps and the equalities still hold.

References

[1] M. Briers, A. Doucet, and S. Maskell. Smoothing algorithms for state-space
models. Annals of the Institute of Statistical Mathematics, 62(1):61�89,
February 2010.

[2] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo
Methods in Practice. Springer Verlag, New York, USA, 2001.

[3] A. Doucet, S. J. Godsill, and C. Andrieu. On sequential Monte Carlo sam-
pling methods for Bayesian �ltering. Statistics and Computing, 10(3):197�
208, 2000.

[4] A. Doucet and A. Johansen. A tutorial on particle �ltering and smoothing:
Fifteen years later. In Handbook of Nonlinear Filtering (to appear). Oxford
University Press, 2010.

[5] W. Fong, S. J. Godsill, A. Doucet, and M. West. Monte Carlo smoothing
with application to audio signal enhancement. IEEE Transactions on Signal
Processing, 50(2):438�449, February 2002.

[6] S. J. Godsill, A. Doucet, and M. West. Monte Carlo smoothing for nonlinear
time series. Journal of the American Statistical Association, 99(465):156�
168, March 2004.

[7] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to
nonlinear/non-gaussian bayesian state estimation. Radar and Signal Pro-
cessing, IEE Proceedings F, 140(2):107 �113, April 1993.

26



[8] E. L. Lehmann. Theory of Point Estimation. Probability and mathematical
statistics. John Wiley & Sons, New York, USA, 1983.

[9] F. Lindsten and T. B. Schön. Maximum likelihood estimation in mixed
linear/nonlinear state-space models. In Submitted to the 49th IEEE Con-
ference on Decision and Control (CDC), 2010.

[10] H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates
of linear dynamic systems. AIAA Journal, 3(8):1445�1450, August 1965.

[11] T. B. Schön, F. Gustafsson, and P-J. Nordlund. Marginalized particle
�lters for mixed linear/nonlinear state-space models. IEEE Transactions
on Signal Processing, 53(7):2279�2289, July 2005.

[12] T. B. Schön, A. Wills, and B. Ninness. System identi�cation of nonlinear
state-space models. Provisionally accepted to Automatica, 2010.

27





Avdelning, Institution

Division, Department

Division of Automatic Control
Department of Electrical Engineering

Datum

Date

2010-03-31

Språk

Language

� Svenska/Swedish

� Engelska/English

�

�

Rapporttyp

Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

�

URL för elektronisk version

http://www.control.isy.liu.se

ISBN

�

ISRN

�

Serietitel och serienummer

Title of series, numbering
ISSN

1400-3902

LiTH-ISY-R-2946

Titel

Title
Inference in Mixed Linear/Nonlinear State-Space Models using Sequential Monte Carlo

Författare

Author
Fredrik Lindsten, Thomas B. Schön

Sammanfattning

Abstract

In this work we apply sequential Monte Carlo methods, i.e., particle �lters and smoothers,
to estimate the state in a certain class of mixed linear/nonlinear state-space models. Such a
model has an inherent conditionally linear Gaussian substructure. By utilizing this structure
we are able to address even high-dimensional nonlinear systems using Monte Carlo meth-
ods, as long as only a few of the states enter nonlinearly. First, we consider the �ltering
problem and give a self-contained derivation of the well known Rao-Blackwellized particle
�lter. Thereafter we turn to the smoothing problem and derive a Rao-Blackwellized particle
smoother capable of handling the fully interconnected model under study.

Nyckelord

Keywords SMC, Particle �lter, Particle smoother, Rao-Blackwellization

http://www.control.isy.liu.se

	1 Introduction
	2 Problem Formulation
	3 Importance Sampling and Resampling
	3.1 Importance sampling
	3.2 Sampling importance resampling

	4 Rao-Blackwellized Particle Filter
	4.1 Updating the linear states
	4.2 Sampling the nonlinear states
	4.3 Resampling
	4.4 RBPF algorithm

	5 Rao-Blackwellized Forward Filter BackwardSimulator
	5.1 Derivation
	5.2 Sampling
	5.3 Smoothing the linear states
	5.3.1 Step 1 - Using the filter information
	5.3.2 Step 2 - Approximating the smoothed distribution
	5.3.3 Step 3 - Combining the information

	5.4 A special case

	6 Numerical Illustrations
	6.1 A Linear Example
	6.2 A Mixed Linear/Nonlinear Example

	7 Conclusions
	A Manipulating Gaussian Random Variables
	A.1 Partitioned Gaussian
	A.2 Affine transformations

	B Sampling in the RB-FFBSi
	C Complementary computations

